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Introduction:
Why monitor seafloor oxygen fluxes?

* Measure of organic matter remineralization, i.e. the antagonist of the
biological pump & burial
> key function of benthic ecosystems (i.e., compartment most impacted by
mining) with high relevance for large scale element fluxes

* Global estimates of benthic 0, Fqu[mol Ozm yr']
carbon mineralization

at the seafloor are
built on O, flux
measurements
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Introduction:
Potential and implementation for monitoring

e High potential for monitoring
> Well established indicator to characterize ecosystems with potential
for autonomous (i.e., continuous & ‘low cost’) observations
> good sensors for precise oxygen flux measurements available
> Instruments can be bought off the shelf
(for discrete observations during expeditions)

e Application restricted to basic science
> rarely used in routine ecosystem monitoring
> hardly mentioned in ISA recommendations
> (one) reason: specialist technology
(sophisticated instruments, delicate sensors)



Introduction:
Aim of the talk

e Assess the appropriateness of benthic oxygen fluxes as parameter for deep-sea
environmental monitoring and impact assessment
> what processes / functions are addressed?
> how do measurements take place?
> what is the oxygen uptake of healthy ecosystems?
> scales and levels of natural variations?
> are natural gradients resolved, i.e., can we expect that impacts are?
> improved technologies



Introduction:
Processes addressed
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Introduction:

Processes addressed

e Integrative measure for CO, +light + H,O0 + Nu=> OM + O,
processes in the entire

deep-sea ecosystem LR
> water column: primary

productivity, vertical OM

fluxes (i.e., loss of OM by Water column
remineralization in the Re-mineralization
water column)

> benthos: OM

availability (and quality),
benthic community
biomass and activity export ¢
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Flux monitoring approaches (1):
Chamber incubations

* Principle
> sediment enclosures, evolution of O, in chamber water
> total oxygen fluxes, integrated over enclosed patch
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Flux monitoring approaches (1):
Chamber incubations

* Principle
> sediment enclosures, evolution of O2 in chamber water
> total oxygen fluxes, integrated over enclosed patch

e Strengths
> most established and mechanically robust method
> includes contributions of fauna of all size classes (incl. fauna-mediated uptake)
> any solute may be addressed (incl. toxin / contaminant fluxes)

e Weaknesses
> time consuming (incubation periods > 1d in deep sea environments)
> restricted to soft sediments
> invasive: time series require translations in the dm to m range




Flux monitoring approaches (2):
Micro profiler

* Principle
> high resolution O, gradients, transport modelling (DBL or Surface sediment)
or transport reaction modeling
> diffusive flux (DOU) at the profiling spot
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Flux monitoring approaches (2):
Micro profiler

 Principle
> high resolution flux gradients, simple transport modelling (DBL) or transport-
reaction modeling (Surface sediment)
> diffusive flux (DOU) at the profiling spot

e Strengths
> relatively fast (few h per measurement)
> minimally invasive
> flux contributions of different layers discernible

e Weaknesses
> dependent on delicate microsensors
> restricted to soft sediments, short sensor lifetime
> time series require translations in the cm range
> no representation of fauna-mediated fluxes




Flux monitoring approaches (3):
Eddy correlation

* Principle
> simultaneous observations of oxygen concentration and vertical flow velocity,
assessment of eddy transport (C x v)
> total flux of a larger area upstream
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Flux monitoring approaches (3):
Eddy correlation

 Principle
> simultaneous observations of oxygen concentration and vertical flow velocity,
assessment of eddy transport (C x v)
> total flux of a larger area upstream

e Strengths
> relatively fast (< 1 h per measurement)
> non-invasive: (time series in one spot, long sensor lifetime)
> applicable to hard & structured seafloors

* Weaknesses
> dependent on delicate microsensors
> close to detection limit in low-activity areas
> data acquisition and data analysis under scientific debate
> errors are easily introduced (sensor performance & orientation, lateral changes

in bottom water oxygenation)




Oxygen fluxes of healthy environments:
Fluxes indicative of good environmental status?

* Absolute fluxes are site specific — the most prominent pattern is depth

 Some of the variability can be explained by surface productivity
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Environmental gradients as a analogue of impact-related effects (1):
sulfide efflux at cold seeps

e Chambers and micro profilers are used to compare oxygen demand at seep sites
with nearby reference areas in pockmark areas in the deep sea Nile fan

Grinke et al. 2011



Environmental gradients as a analogue of impact-related effects (1):
sulfide efflux at cold seeps

e Micro sensor profiles and fluxes
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Environmental gradients as a analogue of impact-related effects (1):

sulfide efflux at cold seeps

e Micro sensor profiles and fluxes
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Environmental gradients as a analogue of impact-related effects (2):
OM gradients at an artificial whale fall (California margin, 1700 m)

e Chambers and micro profilers are used to compare sediment oxygen demand at
different distance to the largely decomposed whale carcass

Treude et al. 2009



Environmental gradients as a analogue of impact-related effects (2):
OM gradients at an artificial whale fall (California margin, 1700 m)

* Micro sensor profiles and fluxes
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Environmental gradients as a analogue of impact-related effects (2):
OM gradients at an artificial whale fall (California margin, 1700 m)

* Micro sensor profiles and fluxes
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Natural variability in benthic oxygen fluxes on small spatial scales:
Micro profiler transects (Sagami Bay, Japan, 1450m)

 The deep sea floor is heterogeneous and oxygen conditions and fluxes vary on
any spatial scale
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How to address spatial variability:

a modeling approach

Inaccuracy (%)

Chamber size / replication needed to ‘remove’ fauna induced variability
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Temporal variability in deep sea oxygen fluxes:
Time series chamber incubations (MBARI’s ‘Benthic Rover’, Stat. M)

e Seasonal variations in water column primary and secondary productivity are
transferred to the deep sea floor and reflected in O,-flux (NE Pacific, 4000 m)
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Conclusions

e Methods for oxygen flux measurements are well established

* Oxygen flux measurements can resolve natural spatiotemporal patterns
(e.g., in geochemical conditions, OM availability)

* To identify subtle changes, well established baseline studies are needed,
taking seasonal variability into account, i.e. time series

e Depending how remote the ecosystem is this may require autonomous mobile
platforms that are beginning to emerge

 Eddy correlation has a high potential for time series but needs improvement
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