Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography
Azimuthal anisotropy derived from multi-mode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multi-layer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited backazimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.