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Whitehouse et al. 2008
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„Adult krill have a narrow temperature range 
of 0.5°C to 4°C for optimal growth and 

physiological functioning.“
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Respiration -> Energy Requirement

How are energy demands met?
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Malate Dehydrogenase MDH

• Key enzyme in TCA cycle, 
catalyzes oxidation of malate to 
oxaloacetate 

• also involved in other pathways 
(shuttling of TCA intermediates 
to cytosol) 

• mirrors respiration to some 
extent
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Citrate Synthase CS

• catalyzes first reaction in the 
cycle: condensation of the 
acetate residue from Acetyl CoA 
and one molecule oxaloacetate 

• acts as central crossing point for 
various pathways 

• balances oxidative and 
biosynthetic pathways 

• entry point for fat synthesis 
(Acetyl-CoA shuttle to cytosol) 
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Pyruvate Kinase PK

• Key enzyme in glycolytic 
pathway, catalyzes 
transphosphorylation from PEP 
and ADP to pyruvate and ATP 

• constitutes primary metabolic 
intersection (Munoz 2003) 

• suggested to play an important 
role in the transition to anaerobic 
metabolism (Vial et al. 1992)
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3-Hydroxyacyl-CoA-DH HOAD

• 3rd step in beta oxidation 
• marker enzyme for utilization of 

lipids



• ATP is allosteric inhibitor of PK -> 
upregulation of PK when ATP required 

• upregulation -> less gluconeogenesis, no 
demand for synthesis of glucose
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Glucose Catabolism



• MDH going up <-> not mirrored by 
CS: 

• points to a role of MDH other 
than that in the cycle series: 
downstream shuttling of 
intermediates of protein 
catabolism into TCA? 

• other studies show higher 
capacity for protein breakdown 
with increasing temperature 
(Schwerin et al. 2009)
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Protein Catabolism



• Normalization to CS as 
central crossing point 
in metabolism 
(Windisch et al. 2011): 

• increase in ratio hints 
at tendency towards 
lipid oxidation, NOT 
lipid synthesis
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Lipid Catabolism



• Increased seawater temperature possibly 
leads to: 

• earlier onset and heavier reliance on 
protein catabolism 

• prolongation of lipid oxidation
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Implications:

• Krill relies on productive summer months to accumulate lipid reserves 
for winter - prolonged lipid oxidation may impede the buildup of these 
crucial reserves - overwinter-ability affected 

• Energy channeled towards higher maintenance will lack elsewhere, for 
example maturation
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Differential Gene Expression

• validate enzyme activities on genetic 
level 

• fill gaps in the puzzle
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anaerobic pathways?

glycerol -> GAP?

PPP?
protein 

catabolism?

stress response?
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Temperature Compensation of Clock Genes

• Dissociation of environmental events (blooms, sea-ice retreat) and 
endogenously controlled physiology (regression, maturation, 
spawning)
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