Mineral dust variability in Antarctic ice for different climate conditions


Contact
Anna.Wegner [ at ] awi.de

Abstract

This study aims to understand the dust deposition changes on the Antarctic ice sheet in different climatic stages. To this end high resolution dust concentration and size profiles from the EPICA-DML ice core over the transition from the last Glacial to the Holocene (T1) were combined with model experiments for four interglacial time slices and the Last Glacial Maximum (LGM). A strong decrease in dust concentration (factor 46) and a slight increase in dust size was observed during T1. A strong coupling between transport and intensified sources during the Glacial could be derived from the seasonal variability of concentration and size and its phase-lag. This strong coupling vanishes during the Holocene. The model simulates increased dust deposition in Antarctica for all past interglacial time slices compared to the pre-industrial period. The major cause for the increase is enhanced Southern Hemisphere dust emission, but changes in atmospheric transport are also relevant. The maximum dust deposition in Antarctica is simulated for the LGM, showing a 10-fold increase compared to preindustrial conditions.



Item Type
Inbook
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
Peer-reviewed
Publication Status
Published
Eprint ID
37591
Cite as
Wegner, A. , Sudarchikova, N. , Fischer, H. and Mikolajewicz, U. (2015): Mineral dust variability in Antarctic ice for different climate conditions / M. Schulz and A. Paul (editors) , In: Integrated Analysis of Interglacial Climate Dynamics, Springer Briefs in Earth System Sciences, Heidelberg, Springer, ISBN: 978-3-319-00692-5 .


Download
[img]
Preview
PDF
MISO_springerbook_epic.pdf

Download (611kB) | Preview
Cite this document as:

Share

Research Platforms

Campaigns


Actions
Edit Item Edit Item