Digestive enzyme activities during the ontogenetic vertical migration of *Calanus glacialis*

Barbara Niehoff
Daniela Freese
Janne E. Søreide
Calanus glacialis

- Dominant on the Arctic shelf
- Mainly herbivorous
- Link primary production to higher trophic levels

- Feed on ice and pelagic algae
- Egg production and growth in surface waters
- Store wax esters
- Diapause in deep water
Diapause

- Arrested development at a certain stage
 (in *C. glacialis*: copepodite stage IV and V)
- Reduction of metabolic activity
- No feeding
- Torpid
- Survive unfavorable conditions
 (in *C. glacialis*: long period without food, avoid predators)

How will *C. glacialis* respond to changes in the primary production regime?
Objectives
- Determine digestive enzyme activity as a measure of feeding activity
- Base-line values over all the seasons

Questions
- How much does the activity differ between active and overwintering C. glacialis?
- Is there indication for internal or external regulation of enzyme synthesis?
Sampling during CLEOPATRA II from July 2012-2013

- Billefjorden (Arctic) sill fjord, low advection
- large *C. glacialis* population

Mostly low algal biomass
- Ice algae in late March/April 2013
- Phytoplankton bloom in May 2013
- Monthly
- WP 2 or WP 3 nets, >200 µm
- 50-0 m or 180-100 m depth
- Sorting of live CIV, CV, females
- Deep-freezing of 3*10 copepods
- Determination of enzyme activities
Proteinases: degradation of dietary proteins

- Specific activities are independent of stage
- Low in copepods at depth >100m from July 12 – March 13
- Increases in spring when first ice and later pelagic algae develop
Lipase/esterases: degradation of dietary lipids

- Specific activities differ among females and CIV activity in CIV increases later than in females
- Low in copepods at depth >100m
- Increases in spring when first ice and later pelagic algae develop
- Clear seasonal pattern
 low activities in autumn/winter:
 proteinase 15% of maximum
 lipase 25% of maximum
- Upward migration prior
 to appearance of food
- Feeding on ice algae
 induces enzyme activity
- Early enzyme synthesis
 allows to efficiently utilize
 phytoplankton bloom

As digestive activity relates to food availability,
C. glacialis should be able to cope
with shifts in the primary production regime
Thanks to crews and scientists on ships, at UNIS and at AWI

Research Council of Norway CLEOPATRA II - Project ID 216537

AWI Graduate School POLMAR funding D. Freese

Arctic field grand – Project ID 227555

Thank you for your attention!