
I R O N I N T H E S O U T H E R N O C E A N
A model study of iron sources and their impact on the phytoplankton

vibe schourup-kristensen

March 2015

Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat)

am Fachbereich 2

der Universität Bremen

Gutachter
Prof. Dr. Dieter A. Wolf-Gladrow

Prof. Dr. Thomas Jung



Vibe Schourup-Kristensen: Iron in the Southern Ocean, A model study of iron sources
and their impact on the phytoplankton, © March 2015

supervisors:
Prof. Dr. Dieter A. Wolf-Gladrow
Dr. Christoph Völker

location:
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresForschung, am
Handelshafen 12, 27570 Bremerhaven

contact:
Vibe.schourup-kristensen@awi.de



 

Name: ______________________________________  Ort, Datum:  ____________________________ 

Anschrift: _________________________________________________________________________________ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
ERKLÄRUNG 
 
 
 
Hiermit erkläre ich, dass ich die Doktorarbeit mit dem Titel: 
 
 
______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

selbstständig verfasst und geschrieben habe und außer den angegebenen Quellen keine weiteren 
Hilfsmittel verwendet habe. 
 
Ebenfalls erkläre ich hiermit, dass es sich bei den von mir abgegebenen Arbeiten um drei 
identische Exemplare handelt. 
 
 
 
 
 
 
 
_______________________________ 
 (Unterschrift) 
 
 
 
 
 

iii





A B S T R A C T

In the iron limited Southern Ocean, the iron sources have a large impact on the
spatial distribution and magnitude of the phytoplankton blooms, and thereby also
on the net primary and export production (NPP and EP). In this thesis, the Southern
Ocean input of iron from the sediments and from vertical supply to the mixed layer
is investigated in a new Ocean General Circlation Biogeochemical Model (OGCBM).
Focus is especially on the model’s representation of the iron sources, how they affect
the biological production in the model and what can be learned from this about the
iron sources in nature.

The first part of the thesis documents the global performance of the Regulated
Ecosystem Model (REcoM2) coupled to the Finite Element Sea-ice Ocean Model (FESOM).
It shows that the model does a reasonable job reproducing the large scale surface
patterns of the biogeochemical fields when compared to observations and other non-
eddy resolving OGCBMs. The spatial fields of chlorophyll a and NPP are especially
good. Further analysis of the Southern Ocean shows that the total net primary and
export production here fits well with previous estimates.

The second part of the thesis assesses the impact of the Ocean General Circula-
tion Model (OGCM) on the vertical iron supply to the mixed layer of the Southern
Ocean. Two similar model runs were carried out with REcoM2 coupled to two dif-
ferent ocean models; FESOM and MITgcm. The study shows that the modeled vertical
iron fluxes, and thereby the NPP and EP, are strongly dependent on the ocean model.
This is partly due to differences in the mixed layer dynamics, but is also affected
by other mechanisms, such as the strength of the meridional overturning circulation.
The study highlights the importance of considering the skill of the OGCM forcing
the biogeochemistry. This is important for contemporary runs, but especially when
predicting future changes to the biological pump using large scale OGCBMs.

The rate of iron release from the sediments in nature is not well constrained, lead-
ing to large variations in its strength between biogeochemical models. The third part
of the thesis focuses on the implications of changes in the modeled strength of the
sediment source, and accompanying higher scavenging rates, on the phytoplank-
ton composition and the opal export. The study shows, that while variations in the
strength of the benthic iron flux can be counteracted by an appropriate scavenging
rate, thereby producing very similar values for the total NPP in the Southern Ocean,
it has a large impact on the spatial distribution of the NPP, on the diatoms and on the
opal export. In order to optimize the sedimentary iron input to large scale OGCBMs,
it is thus important to look beyond the modeled NPP and assess the biological pro-
duction by diatoms, as well as the vertical export of opal, especially for the Southern
Ocean.

The general discussion focusses on the relative importance of the different iron
sources in the Southern Ocean, how the different sources may change in the future
and what factors modelers need consider when predicting these changes. Lastly
further directions for work regarding the iron sources in the Southern Ocean as well
as the new FESOM-REcoM2 model are described.
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Z U S A M M E N FA S S U N G

Im eisenlimitierten Südpolarmeer haben Eisenquellen einen großen Einfluss auf die
räumliche Verteilung und die Stärke von Phytoplanktonblüten, und dadurch auch
auf die Nettoprimär- und Exportproduktion (NPP und EP). In dieser Arbeit wird der
Eiseneintrag in die Deckschicht des Südpolarmeers aus Sedimenten und durch ver-
tikalen Eintrag mit einem neuartigen Ozeanzirkulations- und Biogeochemie-Modell
(OGCBM) untersucht. Der Fokus liegt hierbei besonders auf der Repräsentation der
Eisenquellen im Modell, wie diese die biologische Produktion im Modell beein-
flussen und was wir daraus über die Eisenquellen in der Natur lernen können.

Im ersten Teil der Arbeit werden die globalen Ergebnisse des Regulated Ecosys-
tem Model (REcoM2), welches mit dem Finite Element Sea-ice Ocean Model (FESOM)
gekoppelt wurde, dargestellt und bewertet. Die Modellevaluation zeigt, dass großskalige
Oberflächenmuster der biogeochemischen Felder, verglichen mit Beobachtungen und
anderen nicht-eddyauflösenden OGCBMs, relativ gut wiedergegeben werden. Die
räumliche Verteilung von Chlorophyll a und NPP wird besonders gut wiedergegeben.
Des Weiteren wird gezeigt, dass die gesamte Nettoprimär- und Exportproduktion im
Südpolarmeer gut mit früheren Schätzungen übereinstimmt.

Der zweite Teil der Arbeit analysiert den Einfluss des allgemeinen Ozeanzirku-
lationsmodells (OGCM) auf den vertikalen Eiseneintrag in die Deckschicht des Süd-
polarmeers. Zwei vergleichbare Modellläufe wurden durchgeführt, in denen REcoM2

mit zwei verschiedenen Ozeanmodellen, FESOM und MITgcm, gekoppelt wurde. Die
Studie zeigt, dass die simulierten vertikalen Eisenflüsse, und dadurch NPP und EP,
stark vom Ozeanmodell abhängen. Der Grund dafür liegt zum Teil an Unterschieden
in der Dynamik der simulierten Deckschicht, aber auch andere Mechanismen, wie
z.B. die Stärke der simulierten globalen Umwälzzirkulation, spielen eine Rolle. Die
Studie hebt hervor, dass es wichtig ist, die Fähigkeiten des Ozeanmodells zu ken-
nen, welches das biogeochemische Modell antreibt. Dies ist nicht nur wichtig für
die Simulation des historischen und gegenwärtigen Zustands des Ozeans, sondern
auch besonders für Prognosen der zukünftigen biologischen Pumpe im Ozean unter
Verwendung von OGCBMs.

Die Rate, mit der Eisen in der Natur aus Sedimenten freigesetzt wird, ist kaum
bekannt, was dazu führt, dass sie auch zwischen verschiedenen biogeochemischen
Modellen stark variiert. Der dritte Teil der Arbeit beschäftigt sich mit den Auswirkun-
gen unterschiedlich starker Eisenfreisetzung und den dazugehörigen größeren Ad-
sorptionsraten auf Partikeloberflächen auf die Phytoplanktonzusammensetzung und
den Opalexport. Die Studie zeigt, dass Variationen in der Stärke des benthischen
Eiseneintrags durch eine geeignete Adsorptionsrate auf Partikeloberflächen teilweise
kompensiert werden, so dass trotzdem ähnliche Werte für die Gesamt-NPP im Süd-
polarmeer erreicht werden. Der benthische Eiseneintrag hat einen großen Einfluss
auf die räumliche Verteilung der NPP, auf Diatomeen und auf den Opalexport. Um
den sedimentären Eiseneintrag in großskaligen OGCBMs zu verbessern, ist es wichtig,
nicht nur die simulierte NPP zu beurteilen, sondern auch die biologische Produktiv-
ität von Diatomeen und den vertikalen Opalexport im Südpolarmeer zu analysieren.
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Die allgemeine Diskussion am Ende dieser Arbeit konzentriert sich auf die rela-
tive Wichtigkeit der verschiedenen Eisenquellen im Südpolarmeer, in welcher Weise
diese sich in der Zukunft ändern könnten, und welche Prozesse Ökosystemmodel-
lierer für die Vorhersage dieser Änderungen berücksichtigen müssen. Darüber hin-
aus wird ein Ausblick auf weiterführende Arbeiten über die Eisenquellen im Südpo-
larmeer und das neuartige Modell FESOM-REcoM2 gegeben.
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Part I

I N T R O D U C T I O N





1
T H E S O U T H E R N O C E A N

1.1 oceanographic setting

The zonally unrestricted flow of the oceanic and atmospheric circulation is a unique
property of the Southern Ocean (Fig. 1.1), allowing the strength of the Westerlies, ap-
proximately located between 45 and 55◦S (Trenberth et al., 1990), to develop unhin-
dered. This atmospheric flow drives the eastwards running Antarctic Circumpolar
Current (ACC), which exists in geostrophic balance between the meridional pres-
sure gradient and the Coriolis force. It encircles the Antarctica with an annual mean
transport of approximately 130 Sv at Drake Passage (1 Sv= 1 × 106 m3 s−1, Cunning-
ham et al., 2003). The ACC consists of a series of interwoven currents with multiple
branches (Sokolov and Rintoul, 2009), making the flow highly complex. Three main
fronts can nevertheless be identified; the Subantarctic Front (SAF), the Antarctic Polar
Front (PF) and the Southern ACC Front (SACCF) (Orsi et al., 1995). Towards the north
the ACC is limited by the SAF, which separates warmer saltier water in the north
from the colder and fresher water towards the south (Olbers et al., 2004). The SACCF

marks the southern boundary of the ACC (e.g. Orsi et al., 1995), and is frequently
observed at Drake passage but does not encircle the Antarctic. The SAF and the PF,
are characterized by strong zonal jets of elevated speed, as well as strong meridional
gradients for temperature, density and other oceanographic properties.

The meridional gradients characterizing the area between the PF and SAF are
brought on by the fact that the isopycnals rise steeply in the region (Rintoul and
Trull, 2001). The southwards transported Circumpolar Deep Water (CDW) and North
Atlantic Deep Water (NADW) consequently rises towards the surface south of the
PF (Fig. 1.2), bringing the water properties of the deep water upwards here (Marshall
and Speer, 2012). The shoaling water follows two paths dependent on density. The
less dense water is transported northwards in a wind-driven Ekman flow, which is
subducted north of the Antarctic PF, marking an important boundary for heat, salt
and carbon fluxes. The denser shoaling water is converted to Antarctic Bottom Wa-
ter (e.g. Gill, 1973; Rintoul, 1998), which is created along the ice shelves and is the
densest water found in the world ocean (Orsi et al., 1999).

The steep density slopes between the PF and the SAF mean that the water column
is weakly stratified, and thus easily destabilized. The area is therefore characterized
by deep winter mixed layers and large seasonal variations of the mixed layer depth
(MLD, de Boyer Montegut et al., 2004). The deep winter mixing, and associated sub-
duction of Antarctic Intermediate Water (AAIW, Fig. 1.2), is key for the ventilation of
the intermediate ocean, transferring physical and biogeochemical properties between
the surface mixed layer and the water below (Rintoul and Trull, 2001).

The combination of the location of the Southern Ocean, the southwards shoaling
pycnoclines and the deep mixed layers means that the Southern Ocean is an impor-
tant area for transfer of properties such as heat, salt and biogeochemical tracers both
between the southern part of the Atlantic, Indian and Pacific Oceans, and between
the atmosphere and the ocean. It is therefore key to understand how the biogeochem-
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4 the southern ocean

Figure 1.1: Map of the ocean south of 30◦ S. Green arrows denote the strength and direction
of the surface currents. The mean position of the Polar Front (PF) and Subantarctic
Front (SAF) are marked in orange. The mean winter and summer ice extend is
marked with black lines. The background color denotes depth as shown in the
colorbar (Modified from Marshall and Speer, 2012)



1.2 the southern ocean ; an hnlc area 5

Figure 1.2: Schematic of the southern limb of the meridional overturning circulation. The
meridional direction of the water flow is marked with black and blue arrows.
The direction of the ACC is marked with a bold yellow arrow and the location of
the ACC with a dotted orange line. The main water masses are marked: Antarctic
Deep Water (AADW), Lower Circumpolar Deep Water (LCDW), Upper Circumpolar
Deep Water (CDW), Antarctic Intermediate Water (AAIW) and North Atlantic Deep
Water (NADW). The direction of heat exchange between the atmosphere and the
ocean is marked with vertical curly arrows. (From Olbers et al., 2012, Fig. 16.3)

ical fluxes in the Southern Ocean are currently controlled and how they will respond
to future climate change.

1.2 the southern ocean ; an hnlc area

The southward shoaling of the isopycnals in the Southern Ocean (Fig. 1.2), brings
nutrient-rich water towards the surface through isopycnal and diapycnal transport
(Pollard et al., 2002). But despite of a relatively high supply of macronutrients to the
surface water in the Southern Ocean, they are not fully utilized by phytoplankton
growth. The combination of high macronutrient concentrations and low chlorophyll
levels has led to the Southern Ocean being categorized as one of the world’s so-called
High-Nutrient-Low-Chlorophyll (HNLC) areas (Martin et al., 1990a), a definition that
it shares with the subarctic and equatorial Pacific (Martin and Fitzwater, 1988; Kolber
et al., 1994). Of these areas, the Southern Ocean is by far the largest in area and in
terms of the concentration of unused macronutrients (e.g. Sarmiento and Orr, 1991).

Since the early 1990’ies it has been recognized that limitation by the micronutrient
iron, which is needed in the photosynthesis as well as the respiration apparatus of
phytoplankton (Geider and La Roche, 1994), plays a large role in the low productivity
(e.g. Martin et al., 1990a; Martin et al., 1990b). As is the case for the macronutrients,
iron is supplied to the the surface water through upwelling, but due to the compli-
cated iron chemistry in the water (See section 1.4.1), the iron-to-macronutrient ratio is
too low to sustain production in the Southern Ocean. A number of experiments, rang-
ing from laboratory to large-scale iron fertilization, have later been carried out and
demonstrated that iron does indeed induce growth in the HNLC areas (e.g. Smetacek



6 the southern ocean

Figure 1.3: Conceptual map of iron sources to the Southern Ocean overlaid an image of mean
ocean productivity (SeaWIFS and Behrenfeld and Falkowski, 1997). (After Boyd
and Ellwood, 2010).

et al., 2012). But other factors, such as light limitation (Mitchell et al., 1991) and
grazing (Smetacek et al., 2004) also play a role.

Despite of the overall low productivity in the Southern Ocean, recurring blooms
are observed downstream of islands (e.g. Blain et al., 2001), in the vicinity of fronts
(Moore and Abbott, 2002) and on the continental shelves (Fig. 1.3). This distribution
largely mirrors the input of iron from external sources and indicates that they play
an important role in the Southern Ocean.

1.3 sources of iron

Traditionally, dust has been believed to be the most important source of iron to the
Southern Ocean (e.g. Cassar et al., 2007), but this view has been challenged in the
last decade. It is now known that other important sources include the shelf sedi-
ments (e.g. Westerlund and Öhman, 1991; Ardelan et al., 2010), melting sea-ice and
icebergs (Smith et al., 2007; Raiswell et al., 2008) and hydrothermal vents (Tagliabue
et al., 2010). Additionally, the iron supply from below into the mixed layer through
upwelling (de Baar et al., 1995; Watson et al., 2000), entrainment (Tagliabue et al.,
2014) and diffusion (Law et al., 2003) also plays a role. The magnitude of the input of
iron to the Southern Ocean south of 35oS is not constrained, but a list of the current
understanding of them can be found in Table (1.1).



1.3 sources of iron 7

Table 1.1: Previous estimates of iron sources to the Southern Ocean south of 35◦ S (From
Tagliabue et al., 2010, Fig. 3)

source magnitude

[107 mol Fe yr−1]

Dust 8 - 54

Sediment 460 - 1137

Ice 2 - 5

Hydrothermal vents 38

Quantifying the sources of the water’s dissolved iron is nearly impossible from
traditional measurements, and large scale estimates of the iron input to the ocean
thus mainly come from modeling studies. Recently, a new technique to pin-point
the origin of dissolved iron has, however, been developed, based on the isotopic
composition of iron in sea water (Lacan et al., 2008; John and Adkins, 2010). The
isotopic composition is a signature that can be used to identify the origin of the iron
to an anoxic sedimentary source (Homoky et al., 2009; Severmann et al., 2010), a
sedimentary non-reductive source (Radic et al., 2011; Homoky et al., 2013), aeolian
input (Beard et al., 2003) and a hydrothermal source (Beard et al., 2003; Rouxel et
al., 2008). Measurements of the isotopic fractionation in seawater are however scarce
(Radic et al., 2011; Conway and John, 2014), and most large-scale estimates of the
iron sources still come from modeling studies.

1.3.1 Dust

The earth’s crust contains on average 6.3% iron based on weight (Taylor, 1964), which
can be transported from arid land surfaces to the surface ocean in dust plumes.
Knowledge about dust deposition is obtained locally through sampling (e.g. Wa-
gener et al., 2008; Heimburger et al., 2012), and large scale estimates are provided by
atmospheric transport models (e.g. Mahowald et al., 2003; Johnson et al., 2010).

Oceanic dust deposition predominantly takes place in the Northern Hemisphere
due to the larger proportion of land sources here. Input of dust to the Southern
Ocean is small (Jickells et al., 2005), but aeolian input of iron may nevertheless have
a disproportional large impact on biological production in this area due to its HNLC

status (Mahowald et al., 2005).
In the Southern Ocean, the aeolian iron input mainly takes place downwind of the

continents (Fig. 1.3) (Cassar et al., 2007). The bulk of the dust originates in Patagonia,
but studies suggest that this iron source only comprises about 10% of the total iron
supply to the Atlantic sector of the Southern Ocean and that it has a small impact
on biological productivity in the area (Meskhidze et al., 2007; Johnson et al., 2010).
The aeolian iron deposition from Australia has likewise been shown to be of small
significance for biological production in the Southern Ocean (Mackie et al., 2008).
This can for example be explained by the highly episodical nature of the input and
the Australian soil composition. A much smaller fraction of the total dust input to the
Southern Ocean originates in South Africa, about half of which is deposited south
of 70◦S (Piketh et al., 2000).
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The highly episodical nature of dust deposition makes the amount of iron deliv-
ered to the ocean highly dependent on the magnitude, duration and frequency of
the deposition event. Dust sampling in the Southern Ocean is hindered by its remote
location (Wagener et al., 2008), leading to higher uncertainties in the dust models in
this area. Other uncertainties in the dust deposition models include the solubility of
iron, which in reality ranges from 1 to 80% and the iron content of the dust (Ma-
howald et al., 2005).

1.3.2 Ice

During sea-ice formation, iron is incorporated from the ocean as well as from or-
ganic matter trapped into the forming ice (Lannuzel et al., 2010). The iron concen-
tration within the sea-ice can thus be an order of magnitude higher than in the
underlying water (Lannuzel et al., 2007). This iron is transported with the ice and
released in the marginal ice zone during melting (Fig. 1.3), with the potential to
significantly increase the water’s iron concentration locally (van der Merwe et al.,
2011). In the Southern Ocean, icebergs tend to drift westwards in the so-called ice-
berg alleys (Fig. 1.3), and they can thus be transported relatively far while releasing
dissolved iron in their trajectories as they melt (Raiswell et al., 2008). Icebergs thus
have the potential to affect production in remote areas of the Southern Ocean where
iron limitation tends to be stronger than close to land.

Model studies show that the amount of iron released from sea-ice is minor com-
pared to the sediment source (Lancelot et al., 2009; Wadley et al., 2014), and that
adding a sea-ice iron source to a biogeochemical model changed the phytoplank-
ton composition towards diatoms, but not the total amount of primary production
(Wang et al., 2014).

1.3.3 Sediment

Iron measurements have revealed that the water’s iron concentration is elevated in
proximity to the coast (Johnson et al., 1997; Moore and Braucher, 2008), something
that can be explained by release of iron from shelf sediments. Increased iron concen-
trations occur in the pore water of the sediment due to anoxic conditions brought on
by remineralization of organic matter (e.g. Burdige, 1993). Transport of iron from the
pore water to the water column through diffusion is too slow to fully explain the ob-
served iron fluxes, and other explanations of the transport are for example enhanced
flux through bio-irrigation (Elrod et al., 2004) and resuspension of particulate iron in
turbulent environments (e.g. de Jong et al., 2012).

The sediment derived iron mainly increases the iron concentration in the surface
water near the coast. This is because the iron release decreases with depth, as deeper
sediments receive less degradable organic material (Elrod et al., 2004). The sediment
derived iron can, however, also be carried far off shore. This has for example been
shown in the North Pacific (Lam et al., 2006; Lam and Bishop, 2008) and in the
Southern Ocean, where iron concentrations were elevated in the vicinity of the coast
and the bottom of the Weddell Sea (Westerlund and Öhman, 1991; Klunder et al.,
2014). The physical environment plays a large role for sediment derived iron being
transported relatively far in the Southern Ocean. Several studies indicate that iron
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Figure 1.4: North-south transect of dissolved iron concentrations in the Atlantic sector of the
Southern Ocean. The red dashed line in the left plot marks the position of the
transect. (From Klunder et al., 2011).

from the Patagonian Shelf for instance is carried in the ACC over long distances (e.g.
Löscher et al., 1997; de Baar et al., 1995).

In the Southern Ocean, persistent phytoplankton blooms are observed downstream
of islands such as South Georgia (e.g. Korb and Whitehouse, 2004) and the Kerguelen
(e.g. Blain et al., 2001; Blain et al., 2007) and Crozet (e.g. Bakker et al., 2007; Pollard
et al., 2009) Islands, despite of the overall HNLC characterized ocean. This feature is
known as the island mass effect, and is brought on by so-called natural iron fertiliza-
tion. The mechanism behind it is not fully understood, but a number of mechanisms
have been put forward as an explanation. First of all, the continental rise around the
islands provides iron to the water from the sediments (e.g. Planquette et al., 2007).
The iron flux from the sediments is further increased by the currents being forced
upwards by the shallowing topography, gaining speed and turbulence and thereby
also increasing the iron resuspension (e.g. de Jong et al., 2012). Secondly, iron has
a nutrient-like vertical profile (Johnson et al., 1997). The deep water that is forced
upwards by the topography in the Southern Ocean consequently already entails a
higher concentration of iron than the surface water, and is hence also a potential
iron source. Blain et al. (2007) did indeed show that this mechanism was important
downstream of the Kerguelen Plateau.

Recent model studies have confirmed the importance of the sediment source of
iron in the Southern Ocean, agreeing that it is on average more important than the
dust source (Tagliabue et al., 2009a; Lancelot et al., 2009; Wadley et al., 2014).

1.3.4 Hydrothermal supply

Hydrothermal vents supply iron to the deep ocean (e.g. Field and Sherrell, 2000;
German et al., 2002; Statham et al., 2005). While it has previously been assumed
that this was a minor source of iron to the surface ocean due to rapid formation of
particulates (Elderfield and Schultz, 1996), more recent studies suggest that the sig-
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nificant amount of iron is protected by complexation with organic ligands (Bennett
et al., 2008; Toner et al., 2009). Advection further from the source is thus possible,
suggesting that hydrothermal vents supply a significant amount of iron to the deep
ocean, though the exact amount is highly uncertain (Carazzo et al., 2013; Saito et
al., 2013). Using the iron isotope fractionation technique, Conway and John (2014)
demonstrated that hydrothermal vents added iron to the deep water of the Equato-
rial Atlantic Ocean which was detectable up to 1000 km away. They speculated that
this iron source could serve as a buffer, continuously adding iron to the ocean also
when other sources are intermittently low.

In the Southern Ocean, a model study suggests that hydrothermal vents play a
role for the surface iron supply, especially in the iron depleted Pacific Ocean where
the fast-spreading submarine ridges can be found (Tagliabue et al., 2010). Newer
studies do, however, indicate that the hydrothermal iron supply may play a larger
role in the Atlantic sector of the Southern Ocean than previously thought (Fig. 1.4)
(Klunder et al., 2011; Saito et al., 2013).

1.3.5 Supply to the mixed layer from below

The fact that large scale wind-driven upwelling dominates south of the Polar Front
means that a continuous iron flux into the mixed layer takes place here (e.g. de Baar
et al., 1995; Watson et al., 2000; Hoppema et al., 2003). The deep winter mixing in
the area between the Antarctic PF and SAF (de Boyer Montegut et al., 2004) trans-
port iron into the surface water through entrainment (Tagliabue et al., 2014). Iron is
also brought upwards through vertical diffusion (Law et al., 2003; Boyd et al., 2005),
through horizontal advection across the base of the mixed layer (Ellwood et al., 2008)
and through a transport induced by mesoscale eddies.

1.4 the marine iron cycle

1.4.1 The iron cycle in nature

Historically, advances in the knowledge of the iron cycle have been held back by the
difficulties in measuring the water’s concentration of dissolved iron. This was mainly
caused by the trace concentrations of iron in the water combined with on-board con-
tamination on research vessels (Achterberg et al., 2001; Bowie et al., 2006). The first
reliable measurements of iron profiles ranging the entire water column were pre-
sented in the 1980’ies (e.g. Martin and Gordon, 1988; Martin et al., 1989), showing a
nutrient-like profile with lower concentrations in the surface water and higher below
the mixed layer. Johnson et al. (1997) presented a compilation of iron profiles from
different ocean basins, confirming the nutrient-like profile and later global compila-
tions were presented by Parekh et al. (2005) and Moore and Braucher (2008). Due to
its remoteness and extreme weather, the Southern Ocean is, however, the least rep-
resented area in these compilations. But as measurement techniques have gradually
improved and sampling programs, such as GEOTRACES (www.geotraces.org), have
been launched, the knowledge of the iron concentrations in the Southern Ocean have
improved (e.g. Klunder et al., 2011; Tagliabue et al., 2012).

Like the macronutrients, iron has a nutrient-like profile as it is taken up in the
surface water and then remineralized from organic material deeper in the water col-
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Figure 1.5: Simplified overview of the marine iron cycle. Bioavailable iron is marked in white
boxes, and grey boxes represent non-available iron. Fe(III)-LB: Fe(III) complexed
to organic ligands, bioavailable. Fe(III)-S: Fe(III) scavenged/precipitated to or-
ganic material, non-bioavailable. Fe(III)-LA: Fe(III) in complexation with ligands,
non-bioavailable. (After Tagliabue et al., 2009a).

umn (e.g. Johnson et al., 1997). It does, however, also differ from the macronutrients
because it is continuously removed from the water column through scavenging, a
process converting soluble iron to colloidal or particulate forms through adsorption,
precipitation and aggregation (e.g. Wu et al., 2001; Bergquist et al., 2007). This means
that the deep water concentration, in contrast to the macronutrients, is lower in the
Pacific and Southern Ocean than in the Atlantic as the water is older here. The re-
moval of the water’s dissolved iron also has the consequence that its residence time
is relatively short, and that the vertical iron profiles are affected by local iron sources.

The marine iron cycle is highly complex and is as of now not fully understood
(Gledhill and Buck, 2012). The following is a summary of the main pathways within
the iron cycle, but is not a full overview.

In the ocean, the total iron can be divided into a dissolved iron pool, including
ligand-bound iron, and a pool of non-labile iron, with strong interactions between
these pools, making their relative contribution highly variable. The dissolved iron
consists of the redox pair Fe(II) and Fe(III) (Fig. 1.5). In the oxidized ocean, Fe(II) is
rapidly converted to Fe(III), a process which is faster at higher temperatures (Millero
et al., 1987). Reduction of ligand-bound Fe(III) to Fe(II) is dependent on photochem-
ical processes and thus varies with the light level in the water (e.g. Barbeau et al.,
2001; Rijkenberg et al., 2005). The pool of Fe(III) is highly insoluble (Liu and Millero,
2002), and more than 99% of the dissolved iron in the ocean exists in complexa-
tion with stable organic ligands (e.g. Rue and Bruland, 1995; van den Berg, 2006).
Ligand-bound iron is partly bioavailable (e.g. Hutchins et al., 1999; Maldonado et al.,
2005; Tagliabue et al., 2009b). The water’s concentration of ligand, which has been
shown to vary between 0.2 and 10µmol m−3 (Gledhill and Buck, 2012), varies with
depth (Ibisanmi et al., 2011) and in the horizontal domain (e.g. Thuróczy et al., 2011;
Mohamed et al., 2011). Traditionally, two ligand classes have been classified, char-
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Figure 1.6: Overview of the iron cycle model from Parekh et al. (2004). Bioavailable iron is
marked in white boxes, and grey boxes represent non-available iron. Fe’: Free dis-
solved iron, bioavailable. Fe-S: Fe scavenged by organic material, non-bioavailable.
Fe-L: Fe in complexation with ligands, non-bioavailable.

acterized by strong and weak binding to iron respectively (e.g. Rue and Bruland,
1995). The dissolved iron that does not form complexes with ligands is continuously
removed from the water column through scavenging onto particles in the water such
as detritus and phytoplankton (Fig. 1.5).

1.4.2 The iron cycle in models

When parameterizing a biological process in a biogeochemical model, a balance
between the complexity of nature and the computational demand must be found.
The relatively complex iron cycle is thus treated comparably simple in commonly
used Ocean General Circulation Biogeochemical Models (OGCBMs) (e.g. Moore and
Braucher, 2008; Yool et al., 2011), for example as the dissolved iron commonly is rep-
resented by a single tracer. The gradually increasing amount of iron measurements
globally (Johnson et al., 1997; Parekh et al., 2005; Moore and Braucher, 2008) and in
the Southern Ocean (Klunder et al., 2011; Tagliabue et al., 2012) has improved the
understanding of the iron cycle and likewise its representation in models.

Johnson et al. (1997) presented an iron model in which scavenging only occurred
when the iron concentration exceeded 0.6µmol Fe m−3. This was based on the as-
sumption that the iron concentration was close to 0.6µmol Fe m−3 throughout the
deep ocean, and that the dissolved iron was bound to strong ligands at lower con-
centrations. This assumption was incorporated in a few global models (e.g. Archer
and Johnson, 2000; Aumont et al., 2003), in which the removal of iron through scav-
enging was balanced by aeolian iron input.

Parekh et al. (2004) were the first to introduce and interactive ligand concentra-
tion in a model, and were thereby able to reproduce the inter-ocean differences in
deep water iron concentrations that newer measurements had revealed (Parekh et al.,
2005); the North Atlantic had the highest and the Southern Ocean the lowest deep
water iron concentrations. Newer global models adopted this approach and likewise
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allowed scavenging at lower iron concentrations (e.g. Moore et al., 2004; Aumont and
Bopp, 2006).

The framework for iron modeling presented by Parekh et al. (2004) and Parekh
et al. (2005) is still used in a number of models (e.g. Aumont and Bopp, 2006;
Dutkiewicz et al., 2009; Yool et al., 2011), including REcoM2 (Hauck et al., 2013). The
iron model is relatively simple; the dissolved free iron is represented by a single
iron pool and it has one ligand class of constant temporal and spatially concentra-
tion (Fig. 1.6). The pool of dissolved iron that is not bound to ligands (free iron) is
continuously removed through a constant scavenging rate.

The effect of irradiance, temperature and pH on the iron cycle has been added to a
global model by Tagliabue et al. (2009b), more complexity, including differentiation
of Fe(II) and Fe(III) by Tagliabue and Völker (2011) and spatially varying ligand
concentrations has been explored by Völker and Tagliabue (2014).

The continuous removal of dissolved iron from the water column through scav-
enging must be balanced by iron input in OGCBMs. The standard has been to add
this through aeolian input (Archer and Johnson, 2000; Aumont et al., 2003; Parekh
et al., 2005). But in the last decade, it has become clear that the sediment source of
iron plays a large role, both on the global scale and especially in the Southern Ocean
(e.g. Moore and Braucher, 2008; Tagliabue et al., 2009a). This source has therefore
been implemented in models. Moore et al. (2004) employed a constant flux rate of
2µmol m−2 day−1 in sediments shallower than 1100meters. But due to the resolu-
tion of the model grid being lower than the width of the shelfs in many places, the
impact of this iron source was small in this model set-up. Aumont and Bopp (2006)
therefore modulated their constant iron flux by an availability factor. This factor was
controlled by the degree of anoxia in the sediments, decreasing with depth, and by
the fraction of the cell that is on the shelf. Elrod et al. (2004) showed that the iron flux
from the sediments is correlated with the release of carbon, and their model was in-
corporated into a global model by Moore and Braucher (2008). This parametrization
improved the iron field in the model when it was compared to iron measurements
on the global scales.

A model study by Tagliabue et al. (2010) showed that input of iron to the deep
ocean by hydrothermal vents plays a role in the Pacific Ocean on long time scales,
but this source has so far not been added to any other OGCBM. A couple of models
have added an iron input from melting sea-ice and icebergs to the ocean (Lancelot
et al., 2009; Wang et al., 2014). The mechanism behind sequestration of iron into the
sea-ice is, however, complex and not fully understood.

As more knowledge is gained about the iron cycle and its effect on marine bio-
logical production it becomes possible to further add to the complexity of the iron
cycle in OGCBMs. Regarding the iron cycle, the process understanding is, however,
still so incomplete that adding more complexity to a model may not improve the
model’s representation of reality. In model runs investigating the role of climate
change on biological production, it may be sensible to use an iron model in which
the role of temperature, light and pH is incorporated. As is often the case in ocean
biogeochemical modeling, it is therefore necessary to judge the knowledge gained by
adding complexity against the increased computational demand that this complexity
imposes.
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M O D E L S

2.1 unstructured grid modeling

Global Ocean General Circulation Biogeochemical Models (OGCBMs) are sophisti-
cated tools, routinely used to investigate the dynamics of the earth system. They
can be used to examine the mechanisms behind current trends, for example CO2-
uptake in the Southern Ocean (e.g. Hauck et al., 2013; Frölicher et al., 2015), or to
evaluate the effect of future increasing temperatures on marine phytoplankton (e.g.
Bopp et al., 2013; Moore et al., 2013b; Vancoppenolle et al., 2013).

The results of the biogeochemical components are sensitive to the representation of
the ocean circulation, which for example influences the amount of nutrients brought
to the surface water through upwelling and vertical mixing (e.g. Sinha et al., 2010).
The Mixed Layer Depth (MLD) is an especially important feature because it affects
the amount of radiation available for photosynthesis as well as the entrainment of
nutrients to the surface water (e.g. Williams and Follows, 2003). This is particularly
true for the Southern Ocean where models differ significantly regarding the mixed
layer depth and biological production (e.g. Doney et al., 2004; Najjar et al., 2007).

Currently, global OGCBMs are solely applied on quasi-regular meshes, offering sta-
ble and well tested model environments (e.g. Moore et al., 2004; Aumont and Bopp,
2006). Large efforts are nevertheless continuously made to improve the representa-
tion of the ocean circulation in the models. This includes utilization of new modeling
techniques. An example of this is the global isopycnal OGCBM from Bergen (Assmann
et al., 2010), where the distribution of the z-coordinates depend on the density struc-
ture of the water column, allowing for a more natural vertical division than the
traditionally fixed intervals (Griffies et al., 2009).

Another possibility is the usage of a model running on an unstructured grid (e.g.
Danilov, 2013; Ringler et al., 2013). The core strength of a model employing an un-
structured grid is the ability to highly resolve chosen areas, while providing seamless
transition to areas of lower resolution (Pain et al., 2005). High resolution can for ex-
ample be an advantage in places with strong ocean currents, such as the Antarctic
Circumpolar Current (ACC) or around the equator. Resolving the shelf breaks could
improve the description of bottom water formation around Antarctica (e.g. Mat-
sumura and Hasumi, 2010; Haid and Timmermann, 2013). The flow through narrow
straits impacts the circulation of the open ocean, and a high resolution here may
therefore also be an advantage (e.g. Wekerle et al., 2013). The advantages of a multi-
resolution grid makes it logical and intriguing to couple a biogeochemical model to
an Ocean General Circulation Model (OGCM) employing an unstructured grid. This
has already been done for coastal applications (e.g. Larsen et al., 2013), but so far
not for a model covering the global domain. A reason for this is the increased com-
putational demand an unstructured mesh model adds, especially when using the
finite element method for discretization (Danilov, 2013). This is a practical feature
that becomes all the more important in a global OGCBM as the biogeochemical com-
ponent introduces a significant number of tracers, which makes it computationally
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Figure 2.1: Left) Example of an unstructured and triangulated surface mesh in the North
Atlantic. Right) A blow-up of the Celtic shelf break where higher resolution is
applied (From Pain et al., 2005).

demanding from the outset. The ability to add high resolution locally does indeed
save computer time, but it also adds the requirement of a smaller time step.

Another aspect of coupling a biogeochemical model to an ocean model based on
the unstructured mesh technology is that a global OGCM with satisfying skill must
exist for such a coupling. At the Alfred-Wegener-Institute, such a model exists in the
Finite Element Sea-ice Ocean Model (FESOM).

2.2 the finite element sea-ice ocean model

FESOM is a global 3-dimensional OGCM, coupled to a sea-ice model. Discretization is
carried out employing the finite element methodology, and FESOM runs on a trian-
gulated unstructured grid. The model has been developed in the Climate Dynamics
group at the Alfred Wegener Institute in Bremerhaven, Germany. It is based on the
Finite Element Model of the North Atlantic (Danilov et al., 2004), which has been fur-
ther developed for the global setup and coupled to a sea-ice model (Timmermann
et al., 2009). The newest version of FESOM (v. 1.4) is comprehensively described by
Wang et al. (2014). FESOM is participating in the Coordinated Ocean-ice Reference
Experiments (COREs) introduced by Griffies et al. (2009). Here, the performance of a
number of coupled sea-ice ocean models are evaluated on the global scale (Griffies et
al., 2009; Sidorenko et al., 2011) and in local ocean basins such as the North Atlantic
(Danabasoglu et al., 2014) and the Southern Ocean (Downes et al., 2014).

FESOM solves the standard set of hydrostatic primitive equations under the Boussi-
nesq approximations in a global setting. The governing equations are divided into a
dynamical and a thermodynamical part, which are solved separately, divided by a
lag of half a time step (Wang et al., 2008). Further information about the numerics of
FESOM can be found in Danilov et al. (2004) and Wang et al. (2014), while the sea-ice
component is described in detail by Timmermann et al. (2009).

FESOM is forced with the CORE-datasets, which entail the atmospheric fields needed
to calculate air-sea fluxes of heat, fresh water and momentum (Large and Yeager,
2004; Large and Yeager, 2009). These datasets are based on the NCEP reanalysis data,
which has been adjusted towards observations to reduce biases. The datasets were
specifically developed for coupled sea-ice ocean models and therefore pay special



2.3 the regulated ecosystem model 25

Figure 2.2: Left) Illustration of FESOM’s vertically stratified and horizontally unstructured
grid. Right) Division of a prism into tetrathedra (From Timmermann et al., 2009).

attention to the conservation of heat and freshwater on a global scale. The CORE-
forcing used in the current thesis consists of a normal year climatology (CORE-I),
which is based on the years 1948 to 2000 (Large and Yeager, 2004), and of an inter
annually varying dataset (CORE-II) covering 1948 to 2008 (Large and Yeager, 2009).
The forcing is provided on a grid with an approximate resolution of 1.875◦ × 1.915◦.
When running FESOM under the CORE forcing, it is interpolated onto the grid used
by FESOM.

FESOM runs on a mesh that is vertically stratified and horizontally triangulated and
unstructured. The mesh thus consist of prisms, which are further divided into tetra-
hedra (Fig. 2.2). This structure means that optimized meshes can be created for dif-
ferent studies. Recent applications of FESOM utilizing the unstructured mesh include
a study of the importance of high resolution in the Canadian Arctic through-flow
(Wekerle et al., 2013), a study of bottom water formation in the Weddell Sea (Haid
and Timmermann, 2013) and of future melting of the Antarctic ice sheet (Hellmer
et al., 2012).

2.3 the regulated ecosystem model

Marine phytoplankton plays an important role in the global carbon cycle as it is
responsible of up to half of the global primary production (e.g. Field et al., 1998).
Understanding the mechanisms behind phytoplankton growth, and thus carbon fix-
ation, is therefore important in order to predict the response of the global carbon
cycle to climate change. One way to gain further understanding is through the use
of OGCBMs, which can calculate the complex interplay between biogeochemical fluxes
and the oceanic and atmospheric circulation.

Biogeochemical models describe biogeochemical processes through parameteriza-
tions; mathematical equations that describe observations from the laboratory or the
field to a satisfying degree. Biogeochemical processes are, however, highly complex,
and the parameterizations thus represent strongly simplified versions of reality.

Marine phytoplankton growth is constrained by the availability of light (e.g. Strzepek
et al., 2012) and nutrients (e.g. Moore et al., 2013a), and by the presence of grazers
(e.g. Cavender-Bares et al., 1999). These factors are therefore an integral part of bio-
geochemical models. To simplify the dependence of the phytoplankton growth rate
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on the availability of various nutrients in global OGCBMs, they commonly rely on the
Redfield ratio, namely the notion that the intracellular C:N:P molar ratio in phyto-
plankton can be described by a constant 106:16:1 ratio (Redfield, 1958). It implies that
growth is limited by a single nutrient, thereby simplifying the models substantially
both in the growth parameterization and in the computational efficiency (O’Neill
et al., 1989). The latter because it means that the phytoplankton concentration in the
water can be described by a single value, rather than a value for each of the elements
contained in the phytoplankton. The Redfield ratio can be extended to also encom-
pass other nutrients, such as silicon and iron, which are important on the global
scale; silicon is needed by diatoms (e.g. Dugdale and Wilkerson, 1998), and iron lim-
its production in large parts of the ocean, such as the Southern and the North and
Equatorial Pacific Ocean, where the external iron input is relatively small (e.g. Mar-
tin et al., 1991; Kolber et al., 1994; Martin and Fitzwater, 1988). These nutrients have
therefore also been implemented into global biogeochemical models (e.g. Moore et
al., 2002; Aumont et al., 2003).

In reality, however, the intracellular nutrient stoichiometry is not constant. This
was first proven by Ketchum (1939) and Kuenzler and Ketchum (1962) who showed
that marine phytoplankton are able perform luxury uptake of phosphorous. In his
original paper, Redfield (1958) likewise pointed out that the reported C:N:P ratio
was an average and that it does in fact vary significant in nature. Variable stoichiom-
etry was first described in a biochemical model when Droop (1968) pioneered the
concept of the cell quota. He showed that the growth rate of a B12-limited phyto-
plankton species was dependent on the cell to B12 quota, rather than just on the B12
concentration (Fig. 2.3). The cell quota model has later been shown to hold for many
different nutrients and organisms (e.g. Droop, 1983, Table 1), and has thus provided
the basis for later biogeochemical models including variable stoichiometry. Geider
et al. (1998) developed a model with variable intracellular stoichiometry, allowing
for variable C:Chl and C:N ratios. This framework has been used in a number of
cell models (e.g. Armstrong, 1999; Flynn, 2001), as well in a number of global bio-
geochemical ocean circulation models (e.g. Moore et al., 2002; Vichi et al., 2007). For
global models, the varying stoichiometry has been extended to encompass other im-
portant nutrients such as silicon and iron (Aumont and Bopp, 2006; Vichi et al., 2007).

At the Alfred Wegener Institute, the Regulated Ecosystem Model (REcoM) was first
developed to reproduce conditions in mesocosm experiments (Schartau et al., 2007).
It is based on the model from Geider et al. (1998) and does thus entail variable
stoichiometry. The original version (Schartau et al., 2007) was based on dissolved
inorganic nitrogen as the only limiting nutrient, but has later been extended to also
describe the silicon cycle (Hohn, 2009) and a simple iron cycle based on Parekh
et al. (2005). REcoM was extended to cover the global ocean as it was coupled to
the Massachusetts Institute of Technology general circulation model (MITgcm, Hohn,
2009). In this configuration it has mainly been used to investigate the carbon cycle in
the Southern Ocean (e.g. Hauck et al., 2013; Taylor et al., 2013; Losch et al., 2014)

In the Southern Ocean, variable stoichiometry is especially important as the in-
tracellular C:Si ratio in the phytoplankton is coupled to the availability of iron (e.g.
Hutchins and Bruland, 1998; Takeda, 1998), which limits production in large parts of
the Southern Ocean (e.g. Martin et al., 1990; Martin et al., 1991). Adaptation in the
C:Si therefore has an impact on the export of silicon to the deep ocean in the area.
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Figure 2.3: The cell quota model proposed by Droop (1968). The growth rate is dependent on
the cell quota, with Qmin being the minimum quota necessary for life. The max-
imum specific growth rate (µ∞) is asymptotically approached as the cell quota
increases (From Klausmeier et al., 2008).

In a global model, the choice between variable and constant stoichiometry is how-
ever always a balance between the advantage that the complexity provides in terms
of reproducing the biogeochemistry and the complexity it adds to the calculations
and thus the computational burden. The latter becomes even more important when
the OGCM is computationally expensive to run, such as is the case in finite element
model.
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O U T L I N E O F T H E S I S

In the Southern Ocean, the micronutrient iron plays a large role for the control of
net primary production. Knowledge about the input of iron to the Southern Ocean
mixed layer and their impact on biological production come from a wide variety
of observations (e.g. Blain et al., 2001; Wagener et al., 2008; van der Merwe et al.,
2011), but due to the inaccessibility and size of the Southern Ocean, Global Ocean
General Circulation Biogeochemical Models (OGCBMs) are commonly used for large
scale studies of the impact of the different iron sources on biological production in
the Southern Ocean (e.g. Lancelot et al., 2009; Tagliabue et al., 2009; Wadley et al.,
2014). But while these models are sophisticated tools that give an insight into the
large scale dynamics that can not be gained through observations, they are heavily
dependent on parameterization of processes that are not resolved in them as well as
on tuning towards a realistic state. Understanding how the models affect the results
is therefore important before drawing conclusions from the model results.

The aim of this thesis is to gain an understanding of the relative importance of
the different iron sources to the Southern Ocean, and to what extend the state of the
ocean model and the parameterization and tuning of the iron cycle in the biogeo-
chemical model affects the representation of the iron sources.

To explore the significance of the input of different iron sources in a model on
the phytoplankton composition, the Finite Element Sea-ice Ocean Model (FESOM)
has been coupled to the Regulated Ecosystem Model (REcoM2). Before using a newly
coupled model for research, the skill of the coupled model must be assessed against
observational data. This assessment is first of all to see how well the model performs,
but also to gain an understanding of the weaker sides of the model. In publication I,
the coupled model is presented, and a skill assessment is performed with a special
focus on the iron cycle and the Southern Ocean.

Traditionally, most research focussing on the iron input to the Southern Ocean has
concentrated on the external sources, such as the sediment and the dust source. But
as biological production occurs in the surface mixed layer, the vertical supply of iron
across the base of the mixed layer may likewise play a large role (e.g. Tagliabue et al.,
2014). Southern Ocean net primary and export production (NPP and EP) calculated
in OGCBMs is very dependent on the state of the ocean circulation model (Doney
et al., 2004; Najjar et al., 2007). One factor that may play a role in this is the vertical
iron supply. Publication II presents two model runs with REcoM2 coupled to FESOM

and to the Massachusetts Institute of Technology general circulation model (MITgcm).
The results of the model runs are analyzed regarding the vertical iron fluxes in the
seasonal and spatial domain. It is further discussed how the ocean general circulation
model also has an impact on the total NPP and EP as well as on the phytoplankton
composition.

The sediment source of iron has repeatedly been argued to dominate the iron
input to the Southern Ocean (Lancelot et al., 2009; Tagliabue et al., 2009; Wadley
et al., 2014). In publication III it is investigated to what degree the strength of the
sediment source affects the modeled phytoplankton composition and distribution.
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As the strength of the sediment source varies widely between measurements, it is
discussed how changes in modeled phytoplankton composition and opal export can
be used to determine an appropriate strength of the sediment source for OGCBMs.

In the general discussion, the relative contribution of iron from the sediments and
from below to the surface mixed layer of the Southern Ocean is debated based on
publication II and III. It is further discussed how future increased temperatures are
likely to change the strength of all of the iron sources, thereby affecting the biological
production.

For the new FESOM-REcoM2 model many future research directions are possible,
both regarding the iron sources in the Southern Ocean, and regarding other topics.
Some future directions are suggested in the end of the thesis.
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Abstract. In coupled biogeochmical–ocean models, the

choice of numerical schemes in the ocean circulation com-

ponent can have a large influence on the distribution of

the biological tracers. Biogeochemical models are tradition-

ally coupled to ocean general circulation models (OGCMs),

which are based on dynamical cores employing quasi-

regular meshes, and therefore utilize limited spatial resolu-

tion in a global setting. An alternative approach is to use

an unstructured-mesh ocean model, which allows variable

mesh resolution. Here, we present initial results of a cou-

pling between the Finite Element Sea Ice–Ocean Model

(FESOM) and the biogeochemical model REcoM2 (Regu-

lated Ecosystem Model 2), with special focus on the South-

ern Ocean.

Surface fields of nutrients, chlorophyll a and net primary

production (NPP) were compared to available data sets with

a focus on spatial distribution and seasonal cycle. The model

produces realistic spatial distributions, especially regarding

NPP and chlorophyll a, whereas the iron concentration be-

comes too low in the Pacific Ocean. The modelled NPP

is 32.5 Pg C yr−1 and the export production 6.1 Pg C yr−1,

which is lower than satellite-based estimates, mainly due

to excessive iron limitation in the Pacific along with too

little coastal production. The model performs well in the

Southern Ocean, though the assessment here is hindered by

the lower availability of observations. The modelled NPP is

3.1 Pg C yr−1 in the Southern Ocean and the export produc-

tion 1.1 Pg C yr−1.

All in all, the combination of a circulation model on an

unstructured grid with a biogeochemical–ocean model shows

similar performance to other models at non-eddy-permitting

resolution. It is well suited for studies of the Southern Ocean,

but on the global scale deficiencies in the Pacific Ocean

would have to be taken into account.

1 Introduction

Primary production plays a large role in ocean carbon cy-

cling, and understanding the drivers behind primary produc-

tion is therefore of paramount importance when it comes

to understanding the changes that a future warmer climate

will bring. Observations, as well as coupled biogeochemi-

cal–ocean models, indicate that climate change will decrease

the oceanic net primary production (NPP) (Behrenfeld et al.,

2006; Steinacher et al., 2010). This would have far-reaching

implications, from changes of the carbon cycle to effects on

fisheries.

Coupled biogeochemical–ocean models are important

tools used to analyse the net primary production in the ocean

and the effects of climate change on it (e.g. Le Quéré et al.,

2003; Bopp et al., 2013). The biogeochemical results of such

models are highly impacted by the mixing and circulation

of the ocean model as it controls processes such as horizon-

tal advection and nutrient supply to the surface layer (Doney

et al., 2004). Supply of nutrients through upwelling is espe-

cially important when it comes to modelling the equatorial

Pacific (Aumont et al., 1999) and the Southern Ocean, where

production is iron limited and sensitive to new supply. Re-

sults from the second Ocean Carbon-Cycle Model Intercom-

parison Project (OCMIP-2) highlighted the importance of

the ocean model; they showed how the representation of the
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ocean circulation in the Southern Ocean has a large impact on

the calculations of present and future uptake of CO2 (Doney

et al., 2004), and reported that the global export production

varied between 9 and 28 GtCyr−1 when the same biogeo-

chemical model was coupled to different OGCMs (Najjar

et al., 2007).

Traditionally, global OGCMs employ structured grids with

relatively uniform spatial resolution in the entire domain, and

local refinement is done by utilizing nested models.

The unstructured-mesh technology is emerging as an alter-

native to nesting in ocean models, and is gradually becom-

ing more widespread within the ocean modelling community

(e.g., Chen et al., 2003; Danilov et al., 2004; Piggott et al.,

2008). As solutions for the global ocean state provided by

models formulated on unstructured meshes have improved

(e.g., Sidorenko et al., 2011), it has become feasible to ex-

ploit the advantages offered by such models in biogeochem-

ical modelling by coupling a biogeochemical model to an

unstructured-mesh ocean model (Hill et al., 2014). One may

then benefit from the possibility of aligning the grid with the

bathymetry, or refining it in areas of interest without the loss

of accuracy that the nesting introduces at boundaries. This is

especially relevant when it comes to modelling features such

as mixed layer depth, upwelling and the presence of fronts

and eddies that are of vital importance for realistic modelling

of ecosystems.

A drawback of the unstructured-mesh technology is that,

although computer time is saved by using high resolution in

chosen areas only, it still uses a substantial amount of com-

puter time as it is less efficient per degree of freedom as com-

pared to structured models. Furthermore, extra care must be

taken for models formulated using the continuous finite el-

ements as their local conservation of volume and tracers is

formulated in the cluster-weighted sense. This brings some

ambiguity into analyzing fluxes between grid cells, while di-

vergences are well defined (Sidorenko et al., 2009).

Before using a newly coupled biogeochemical–ocean

model for scientific studies, the skill of the model must be

assessed (e.g. Assmann et al., 2010). Performing a skill as-

sessment is not a trivial exercise, considering both the lack

of data, especially for parameters such as dissolved iron and

export production, and also the inherent uncertainty of the

biogeochemical models, in which complex biochemical pro-

cesses are described by comparably simple mathematical pa-

rameterizations. We have coupled the Regulated Ecosystem

Model 2 (REcoM2) to the Finite Element Sea Ice–Ocean

Model (FESOM), and in this paper a skill assessment of the

coupled model is carried out with emphasis on the Southern

Ocean. We show to what extent the results are comparable to

observations and discuss how they compare to results from

other models.

Figure 1. Horizontal resolution of FESOM’s unstructured grid.

2 Method

2.1 Ocean model

The ocean component of FESOM solves the hydrostatic

primitive equations under the Boussinesq approximations

(Danilov et al., 2004; Wang et al., 2008). Elastic viscous plas-

tic (EVP) sea ice dynamics is used together with the thermo-

dynamics adopted from Parkinson and Washington (1979) as

described in detail by Timmermann et al. (2009). Currently,

FESOM is used for simulation of the three-dimensional

global ocean with special focus on the Arctic and the Antarc-

tic (Haid and Timmermann, 2013; Wekerle et al., 2013).

The latest FESOM version is comprehensively described in

Q. Wang et al. (2014).

FESOM operates on unstructured meshes that permit the

main feature of the model: the capability of local grid re-

finement in an otherwise global set-up without nesting. The

model domain is discretized by a horizontally triangulated

and unstructured, but vertically stratified, mesh with tetrahe-

dral volumes. Integration is carried out on an Arakawa A-

grid, which uses vertical z coordinates for simplicity. The

mesh used in this study (Fig. 1) is similar to the one used

by Sidorenko et al. (2011), in which the horizontal resolution

ranges from 15 km in the polar regions to 180 km in the sub-

tropical gyres. In the vertical it has 32 layers, nine of which

are located in the upper 100 m.

The bottom topography of FESOM’s grid is constructed

using a combination of different data products; the bulk of

FESOMS bathymetry, from 60◦ S to 64◦ N, is based on to-

pography data from the General Bathymetric Chart of the

Oceans (GEBCO, 1 min resolution), south of 60◦ S, the bot-

tom topography from Timmermann et al. (2010) with a res-

olution of 1 min (Rtopo-1) is used and north of 69◦ N it is

based on data from the International Bathymetric Chart of

the Arctic Oceans with 2 km resolution (IBCAO, version 2;

Jakobsson et al., 2008). Between 64 and 69◦ N, a combi-

nation of the GEBCO and IBCAO data sets is used. FE-

SOM’s bottom topography is created using bilinear interpo-
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lation, whereupon smoothing is performed to remove grid-

scale noise. The topography data also defines the coastline

using bilinear interpolation from the data to the model’s grid

points. For a further description of the creation of bottom to-

pography for FESOM, please refer to Q. Wang et al. (2014).

The version of FESOM used here utilizes a linear rep-

resentation on triangles (in 2-D) and tetrahedrals (in 3-D)

for all model variables. The same is true for the biological

tracers, which are treated similar to temperature and salinity.

The temporal discretization is implicit for sea surface ele-

vation and a second order Taylor–Galerkin method together

with the flux-corrected transport (FCT) is used for advec-

tion–diffusion equations. The forward and backward Euler

methods are used for lateral and vertical diffusivities, respec-

tively, and the Coriolis force is treated with a second order

Adams–Bashforth method.

The vertical mixing is calculated using the PP-scheme first

described by Pacanowski and Philander (1981) with a back-

ground vertical diffusivity of 1×10−4 m2 s−1 for momentum

and 1× 10−5 m2 s−1 for tracers. Redi diffusion (Redi, 1982)

and Gent and McWilliams parameterization of the eddy mix-

ing (Gent et al., 1990) are applied with a critical slope of

0.004.

The skill of FESOM has been assessed within the CORE

framework (Griffies et al., 2009; Sidorenko et al., 2011;

Downes et al., 2014), where several sea ice–ocean models

were forced with the normal year (CORE-I) and interannu-

ally varying (CORE-II) atmospheric states (Large and Yea-

ger, 2004, 2009) and results compared. In these assessments,

the full flexibility of FESOM’s unstructured mesh was not

utilized, but the results from FESOM were still within the

spread of the other models, and it was consequently con-

cluded that FESOM is capable of simulating the large-scale

ocean circulation to a satisfactory degree.

2.2 Biogeochemical model

The Regulated Ecosystem Model 2 (REcoM2) belongs to

the class of so-called quota models (Geider et al., 1996,

1998), in which the internal stoichiometry of the phytoplank-

ton cells varies depending on light, temperature and nutrient

conditions. Uptake of macronutrients is controlled by inter-

nal concentrations as well as the external nutrient concen-

trations, and the growth depends only on the internal nutri-

ent concentrations (Droop, 1983). Iron uptake is controlled

by Michaelis–Menten kinetics. An overview of the compart-

ments and fluxes in REcoM2 can be seen in Fig. 2.

The model simulates the carbon cycle, including calcium

carbonate as well as the nutrient elements nitrogen, silicon

and iron. It has two classes of phytoplankton: nanophyto-

plankton and diatoms, and additionally describes zooplank-

ton and detritus. The model’s carbon chemistry follows the

guidelines provided by the Ocean Carbon Model Intercom-

parison Project (Orr et al., 1999), and the air–sea flux cal-

Figure 2. The pathways in the biogeochemical model REcoM2.

culations for CO2 are performed using the parameterizations

suggested by Wanninkhof (1992).

We do not add external sources to the macronutrient pools

since the timescale of the runs is short compared to the res-

idence time of the macronutrients in the ocean (Broecker

et al., 1982).

Iron has a much shorter residence time (Moore and

Braucher, 2008) and is strongly controlled by external

sources as well as scavenging. Dissolved iron is taken up

and remineralized by phytoplankton, it reacts with ligands

and it is scavenged by detritus in the water column (Parekh

et al., 2005). New iron is supplied to the ocean by dust and

sedimentary input. For dust input, REcoM2 uses monthly

averages (Mahowald et al., 2003; Luo et al., 2003), which

have been modified to fit better to the observations from Wa-

gener et al. (2008) (N. M. Mahowald, personal communica-

tion, 2011). The model assumes that 3.5 % of the dust field

consists of iron and that 1.5 % of this iron dissolves when

deposited in the surface ocean. This gives a total aeolian in-

put of 2.65× 109 molDFeyr−1 (DFe – dissolved iron) to the

ocean on average. A flux of iron from the sediment has been

added accounting for an input of 2.67×108 molDFeyr−1 on

average. It is incorporated following Elrod et al. (2004) with

the magnitude of the iron concentration released by the sedi-

ment being dependent on the rate of carbon remineralization

in the sediment.

The model has 1 zooplankton class, which is the model’s

highest trophic level. Grazing is calculated by a sigmoidal

Holling type 3 model with fixed preferences on both phyto-

plankton classes (Gentleman et al., 2003).

The sinking speed of detritus increases with depth, from

20 mday−1 at the surface, to 192 mday−1 at 6000 m depth

(Kriest and Oschlies, 2008). Sinking detritus is subject to

remineralization.

REcoM2 has sediment compartments for nitrogen, silicon,

carbon and calcium carbonate, which consist of one layer

into which the detritus sinks when reaching the lower-most

ocean layer. Remineralization of the sunken material subse-

quently occurs in the benthos, and the nutrients are returned

to the water column in dissolved state.
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REcoM1 and 2 have previously been used for large-scale

simulations with focus on the Southern Ocean in set-ups with

the MITgcm (MIT general circulation model) (Hohn, 2009;

Taylor et al., 2013; Hauck et al., 2013), and the purpose of the

current coupling between REcoM2 and FESOM is likewise

studies of the Southern Ocean.

A full description of the model equations can be found in

Appendix A along with lists of parameters used in the current

run.

2.3 Model experiment

We present a numerical hindcast experiment with a newly

coupled biogeochemical–ocean general circulation model.

The run was forced using the CORE-II data set, which was

developed for the use of coupled sea ice–ocean models and

gives an interannually varying forcing for the years 1949 to

2008 (Large and Yeager, 2009). As focus here is on eval-

uating the biological surface processes of a newly coupled

model, we follow the example of Vichi and Masina (2009)

and Yool et al. (2011) and let the coupled model run for a to-

tal of 38 years, from 1971 to 2008. The first 33 years are con-

sidered spin-up and we present the results for the years 2004

to 2008. Prior to activating the biogeochemical module, the

ocean model had been spun up for 300 years, which is suffi-

cient to reach a quasi-equilibrium state (Fig. 8 in Sidorenko

et al., 2011). The length of the time step used throughout the

run was 1800 s.

In REcoM2, the tracers for dissolved inorganic nitrogen

(DIN) and dissolved silicon (DSi) were initialized with val-

ues from the Levitus World Ocean Atlas climatology of 2005

(Garcia et al., 2006), and the dissolved inorganic carbon

(DIC) and total alkalinity (TA) tracers were initialized with

contemporary values from the Global Ocean Data Analy-

sis Project (GLODAP) data set (Key et al., 2004). Due to

scarcity of observations for DFe, the iron field was initialized

with an output from the Pelagic Interaction Scheme for Car-

bon and Ecosystem Studies (PISCES) model (Aumont et al.,

2003), which has been modified south of 45◦ S with mean ob-

served profiles from Tagliabue et al. (2012). All other tracers

were initialized with arbitrary small values.

We used a constant value for the atmospheric CO2 during

the simulation. Because of the duration of the simulation, the

carbon cycle is not in equilibrium at the end of the run, and

we do not to focus on this part of the model here.

2.4 Data and skill metrics

The focus of this skill assessment is on the key parameters

of the physical, chemical and biological surface fields, for

which we examine the model behaviour on the global scale

and in the ocean regions shown in Fig. 3. We have a spe-

cial interest in the Southern Ocean and therefore also look

further into the production and its drivers there. On the tem-

poral scale we primarily focus on annual climatologies of the

modelled fields, but also show the seasonal development for

certain parameters.

The performance of the model regarding sea surface tem-

perature (SST), sea surface salinity (SSS), mixed layer depth

(MLD), DIN, DSi, chlorophyll a (Chl), NPP and export pro-

duction (EP) is summarized in Taylor diagrams, one dis-

playing the spatial agreement between the modelled surface

multi-year means and the observations, and one also taking

the seasonal variations into account. Due to a lack of monthly

data, EP is only plotted in the former Taylor plot. The spatial

distribution of the modelled and observed surface climatolo-

gies of these same fields, except SST and SSS, have addition-

ally been plotted to show the bias which is not captured by

the Taylor diagrams. SST and SSS were omitted as they have

been evaluated elsewhere (Sidorenko et al., 2011). Global

climatologies of dissolved iron concentrations do not exist,

making it impossible to evaluate the modelled iron fields in

the manner described above. Instead, the modelled surface

climatology of the iron concentration is plotted on its own,

and mean values of the ocean basins are compared to obser-

vation compilations in table form. NPP is the model’s end re-

sult, and we have therefore additionally plotted the mean sea-

sonal cycle of the NPP for each of the ocean basins defined in

Fig. 3, for the model result as well as satellite-based observa-

tions. Due to the large effect the modelled mixed layer has on

the prediction of the NPP, we have also chosen to illustrate

the seasonal cycle of the modelled and observed mean MLD

in these same ocean basins.

The Taylor diagrams (Taylor, 2001) show the correlation

(r), the normalized root mean square error (RMSE) and

the normalized standard deviation (SD) between the model

results and the observations. The correlation between the

model and the observations show whether the two data sets

increase and decrease simultaneously, the SDs tells us about

the magnitude of the changes in the data, but not when these

changes occur and the centered RMSE reflects differences in

the overall patterns of the two fields after the bias has been re-

moved. The perfect fit between model and observations will

have a correlation and a SD of 1 and a RMSE of 0.

A full list of the observations used can be seen in

Table 1. For the NPP we use the Vertically Generalized Pro-

ductivity Model (VGPM) product from the ocean produc-

tivity web page (http://www.science.oregonstate.edu/ocean.

productivity/index.php), which is based on the Sea-viewing

Wide Field-of-view Sensor (SeaWIFS, 2012) chlorophyll

measurements and the VGPM NPP model (Behrenfeld and

Falkowski, 1997). We have downloaded monthly values from

the web page, and from these calculated the spatial and sea-

sonal means. The EP fields from Schlitzer (2004), Siegel

et al. (2014) and Laws et al. (2000) were provided as clima-

tologies. The field from Laws et al. (2000) and Siegel et al.

(2014) are satellite based, whereas the field from Schlitzer

(2004) comes from an inverse model.

Satellite-based estimates of chlorophyll a, NPP and EP

provide detailed spatial and temporal data, but obtaining
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Table 1. List of the observational data sets used for the skill assessment.

Data set Variable name Temporal coverage Reference

Sea surface temperature SST Monthly climatology Garcia et al. (2010)

Sea surface salinity SSS Monthly climatology Garcia et al. (2010)

Mixed layer depth MLD Monthly climatology de Boyer Montegut et al. (2004)

Dissolved inorganic nitrogen DIN Monthly climatology Garcia et al. (2010)

Dissolved inorganic silicon DSi Monthly climatology Garcia et al. (2010)

Chlorophyll a concentration Chl Monthly (1998–2010) Globcolour (2012)

Net primary production NPP Monthly (2003–2008) SeaWIFS (2012), Behrenfeld and Falkowski (1997)

Export production EP Annual climatologies Schlitzer (2004), Laws et al. (2000)

Figure 3. Map of the ocean regions used to examine the model re-

sults on a basin scale.

them is not trivial. Remotely sensed global ocean colour val-

ues are first converted to chlorophyll a, and under a number

of assumptions about, for instance, mixed layer depth, tem-

perature and light, NPP (Behrenfeld and Falkowski, 1997)

and finally EP (e.g. Laws et al., 2000; Siegel et al., 2014)

can be estimated. Increasing uncertainty is introduced dur-

ing the process, and the satellite-based estimates are not as

such observations, but rather another way of modelling the

chlorophyll a, NPP and EP. The spread between the different

satellite-based estimates of NPP is large. Carr et al. (2006)

showed that estimates of the global NPP differed by a factor 2

between 24 models, with the largest discrepancies occurring

in the high-nutrient low-chlorophyll and extreme tempera-

ture areas. The SeaWIFS (2012) algorithms have further been

shown to significantly underestimate chlorophyll a concen-

trations in the Southern Ocean (Gregg and Casey, 2004), and

one must consequently be aware of this when using satellite-

based estimates from the Southern Ocean.

The Arctic Ocean is likewise an area in which observa-

tions are scarce, and for the seasonal Taylor diagrams the

modelled results have consequently been removed in both of

the polar regions when comparable observational values did

not exist. As is the case in the Southern Ocean, it is espe-

cially the satellite-based observation of NPP that is affected

by this during the winter months. The missing seasonal data

has likewise led us to cut off the northern basins at 70◦ N in

Fig. 3.

In addition to comparing our results to available observa-

tions, we discuss them in relation to those of other biogeo-

chemical models. For Dfe, Chl and NPP we have plotted

our bias plots to the scale used by Schneider et al. (2008).

They present the results of the IPSL (Institut Pierre Si-

mon Laplace) model, the MPI (Max Planck Institute) model

and the NCAR (National Center for Atmospheric Research)

model, providing a range of results to hold our model against.

We additionally compare our model to the results from Ass-

mann et al. (2010), who present the results of another non-

traditional ocean model coupled to a biogeochemical model,

and to Yool et al. (2011). For the export production, Moore

et al. (2004) provided a thorough discussion of the export

of particulate organic matter as well as opal, and our spatial

plots of export production is consequently plotted to the scale

used by them.

3 Model results

3.1 Physics: mixed layer depth, salinity and

temperature

The fit between the spatial distributions of modelled and ob-

served surface temperature and salinity is very good for both

spatial (Fig. 4a) and monthly spatial fields (Fig. 4b), with the

correlations being higher than 0.99 and the normalized SDs

close to 1 for both fields. As is general practice in ocean-

only models (Griffies et al., 2009), FESOM’s surface salinity

is weakly restored towards the Polar Science Center Hydro-

graphic Climatology (PHC) (Steele et al., 2001) with a piston

velocity of 20 myr−1.

In both FESOM and the observations (de Boyer Montegut

et al., 2004), the mixed layer depth is defined as the depth

at which the difference between the potential density at 10 m

depth and the MLD is greater than 0.03 kgm−3. The spatial

distribution of the mean MLD has a correlation of 0.68 and

a normalized SD of 0.85 when compared to the data-based

estimates (Fig. 4).
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Figure 4. Taylor diagrams (Taylor, 2001) showing correlation, nor-

malized SD and the normalized root mean square error between

values of the model results and observations (Table 1), weighted

by area. (a) Spatial distribution; (b) spatial–seasonal distribution.

All values are surface values, except the mixed layer depth and the

vertically integrated NPP. (a) Uses the yearly mean calculated over

2004–2008 and (b) uses the monthly means of the same years. All

fields have been interpolated to a 1◦× 1◦ grid, using linear interpo-

lation.

The seasonal variability of the MLD leads to entrainment

of water with high nutrient concentrations to the surface

water during winter, and the maximum depth of the mixed

layer during the year (MLDmax) is therefore especially im-

portant from a biological point of view. Overall, the modelled

MLDmax fits well with the observations, but it is generally

too shallow in the Southern Ocean (Fig. 5), with the conse-

quence that limiting nutrients are not adequately replenished

during winter. This may lead to a too small NPP in the area as

Figure 5. Mean spatial distribution of the MLDmax over the years

2004–2008. (a) Observation based (de Boyer Montegut et al.,

2004). (b) Modelled. (c) Residual: modelled − observation based.

well as a dominance of nanophytoplankton over diatoms, as

the former needs a lower iron concentration for production.

This will be further discussed in Sect. 3.5.

For the monthly fields, the correlation between the mod-

elled MLD and the observations is above 0.6 and the SD

equals 1 (Fig. 4b). We investigate this further by plotting the

mean depth of the mixed layer in different ocean regions de-

fined in Fig. 3. All basins have correlations above 0.9, except

the northern Indian and equatorial basins (Fig. 6), leading us

to conclude that the seasonal change in the MLD is well pre-

dicted by FESOM.

3.2 Nutrients and nutrient limitation

The annual mean surface distribution of DIN and DSi have

correlations between model results and observations of 0.91

and 0.86, respectively (Fig. 4a). In the Southern Ocean, the

surface DIN concentrations have a negative bias for DIN

(Fig. 7) and a positive for DSi (Fig. 8) when the spatial distri-

bution of modelled and observed values are compared. The

DIN concentration additionally becomes too high in the sub-
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Figure 6. Mean MLD over the year in the ocean basins depicted in Fig. 3. The correlation coefficient is written in each plot, and the

statistically significant correlations (p values < 0.05) are marked with ∗.

tropical Pacific Ocean (Fig. 7), something we will later argue

happens due to a strong iron limitation in the area.

The correlation between model results and observations

for the spatial–seasonal distribution of DIN and DSi is close

to 0.75 for both fields (Fig. 4b). For both nutrients, the sea-

sonal cycle has the best agreement with the observations in

the polar regions (not shown).

Iron has been shown to play a large role as limiting nu-

trients for phytoplankton in the Southern Ocean, as well as

the equatorial and subarctic Pacific (Martin et al., 1991), and

is therefore a key parameter in the model. We compare the

model’s surface iron concentration to compilations of obser-

vations (Moore and Braucher, 2008; Tagliabue et al., 2012)

and to other biogeochemical models (i.e. Schneider et al.,

2008). It must be mentioned here that the model is not inde-

pendent of the observations from Tagliabue et al. (2012) as

they are also used for initialization of dissolved iron. But as

we only compare surface values, and the residence time of

iron in the Southern Ocean is much shorter than the model

run, the surface iron concentrations at the end of the model

run should not be affected by the initialized values.

The pattern of the surface iron concentration in the At-

lantic Ocean (Fig. 9) fits well with the observations in Table 2

as well as with the results from the MPI and NCAR models

in Schneider et al. (2008), with relative high concentrations

in the equatorial region fed by the dust plume from the Sa-

hara, and concentrations decreasing towards the poles. The

Table 2. Modelled mean surface iron concentrations (0–100 m) in

the different ocean basins shown in Fig. 3. Observed values are from

Moore and Braucher (2008), except those marked with ∗, which are

from Tagliabue et al. (2012), Table 2. The latter is the mean of the

values given for the Antarctic and Subantarctic regions.

Basin Latitudinal Model Obs

extent [nM] [nM]

North Atlantic 45–70◦ N 0.34 0.68

Northern central Atlantic 10–45◦ N 1.03 0.68

Southern central Atlantic 45–10◦ S 0.28 0.44

Northern Indian 45–10◦ S 1.10 1.21

North Pacific 45–70◦ N 0.14 0.31

Equatorial Pacific 10◦ S–10◦ N 0.02 0.84

Southern central Pacific 45–10◦ S 0.02 0.31

Atlantic Southern Ocean 90–45◦ S 0.14 0.39∗

Indian Southern Ocean 90–45◦ S 0.08 0.33∗

Pacific Southern Ocean 90–45◦ S 0.09 0.15∗

iron concentrations in the IPSL model and Assmann et al.

(2010) are somewhat lower in the equatorial and southern

part of the Atlantic Ocean than our result.

In the Indian Ocean, our surface iron concentrations agree

well with the IPSL and NCAR models as well as with the

results from Yool et al. (2011), with values higher than 1 nM

in the Arabian Sea and falling towards 0.3 nM in the main In-
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Figure 7. Spatial distribution of mean surface concentration of

dissolved inorganic nitrogen. (a) Observed (Garcia et al., 2010)

(b) Modelled. (c) Residual: modelled − observed.

dian Ocean. Our values also fit well with the observations in

the northern Indian Ocean (Table 2), and this, along with the

agreement between the models using varying magnitudes of

sedimentary iron input, indicates that the coastal upwelling

in the Arabian Sea is well captured in these models, and

that this upwelling is responsible for the high surface iron

concentrations in the area. The lower surface iron concentra-

tion in South East Asia is on the other hand evident in all

of these models with the exception of the IPSL model, in-

dicating that the sediment source plays a larger role in this

area. Here, unfortunately we do not have observations to val-

idate the models. In the Pacific Ocean, our result is closest

to the one from Assmann et al. (2010), though they have a

higher iron concentration along the North and South Amer-

ican west coast, indicating a stronger coastal upwelling in

their ocean model. We have a lower surface iron concentra-

tion than all models presented by Schneider et al. (2008),

even though they all have low concentrations locally. The ob-

servations in Table 2 indicate that all models underestimate

the surface iron concentrations in the Pacific, especially in

the equatorial region where the upwelling plays the largest

Figure 8. Spatial distribution of mean surface concentration of

dissolved inorganic silicon. (a) Observed (Garcia et al., 2010)

(b) Modelled. (c) Residual: modelled − observed.

Figure 9. Spatial distribution of the mean surface concentration of

dissolved iron. Plotted to the scale used by Schneider et al. (2008).

role. In the Southern Ocean, Table 2 shows that our surface

iron concentration is too low, but the spatial distribution of

the surface iron fits well with observed values, with the high-

est values found in the vicinity of the Antarctic and east of the
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Patagonian shelf (Tagliabue et al., 2012). This distribution

can mainly be attributed to the sediment and dust sources of

iron and the seasonal ice coverage impeding iron uptake by

phytoplankton near the Antarctic continent. These factors are

also responsible for maintaining the relatively high surface

iron concentration in the Arctic, which becomes iron lim-

ited in the absence of the sediment source of iron. Assmann

et al. (2010) and Moore and Braucher (2008) also experi-

enced this, with the latter mentioning that the missing sed-

iment source has a modest impact on productivity and iron

concentrations away from the Arctic. In the Southern Ocean,

our result agrees the best with the IPSL model, with a rel-

atively high coastal concentration, which then falls towards

the north. Both the MPI and NCAR models have relatively

constant higher values in the area south of 40◦ S of around

0.5 and 0.3 nM, respectively.

The comparison to observations is, however, hindered by

the different definitions of the ocean basins. The value of

the North Atlantic from Moore and Braucher (2008), for

instance, roughly covers the North Atlantic as well as the

northern central Atlantic of our definition (Fig. 3). For the

equatorial Pacific, Moore and Braucher (2008) report the

value 0.84 nM for the whole ocean, and 0.11 nM for the open

ocean, where our value is closer to the latter due to the miss-

ing coastal processes in the model.

Nutrient uptake limitation is described by

Michaelis–Menten kinetics in the model. The

Michaelis–Menten coefficient (MM) is computed as

MM= [Nut]/([Nut] +KNut), with [Nut] being the nutrient

concentration, and KNut a nutrient and phytoplankton

dependent half-saturation constant.

To plot the distribution of the mean surface limitation we

follow the example of Schneider et al. (2008), where the nu-

trient with the lowest MM in a given place is seen as limiting

and it is assumed that other factors, such as temperature and

light, are limiting when all Michaelis–Menten coefficients

are above 0.7 (Fig. 10).

When looking at the yearly mean, iron limits nutrient up-

take for both nanophytoplankton and diatoms up to 45◦ S and

in most of the Pacific. Nanophytoplankton is mainly nitrogen

limited in the Atlantic and Indian oceans, concurring with the

result by Assmann et al. (2010), Yool et al. (2011) and the

IPSL model in Schneider et al. (2008). For diatoms, silicon

is limited in the Atlantic and Indian oceans as well as in the

Arctic, a feature that we only share with Yool et al. (2011).

In the high latitudes, the modelled nanophytoplankton be-

come light limited during the respective winter months. For

the Arctic this is most pronounced in February, where the

light limitation reaches down to 45◦ N in the Atlantic Ocean.

For the Southern Ocean, the highest degree of light limitation

occurs in August when the area south of 55◦ S is affected.

The higher nutrient demand by diatoms means that they are

co-limited by iron and light during winter (not shown).

Figure 10. Following the example of Schneider et al. (2008),

the spatial distribution of the annually mean limiting nutrients in

the model’s surface water has been calculated. (a) Nanophyto-

plankton (Fe= 56.6 %, DIN= 40.1 % of total area). (b) Diatoms

(Fe= 53.6 %, DIN= 2.5 % and DSi= 43.8 % of total area).

3.3 Chlorophyll and net primary production

Global NPP sums up to 32.5 PgCyr−1 in the model

(Table 3), which is lower than the satellite-based esti-

mate of 47.3 PgC yr−1 (SeaWIFS, 2012; Behrenfeld and

Falkowski, 1997) and also slightly below the estimate range

of 35–70 PgC yr−1 given by Carr et al. (2006), but higher

than the modelled values ranging from 23.7 to 30.7 PgCyr−1

reported by Schneider et al. (2008).

On a global scale, diatoms account for 25.9 % of all pro-

duction in the model. In the subtropical gyres, we see close

to zero percent of NPP from diatoms, whereas it constitutes

close to 100 % in the Arctic Ocean (not shown).

The correlations between the spatial distribution of mod-

elled results and satellite data are 0.75 for both chlorophyll a

and NPP (Fig. 4a), with the mean surface chlorophyll a con-

centration being somewhat overestimated as compared to the

satellite-based estimates in the high latitudes, while the equa-

torial regions have concentrations that are too low (Fig. 11)

and the extent of the subtropical gyres is too large. Yool

et al. (2011) have a higher equatorial chlorophyll a concen-

tration in the equatorial regions of the Atlantic and Pacific

oceans as compared to our model, but their concentration in

the Southern Ocean is even higher than ours. Furthermore,

when we compare our model to the IPSL model (Schneider

et al., 2008), we again see that our equatorial chlorophyll a

concentrations are lower, whereas the concentrations in the

North Atlantic and Southern Ocean are fairly similar to our

result.
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Table 3. Net primary and export production for the global domain and the Southern Ocean south of 50◦ S, for REcoM2 and from literature.

Units FESOM–REcoM2 Previous studies

35–70 (Carr et al., 2006)

NPPglo [Pg C yr−1] 32.5 23.7–30.7 (Schneider et al., 2008)

47.3 (Behrenfeld and Falkowski, 1997)

EPglo [Pg C yr−1] 6.1
5.8–13.0 (Dunne et al., 2007)

6 (Siegel et al., 2014)

Opalglo [Tmol Si yr−1] 74.5 69–185 (Dunne et al., 2007)

NPPSO [Pg C yr−1] 3.1 1.1–4.9 (Carr et al., 2006)

EPSO [Pg C yr−1] 1.1 1 (Schlitzer, 2002; Nevison et al., 2012)

OpalSO [Tmol Si yr−1] 21.5 21–54 (Dunne et al., 2007)

Figure 11. Spatial distribution of mean surface concentrations of

chlorophyll a plotted to the scale used by Schneider et al. (2008).

(a) Satellite-based estimate (www.globcolour.info). (b) Modelled.

(c) Residual: modelled − satellite-based estimate.

The spatial distribution of NPP (Fig. 12), follows the same

pattern as chlorophyll a, with low production in the olig-

otrophic gyres along with a higher production in the tem-

perate regions. Production in the gyres is on the low side

compared to the satellite-based estimate (Fig. 13), and as

they are known to underestimate production here (Friedrichs

et al., 2009), our result is most likely much too low here. An

explanation may be that the nanophytoplankton in the model

does not represent the smallest phytoplankton classes, such

as Prochlorococcus and Synechococcus, which are important

in the gyres. Even though adaption of the modelled intracel-

lular N : C ratio is possible, this is not enough to increase

production here to the level seen in satellite-based estimates.

The missing coastal primary production along the west

coast of Africa and South America (Fig. 12) along with a pos-

itive temperature bias in these areas (not shown) indicate that

the upwelling is too weak here. FESOM has a coastal reso-

lution of 40 km, which is relatively high, but this resolution

only covers a narrow path along the coast (Fig. 1), which

may not be sufficient for the upwelling zones to be resolved

properly; additionally, the low resolution further out in the

subtropical gyres could play a role. Furthermore, the driving

force for the upwelling is the coastal winds, and the missing

upwelling may partially result from a too low resolution of

the atmospheric forcing; moreover, higher resolution allows

strong surface winds closer to the coast, thereby increasing

the strength of the upwelling (Gent et al., 2010).

Another explanation for the low coastal NPP is the missing

riverine input of macronutrients, which at least in the case of

silicon plays a role locally in places like Amazonas and the

Arctic (Bernard et al., 2011). Yool et al. (2011) deal with the

missing riverine nutrient input by restoring the nutrient fields

along the coasts. Although Yool et al. (2011) have a larger

coastal production in their model (especially along the coast

of West Africa), they show that the nutrient restoring only

has a small influence on this.

When comparing the mean spatial distribution of NPP

with other models, our result is the closest to the NCAR

model presented by Schneider et al. (2008), with a relatively

high production rate in the North and equatorial Atlantic as

well as the Indian Ocean. Moderate production in the area

of the polar front in the Southern Ocean is a feature that
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Figure 12. Mean spatial distribution of vertically integrated NPP

plotted to the scale used by Schneider et al. (2008). (a) Satellite-

based estimate (SeaWIFS, 2012; Behrenfeld and Falkowski, 1997).

(b) Model. (c) Residual: modelled − satellite-based estimate.

our model shares with the satellite-based estimate (Fig. 12)

and with the NCAR and IPSL models from Schneider et al.

(2008). Despite our model’s strong iron limitation in the Pa-

cific Ocean, our results fit well with the IPSL model, though

we have a smaller production rate in the southern Pacific.

Taking seasonal variations into account, NPP and surface

chlorophyll a have correlations of 0.66 and 0.57, respec-

tively, when comparing the model and the satellite-based es-

timate (Fig. 4b), and the normalized SDs are equal to 1.47

and 1.94 for chlorophyll a and NPP, respectively. Both are

on the same order as the values presented by Doney et al.

(2009).

The timing of the seasonal cycle of NPP is well captured in

the majority of the ocean regions defined in Fig. 3 (Fig. 13).

The Pearson’s correlation coefficients (R) range from 0.31 in

the equatorial Atlantic to 0.93 in the southern central Atlantic

(Fig. 13), with significant correlations in eight of the four-

teen basins. In general, the modelled seasonal cycle is clos-

est to the satellite-based estimate between 10 and 45◦ N and

S, where the modelled NPP is low, but the magnitude of the

seasonal variations fits well with the satellite-based estimate.

This is the case for all basins in the mentioned area, except

the northern Indian basin.

The Southern Ocean stands out as it has a modelled NPP

of the same magnitude as the satellite-based estimate, but the

spring bloom occurs too early here, compared to the satellite-

based estimate. This will be further discussed in Sect. 3.5.

3.4 Export production

The export of organic carbon out of the euphotic zone (export

production – EP), is calculated at a reference depth, which in

our case is set to the standard 100 m (e.g. Schneider et al.,

2008; Doney et al., 2009). Here, we regard EP as the organic

matter that sinks due to the effect of gravity, whereas the total

EP also entails the vertical movement of POC by advection

and diffusion plus a contribution from semi-labile DOC.

The global export production sums up to 6.1 PgCyr−1 in

the model (Table 3), close to the satellite-based estimate of

6 PgCyr−1 from Siegel et al. (2014). It is also within the

range of estimates presented by Dunne et al. (2007), but on

the low side and closer to modelled estimates than to esti-

mates based on observations or inverse models.

The modelled EP constitutes 20 % of NPP on a global

scale, which is similar to the ratio predicted by Laws et al.

(2000). The EP field presented by Laws et al. (2000) is cal-

culated at 100 m depth and is based on satellite observa-

tions of ocean colour, whereas the EP field calculated by

Schlitzer (2004) is based on an inverse model and is cal-

culated at 133 m. Comparing our model to these fields can

consequently be argued to be more of a model–model com-

parison than a model–observation comparison.

The correlation is 0.28 and 0.48, when comparing the spa-

tial distribution of EP in our model to the fields by Schlitzer

(2004) and Laws et al. (2000), respectively (Fig. 4a), indi-

cating that our spatial distribution is closer to the field from

Laws et al. (2000), and the normalized SDs are 0.90 and 0.60,

respectively.

The EP fields from Schlitzer (2004) and Laws et al. (2000)

both have high export along the Equator, in the upwelling re-

gions and along 45◦ N and S (Fig. 14a and b). In the South-

ern Ocean, Schlitzer (2004) has a comparably higher export

in the Indian and Pacific sector and in the North Atlantic

Schlitzer (2004) has less than Laws et al. (2000).

REcoM2 captures the overall pattern with high EP around

45◦ N and S and along the Equator (Fig. 14c and d), and the

elevated EP in the North Atlantic is a feature that REcoM2

shares with the field from Laws et al. (2000). Turning to the

differences, our EP is lower in the North Atlantic, slightly

lower in the gyres and higher south of 45◦ S when compared

to the field by Laws et al. (2000) (Fig. 14e). Compared to

the climatology presented by Schlitzer (2004) (Fig. 14b), our

EP is generally lower in the Pacific and in the upwelling re-

gions along West Africa and western North and South Amer-

ica, whereas it is higher in the North and South Atlantic

(Fig. 14f). In the Southern Ocean, the differences between
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Figure 13. Mean NPP over the year in the ocean basins depicted in Fig. 3. The correlation coefficient is written in each plot, and the

statistically significant correlations (p values < 0.05) are marked with ∗.

Figure 14. Spatial distribution of export of particulate organic matter plotted to the scale used by Moore et al. (2004). (a) Laws. (b) Schlitzer.

(c) and (d) modelled (same figure). (e) Residual: modelled − Laws. (f) Residual: modelled − Schlitzer.
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the fields are especially visible in the Indian and Pacific sec-

tors, where Laws et al. (2000) have very low export, Schlitzer

has a rather high export and REcoM2’s export lies in between

the two. Schlitzer argues that the satellites do not capture the

deep blooms that occur in the area, thereby explaining the

lack of EP in the satellite-based estimate.

Both the spatial distribution and magnitude of EP in our

model are very similar to what was found by Moore et al.

(2004).

Vertical export of opal is similarly calculated across a ref-

erence depth of 100 m. On a global scale we have a total opal

export of 74.5 Tmol yr−1. Previous estimates of global export

of opal vary widely (Table 3), and our value is in the lower

end of the estimates, as are our global values for NPP and EP.

3.5 The Southern Ocean

The coupled model FESOM–REcoM2, as a first step, will be

used for studies regarding biogeochemical processes in the

Southern Ocean south of 50◦ S, and we are therefore espe-

cially interested in its performance here. The reasons for this

focus are further discussed in Sect. 4.

The model’s surface salinity and temperature as well as the

nutrient fields are well represented in the spatial domain of

the Southern Ocean, with all of them having correlation coef-

ficients above 0.9 when compared to observations (Fig. 15).

The chlorophyll a and NPP fields both have somewhat lower

correlations, with the correlation for NPP and chlorophyll a

being equal to 0.75 and 0.48, respectively.

For the MLD, the correlation between the model results

and the observational-based estimate (de Boyer Montegut

et al., 2004) is 0.63 in the Southern Ocean (Fig. 15). The

MLDmax is too shallow in the Indian and Pacific sections of

the Southern Ocean, especially in the area of the polar front

(Fig. 5), causing this low value. Furthermore, FESOM simu-

lates a too deep MLDmax in the convection area of the Wed-

dell Sea associated with deep-water formation. This is a com-

mon feature in sea ice–ocean models (e.g. Griffies et al.,

2009) and should in itself not have a large impact on the pro-

duction in the Southern Ocean.

The modelled NPP south of 50◦ S sums up to 3.1 PgC yr−1

(Table 3). Carr et al. (2006) summarize previous studies of

NPP based on ocean colour and report an average NPP of

2.6 PgCyr−1 for the Southern Ocean. They also show that

the largest uncertainties in satellite-based estimates regard-

ing NPP are found in the Southern Ocean and that biogeo-

chemical models generally predict higher NPP in the area

than satellites.

The model’s export production equals 1.1 Pg Cyr−1 in

the Southern Ocean, close to the 1 PgCyr−1 found by both

Schlitzer (2002) and Nevison et al. (2012), and the EP : NPP

ratio equals 36 % in the Southern Ocean, similar to what was

found by Nevison et al. (2012).

Considering the spatial distribution of EP in the Southern

Ocean (Fig. 14), the model is closer to the estimate from

Figure 15. Taylor diagram for the Southern Ocean south of 50◦ S

showing correlation, normalized SD and the normalized root mean

square error between the spatial distribution of the model results and

observed data sets, weighted by area. All values are surface values,

except the mixed layer depth and the vertically integrated NPP. The

fields have been linearly interpolated to a 1◦×1◦ grid, similar to the

World Ocean Atlas. he model SD and root mean square error have

been normalized by the observational SD.

Laws et al. (2000) with the highest export fluxes occurring

in the northern part of the Atlantic and eastern Indian sectors

of the Southern Ocean. REcoM2 does however have a larger

EP closer to the Antarctic.

The fraction of the the total biomass comprised by diatoms

in the Southern Ocean defers between studies (Alvain et al.,

2005; Hirata et al., 2011). In the present study, the diatoms

are responsible for 25 % of the NPP south of 50◦ S, varying

from 0 % in the very iron limited waters of the South Pacific

to 100 % in the iron replete regions of the Weddell Sea and on

the Patagonian shelf (Fig. 16). Vogt et al. (2013) compared

the results of four ecosystem models and showed that the

percentage of diatom biomass in the Southern Ocean differed

significantly between them, ranging from 20 to 100 %. Our

diatom percentage is accordingly within the spread of other

models.

Production of the silicon-containing diatoms creates

a sinking flux of biogenic silica that sums up to

21.5 TmolSiyr−1 south of 50◦ S in the model (Table 3),

which is close to the satellite-based estimate of 25±

4 TmolSiyr−1 calculated south of 45◦ S (Dunne et al., 2007),

but estimates vary significantly between studies (e.g. Moore

et al., 2004; Jin et al., 2006; Holzer et al., 2014).

In REcoM2, the opal export in the Southern Ocean ac-

counts for 29 % of the global opal export (Table 3). This

number similarly varies widely between studies, with ours

being lower than the 70 % suggested by Jin et al. (2006) and
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Figure 16. Contribution of diatoms to NPP in the model.

Figure 17. Modelled export of opal across 100 m depth plotted to

the scale used by Moore et al. (2004).

Holzer et al. (2014), but considering the area of the Southern

Ocean, its contribution to the global opal flux is still large in

our model.

High export fluxes of biogenic silica (Fig. 17) naturally oc-

cur in places with a corresponding high percentage of diatom

production (Fig. 16). The largest values are found in the tem-

porary ice zone between 60 and 70◦ S, as well as in the area

east of Patagonia (Fig. 17), where dust and sediments sup-

ply iron to the surface water. A band of relatively high opal

export is also present in the polar front in the Atlantic and In-

dian sectors of the Southern Ocean (Fig. 17). In most of the

Southern Ocean, the modelled opal flux falls within a range

of 0.4–2.5 molSim−2 yr−1. This is slightly higher than the

values given by Moore et al. (2004) and lower than the val-

ues of up to 9 mol Sim−2 yr−1 in Jin et al. (2006).

The absence of diatom production in the Pacific sector of

the Southern Ocean (Fig. 16), leading to a low opal export

in the area (Fig. 17), is notable and can be explained by the

Figure 18. Maps showing coefficients of determination for cross-

correlation between model results of (a) NPP and MLD and (b)

NPP and DFe. DFe has been averaged over the upper 100 m of the

water for the calculation. R2∗ is defined as the temporal coefficient

of correlation multiplied by the sign of the regression coefficient.

pronounced iron limitation of the Pacific, which also reaches

into the Southern Ocean and limits production here.*

Control of bloom in the Southern Ocean

We will now examine the roles of MLD and iron concen-

tration in explaining the seasonal variability of NPP. For this

purpose we defineR2∗ as the temporal coefficient of determi-

nation multiplied by the sign of the regression slope. R2∗ is

calculated for each spatial point in the domain south of 30◦ S

between NPP and the MLD (Fig. 18a) and between NPP and

DFe (Fig. 18b), using the average iron concentration over the

top 100 m of the ocean. The R2∗ values show that the South-

ern Ocean is roughly divided into two zonal bands; one north

of 60◦ S, in the area of the polar front (Moore et al., 1999),

and one south of 60◦ S (Fig. 18).
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Figure 19. Seasonal change in mean modelled and observed NPP

(SeaWIFS, 2012; Behrenfeld and Falkowski, 1997) and MLD

(de Boyer Montegut et al., 2004) for (a) the Southern Ocean from

40 to 60◦ S and (b) south of 60◦ S.

The general picture north of 60◦ S is that the concentra-

tion of dissolved iron and the mixed layer depth both cor-

relate positively with NPP (Fig. 18), indicating that produc-

tion in the area mainly is iron controlled, and that produc-

tion starts when the mixed layer deepens and brings iron

and other nutrients to the surface. For the mean seasonal cy-

cle of MLD and NPP north of 60◦ S (Fig. 19a), the mag-

nitude of the modelled bloom fits nicely with the one from

the satellite-based estimate, but the maximum occurs two

months earlier. The mean MLD is well predicted by FESOM

in the area (Fig. 19a), but it is consistently shallower than

what is observed. This has the effect that the modelled phy-

toplankton receives a larger light intensity than is the case

in the ocean, something that may affect the timing of the

bloom. The mean iron concentration in the surface water is

highly correlated with the depth of the mixed layer north of

60◦ S (Fig. 20a). The phytoplankton concentration starts in-

creasing in July, when the iron concentration is high, and

reaches a maximum in October, after which a combination

of high grazer concentration and decreasing iron concentra-

tions most likely causes the bloom to decline. Under nutri-

ent and light replete conditions, the increase in biomass is

a result of the balance between phytoplankton’s maximum

growth rate and the grazing (Behrenfeld, 2010; Hashioka

et al., 2013). On the one hand, this indicates that the model’s

timing of the bloom could be changed by a smaller maxi-

mum growth rate, something that would change the phyto-

plankton dynamics on a global scale. On the other hand, the

modelled zooplankton concentration is tightly coupled to the

increase in phytoplankton concentration (Fig. 20a), and in-

creasing the maximum grazing rate is another way of keep-

ing the growth in biomass down. As modelled grazers are set

to prefer nanophytoplankton over diatoms, this may further

increase the diatom percentage in the Southern Ocean (Hash-

ioka et al., 2013).

The NPP and MLD fields are negatively correlated south

of 60◦ S, whereas correlation between NPP and DFe is close

to zero here (Fig. 18). This indicates that light is the main

limiting factor in this area and that iron is less important

as a controlling factor. The intensity of the incoming light

decreases with latitude, and is further decreased or blocked

by the presence of sea ice during parts of the year, south of

60◦ S. The role of the sea ice for the timing of the spring

bloom was highlighted by Taylor et al. (2013), who argued

that the sea ice melting induces a shallower and more sta-

ble mixed layer, increasing the average light intensity re-

ceived by the phytoplankton, thereby instigating growth. In

our study, the modelled bloom is larger than what is esti-

mated by the satellites south of 60◦ S, but the timing fits well

(Fig. 19b). The difference can be explained by the aforemen-

tioned underestimation of NPP by the satellites. NPP starts

increasing when the iron concentration is high and decreas-

ing again when the iron concentration is low and the grazer

concentration high (Fig. 20b).

It is worth noticing that the increase in production begins

at the correct time in both areas, but that the rate of biomass

increase is too high.

The sparse observations make it difficult to assess the va-

lidity of the modelled seasonal cycles of iron and zooplank-

ton. Tagliabue et al. (2012) presented a seasonal cycle of

DFe from the SR3 transect south of Tasmania. Their results

indicate that the highest iron concentrations occur in Jan-

uary and February suggesting that our seasonal change in

iron concentration, which peaks in September, is off. Our re-

sults, however, fit well with the model result from Hoppema

et al. (2003), who also see a peak in the iron concentration in

September.

4 Discussion

We have presented a skill assessment of an initial coupling

between the biogeochemical REcoM2 and the Finite Element

Sea Ice–Ocean Model (FESOM). FESOM’s capability of lo-

cally increased resolution has not been fully utilized in the

current study, with the smallest distance between neighbour-

ing grid points being only a factor of about 10 smaller than

the largest, and as with most biogeochemical models (e.g.

Yool et al., 2011) we do not resolve eddies. The model run

presented here can thus be regarded as a baseline run, from

which future work that further explores the capabilities of the

new coupling can proceed.

www.geosci-model-dev.net/7/2769/2014/ Geosci. Model Dev., 7, 2769–2802, 2014

publication i 57



2784 V. Schourup-Kristensen et al.: A skill assessment of FESOM–REcoM2

Figure 20. Seasonal change in the modelled NPP, MLD, DFe and

zooplankton concentration for (a) the Southern Ocean from 40 to

60◦ S and (b) south of 60◦ S. DFe and zooplankton concentrations

are averaged over the top 100 m of the ocean. NPP and MLD are

normalized by the maximum of the monthly values.

Using the current resolution, the advantage of the new FE-

SOM–REcoM2 coupling over the older MITgcm–REcoM2

coupling is not obvious, especially taking FESOM’s larger

demand for computer time into account. The strength of the

new coupling will become clearer when new studies on spe-

cialized meshes have been carried out. We are currently look-

ing into the effect of the ocean model on the biogeochemistry

of the Southern Ocean by comparing two model runs be-

tween which only the ocean model differs. We assess the dif-

ferences of the supply of iron to the surface mixed layer from

below, and how it affects the NPP in the area (Schourup-

Kristensen et al., 2014).

In regional models of the Southern Ocean, fixed boundary

conditions must be added along the northern boundary where

the Southern Ocean is connected to the Atlantic, Indian and

Pacific oceans, introducing an extra potential for error in such

models. Running the model in a global configuration has the

advantage that the boundary conditions can be omitted.

As the dynamics of the iron supply is something we plan

to study further in the future, and it is a feature we would

like to improve, especially in the Pacific Ocean, we will now

discuss how changes to the iron cycle may change the results

of the model.

In the Southern Ocean, the spatial distribution of iron in

the model is reasonable, but it tends towards low values

(Table 2), something that may be explained by the crudely

constrained external iron sources in the area. The strength

of the sediment source varies widely between models (e.g.

Moore and Braucher, 2008; Aumont and Bopp, 2006), and

in REcoM2 we have an input of iron from the dust and the

sediment source, which is in the smaller end of the range. In-

creasing the strength of the sediment source would especially

impact the iron concentration locally in the Southern Ocean,

though it has been shown that iron from the sediments can be

carried far from the source region (Lam and Bishop, 2008).

The Atlantic sector of the Southern Ocean would have an

especially large input due to the presence of the Patagonian

shelf and the Antarctic Peninsula (e.g. Lancelot et al., 2009),

but it would most likely not change the supply to the pelagic

areas in the Indian and Pacific Southern Ocean substantially.

For the Southern and Pacific Oceans it would be especially

important to further explore the influence of the aeolian and

sedimentary iron sources as well as the input from ice in the

polar areas.

In the remote parts of the Southern Ocean, the input of iron

to the mixed layer from below plays a large role (De Baar

et al., 1995; Löscher et al., 1997), and Tagliabue et al. (2014)

showed that the entrainment of iron during deepening of the

mixed layer was especially important. FESOM’s MLDmax is

too shallow in the Southern Ocean, especially in the region

of the polar front in the Indian and Pacific sectors (Fig. 5),

something likely affecting the degree of iron limitation in

these two areas. The tight coupling between iron concen-

trations, NPP and MLD in the polar frontal area (Fig. 20a),

further confirms the importance of entrainment as a supply

mechanism of iron.

The lower iron input favors the smaller nanophytoplank-

ton, which have a lower iron half-saturation constant, and

thereby a lower requirement for iron. A larger input of iron

would probably change the species composition towards

more diatoms, but would not necessarily increase primary

production (e.g. S. Wang et al., 2014). A higher percentage

of diatoms would also possibly decrease the models surface

silicon concentration, which tends towards high values in the

Southern Ocean (Fig. 8). The effect on the silicon concentra-

tion is however complicated by the fact that the model’s car-

bon and silicate cycles are decoupled under iron limitation,

leading to a higher silicate uptake when the phytoplankton is

iron stressed (Hohn, 2009).

In the Pacific Ocean, the surface iron concentration is very

low (Fig. 9), inducing iron limitation (Fig. 10), which leads

to a build-up of DIN in the surface water (Fig. 7) and low

NPP (Fig. 12). The external input of iron from dust and sed-

iment in the model is marginal in the equatorial and south-

ern part of the Pacific and input from upwelling is conse-

quently important here. FESOM produces a reasonable up-

welling of 40 Sv along the Equator (Johnson et al., 2001),

whereas upwelling is small along the west coast of South

America. We have a low iron flux in the upwelled water along

the equatorial Pacific in our model (∼ 10 µmolm−2 yr−1)

compared to the values suggested by Gordon et al.

(1997) and Aumont et al. (2003), who reported 44 and

68 µmolm−2 yr−1, respectively. Our result is however higher
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than the 5.1 µmolm−2 yr−1 suggested by Fung et al. (2000).

The Fe : C ratio in the upwelled water in the equatorial area is

0.0015 µmolFemmolC−1 (6.66× 106 mmolC mmolFe−1),

which is significantly lower than the prescribed con-

stant intracellular ratio of 0.005 µmolFemmol C−1 (2×

106 mmolCmmolFe−1) in the modelled phytoplankton. The

upwelled water consequently contains too little Fe to sustain

growth, explaining why biological production is not able to

utilize the upwelled DIN.

Allowing the model’s phytoplankton to adapt to the con-

ditions in the water with a varying intracellular Fe : C ratio

would be a possible way to increase production, as the ra-

tio would then decrease in areas with low iron concentra-

tions. Variable intracellular Fe : C stoichiometry, as found

by Sunda and Huntsman (1995) and Wilhelm et al. (2013),

is used in other models (e.g. Moore et al., 2002; Aumont

and Bopp, 2006). The intracellular Fe : C ratio in diatoms

ranged from 0.002 µmolFemmol C−2 in the equatorial Pa-

cific to 0.007 µmol Fe mmolC−2 in the subtropical gyres in

Moore et al. (2002) and the former value fits remarkably well

with our Fe : C ratio in the upwelled water in the Pacific. A

lower intracellular Fe : C ratio in our model would lower the

intracellular Fe : N ratio and bring it closer to the observed

nutrient ratio in the upwelled water, indicating that imple-

menting varying ratios would indeed improve the model’s

performance in the Pacific.

Other features that could potentially improve the iron cy-

cle are spatially varying solubility of iron in the water, spa-

tially varying ligand concentration and scavenging of iron

onto dust particles in the water. The latter is present in the

iron cycle used by Moore and Braucher (2008) and would

likely counter the relatively high iron concentrations in the

equatorial Atlantic and Indian oceans that are present in our

model (Fig. 9).

5 Conclusions

In the current study we show that the newly coupled model

FESOM–REcoM2 reproduces the large-scale productivity

and surface nutrient patterns, with the main deficiency be-

ing the strongly iron limited Pacific Ocean. The totals NPP

and EP are within the range of previous estimates, but in the

lower end, mainly due to the low productivity in the Pacific.

The ratio between EP and NPP is 20 %, similar to the result

from Laws et al. (2000).

In the Southern Ocean, the modelled spatial mean fields

are likewise reasonable, though the comparison here is hin-

dered by the scarcity of observed data. South of 50◦ S, the to-

tals NPP and EP agree well with previous estimates, as does

the EP : NPP ratio of 36 %. Production is iron and light lim-

ited in the Southern Ocean making the external input of iron

important as a controller of production.

On a global scale, the model provides reasonable seasonal

variations of the NPP, but the main deficiency in the South-

ern Ocean is the early onset of the spring bloom in the area

between 40 and 60◦ S.

Overall, the model results at the present resolution are

comparable to those of other non-eddy-resolving biogeo-

chemical models and it is well suited for studies of surface

processes in the Southern Ocean on a timescale similar to

the one used here.
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Appendix A: Equations

In biogeochemical models, the biological state variables are

subject to change by the ocean circulation through advection

and turbulent mixing as well as by biological processes. De-

tritus further sinks vertically through the water column due to

gravity, and exchange occurs across the surface and bottom

boundaries for certain variables.

For a given volume of water, the change in concentration

of a given biological state variable C can be expressed as

follows:

∂C

∂t
=−U · ∇C +∇ · (κ · ∇C)+SMS(C). (A1)

Here, the term−U ·∇C represents the change in C due to ad-

vection, and U = (u,v,w) denotes the velocity of the water

in the x,y and z directions, respectively.

For sinking state variables, the speed of vertical sinking

(V det = (0,0,wdet)) is added to water’s velocity in the ad-

vection term.

The turbulent motion is taken into account through the

term ∇ · (κ · ∇C) where κ is the diffusivity tensor.

The term SMS(C), where SMS stands for sources minus

sinks, represents the changes due to biological processes.

This is the term that comprises the main body of biogeo-

chemical models.

Certain state variables are subject to fluxes across the

boundaries of the ocean model. For these, the flux between

the ocean and the benthos (BenF) is calculated at the bot-

tom of the ocean and the flux between the ocean and the at-

mosphere (AtmF) is calculated for the surface layer of the

ocean.

In the following, the equations that make up the source

minus sink code in the biogeochemical model REcoM2 are

described.

The quota approach makes it necessary to have more trac-

ers than in a model based on fixed ratios, as we need to know

the intracellular concentration of each of the modelled el-

ements. REcoM2 has a total of 21 oceanic state variables

(Table A1) and four benthos compartments (Table A2).

Table A1. State variables; ocean

Variable Description and unit

DIN Dissolved inorganic nitrogen [mmolNm−3]

DSi Dissolved inorganic silicon [mmolNm−3]

DFe Dissolved inorganic iron [µmolFem−3]

DIC Dissolved inorganic carbon [mmolCm−3]

Alk Alkalinity [mmolCm−3]

PhyNnano Intracellular nitrogen concentration

in nanophytoplankton [mmolNm−3]

PhyCnano Intracellular carbon concentration

in nanophytoplankton [mmolCm−3]

PhyCalc Intracellular calcite concentration

in nanophytoplankton [mmolCaCO3 m−3]

PhyChlnano Intracellular chl a concentration

in nanophytoplankton [mgChlm−3]

PhyNdia Intracellular nitrogen concentration in diatoms

[mmolNm−3]

PhyCdia Intracellular carbon concentration in diatoms

[mmolCm−3]

PhySi Intracellular silicon concentration in diatoms

[mmolSim−3]

PhyChldia Intracellular chl a concentration in diatoms

[mgChlm−3]

ZooN Zooplankton nitrogen concentration [mmolNm−3]

ZooC Zooplankton carbon concentration [mmolCm−3]

DetN Detritus nitrogen concentration [mmolNm−3]

DetC Detritus carbon concentration [mmolCm−3]

DetCalc Detritus calcite concentration [mmolCaCO3 m−3]

DetSi Detritus silicon concentration [mmolSim−3]

DON Extracellular dissolved organic nitrogen [mmolNm−3]

DOC Extracellular dissolved organic carbon [mmolCm−3]

A1 Sources minus sinks

A1.1 DIN and DSi

SMS(DIN)= ρN · fT ·DON︸ ︷︷ ︸
DON remineralization

− V N
nano ·PhyCnano︸ ︷︷ ︸

N assimilation, nanophytoplankton

− V N
dia ·PhyCdia︸ ︷︷ ︸

N assimilation, diatoms

(A2)

SMS(DSi)= ρTSi ·DetSi︸ ︷︷ ︸
Remineralization of detritus

− V Si
·PhyCdia︸ ︷︷ ︸

Si assimilation, diatoms

(A3)

The state variables DON, PhyCnano, PhyCdia and DetSi are

listed in Table A1. The value of the remineralization rate (ρN)

is listed in Table A3. The temperature dependency of rem-

ineralization (fT ) is calculated in Eq. (A54) and the nitrogen

and silicon assimilation rates (V N
nano, V N

dia and V Si, Table A4)
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Table A2. State variables; benthos.

Variable Description and unit

BenthosN Benthos, vertically integrated N concentration [mmolNm−2]

BenthosC Benthos, vertically integrated C concentration [mmolCm−2]

BenthosSi Benthos, vertically integrated Si concentration [mmolSim−2]

BenthosCalc Benthos, vertically integrated calcite concentration [mmolCaCO3 m−2]

Table A3. Degradation parameters for sources minus sinks equations.

Parameter Value Description and Unit

ε
phy
N 0.05 Phytoplankton excretion of organic N [day−1]

ε
phy
C

0.1 Phytoplankton excretion of organic C [day−1]

εzoo
N 0.1 Zooplankton excretion of organic N [day−1]

εzoo
C

0.1 Zooplankton excretion of organic C [day−1]

ρben
N 0.005 Remineralization rate for benthos N [day−1]

ρben
Si

0.005 Remineralization rate for benthos Si [day−1]

ρben
C

0.005 Remineralization rate for benthos C [day−1]

ρN 0.11 Temperature dependent remineralization of DON [day−1]

ρC 0.1 Temperature dependent remineralization of DOC [day−1]

ρSi 0.02 Temperature dependent remineralization of DetSi [day−1]

ρDetN 0.165 Temperature dependent degradation of DetN [day−1]

ρDetC 0.15 Temperature dependent degradation of DetN [day−1]

degChl 0.3 Chlorophyll a degradation rate [day−1]

are calculated in Eqs. (A48) and (A49), respectively. ρTSi will

now be explained.

Silicon remineralization: the temperature dependent rem-

ineralization rate of silicon (ρTSi, Table A4) is calculated fol-

lowing Kamatani (1982) up until a set maximum value:

ρTSi =min

(
1.32× 1016 day−1

· exp

(
−11 200 K

T

)
,ρSi · fT

)
. (A4)

T is the local temperature (Table A4). The remineralization

rate (ρSi) is listed in Table A3 and the temperature depen-

dency (fT ) is calculated in Eq. (A54).

Input from benthos: the bottom grid point of the water fur-

ther receives remineralized inorganic matter from the ben-

thos:

BenFDIN = ρ
ben
N ·BenthosN (A5)

BenFDSi = ρ
ben
Si ·BenthosSi. (A6)

BenFDIN and BenFDSi (Table A5) denote the fluxes of DIN

and DSi into the bottom layer of the ocean. ρben
N and ρben

Si

(Table A3) are constant remineralization rates. BenthosN

and BenthosSi denote the vertically integrated benthos con-

centration of dissolved nitrogen and silicate, respectively

(Table A2).

A1.2 DFe

The intracellular iron concentration is connected to the intra-

cellular carbon concentration through an assumed constant

ratio (qFe : C; Table A6). Biological uptake and release of iron

is likewise connected to uptake and release of carbon.

SMS(DFe)=−qFe : C
· (Pnano− rnano) ·PhyCnano︸ ︷︷ ︸

Nanophytoplankton net growth

− qFe : C
· (Pdia− rdia) ·PhyCdia︸ ︷︷ ︸

Diatom net growth

+ qFe : C
· ε

phy

C · f
N : Cmax
lim, nano ·PhyCnano︸ ︷︷ ︸

Excretion from nanophytoplankton

+ qFe : C
· ε

phy

C · f
N : Cmax
lim, dia ·PhyCdia︸ ︷︷ ︸

Excretion from diatoms

+ qFe : C
· ρDetC · fT ·DetC︸ ︷︷ ︸

Remineralization of detritus

+ qFe : C
· ( εzoo

C ·ZooC︸ ︷︷ ︸
Zooplankton excretion

+ rzoo ·ZooC︸ ︷︷ ︸
and respiration

)

− κFe ·DetC ·Fe′︸ ︷︷ ︸
Scavenging

(A7)

The state variables PhyCnano, PhyCdia, DetC and ZooC are

listed in Table A1. The value for the constant Fe : C ratio

(qFe : C) is listed in Table A6 and the DOC excretion rates

from phyto- and zooplankton (ε
phy

C and εzoo
C ) and the degra-

dation rate for detritus C (ρDetC) are listed in Table A3. The
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Table A4. Model variables.

Variable Description and unit

Agg Aggregation rate [day−1]

DissCalc Rate of calcium carbonate dissolution [day−1]

Fe′ Concentration of free iron [µmolFem−3]

fT Temperature dependence of rates, dimensionless

G′ Phytoplankton available for food intake [mmolNm−3]

Gtot Total zooplankton grazing rate [mmolNm−3 day−1]

Gnano Nanophytoplankton-specific zooplankton grazing rate [mmolNm−3 day−1]

Gdia Diatom-specific zooplankton grazing rate [mmolNm−3 day−1]

PAR Photosynthetically available radiation [Wm−2]

Pnano,Pdia C-specific actual rate of photosynthesis [day−1]

Pmax C-specific light saturated rate of photosynthesis [day−1]

rnano, rdia Phytoplankton respiration rate [day−1]

rzoo Zooplankton respiration rate [day−1]

ρT
Si

Temperature dependent remineralization rate of Si [day−1]

Schl
nano,S

chl
dia

Rate of chlorophyll a synthesis [mgChlmmolC−1 day−1]

T Local temperature [K]

VN
nano,V

N
dia

N assimilation rate for nanophytoplankton and diatoms, respectively [mmolNmmolC−1 day−1]

V Si Diatom Si assimilation rate [mmolSimmolC−1 day−1]

wdet Sinking velocity of detritus [mday−1]

Table A5. Benthos variables.

Variable Description and unit

BenFAlk Flux of alkalinity from benthos to bottom water [mmolm−2 day−1

BenFDIC Flux of C from benthos to bottom water [mmolCm−2 day−1]

BenFDIN Flux of N from benthos to bottom water [mmolNm−2 day−1]

BenFDSi Flux of Si from benthos to bottom water [mmolSim−2 day−1]

BenFFe Flux of Fe from benthos to bottom water [µmolFem−2 day−1]

BenFDetCalc Flux of detritus calcite from the water to the benthos [mmolCaCO3 m−2 day−1]

BenFDetC Flux of detritus C from the water to the benthos [mmolCm−2 day−1]

BenFDetN Flux of detritus N from the water to the benthos [mmolNm−2 day−1]

BenFDetSi Flux of detritus Si from the water to the benthos [mmolSim−2 day−1]

Table A6. Parameters for iron calculations.

Parameter Value Description and unit

qFe : C 0.005 Intracellular Fe : C ratio [µmolFemmolC−1]

KFeL 100.0 Iron stability constant [m−3 µmol]

LT 1.0 Total ligand concentration [µmolm−3]

κFe 0.0312 Scavenging rate of iron [m3 mmolC−1 day−1]

qFe : C
sed

0.011 Fe : C ratio for remineralization of Fe from benthos [µmolFemmolC−1]
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phytoplankton respiration (rnano and rdia) is calculated in

Eq. (A45), the photosynthesis (Pnano and Pdia) in Eq. (A44),

the limitation by intracellular nitrogen (f N : Cmax
lim ) is de-

scribed in Sect. A6.1, and the temperature dependency (fT )

is calculated in Eq. (A54). The respiration by zooplankton

(rzoo) is calculated in Eq. (A46) and the scavenging will now

be explained.

Scavenging: the calculation of the scavenging in REcoM2

is based on Parekh et al. (2004), case III. Here, the total con-

centration of dissolved iron (FeT) is divided into iron bound

to ligands (FeL) and free iron (Fe′, Table A4):

FeT = FeL+Fe′. (A8)

Iron complexed with organic ligands is protected from scav-

enging. The total ligand concentration (LT) can be written:

LT = FeL+L
′. (A9)

Here L′ denotes the free ligands.

We assume that the reaction between free iron and free

ligand (L′+Fe′
 FeL) is fast enough to be in equilibrium:

KFeL =
[FeL]

[Fe′] · [L′]
. (A10)

By prescribing the value of the conditional stability constant

(KFeL ) as well as the assumed constant total ligand concen-

tration (LT) and combining Eqs. (A8), (A9) and (A10), we

can calculate the concentration of free iron (Fe′). This is then

used to calculate the scavenging of Fe′, which is assumed

to be correlated with the concentration of detritus carbon

(Eq. A7). The values for KFeL and LT are listed in Table A6.

The value for the scavenging rate (κFe, Table A6) is an

important controller of deep-water iron concentrations.

Iron input from dust: the surface layer of the ocean re-

ceives an input of iron from aeolian dust deposition. Dust

is assumed to contain 3.5 % iron of which 1.5 % is instanta-

neously dissolved in the ocean. Sea ice blocks dust, and the

dust falling here is lost from the system.

Iron input from the benthos: the release of iron to the bot-

tom layer of water is assumed to be proportional to the re-

lease of inorganic carbon. This parameterization is based on

the work by Elrod et al. (2004). It is calculated as follows:

BenFFe = ρ
ben
C ·BenthosC · qFe : C

sed . (A11)

Here BenFFe (Table A5) is the flux of iron into the bot-

tom layer of the ocean. ρben
C (Table A3) is the remineraliza-

tion rate for the benthos carbon and qFe : C
sed (Table A6) is the

iron : carbon ratio for the flux. BenthosC (Table A2) denotes

the vertically integrated carbon concentration in the benthos

compartment.

A1.3 DIC

SMS(DIC)= (rnano−Pnano) ·PhyCnano︸ ︷︷ ︸
Nanophytoplankton net respiration

+ (rdia−Pdia) ·PhyCdia︸ ︷︷ ︸
Diatom net respiration

+ ρC · fT ·DOC︸ ︷︷ ︸
Remineralization of DOC

+ rzoo ·ZooC︸ ︷︷ ︸
Zoo respiration

+ Disscalc ·DetCalc︸ ︷︷ ︸
Calcite dissolution from detritus

−ψ ·Pnano ·PhyCnano︸ ︷︷ ︸
Calcification

(A12)

The state variables PhyCnano, PhyCdia, DOC, ZooC and Det-

Calc are described in Table A1. Respiration by nanophyto-

plankton (rnano), diatoms (rdia) and zooplankton (rzoo) is cal-

culated in Eqs. (A45) and (A46) and the photosynthesis terms

(Pnano and Pdia) in Eq. (A44).

The value of the remineralization rate ρC is listed in

Table A3 and the temperature dependency (fT ) is calculated

in Eq. (A54).

The dissolution of calcite from detritus (Disscalc) is calcu-

lated in Eq. (A34), and the value of the calcite production ra-

tio (ψ) is listed in Table A7. ψ denotes the percentage of the

nanophytoplankton that are calcifiers, and their PIC : POC ra-

tio.

Atmospheric input: the DIC concentration of the surface

grid point is affected by the air–sea flux of CO2. It is calcu-

lated according to the guidelines provided by the Ocean Car-

bon Model Intercomparison Project (Orr et al., 1999). In the

calculations the surface water CO2 concentration, alkalinity,

temperature and salinity are taken into account.

Input from benthos: the bottom grid point of the water fur-

ther receives remineralized inorganic carbon from the ben-

thos:

BenFDIC = ρ
ben
C ·BenthosC+Disscalc ·BenthosCalc . (A13)

BenFDIC (Table A5) denotes the flux of DIC into the bottom

layer of the ocean and ρben
C (Table A3) is a constant reminer-

alization rate. The calcite dissolution rate (Disscalc) is calcu-

lated in Eq. (A34). BenthosC and BenthosCalc (Table A2)

denote the vertically integrated carbon and calcium carbon-

ate concentration in the benthos compartment.

A1.4 Total alkalinity

The model’s total alkalinity is changed by phytoplankton up-

take of nutrients (nitrate and phosphate), precipitation and

dissolution of calcium carbonate and remineralization of or-

ganic matter (Wolf-Gladrow et al., 2007). Phosphorous is not

described in the model, but is taken into account using the
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Table A7. Parameters for sources minus sinks equations.

Parameter Value Description and unit

ψ 0.1 Calcite production ratio,

dimensionless

γ 0.3 Fraction of grazing flux to

zooplankton pool, dimensionless

mzoo 0.05 Zooplankton mortality rate

[m3 mmolN−1 day−1]

φphy 0.02 Max aggregation loss parameter for

phytoplankton N [m3 mmolN−1 day−1]

φdet 0.22 Max aggregation loss parameter for

detritus N [m3 mmolN−1 day−1]

w0 20.0 Detritus sinking speed at surface

[mday−1]

constant P : N ratio of 1 : 16.

SMS(Alk)= (1+ 1/16) · V N
nano ·PhyCnano︸ ︷︷ ︸

N assimilation, nanophytoplankton

+ (1+ 1/16) · V N
dia ·PhyCdia︸ ︷︷ ︸

N assimilation, diatoms

− (1+ 1/16) · ρN · fT ·DON︸ ︷︷ ︸
Remineralization of DON

+ 2 · Disscalc ·DetCaCO3︸ ︷︷ ︸
Calcite dissolution from detritus

− 2 ·ψ ·Pnano ·PhyCnano︸ ︷︷ ︸
Calcification

(A14)

The state variables PhyCnano, PhyCdia, DON and DetCalc are

described in Table A1. The N assimilation (V N
nano and V N

dia) is

calculated in Eq. (A48). The remineralization rate (ρN) can

be found in Table A3 and the temperature dependency (fT )

is calculated in Eq. (A54).

Dissolution of calcium carbonate from detritus adds CO2−
3

to the water and thereby increases the alkalinity with two

moles for each dissolved mole calcium carbonate. Disscalc is

calculated in Eq. (A34).

The parameter ψ , specifying the calcifying fraction of the

nanophytoplankton, is listed in Table A7 and the photosyn-

thesis (Pnano) is calculated in Eq. (A44).

Input from benthos: the alkalinity of the bottom grid point

of the water is affected by the remineralization of DIN, and

thereby also DIP as well as dissolution of calcite from the

benthos:

BenFAlk = (1+ 1/16) · ρben
N ·BenthosN

+ 2 ·Disscalc ·BenthosCalc.
(A15)

BenFAlk (Table A5) denotes the flux of alkalinity into the

bottom layer of the ocean. The dissolution rate (Disscalc) is

calculated in Eq. (A34), and the remineralization rate ρben
N

is listed in Table A3. BenthosN and BenthosC (Table A2)

denote the vertically integrated nitrogen and carbon concen-

tration in the benthos compartment.

A1.5 Phytoplankton N

SMS(PhyNnano)= V
Nnano ·PhyCnano︸ ︷︷ ︸

N assimilation

− ε
phy
N · f

N : Cmax
lim, nano ·PhyNnano︸ ︷︷ ︸
DON excretion

−Agg ·PhyNnano︸ ︷︷ ︸
Aggregation loss

− Gnano︸ ︷︷ ︸
Grazing loss

(A16)

SMS(PhyNdia)= V
N
dia ·PhyCdia︸ ︷︷ ︸
N assimilation

− ε
phy
N · f

N : Cmax
lim, dia ·PhyNdia︸ ︷︷ ︸

DON excretion

−Agg ·PhyNdia︸ ︷︷ ︸
Aggregation loss

− Gdia︸︷︷︸
Grazing loss

(A17)

The state variables PhyCnano, PhyNnano, PhyCdia and

PhyNdia are described in Table A1.

The nitrogen assimilation (V N
nano and V N

dia) is calculated in

Eq. (A48) and the constant excretion rate (ε
phy
N ) is listed in

Table A3. When the N : C ratio becomes too high, excretion

of DOC is downregulated by the limiter function (f N : Cmax
lim )

described in Sect. A6.1. A further loss term is phytoplankton

aggregation (Agg), which transfers N to the detritus pools

(Eq. A27).

The grazing loss (Gnano and Gdia) is calculated in

Eqs. (A52) and (A53), respectively.

A1.6 Phytoplankton C

SMS(PhyCnano)= (Pnano− rnano) ·PhyCnano︸ ︷︷ ︸
Net photosynthesis

−Agg ·PhyCnano︸ ︷︷ ︸
Aggregation loss

(A18)

− ε
phy

C · f
N : Cmax
lim, nano ·PhyCnano︸ ︷︷ ︸

Excretion of DOC

− qC : N
nano ·Gnano︸ ︷︷ ︸
Grazing loss

SMS(PhyCdia)= (Pdia− rdia) ·PhyCdia︸ ︷︷ ︸
Net photosynthesis

−Agg ·PhyCdia︸ ︷︷ ︸
Aggregation loss

− ε
phy

C · f
N : Cmax
lim, dia ·PhyCdia︸ ︷︷ ︸

Excretion of DOC

− qC : N
dia ·Gdia︸ ︷︷ ︸
Grazing loss

(A19)

The state variables PhyCnano and PhyCdia are described in

Table A1. The photosynthesis (Pnano and Pdia) is calculated
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in Eq. (A44) and the respiration (rnano and rdia) in Eq. (A45).

The constant DOC excretion rate (ε
phy

C , Table A3) is down-

regulated by the limitation factor f N : Cmax
lim (Sect. A6.1) when

the N : C ratio becomes too high.

Aggregation of phytoplankton (Agg) is calculated in

Eq. (A27) and grazing (Gnano and Gdia) in Eqs. (A52) and

(A53), respectively. qC : N
= PhyC/PhyN, is used to convert

the grazing units from mmol N to mmol C.

A1.7 Phytoplankton CaCO3

Calcifiers are assumed to comprise a certain fraction of the

total nanophytoplankton concentration, specified by the pa-

rameter ψ (Table A7), tying the calcite production of calci-

fiers to the growth of nanophytoplankton.

SMS(PhyCalc)= ψ ·Pnano ·PhyCnano︸ ︷︷ ︸
Calcification

− rnano ·PhyCalc︸ ︷︷ ︸
Respiration

−Gnano · q
CaCO3 :N
nano︸ ︷︷ ︸

Grazing loss

− ε
phy

C · f
N : Cmax
lim, nano ·PhyCalc

︸ ︷︷ ︸
Excretion loss

−Agg ·PhyCalc︸ ︷︷ ︸
Aggregation loss

(A20)

The state variables PhyCnano and PhyCalc are described in

Table A1. The value for the calcifier fraction (ψ) is listed

in Table A7 and the excretion parameter (ε
phy

C ) in Table A3.

The excretion loss is downregulated by the limiter function

f N : Cmax
lim, nano (Sect. A6.1) when the intracellular N : C ratio ap-

proaches a maximum value. The photosynthesis (Pnano) is

calculated in Eq. (A44), the respiration (rnano) in Eq. (A45),

the grazing on nanophytoplankton (Gnano) in Eq. (A52)

and the aggregation rate (Agg) is calculated in Eq. (A27).

q
CaCO3 :N
nano = PhyCaCO3 /PhyNnano.

A1.8 Diatom silicon

SMS(PhySi)= V Si
·PhyCdia︸ ︷︷ ︸

Diatom Si assimilation

− ε
phy
N · f

N : Cmax
lim, dia ·PhySi

︸ ︷︷ ︸
Excretion to detritus

− Agg ·PhySi︸ ︷︷ ︸
Aggregation loss

−Gdia · q
Si : N

︸ ︷︷ ︸
Grazing loss

(A21)

The state variables PhyCdia and PhySi are described in

Table A1. The silicon assimilation rate (V Si) is calculated

in Eq. (A49), the aggregation rate (Agg) in Eq. (A27) and

the grazing on diatoms (Gdia) is calculated in Eq. (A53). The

limiter function (f N : Cmax
lim ) is described in Sect. A6.1. The

value of the excretion parameter (ε
phy
N ) is listed in Table A3

and the intracellular ratio between diatom silicon and carbon

is defined as qSi : N
= PhySi/PhyNdia.

A1.9 Phytoplankton Chl a

SMS(PhyChlnano)= S
chl
nano ·PhyCnano︸ ︷︷ ︸
Chl a synthesis

−Gnano · q
Chl : N
nano︸ ︷︷ ︸

Grazing loss

− degchl ·PhyChlnano︸ ︷︷ ︸
Degradation loss

−Agg ·PhyChlnano︸ ︷︷ ︸
Aggregation loss

(A22)

SMS(PhyChldia)= S
chl
dia ·PhyCdia︸ ︷︷ ︸

Chl a synthesis

−Gdia · q
Chl : N
dia︸ ︷︷ ︸

Grazing loss

− degchl ·PhyChldia︸ ︷︷ ︸
Degradation loss

−Agg ·PhyChldia︸ ︷︷ ︸
Aggregation loss

(A23)

The state variables PhyCnano, PhyCdia, PhyChlnano and

PhyChldia are described in Table A1. The chlorophyll a

synthesis (Schl) is calculated in Eq. (A47), the aggregation

(Agg) in Eq. (A27) and the degradation parameter (degchl)

is listed in Table A3. The grazing fluxes (Gnano and Gdia)

are calculated in Eqs. (A52) and (A53), respectively. The

conversion factor from mmol N to mg Chl a is defined as

qChl : N
= PhyChl/PhyN.

A1.10 Zooplankton

SMS(ZooN)= γ · (Gnano+Gdia)︸ ︷︷ ︸
Grazing on phytoplankton

− mzoo ·ZooN2

︸ ︷︷ ︸
Zooplankton mortality

− εzoo
N ·ZooN︸ ︷︷ ︸

Excretion of DON

(A24)

SMS(ZooC)= γ · (Gnano · q
C : N
nano +Gdia · q

C : N
dia )︸ ︷︷ ︸

Grazing on phytoplankton

−mzoo ·ZooN2
· qC : N

zoo︸ ︷︷ ︸
Zooplankton mortality

− rzoo ·ZooC︸ ︷︷ ︸
Respiration loss

(A25)

− εzoo
C ·ZooC︸ ︷︷ ︸

Excretion of DOC

The state variables ZooN and ZooC are described in

Table A1. It is assumed, due to sloppy feeding, that only

a fraction of the grazed phytoplankton (γ , Table A7) enters

the zooplankton pool. The rest is transferred to detritus.

Grazing by nanophytoplankton and diatoms (Gnano and

Gdia) is calculated in Eqs. (A52) and (A53), respectively. The

respiration by zooplankton (rzoo) is calculated in Eq. (A46).

The value of the mortality parameter (mzoo) is listed in

Table A7 and the DON and DOC excretion (εzoo
N and εzoo

C )

in Table A3.

www.geosci-model-dev.net/7/2769/2014/ Geosci. Model Dev., 7, 2769–2802, 2014

publication i 65



2792 V. Schourup-Kristensen et al.: A skill assessment of FESOM–REcoM2

The quotas qC : N
nano and qC : N

dia convert the units of the grazing

from mmol N to mmol C and are defined as follows: qC : N
nano =

PhyCnano /PhyNnano and qC : N
dia = PhyCdia /PhyNdia.

A1.11 Detritus N and C

SMS(DetN)= (Gnano+Gdia) · (1− γ )︸ ︷︷ ︸
Sloppy feeding

+ mzoo ·ZooN2

︸ ︷︷ ︸
Zooplankton mortality

+Agg · (PhyNnano+PhyNdia)︸ ︷︷ ︸
Phytoplankton aggregation

− ρDetN · fT ·DetN︸ ︷︷ ︸
Degradation to DON

SMS(DetC)= (Gnano · q
C : N
nano +Gdia · q

C : N
dia ) · (1− γ )︸ ︷︷ ︸

Sloppy feeding

+mzoo ·ZooN2
· qC : N

zoo︸ ︷︷ ︸
Zooplankton mortality

+Agg · (PhyCnano+PhyCdia)︸ ︷︷ ︸
Phytoplankton aggregation

− ρDetC · fT ·DetC︸ ︷︷ ︸
Degradation to DOC

(A26)

The state variables ZooN, PhyNnano, PhyNdia, DetN and

DetC are described in Table A1. Due to sloppy feeding, the

grazed phytoplankton partly goes to the zooplankton pool

and partly to the detritus pool, depending on the grazing effi-

ciency γ (Table A7). The grazing (Gnano and Gdia) is calcu-

lated in Eqs. (A52) and (A53), respectively.

The quadratic mortality loss from zooplankton (mzoo) is

listed in Table A7. The temperature dependent degradation

of detritus to DOM (ρDetN and ρDetC) in Table A3, and the

temperature dependency (fT ) is calculated in Eq. (A54).

The quotas qC : N
nano = PhyCnano /PhyNnano, qC : N

dia =

PhyCdia /PhyNdia and qC : N
zoo = ZooC/ZooN are used to

convert the units from mmol N to mmol C.

Aggregation: the aggregation rate (Agg, Table A4) is pro-

portional to the concentration of nanophytoplankton, diatoms

and detritus:

Agg= φphy ·
(
PhyNnano+PhyNdia

)
+φdet ·DetN. (A27)

The values of the maximum aggregation loss parameters

(φphy and φdet) are listed in Table A7. The state variables

PhyNnano, PhyNdia and DetN are described in Table A1.

Sinking: in the model the detritus is subject to sinking,

which increases linearly with depth. The sinking speed (wdet,

Table A4) is based on the work by Kriest and Oschlies

(2008).

wdet = 0.0288 day−1
· z+w0 (A28)

Here z denotes the current depth and w0 is the sinking speed

at the surface (Table A7).

Loss to benthos: when the sinking detritus reaches the bot-

tom grid point it is assumed that it continues sinking into the

benthic compartment with the speed wdet (Eq. A28). This

leads to a detrital flux (BenFDetN and BenFDetC, Table A5)

from the water column to the benthos:

BenFDetN =−wdet ·DetN (A29)

BenFDetC =−wdet ·DetC. (A30)

The state variables DetN and DetC are described in Table A1.

A1.12 Detritus Si

SMS(DetSi)= (ε
phy
N · f

N : Cmax
lim, dia︸ ︷︷ ︸

Diatiom excretion

+ Agg︸︷︷︸
Aggregation

) ·PhySi

+Gdia · q
Si : N

︸ ︷︷ ︸
Sloppy feeding

− ρTSi · fT ·DetSi︸ ︷︷ ︸
Remineralization to DSi

(A31)

The state variables PhySi and DetSi are described in

Table A1. The limiter function (f N : Cmax
lim ) is described in

Sect. A6.1. The aggregation rate (Agg) is calculated in

Eq. (A27), the grazing on diatoms (Gdia) in Eq. (A53),

the remineralization rate (ρTSi) in Eq. (A4) and the temper-

ature dependency of remineralization (fT ) is calculated in

Eq. (A54). The value of the excretion parameter (ε
phy
N ) is

listed in Table A3. The intracellular ratio between diatom sil-

icon and carbon is defined as qSi : N
= PhySi/PhyNdia.

Loss to benthos: when the sinking detritus reaches the bot-

tom grid point it is assumed that it continues sinking into the

benthic compartment with the speed wdet (Eq. A28). This

leads to a detrital flux (BenFDetSi, Table A5) from the water

column to the benthos:

BenFDetSi =−wdet ·DetSi. (A32)

The state variable DetSi is described in Table A1.

A1.13 Detritus CaCO3

SMS(DetCalc)= ε
phy

C · f
N : Cmax
lim, nano ·PhyCalc

︸ ︷︷ ︸
Nanophytoplankton excretion

+ ( Agg︸︷︷︸
Aggregation

+ rnano︸︷︷︸
Respiration

) ·PhyCalc

+Gnano · q
CaCO3 :N
nano︸ ︷︷ ︸

Grazing loss

−

Disscalc ·DetCalc︸ ︷︷ ︸
Dissolution to DIC

(A33)

The state variables PhyCalc and DetCalc are described in

Table A1. The limiter function (f N : Cmax
lim ) is described in

Sect. A6.1. The aggregation rate (Agg) is calculated in

Eq. (A27), the respiration rate (rnano) in Eq. (A45) and
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the nanophytoplankton grazing rate (Gnano) in Eq. (A52).

The excretion rate (ε
phy

C ) is listed in Table A3, the ratio

q
CaCO3 :N
nano = PhyCalc/PhyNnano and the calcite dissolution

rate will now be explained.

Calcite dissolution: as the detritus calcite sinks through the

water column it is subject to dissolution (Disscalc, Table A4)

occurring on a length scale of 3500 m (Yamanaka and Tajika,

1996).

Disscalc =
wz

3500m
(A34)

wz denotes the sinking speed at depth z and is calculated in

Eq. (A28).

Loss to benthos: when the sinking detritus reaches the bot-

tom grid point it is assumed that it continues sinking into the

benthic compartment with the speed wdet (Eq. A28). This

leads to a detrital flux (BenFDetCalc, Table A5) from the wa-

ter column to the benthos:

BenFDetCalc =−wdet ·DetCaCO3. (A35)

The state variable DetCalc is described in Table A1.

A1.14 Dissolved organic material

SMS(DON)= ε
phy
N · f

N : Cmax
lim, nano ·PhyNnano︸ ︷︷ ︸

Nanophytoplankton excretion

+ ε
phy
N · f

N : Cmax
lim, dia ·PhyNdia︸ ︷︷ ︸

Diatom excretion

+ εzoo
N ·ZooN︸ ︷︷ ︸

Zooplankton excretion

+ ρDetN · fT ·DetN︸ ︷︷ ︸
Detritus degradation

− ρN · fT ·DON︸ ︷︷ ︸
Remineralization

(A36)

SMS(DOC)= ε
phy

C · f
N : Cmax
lim, nano ·PhyCnano︸ ︷︷ ︸

Nanophytoplankton excretion

+ ε
phy

C · f
N : Cmax
lim, dia ·PhyCdia︸ ︷︷ ︸

Diatom excretion

+ εzoo
C ·ZooC︸ ︷︷ ︸

Zooplankton excretion

+ ρDetC · fT ·DetC︸ ︷︷ ︸
Detritus degradation

− ρC · fT ·DOC︸ ︷︷ ︸
Remineralization

(A37)

The state variables are described in Table A1. The values for

excretion of nitrogen and carbon from phyto- and zooplank-

ton (ε
phy
N , ε

phy

C , εzoo
N and εzoo

C ) are listed in Table A3 along

with the degradation rates for detritus (ρdetN and ρdetC) and

remineralization rates of DON and DOC (ρN and ρC). The

limitation factors (f N : Cmax
lim, nano and f N : Cmax

lim, dia ) are described in

Sect. A6.1 and the temperature dependency (fT ) is calcu-

lated in Eq. (A54).

A2 Sources minus sinks, benthos

The model has a benthos compartment which consists of one

layer. Matter is supplied to this layer through sinking detri-

tus, and it hence has pools of nitrogen, silicon, carbon and

calcite. When sinking detritus reaches the bottom it contin-

ues sinking into the benthos with the speed, wdet, calculated

by Eq. (A28) and is thus lost from the water column. In the

benthos, the detritus is assumed to be remineralized to dis-

solved inorganic matter. This is then re-released to the wa-

ter’s pools of dissolved inorganic matter (DIN, DIC, Alk and

DSi):

SMS(BenthosN)= wdet ·DetN− ρben
N ·BenthosN (A38)

SMS(BenthosSi)= wdet ·DetSi− ρben
Si ·BenthosSi (A39)

SMS(BenthosC)= wdet ·DetC− ρben
C ·BenthosC (A40)

SMS(BenthosCalc)= wdet ·DetCalc−Disscalc

·BenthosCalc. (A41)

The state variables are described in Table A1 (DetN,

DetSi, DetC and DetCalc) and Table A2 (BenthosN, Ben-

thosSi, BenthosC and BenthosCalc). The remineralization

rates (ρben
N , ρben

Si and ρben
C ) are listed in Table A3 and the cal-

cite dissolution rate (Disscalc) is calculated in Eq. (A34).

A3 Phytoplankton growth

A3.1 Photosynthesis

The rate of the C-specific photosynthesis is calculated

for both nanophytoplankton and diatoms (Pnano and Pdia,

Table A4).

The calculation is based on the work by Geider et al.

(1998) and differs between nanophytoplankton and diatoms

in the nutrient limitation; nanophytoplankton is limited by

iron and nitrogen while diatoms are additionally limited by

silicon.

P nano
max = µ

max
C ·min

(
f Fe

lim, nano,f
N : Cmin
lim, nano

)
· fT (A42)

P dia
max= µ

max
C ·min

(
f Fe

lim, dia,f
N : Cmin
lim, dia ,f Si : Cmin

lim, dia

)
· fT (A43)

Nutrient limitation is calculated using the Liebig law of the

minimum, in which the most limiting nutrient limits produc-

tion (O’Neill et al., 1989).

The value of µmax
C can be found in Table A8. The lim-

itation terms (f N : Cmin
lim , f Si : Cmin

lim and f Fe
lim) differ somewhat

from the formulation in Geider et al. (1998) and are described

in Sect. A6.2 and the temperature dependency (fT ) is calcu-

lated in Eq. (A54).

The actual C-specific photosynthesis rate depends on how

much photosynthetically available radiation (PAR, Table A4)

the cell can harvest. This is controlled by the light harvesting

efficiency (α) and the intracellular Chl : C ratio as well as the
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Table A8. Parameters for phytoplankton growth.

Parameter Value Description and unit

αnano 0.19 Light harvesting efficiency for nanophytoplankton [mmolCm2 (mgChlWday)−1]

αdia 0.23 Light harvesting efficiency for diatoms [mmolCm2 (mgChlWday)−1]

KNano
N 0.55 Half-saturation constant for nanophyto N uptake [mmolNm−3]

KDia
N 1.00 Half-saturation constant for diatom N uptake [mmolNm−3]

KSi 4.00 Half-saturation constant for diatom Si uptake [mmolSim−3]

µmax
C

3.0 Rate of C-specific photosynthesis [day−1]

qChl : N
max 4.2 Maximum Chl : N ratio for phytoplankton [mgChlmmolN−1]

res 0.01 Maintenance respiration rate constant [day−1]

σN : C 0.2 Maximum uptake ratio N : C [mmolNmmolC−1]

σSi : C 0.2 Maximum uptake ratio Si : C [mmolSimmolC−1]

τ 0.01 Timescale for zooplankton respiration [day−1]

Vcm 0.7 Scaling factor for C-specific N uptake, dimensionless

ζ 2.33 Cost of biosynthesis of N [mmolCmmolN−1]

available light.

P = Pmax ·

(
1.0− exp

(
−α · qChl : C

·PAR

Pmax

))
(A44)

The C-specific photosynthesis rate is calculated for both

nanophytoplankton and diatoms; Pnano and Pdia, respectively

(Table A4).

The values for the light harvesting efficiencies (αnano and

αdia) are listed in Table A8, the apparent maximum photo-

synthetic rate (Pmax) is calculated in Eqs. (A42) and (A43)

and we define qChl : C
= PhyChl/PhyC.

A3.2 Respiration

Phytoplankton: the phytoplankton respiration rate is calcu-

lated for both nanophytoplankton and diatoms (rnano and

rdia, Table A4):

r = res · f N : Cmax
lim︸ ︷︷ ︸

Cost of maintenance

+ ζ ·V N

︸ ︷︷ ︸
Cost of N assim

. (A45)

The values for the maintenance respiration rate (res) and the

cost of biosynthesis (ζ ) can be found in Table A8. The lim-

iter function (f N : Cmax
lim ) is described in Sect. A6.1 and the

nitrogen assimilation rate (V N
nano and V N

dia) is calculated in

Eq. (A48).

Zooplankton: when the intracellular C : N ratio in zoo-

plankton exceeds the Redfield ratio, a temperature dependent

respiration (rzoo, Table A4) is assumed to drive it back with

a timescale τ . Otherwise, the respiration is zero.

rzoo =max

(
0day−1,

qC : N
zoo − q

C : N
Standard

τ
· fT

)
(A46)

The timescale for respiration (τ ) is given in Table A8. The

temperature dependence (fT ) is calculated in Eq. (A54), and

we define the ratios qC : N
zoo = ZooC/ZooN and qC : N

Standard =

106C/ 16N.

A3.3 Chlorophyll a synthesis

Chlorophyll a synthesis is coupled to N uptake in REcoM2.

The uptake of nitrogen by the phytoplankton (V N) is con-

verted to chlorophyll units with a maximum Chl : N ratio

(qChl : N
max ). This highest possible chlorophyll synthesis rate can

then be downregulated by the ratio between the actual pho-

tosynthesis and the light absorption, leading to a smaller rate

when photosynthesis is small.

The chlorophyll a synthesis is calculated for both

nanophytoplankton and diatoms (SChl
nano and SChl

dia , Table A4).

Schl
= V N

· qChl : N
max ·min

(
1,

P

α · qChl : C ·PAR

)
(A47)

The nitrogen assimilation (V N
nano and V N

dia) is calculated in

Eq. (A48), and the value for the maximum Chl : N ratio

(qChl : N
max ) can be seen in Table A8.

The C-specific photosynthesis (Pnano and Pdia) is calcu-

lated in Eq. (A44), and the values for αnano and αdia are listed

in Table A8. PAR denotes the photosynthetically available

radiation and we define qChl : C
= PhyChl/PhyC.

A3.4 Nitrogen and silicon assimilation

Nitrogen: the carbon-specific N assimilation rate is based on

the maximum rate of carbon-specific photosynthesis (Pmax),

which is then modulated by the maximum N : C uptake ra-

tio (σN : C) and by the intracellular quota between N and C

(f N : Cmax
lim ), which downregulates N assimilation when the

N : C ratio approaches a maximum value (Sect. A6.1). The

concentration of DIN in the surrounding water modifies the

N assimilation through Michaelis–Menten kinetics.

N assimilation is calculated for both diatoms and nanophy-

toplankton (V N
nano and V N

dia, Table A4).

V N
= Vcm ·Pmax · σN : C · f

N : Cmax
lim ·

DIN

KN+DIN
(A48)
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The values of the parameters for Vcm, σN : C, Knano
N and Kdia

N

are listed in Table A8. The maximum rates of photosynthesis

(P nano
max and P dia

max) are calculated in Eqs. (A42) and (A43),

respectively, and f N : Cmax
lim is described in Sect. A6.1. DIN

denotes the surrounding water’s concentration of dissolved

inorganic nitrogen.

Silicon: silicon assimilation (V Si, Table A4) only occurs

in diatoms. The maximum silicon uptake rate is calculated as

the maximum photosynthetic rate (µmax
C ) multiplied by the

maximum Si : C ratio (σSi : C) and the scaling factor for the

maximum nitrogen uptake (Vcm) . The actual uptake depends

on the surrounding water’s silicon concentration through

Michaelis–Menten kinetics and the temperature dependency

(fT ). It is additionally downregulated when the N : C or

Si : C ratios become too high (f Si : Cmax
lim and f N : Cmax

lim dia ). The

N : C ratio is taken into account, as a too high ratio indi-

cates that the intracellular concentration of energy rich car-

bon molecules becomes too low to use energy on silicon up-

take.

V Si
= Vcm ·µ

max
C · fT · σSi : C · f

SiCmax
lim · f NCmax

lim dia

·
DSi

KSi+DSi
(A49)

The scaling factor for the N uptake (Vcm) and the C-specific

photosynthesis rate (µmax
C ) are listed in Table A8 along with

the maximum Si : C uptake ratio (σSi : C). The temperature

dependency (fT ) is calculated in Eq. (A54), and the limi-

tation by the intracellular ratios Si : C and N : C (f Si : Cmax
lim

and f N : Cmax
lim, dia ) are described in Sects. A6.3 and A6.1, respec-

tively.KSi is listed in Table , and DSi denotes the surrounding

water’s concentration of dissolved inorganic silicon.

A4 Grazing

REcoM2 has a single zooplankton class, which is also the

highest trophic level in the model. Grazing on both nanophy-

toplankton and diatoms is calculated using a Type 3 Sig-

moidal model as described by Gentleman et al. (2003).

The maximum grazing rate (Gmax) is modulated by the

temperature through the Arrhenius function (fT ) and by

the prey availability through a quadratic Michaelis–Menten

function. The model has fixed preferences for both phyto-

plankton classes andG′ (Table A4) is the phytoplankton con-

centration available for food intake, in our case:

G′ = PhyNnano+PhyNdia · f
dia
Z . (A50)

Here, the parameter f dia
Z (Table A9) specifies the relative

grazing preference for diatoms.

The total grazing (Gtot, Table A4) is calculated as follows:

Gtot =Gmax ·
G′2

KG+G′2
· fT ·ZooN. (A51)

This total grazing can be divided into the grazing on

nanophytoplankton and diatoms (Gnano and Gdia, Table A4):

Gnano =Gtot ·
PhyNnano

G′
(A52)

Gdia =Gtot ·
PhyNdia · f

dia
Z

G′
. (A53)

The values for the maximum grazing rate (Gmax), the half-

saturation constant (KG) and the fraction of diatoms avail-

able for grazing (f dia
Z ) are listed in Table A9. The tempera-

ture dependency (fT ) is calculated in Eq. (A54) and the state

variables are described in Table A1.

A5 Temperature dependence of rates

Temperature dependence of metabolic rates (fT , Table A4)

is taken into account through an Arrhenius function:

fT = exp
(
−4500K ·

(
T −1
− Tref

−1
))
. (A54)

Here, T is the local temperature in Kelvin and Tref is a refer-

ence temperature (Table A10). The value 4500 K is the slope

of the linear part of the Arrhenius function. Figure A1 il-

lustrates how the metabolic rates decrease for T < Tref and

increase for T > Tref.

A6 Nutrient limitation

One factor controlling the metabolic processes in the phy-

toplankton is the intracellular ratios between nutrients and

carbon.

Five different limiters are used for this; one that down-

regulates uptake of N and release of C when the N : C ratio

becomes too high (f N : Cmax
lim , Sect. A6.1), three that down-

regulate photosynthesis when the nutrient : C ratios become

too low (f N : Cmin
lim , f Si : Cmin

lim and f Fe
lim, Sect. A6.2) and one

that downregulates silicon assimilation when the Si : C ratio

becomes too high (f Si : Cmax
lim , Sect. A6.3).

These limiters will now be described after a general expla-

nation of the function.

The way the intracellular ratios between nutrients and car-

bon limit uptake in the model is based on the work by Geider

et al. (1998), but has been modified to the non-linear func-

tion, which is calculated as follows:

flim(slope,q1,q2)= 1− exp(−slope(|1q| −1q)2). (A55)

Here,1q = q1−q2 is the difference between the intracellular

nutrient : C quota and a prescribed max or min quota, which

is chosen depending on the situation.

The dimensionless constant slope regulates the degree of

limitation for a given 1q.

A6.1 Intracellular regulation of N uptake and C release

Here we take a closer look at the limiter f N : Cmax
lim , which

downregulates the metabolic processes listed in Table A11

when the intracellular N : C ratio becomes too high.
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Table A9. Parameters for grazing.

Parameter Value Description and unit

f dia
Z 0.50 Relative grazing preference for diatoms, dimensionless

Gmax 2.40 Maximum grazing rate at 0 ◦C [day−1]

KG 0.35 Half-saturation constant for grazing loss [(mmolNm−3)2]

Table A10. Parameters for limitation functions.

Parameter Value Description and unit

Knano
Fe 0.04 Half-saturation constant for nanophytoplankton Fe uptake [µmolFem−3]

Kdia
Fe 0.12 Half-saturation constant for diatom Fe uptake [µmolFem−3]

qN : Cmin 0.04 Min intracellular N : C ratio for nanophytoplankton [mmolNmmolC−1]

qN : Cmax 0.2 Max intracellular N : C ratio for nanophytoplankton [mmolNmmolC−1]

qSi : Cmin 0.04 Min intracellular Si : C ratio for diatoms [mmolSimmolC−1]

qSi : Cmax 0.8 Max intracellular Si : C ratio for diatoms [mmolSimmolC−1]

slopeN
min

50 Minimum limiter regulator for N, [mmolCmmolN−1]

slopeN
max 1000 Maximum limiter regulator for N, [mmolCmmolN−1]

slopeSi
min

1000 Minimum limiter regulator for Si, [mmolCmmolN−1]

slopeSi
max 1000 Maximum limiter regulator for Si, [mmolCmmolN−1]

Tref 288.15 Reference temperature for Arrhenius function [K]

Figure A1. The Arrhenius function plotted with the parameters

used in REcoM2.

It is calculated with Eq. (A55) using the following param-

eters:

slope= slopeN
max,q1 = q

N : Cmax,q2 = q
N : C,

where slopeN
max is listed in Table A10 along with the pre-

scribed maximum N : C quota (qN : Cmax). qN : C is the current

intracellular quota.

In Fig. A2 it is illustrated how the limiter function changes

with changing intracellular N : C quota; when the intracellu-

lar concentration of nitrogen increases as compared to car-

bon, the rate of the processes that are affected by the limiter

will be downregulated. Total limitation (f N : Cmax
lim = 0) oc-

Table A11. Processes modulated by the limiter function fN : Cmax
lim

.

Process Effect of qN : C
→ qN : Cmax

Nitrogen assimilation Ends uptake of N

Silicon assimilation Ends uptake of Si

Respiration by phytoplankton Ends release of C

Phytoplankton DOC excretion Ends release of C

Phytoplankton DON excretion Ends release of N

Phytoplankton calcite excretion Ends release of C

curs when the quota becomes equal to or higher than 0.2, or

the equivalent of 21.2N : 106C.

A6.2 Intracellular regulation of C uptake

Photosynthesis is limited by the nutrients iron, nitrogen and

in the case of diatoms also silicon.

Nitrogen and silicon limitation: in the case of N and Si,

the regulation is controlled by the intracellular ratios N : C

(f N : Cmin
lim ) and Si : C (f Si : Cmin

lim ). These limiters downregu-

late the rate of photosynthesis when the intracellular nutri-

ent : C ratios become too low (Fig. A3).
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Figure A2. Change in limiter function fN : Cmax
lim

with N : C quota.

Figure A3. Change in the limiter function fN : Cmin
lim

with N : C

quota.

They are calculated with Eq. (A55) using the following

parameters (Table A10):

slope= slopeN
min, q1 = q

N : Cmin, q2 = q
N : C

slope= slopeSi
min, q1 = q

Si : Cmin, q2 = q
Si : C.

Iron: for iron, the water’s concentration is used to calculate

the limitation. This is done using Michaelis–Menten kinetics:

f Fe
lim =

Fe

KFe+Fe
. (A56)

The half-saturation constants (Knano
Fe and Kdia

Fe ) are listed in

Table A10.

Figure A4. Change in limiter function with Si : C quota.

A6.3 Intracellular regulation of Si uptake

Diatom uptake of silicon is downregulated by the function

f Si : Cmax
lim (Fig. A4) when the intracellular Si : C ratio exceeds

a set limit. The limiter function is described in Eq. (A55) and

is calculated using the following variables (Table A10):

slope= slopeSi
max, q1 = q

Si : C, q2 = q
Si : Cmax.
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Supplementary material

The supplements contain the full code for REcoM2

along with a manual for FESOM–REcoM2, containing an

overview of the code structure and instructions for running

the coupled model.

The Supplement related to this article is available online

at doi:10.5194/gmd-7-2769-2014-supplement.
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Vertical supply of iron to the mixed layer of the
Southern Ocean: The ocean model effect
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fach 12 01 61, 27515 Bremerhaven, Germany.

Submitted

Abstract In the Southern Ocean, the micronutrient iron plays a key role as a limiting
nutrient for phytoplankton growth. Studies of the iron supply to the surface mixed
layer have traditionally focused on the contribution from aeolian and sedimentary
input, but recent work has highlighted the importance of the supply from below. We
performed a model study in which the biogeochemical model REcoM2 was coupled
to two different ocean models, the Finite Element Sea-ice Ocean Model (FESOM) and
the MIT general circulation model (MITgcm). We analyzed the magnitude of the iron
sources from below in the two models and assessed how the choice of ocean model
impacts the iron fluxes across the base of the mixed layer and thereby also the mod-
eled net primary and export production. Our results show a remarkable difference in
terms of magnitude and mode of iron transport; the mean iron supply is four times
higher in MITgcm than in FESOM, and the dominant pathway is through entrainment,
whereas diffusion dominates in FESOM. This difference also has the effect that NPP is
48% higher in FESOM than in MITgcm and that the export efficiency, the ratio between
net primary production and export production, is smaller. In conclusion our study
shows that the ocean model, and especially the mixed layer depth, has a key influ-
ence on the modeled iron fluxes into the surface mixed layer and thereby also on net
primary and export production in the Southern Ocean.
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6.1 introduction

The Southern Ocean is known as one of the so-called High-Nutrient Low-Chlorophyll
(HNLC) areas, characterized by low levels of chlorophyll a despite of high concen-
trations of macronutrients. Since the early 1990’ies it has been recognized that iron,
which for instance is needed for phytoplankton photosynthesis and respiration, is an
important limiting factor for primary production in the Southern Ocean (e.g. Martin,
1990; Martin et al., 1990; Martin et al., 1991).

Dissolved iron is supplied to the surface mixed layer by two mechanisms; reminer-
alization of organic material (Boyd et al., 2010) and so-called new supply. The latter is
provided by external sources such as dust deposition (e.g. Wagener et al., 2008), rem-
ineralization from the sediments (e.g. Blain et al., 2001), release from icebergs (Lin
et al., 2011) and it is supplied from the deeper water by physical mechanisms such
as upwelling, entrainment and diffusion (e.g. Tagliabue et al., 2014). The iron supply
from the deep water plays an especially large role in the remote waters in the South-
ern Ocean (de Baar et al., 1995; Löscher et al., 1997) because the other sources tend to
be localized in their distribution. The amount of iron supplied through the different
sources is, however, not well quantified. Recent modeling studies have shown that
the sediment source plays a larger role than the other external iron sources (Lancelot
et al., 2009; Tagliabue et al., 2009), but studies regarding the impact of the supply
from below are sparse.

In the Southern Ocean, large scale upwelling occurs south of the polar front (e.g.
Speer et al., 2000), and it has been suggested that this contributes significantly to
the total iron input to the surface water, with estimated average values ranging from
8 to 50 µmol m−2 yr−1 (Watson et al., 2000; Hoppema et al., 2003; de Baar et al.,
1995). But Tagliabue et al. (2014) argued that entrainment of iron through deepening
of the mixed layer in the fall dominate the supply of iron from below, and that
upwelling is of little importance when averaged over the entire Southern Ocean as
it is cancelled out by the removal of iron through downwelling. The significance of
diffusion likewise differs between studies; consistent with the findings of Tagliabue
et al. (2014), Croot et al. (2007) showed that diffusion was of minor importance east
of New Zealand, whereas Law et al. (2003) found that vertical eddy diffusion played
a large role in the Antarctic Circumpolar Current (ACC) south of New Zealand. The
effect of horizontal iron advection across the base of the mixed layer has been argued
to play a role south of Australia (Ellwood et al., 2008), something that is induced by
the combination of a southwards shoaling pycnocline and northwards wind-driven
Ekman transport.

The flux of iron across the base of the mixed layer is dependent on the ocean
mixing and circulation, which for example controls the depth of the mixed layer,
the strength of the upwelling and the volume of entrained water. But it is likewise
affected by the iron concentration just below the mixed layer and the iron gradient
across the base of the mixed layer. The ferricline can be defined as the depth at
which the iron gradient (∂Fe/∂z) has its highest value. The relative position of the
ferricline to the base of the mixed layer has a large impact on the iron flux into the
mixed layer; when the mixed layer depth (MLD) is shallower than the ferricline, only
little iron can be supplied to the surface layer, and when the MLD comes below the
ferricline a much larger supply can take place (Tagliabue et al., 2014).
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In Ocean General Circulation Biogeochemical Models, a realistic ocean circulation
and mixing is especially difficult to reproduce in the Southern Ocean (e.g. Downes
et al., 2014), and this has the consequence that the export production (EP) estimated
by the biogeochemical components varies widely in this region (Doney et al., 2004;
Najjar et al., 2007). Models are, despite of this ambiguity, a tool routinely used to
investigate the dynamics of export and primary production in the Southern Ocean
(e.g. Taylor et al., 2013; Marinov et al., 2006), and although biogeochemical mod-
els are inherently simplistic and require strict validation (e.g. Assmann et al., 2010;
Schourup-Kristensen et al., 2014), a large uncertainty regarding the vertical fluxes of
iron is additionally introduced by the representation of ocean mixing and advection.
Knowledge about the way the ocean model impacts the vertical iron fluxes is there-
fore crucial in order to interpret results regarding the complex interplay between
physics and biology in the present, but also in future perturbations of the Southern
Ocean.

In this paper we examine the impact of the Ocean General Circulation Model
(OGCM) on the input of iron to the mixed layer of the Southern Ocean from below.
We do this by comparing the results of two global OGCMs, the Finite Element Sea-ice
Ocean Model (FESOM) and the Massachusetts Institute of Technology general circu-
lation model (MITgcm), coupled to the same biogeochemical model, (The Regulated
Ecosystem Model, REcoM2). We assess how the ocean model impacts the magnitude
and spatial distribution of net primary production (NPP) as well as the amount of
carbon that is exported to the deep ocean.

6.2 methods

6.2.1 Experiment

Two similar experiments were carried out with the coupled FESOM-REcoM2 (Schourup-
Kristensen et al., 2014) and MITgcm-REcoM2 (Hauck et al., 2013) models. The ocean
models were spun-up for 300 years after which the coupled REcoM2-OGCM runs were
started and run for a total of 50 years. The CORE-I normal year forcing (Large and
Yeager, 2009) was used throughout the runs, and the analysis carried out here is
based on the last five years of the coupled runs.

6.2.2 Ocean model I: FESOM

The Finite Element Sea-Ice Ocean Model (FESOM) is a global ocean circulation model,
solving the primitive equations using the hydrostatic and boussinesq approxima-
tions. It is coupled to a dynamic-thermodynamic sea-ice model, which operates on
the same surface mesh. Discretization is carried out using the finite element method
(Sidorenko et al., 2011; Wang et al., 2014).

The sub-grid scale processes of vertical mixing are parameterized using a Pacanowski-
Philander type scheme, which ensures increased mixing as stratification weakens
(Pacanowski and Philander, 1981). This is combined with additional mixing near the
surface over a depth defined by the Monin-Obukhov length, following the sugges-
tion of Timmermann and Beckmann (2004) to avoid unrealistically shallow summer
mixed layers. The background vertical eddy diffusion is set to 1 · 10−4 m2 s−1 for
momentum and 1 · 10−5 m2 s−1 for tracers, with a maximum value of 2 · 10−2 m2 s−1.
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Figure 6.1: Location of concentrations and fluxes on A-grids and C-grids, respectively.

Horizontal mixing along neutral density slopes is incorporated following Redi (1982)
and the eddy induced advection is implemented through the Gent and McWilliams
scheme (Gent and Mcwilliams, 1990) with a critical neutral slope of 0.004.

For the spin-up, temperature and salinity fields were initialized with values from
the PHC3.0 climatology (Steele et al., 2001) and the sea-ice was taken from a previous
simulation. The sea surface salinity is restored towards the PHC3.0 climatology with
a piston velocity of 10m per 60days. The version of FESOM used in the current run
is presented by Sidorenko et al. (2011).

FESOM uses a prismatic mesh which is horizontally triangulated and unstructured,
but vertically aligned, with the prisms divided into tetrahedra. Calculations are car-
ried out on an A-grid (Arakawa and Lamb, 1977), with all fluxes and concentrations
being calculated at nodes located in the corners of the prisms (Fig. 6.1). The mesh
used here is similar to the one used by Schourup-Kristensen et al. (2014), with the
horizontal resolution ranging from 15 km in the polar regions to 180 km in the cen-
tral subtropical gyres. For a better description of the equatorial undercurrent and
coastal processes, a resolution of 40 km was applied around the Equator and along
the coasts. In the Southern Ocean the resolution ranges from 15 km close to the
Antarctic to 150 km at 50◦S. In the vertical, FESOM uses z-coordinates and the mesh
has 32 levels. The resolution of the mesh increases towards the surface with 9 levels
located in the upper 100 meters of the water column.

6.2.3 Ocean model II: MITgcm

As second general circulation model we use the Massachusetts Institute of Technol-
ogy general circulation model (MITgcm, Marshall et al., 1997), which also solves the
primitive equations under the Boussinesq approximation, in its hydrostatic mode.
The model is discretized on a regular latitude-longitude-depth grid using the Arakawa
C grid (Fig. 6.1). Longitudinal resolution is constant at 2◦, while the latitudinal res-
olution varies from 0.38◦ to 2◦, with higher resolution around the equator to better
resolve the equatorial current systems, and increasing resolution southwards of the
equator. In the vertical we use 30 layers, with 6 layers within the uppermost 100 m
and layer thickness increasing with depth up to 500 m below a depth of 3700 m. The
setup used here excludes the Arctic north of 80◦N and we use the bathymetry of
Timmermann et al. (2010).

Our setup includes a dynamic sea-ice model (Losch et al., 2010), a parameteriza-
tion for sub-grid-scale mixing (Gent and Mcwilliams, 1990) with variable coefficient
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and for density-driven downslope flows (Campin and Goosse, 1999). Vertical mixing
within the mixed layer is parameterized using the k-profile parameterization (Large
et al., 1994). The setup is described further by Hauck et al. (2013).

6.2.4 Biogeochemical module: REcoM2

The Regulated Ecosystem Model with two phytoplankton classes (REcoM2) belongs
to the class of so-called quota models, in which the intracellular nutrient ratios are al-
lowed to differ from the Redfield ratios within certain limits. Coupled to the MITgcm,
different versions of REcoM have been used for carbon cycle research in the Southern
Ocean (Hauck et al., 2013; Taylor et al., 2013; Losch et al., 2014), and it has recently
been coupled to the Finite Element Sea-ice Ocean Model, which similarly operates
in the global domain (Schourup-Kristensen et al., 2014).

REcoM2 has two phytoplankton classes, nanophytoplankton and diatoms, and one
group of zooplankton. It describes the nutrients nitrogen, silicon and iron. The iron
cycle is based on the work by Parekh et al. (2005). The concentration of dissolved iron
is changed by uptake and release from phyto- and zooplankton, remineralization of
detritus and by scavenging. The intracellular iron to carbon ratio is constant, and the
biological uptake and release of iron is hence tied to the carbon cycle.

The aeolian input of iron is prescribed as monthly climatologies (Luo et al., 2003;
Mahowald et al., 2003). We assume that the dust contains 3.5% of iron, of which 1.5%
is instantly released in the surface ocean and the rest is lost. Iron is further added to
the water from the sediments, where remineralization of iron is calculated based on
the rate of carbon remineralization from the sediments to the ocean following Elrod
et al. (2004). A full description of the version of REcoM2 used in this study, including
parameter settings, can be found in Schourup-Kristensen et al. (2014).

REcoM2 is initialized with arbitrarily small values in all tracers except for dissolved
iron (DFe), dissolved inorganic nitrogen (DIN), dissolved inorganic carbon (DIC), dis-
solved inorganic silicon (DSi) and Total Alkalinity (TA). TA and DIC are initialized with
contemporary values from the GLODAP dataset (Key et al., 2004) and DSi and DIN

with values from the Levitus World Ocean Atlas from 2005 (Garcia et al., 2006). So
far, the measurements of iron profiles are too sparse to interpolate to a global field.
We therefore initialize the field of dissolved iron with output from the earth system
model PISCES (Aumont and Bopp, 2006), which has been modified in the Southern
Ocean to the mean profiles presented by Tagliabue et al. (2012).

6.2.5 Calculations

We assess the mean flux of dissolved iron across the base of the mixed layer in the
Southern Ocean south of 50◦S, through vertical advection (up- and downwelling),
horizontal advection, en- and detrainment and vertical eddy diffusion (Fig. 6.2). We
define the mixed layer using the density threshold criteria of 0.03 kg m−3 following
de Boyer Montegut et al. (2004).
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Figure 6.2: Schematics of the main physical processes responsible for bringing or removing
iron to or from the mixed layer of the ocean (After Levy et al., 2013, Fig. 1b).

The flux of dissolved iron across the base of the mixed layer (F(DFe)) is calculated
following Levy et al. (2013).

F(DFe) = −DFeh

(
wh + uh · ∇Hh+

∂h

∂t

)
︸ ︷︷ ︸

Subduction

+

(
Kz ·

∂DFe

∂z

)
h︸ ︷︷ ︸

Vertical eddy diffusion

+

∫h
0

EDFe dz︸ ︷︷ ︸
Eddy mixing

(6.1)

Here, the subscript h denotes the depth of the base of the mixed layer. The subduc-
tion term (i.e. Cushman-Roisin, 1987) entails the supply of iron from up-/downwelling
(DFeh ·wh), from lateral advection across the sloping base of the mixed layer
(DFeh · uh · ∇Hh) and from entrainment through the deepening/shoaling of the
mixed layer over time (DFeh · ∂th). The variable DFeh denotes the iron concentra-
tion at the base of the mixed layer and wh and uh = (uh, vh) are the vertical and
horizontal velocity at the base of the mixed layer, respectively. The slope of the base
of the mixed layer is defined as ∇Hh = (∂h/∂x,∂h/∂y) and ∂h/∂t is the change in
the MLD with time.

The vertical eddy diffusion term covers the mixing from sub-grid scale turbulence,
causing a transport of iron across the base of the mixed layer and is calculated on-
line in both models. Here, the variable Kz denotes the diffusivity coefficient and
∂DFe/∂dz is the iron gradient, both at depth h.

The Eddy mixing term denotes the eddy mediated isopycnal transport of iron
across the sloping base of the mixed layer. It is parameterized and is added to the
advection term during online calculation in both models. We accordingly do not
show explicit numbers of the iron supply through eddy mediated transport in the
current study.

To obtain the yearly input of iron to the mixed layer from below, Eq. (6.1) is inte-
grated over time. The model output has been saved with monthly intervals in both
models, and the offline calculated iron fluxes are thus calculated for this time inter-
val.
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In models, the calculation of vertical fluxes is restricted by the finite nature of the
model grids. Consequently, differences in the calculations of iron transport through
up-/downwelling and diffusion occur due to the formulation of FESOM and MITgcm

on an A-grid and C-grid respectively (Fig. 6.1).
For the up- and downwelling, the velocity and the iron concentration are defined

in the same grid point in FESOM, whereas the iron concentration below or above the
flux depth is used in the MITgcm, dependent on the direction of the vertical velocity.

For the vertical eddy diffusivity, the iron gradient at the point of the vertical eddy
diffusion coefficient is needed. In FESOM, we used the gradient above the Kz-node
due to the MLD definition. In MITgcm, the gradient is calculated as the difference
between the concentration depth above and below the Kz, which is defined at the
flux-points (Fig. 6.1).

For the horizontal advection, the result from FESOM is interpolated onto a regular
1◦ × 1◦ grid, and calculations are performed using the centered difference gradient
for both models.

6.3 results

6.3.1 Yearly mean iron supply and biological production

The mean supply of iron across the base of the mixed layer south of 50◦S varies
widely between the two models (Fig. 6.3), summing up to 20µmol Fe m−2 yr−1 in
FESOM, and to 84µmol Fe m−2 yr−1 in MITgcm.

En- and detrainment transports iron into the surface layer during mixed layer deep-
ening, and removes it during shallowing. It is important in both models, supplying
4.3µmol Fe m−2 yr−1, or 22% of the mean iron supply from below, in FESOM, and in
the MITgcm it is the largest of the iron sources with a total mean of 44µmol Fe m−2 yr−1,
or 53% of the iron supply (Fig. 6.3).

Vertical eddy diffusion across the base of the mixed layer occurs due to small-
scale turbulent mixing brought on by energy cascading from for instance surface
wind mixing. It is the dominant mechanism for vertical iron transport in FESOM,
summing up to 13µmol Fe m−2 yr−1 and comprising 63% of the total iron supply
from below. In the MITgcm, the vertical eddy diffusion is the smallest of the sources
taken into account, summing up to 2µmol Fe m−2 yr−1, or 2.5% of the total mean
supply (Fig. 6.3).

South of the Antarctic Polar Front upwelling dominates over downwelling, and
in our study the mean upwelling south of 50 ◦S sums up to 29 Sv in FESOM and
27 Sv in the MITgcm (1 Sv = 106 m3 s−1), both slightly lower than the 34 Sv estimated
by Sloyan and Rintoul (2001). The net supply of iron to the mixed layer through
upwelling is relatively small in both models, summing up 0.9µmol Fe m−2 yr−1, or
4% of the total supply from below in FESOM and to 5.3µmol Fe m−2 yr−1, or 6% in
MITgcm (Fig. 6.3).

The pycnoclines, and hence also the MLD, shoal towards the south in the Southern
Ocean, while the meridional flow of the surface water is in a northerly direction
due to Ekman flow induced by the westerlies. This has the consequence that water
is transported across the sloping base into the mixed layer, significantly contribut-
ing to the inflow of dissolved iron in both models (Fig. 6.3); in FESOM it comprises
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Figure 6.3: Mean upwards iron fluxes across the base of the mixed layer south of 50◦ S in the
two models.: a) FESOM b) MITgcm. The percentage that each source contribute to
the model in question is additionally marked.

2.1µmol Fe m−2 yr−1, or 11% of the mean supply, and in MITgcm 33 µmol Fe m−2 yr−1

(39%).
New iron is further supplied to the surface water through aeolian and sedimentary

input in REcoM2. The input from dust south of 50◦S comprises 1.29µmol Fe m−2 yr−1

in both models, and the total supply from the sediment averages 0.43 and 0.45
µmol Fe m−2 yr−1 in FESOM and MITgcm, respectively.

The annual average NPP south of 50◦S sums up to 3.1Pg C yr−1 in FESOM, and in
MITgcm it equals 2.1 Pg C yr−1 (Table 6.1). Despite of the difference in NPP between
the models, both results are within the range of previous NPP estimates (e.g. Carr
et al., 2006). The annual EP, calculated at a reference depth of 100m, sums up to 1.12
and 1.22Pg C yr−1 in FESOM and MITgcm, respectively, which is close to values from
previous studies (Table 6.1).

For a model run in equilibrium, new production equals the export production, and
we can consequently define the export efficiency as the ratio between the modeled
EP and NPP. In FESOM, the mean export efficiency is 0.36 and in MITgcm it is 0.58
(Table 6.1). Previous studies (Boyd et al., 2005; Bowie et al., 2009; de Jong et al., 2012)
show that the ratio between new and total NPP is highly variable, depending on the
availability of iron, with measurements ranging from 0.05 to 0.6 EP/NPP (Table 6.1).
The export efficiency in FESOM of 0.36 is thus within this range, while the MITgcm

value of 0.58 is in the higher end, consistent with less iron limitation (e.g. Bowie
et al., 2009).

6.3.2 Seasonal cycle

Mixed layer depth and ferricline
Consistent with observations (Sallée et al., 2010), the mean seasonal cycle of the
mixed layer in the two models reaches the shallowest point in January and the deep-
est in August and September (Fig. 6.4). The MLD in FESOM is consistently shallower
than in the observations, with the mean MLDmax being 21m too shallow, whereas
the MLD in MITgcm is too shallow from January to May, and too deep from June to
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Table 6.1: Yearly NPP, EP and export efficiency south of 50◦S for the two models as well as
results from previous studies.

value unit fesom mitgcm others

NPP [Pg C yr−1] 3.1 2.1 1.1 - 4.9a

EP [Pg C yr−1] 1.1 1.22 1
b

Export efficiency 0.36 0.58 0.05 - 0.6c

a(Carr et al., 2006).
b(Schlitzer, 2002; Nevison et al., 2012).
c(Bowie et al., 2009; Boyd et al., 2005; de Jong et al., 2012).

Figure 6.4: The seasonal development of the modeled mean iron profile south of 50 ◦S in
the upper 200 meter. The depth of the modeled and observed mixed layer and
the ferricline is likewise plotted. Observations of MLD from Sallée et al. (2010). a)
FESOM b) MITgcm

November. The MITgcm’s mean MLDmin is 20m shallower than in the observations,
and the MLDmax is 32m deeper.

The depth of the mixed layer has a large impact on the vertical iron profile in the
two models and hence also on the relative position of the MLD and the ferricline
(Fig. 6.4). Following Tagliabue et al. (2014), the ferricline is defined as the depth
where the maximum iron gradient occurs. In FESOM, the mean MLD is located well
above the ferricline from January to April (Fig. 6.4a), and the iron concentration at
the base of the mixed layer is consequently very low during these months. In MITgcm,
the mean MLD is situated at approximately the same depth as the ferricline from
January to May, and below it from June to November (Fig. 6.4b), and the mean iron
concentration at the base of the mixed layer is consequently higher throughout the
year in this model as compared to FESOM.

Iron supply
The iron supply through entrainment shows a clear seasonal cycle in both models,
being large and positive during mixed layer deepening in the fall and large and
negative in spring (Fig. 6.5a and b). The seasonal deepening of the MLD starts earlier
in the MITgcm (Fig. 6.4), leading to a longer period of net entrainment in this model.
Despite of the large detrainment in the spring in both models (Fig. 6.5a and b), the
cumulative iron flux from entrainment is positive until October in FESOM (not shown),
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Figure 6.5: The monthly mean of iron supply to the mixed layer through entrainment, verti-
cal eddy diffusion, horizontal advection and upwelling in a) FESOM and b) MITgcm.
Notice the different axes and scales. The monthly mean of the iron concentration
in the mixed layer, the total NPP as well as the contributions from nanophyto-
plankton and diatoms is plotted for c) FESOM and d) MITgcm. The seasonal cycle
of the total NPP is calculated from the MODIS satellite and the VGPM algorithm
(Behrenfeld and Falkowski, 1997).
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with possible implications for the spring bloom as discussed below. In MITgcm, the
positive cumulative iron flux from entrainment is positive from February onwards
(not shown).

The magnitude of the iron flux from vertical eddy diffusivity differs greatly be-
tween the models (Fig. 6.3), and so does the timing of the supply; in FESOM the
highest rate of supply occurs from June to November when the iron concentration
at the base of the mixed layer is relatively high, whereas the major part of the sup-
ply from vertical eddy diffusion in MITgcm takes place from January to June during
deepening of the mixed layer, as deepening leads to a higher diffusivity coefficient
at the base of the mixed layer.

The maximum supply of iron through horizontal advection occurs in August in
FESOM and in September in MITgcm, but the inflow starts two months earlier in MITgcm

than in FESOM, due to the earlier deepening of the mixed layer (Fig. 6.5a and b).
The iron supply through upwelling is small in both models (Fig. 6.3), with the

largest input occurring during winter and spring in both models (Fig. 6.5a and b).
As the strength of the upwelling is similar in the two models, the larger mean flux
in MITgcm (Fig. 6.3) can be attributed to the higher iron concentration at the base of
the mixed layers (Fig. 6.7a and b).

Biological production
In FESOM, the timing of the spring bloom initialization is correct, but the maximum
is reached two months earlier than in the observations (Fig. 6.5c). In MITgcm, the
bloom is initiated slightly late, but the timing of the maximum fits well with the
satellite-based estimates (Fig. 6.5d). FESOM thus has a better date of initialization and
MITgcm a better peak timing, but both models have too steep increases in NPP during
the spring bloom. The difference between the models shows that the circulation and
mixing plays a role regarding the timing of the biological processes. One factor that
may impact the timing of the spring bloom is the MLD, which is deeper in MITgcm

than in FESOM north of 60◦S. Less light thus reaches the phytoplankton in the mixed
layer on average in MITgcm, pointing towards a larger role of light limitation in this
model. This is further confirmed by MITgcm’s higher iron concentration in the surface
water (Fig. 6.4).

The iron concentration in the mixed layer is relatively low in FESOM (Fig. 6.5c).
As the nanophytoplankton have a smaller demand for iron through a smaller half
saturation constant, they dominate production in this model (Fig. 6.5c). The larger
amount of nanophytoplankton in FESOM further has the effect that a larger degree
of remineralization takes place in the mixed layer, sustaining NPP in November and
December (Fig. 6.5c). In MITgcm, the deeper mixed layer keeps the production light
limited longer, and the iron concentration in the mixed layer higher. In August and
September production is dominated by diatoms, which have a higher maximum
growth rate in the model. When the iron surface concentration decreases towards
the end of the year, the fraction of diatoms likewise decrease due to their higher half
saturation constant (Fig. 6.5d).

The average composition of the NPP differs significantly between the two mod-
els; nanophytoplankton is responsible for 79% of the Southern Ocean NPP in FESOM,
whereas they comprise 33% of the NPP in MITgcm. In a study based on satellite ob-
servations, Hirata et al. (2011) show that diatoms comprise less than 20% of the
biomass in the Southern Ocean (Fig. 1 in Vogt et al., 2013), in agreement with FESOM.
Bracher et al. (2009) conversely show that diatoms dominate production in the South-
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Figure 6.6: The yearly averaged MLD: a) based on observations (Sallée et al., 2010) b) FESOM

c) MITgcm. The seasonal amplitude of the MLD (MLDmax and MLDmin): d) based on
observations (Sallée et al., 2010) e) FESOM f) MITgcm.

ern Ocean, which is in line with Hoffmann et al. (2008) who argued that diatoms are
responsible for up to 75% of the NPP, and fits well with the result from MITgcm. The
amount of diatoms in the Southern Ocean varies widely between model studies as
shown by Vogt et al. (2013). Our study suggests that part of the explanation for this
large difference could lie in the OGCMs and their representation of the vertical iron
supply.

6.3.3 Spatial distribution

Mixed layer depth and ferricline
In FESOM, the yearly averaged MLD is shallower than in the observations in the whole
Southern Ocean (Fig. 6.6a and b), though the spatial distribution with deeper mixed
layers near the Polar Front and shallower in the temporarily ice-covered zone (TICZ)
is captured. In MITgcm, the yearly averaged MLD is slightly shallow in the area of the
TICZ, approximately south of 60◦S (Fig. 6.6c). The deeper MLD in the area between
50 and 60◦S is also captured in this model, though it becomes too deep in the Pacific
and especially in the Atlantic sector of the Southern Ocean.

The seasonal amplitude of the MLD especially affects the amount of the entrained
iron (Eq. 6.1). In FESOM, the amplitude is captured, and is even slightly high com-
pared to observations, north of 60◦S (Fig. 6.6d and e). But it is smaller than in the
observations in the TICZ south of 60◦S. The amplitude is closer to the observations
in MITgcm (Fig. 6.6d and f), though it again becomes too large in the Atlantic and
eastern Pacific Southern sectors of the Southern Ocean.
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Figure 6.7: Mean iron concentration at the base of the mixed layer (a, b). Depth difference
between the MLD and the ferricline averaged over time, positive numbers denote
that the MLD is shallower than the ferricline, negative that it is deeper (c, d). a, c)
FESOM. b, d) MITgcm.

The mean iron concentration at the base of the mixed layer shows how much iron is
available for supply to the surface mixed layer. In FESOM, the mean iron concentration
at the base of the mixed layer is below 0.1µmol Fe m−3 in large areas of the Southern
Ocean (Fig. 6.7a). The highest concentrations, ranging from 0.1 to 0.3µmol Fe m−3,
occur in the Weddell and Ross Gyres as well as in the areas of deep winter mixed
layers in the eastern Pacific and Indian Oceans. The mean iron concentration at the
base of the mixed layer in the MITgcm range from 0.1 to 0.3µmol Fe m−3 in the major-
ity of the Southern Ocean, and reaches as high as 0.4µmol Fe m−3 in the upwelling
region south of 60◦S (Fig. 6.7b).

The distance between the ferricline and the MLD highly affects the amount of iron
that is supplied to the mixed layer (Tagliabue et al., 2014), and the spatial distribu-
tion of this field confirms that the MLD on average is located above the ferricline in
FESOM (Fig. 6.7c). It is only in the area between 50 and 60◦S and in the coastal convec-
tion zones, the places characterized by deep mixed layers (Fig. 6.6b) and high mean
iron concentrations (Fig. 6.7a), that the mean MLD is located deeper than the ferricline
in this model, leading to the relatively low iron concentration at the base of the mixed
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layer. In MITgcm, the MLD is located below the ferricline north of 60◦S (Fig. 6.7d), and
south of 60◦S the MLD and the ferricline are much closer to each other than in FESOM.
The iron concentration at the base of the mixed layer is consequently higher in MITgcm

(Fig. 6.7b).

Iron supply
In FESOM, entrainment mainly occurs north of 60◦S (Fig. 6.8a). It is highly corre-
lated with the seasonal amplitude of the MLD (Fig. 6.6e), with the higher rate of
entrainment occurring in the areas of a larger MLD amplitude. This happens as the
deep mixing has the effect that the MLD is located closer to or below the ferricline
(Fig. 6.7c), leading to a higher iron concentration at the base of the mixed layer
(Fig. 6.7a), thereby increasing the magnitude of the iron entrainment.

In MITgcm, a large degree of entrainment takes place north of 60◦S (Fig. 6.8b).
South of 60◦S, MITgcm likewise has positive entrainment in large areas (Fig. 6.8b),
brought on by the deeper mixed layer (Fig. 6.6c), the larger seasonal amplitude of
the MLD (Fig. 6.6f) and the smaller distance between the MLD and the ferricline in
MITgcm than in FESOM (Fig. 6.7c and d). In this model, there is no close relationship
between the dynamics of the mixed layer (Fig. 6.6c and f) and the strength of the
entrainment. This is due to the overall larger seasonal amplitude and larger depth of
the mixed layer, causing the MLD to be below or close to the ferricline on average in
the majority of the Southern Ocean (Fig. 6.7c and d).

The input of iron to the mixed layer through horizontal advection mainly occurs
north of 60◦S (Fig. 6.8c and d), where the meridional slope of the mixed layer depth
is largest (Fig. 6.6b and e). Both models have a large input in the eastern Pacific part
of the Southern Ocean and south of Tasmania (Fig. 6.8c and d). But where MITgcm

additionally has input in the Indian sector, FESOM has a flux of iron out of the mixed
layer here, with the consequence that the net mean supply through this mechanism
becomes smaller. These negative fluxes are caused by the zonal flow of water, and
thereby also iron, out of the mixed layer in the affected areas (not shown).

In FESOM, the higher iron fluxes from vertical eddy diffusion take place in a zone
around Antarctica, providing the largest iron input to the TICZ, as well as to the
areas of deep winter mixing (Fig. 6.8e). In this model, a high degree of vertical
eddy diffusion occurs intermittently when the water column is unstable and when
the wind mixing induces deeper mixed layers, and this intermittent nature is also
visible in the spatial distribution. In MITgcm, the average input from vertical eddy
diffusion can be disregarded due to its small contribution (Fig. 6.3), but the vertical
eddy diffusion rate is higher in the temporary ice zone, especially in the Indian
and Pacific sectors of the Southern Ocean. The supply north of 60◦S is very small
(Fig. 6.8f).

The largest input through upwelling occurs south of 60◦S in both models (Fig. 6.8g
and h), where the iron concentration is highest (Fig. 6.7a and b).

Net primary production
In FESOM the highest rates of NPP take place in the area between 60 and 50◦S, where
the strength of the entrainment is highest (Fig. 6.8a) and the mixed layer is deep-
est (Fig. 6.6b). South of 60◦S the highest production occurs in the areas where the
vertical eddy diffusion is highest.

The total NPP is higher in FESOM than in MITgcm (Table 6.1), and the differences in
the rate of NPP are also evident in the spatial distribution (Fig. 6.9), especially where
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Figure 6.8: Spatial distribution of the input of iron through entrainment (a and b), horizontal
advection (c and d), vertical eddy diffusion (e and f) and upwelling (g and h) in
FESOM and MITgcm, respectively. Notice the different scales.
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Figure 6.9: Spatial distribution of the mean rate of summer (October to March) NPP in the
Southern Ocean. a) FESOM, b) MITgcm.

FESOM has a larger production in the area of the deep winter mixed layers (Fig. 6.6c).
In MITgcm the connection between the iron supply and the NPP is much less obvious.
The pattern of the distribution does, however, show similarities between the two
models; the main areas of elevated production occur north of 60◦S and especially
east of the Patagonian shelf in the Atlantic sector of the Southern Ocean in both
models, as is also the case in reality (e.g. Arrigo et al., 2008).

6.4 discussion

6.4.1 Mixed layer depth

The differences we observe in the iron dynamics of our two model runs shows that
the state of the ocean model, including the representation of the mixed layer, has a
large impact on the biogeochemical results.

The mixed layer in the Southern Ocean is affected by a number of interconnected
processes, such as wind mixing and buoyancy forcing, and it is particularly difficult
to constrain in models (e.g. Sallée et al., 2013; Downes et al., 2014). The parameteri-
zation of the vertical mixing is one component that has a large impact on the MLD.
The KPP scheme, which is used in MITgcm, is known to allow for deeper mixing
when a stable thermocline is present (Large et al., 1994). This explains some of the
difference between the models. Additionally, the MLD in FESOM has been improved
in version 1.4, in which the KPP scheme is used (Downes et al., 2014). The slope
of the pycnoclines, and thereby the strength of the stratification, is affected by the
GM-parameterization of the eddy induced transport in both models. The strength of
this transport may however differ between the two models due to tuning. A steeper
slope of the pycnoclines in MITgcm likewise allows for deeper mixing than in FESOM.
Lastly the difference in spatial resolution between the two models may also impact
the MLD.

Another important physical factor is the strength of the large scale overturning
circulation in the OGCMs, which largely controls the southward transport of iron into
the Southern Ocean, and thereby the iron supply to and the iron fluxes across the
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base of the mixed layer. The impact of the ocean circulation and mixing on the bio-
geochemical results is, however, highly complex, and made even more complicated
by the internal feedbacks of the biogeochemical model. This study can thus not point
to the exact reason for the differences in the biogeochemical results, but it highlights
that the OGCM has a large impact on the biogeochemical results, and that the vertical
iron supply can explain a large part of these differences.

6.4.2 Iron supply from below

Due to the large seasonal amplitude of the mixed layer (Fig. 6.5b), the iron supply
through entrainment dominates the supply in MITgcm. As the average seasonal ampli-
tude is overestimated compared to the observations, it is likely that the entrainment
likewise is somewhat overestimated in this model. For FESOM, the mean seasonal
amplitude is well represented (Fig. 6.5a), but the MLD is too shallow throughout the
season, leading to a lower iron concentration at the base of the mixed layer and
thereby less input through entrainment. It is thus likely that the entrainment is un-
derestimated in this model and entrainment does most likely play a significant role
in the Southern Ocean in reality, especially in the areas of deep wind mixing. This
fits well with the study by Tagliabue et al. (2014), where they concluded that the en-
trainment contributed the most to the flux of iron to the mixed layer in the Southern
Ocean. In the their analyzed observations, the flux of iron supplied through entrain-
ment was 21µmol Fe m−2 yr−1 (Tagliabue et al., 2014), a value between the results
in this study (Fig. 6.3). The range provided by Tagliabue et al. (2014) are closest to
the results from FESOM in the area north of 60◦S, despite of the better fit regarding
iron concentration and MLD in MITgcm. It must however be noted that the observed
profiles in Tagliabue et al. (2014) are sparse and do not give a complete picture of
the Southern Ocean.

Tagliabue et al. (2014) found that the supply of iron through vertical eddy diffusion
was very small across the observation sites, similar to MITgcm, whereas Law et al.
(2003) showed that vertical eddy diffusion played a significant role in the highly iron
depleted waters south of New Zealand, agreeing more with the results from FESOM.
The fact that vertical eddy diffusion dominates the supply of iron from below in
FESOM also fits well with the results from an eddy-permitting model study by Dufour
et al. (2013) who found that vertical eddy diffusion dominated the supply of DIC to
the mixed layer of the Southern Ocean.

Previous studies focussing on the supply of iron through upwelling have usually
calculated the flux by using the magnitude of the water transport multiplied by a
constant iron concentration, such as 0.3 to 0.4µmol Fe m−3 (e.g. Watson et al., 2000;
Hoppema et al., 2003). This results in a higher supply through upwelling than what
is the case in the present study, and points to the important role the mixed layer plays
in determining the vertical fluxes. Tagliabue et al. (2014) argued that the upwelling of
iron on average is of minor importance in the Southern Ocean as it is cancelled out by
downwelling north of the Polar Front, something that is true in both of our models.
But despite of the insignificance of the upwelling for the iron flux into the mixed
layer, it must be noted that this mechanism plays a large role regarding the supply
of iron to the base of the mixed layer, from where it is brought upwards through
other mechanisms. As the the iron concentration at the base of the mixed layer varies
significantly between our models, this mechanism may be very important.



94 publication ii

6.4.3 Other iron sources

In the Southern Ocean iron is supplied through several other sources including aeo-
lian deposition, sedimentary input and release from icebergs and sea-ice. In FESOM,
the average iron input from the sediment and the aeolian sources, is smaller than,
or on the order of, the vertical sources considered in the current study, but likely
important locally. Regarding MITgcm, the external sources comprises a much smaller
fraction of the sources considered here and their impact on production is thus like-
wise much smaller. The size of the sediment source is, however, not well constrained
and varies widely between models, with the models used in the current study hav-
ing a source that is in the smaller end of the range normally used (Aumont and
Bopp, 2006; Moore and Braucher, 2008). It is thus possible that the sediment source
in reality plays a larger role than what our study indicates. Models are routinely
used to quantify the magnitude of the external iron sources in the Southern Ocean
(e.g. Lancelot et al., 2009; Wadley et al., 2014). The sediment source has been shown
to play a significant role regarding the iron supply, especially in the Atlantic sector
of the Southern Ocean and locally in proximity to islands (e.g. Lancelot et al., 2009;
Tagliabue et al., 2009; Pollard et al., 2007).

In previous studies the supply of iron from below is normally disregarded. The
current study does however highlight how the supply from below affects the total
NPP and the phytoplankton composition in the Southern Ocean. Our study thus
suggests that the performance of the ocean model, and thereby the iron supply from
below, must be evaluated before assessing the importance of the external sources.

6.4.4 Biological production

Remote sensing products of Southern Ocean ocean color (e.g. Arrigo et al., 2008)
have revealed that high primary production occurs in certain places. This includes
areas downwind of the continents (e.g. Jickells et al., 2005), downstream of islands,
continental shelves and topographic features (e.g. Blain et al., 2001; de Jong et al.,
2012) and along the receding ice edge (Arrigo et al., 2008). This distribution of NPP

indicates that the input of iron from external sources such as dust and sediments
indeed play a large role in the Southern Ocean, concurring with model studies (e.g.
Lancelot et al., 2009; Tagliabue et al., 2009). While we recognize the role of exter-
nal iron sources locally in the Southern Ocean, we do argue that the vertical iron
fluxes are important for maintaining the iron concentration in the Southern Ocean,
especially in remote areas and below sea-ice.

6.4.5 Export efficiency

The value of the export efficiency denotes the fraction of exported NPP, and is there-
fore a key number regarding the model’s carbon cycle. For a model in equilibrium,
the amount of nutrients supplied to the mixed layer must be balanced by the amount
exported through sinking of organic material. The export ratio is consequently ex-
pected to be larger in a system with a larger input of nutrients.

After deriving export efficiencies (fe-ratios) from iron measurements in the strongly
iron limited area south-west of New Zealand, Boyd et al. (2005) argued that a realis-
tic range for the export efficiency in the area was 0.05 to 0.48. The higher ratios here
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were connected to higher iron inputs. In line with this, de Jong et al. (2012) found an
even higher export ratio of 0.59 in the Atlantic sector of the Southern Ocean where
iron limitation is less severe. This connection between iron availability and export
efficiency is also observed in our study, where MITgcm has the larger efficiency (Ta-
ble 6.1).

In a measurement-based study, Bowie et al. (2009) found low export efficiencies
(fe-ratios) in the severely iron depleted area south of Australia and remarked that
regenerated iron must be important for production in this region. In FESOM, where
production is dominated by the less iron demanding nanophytoplankton (Fig. 6.5a),
the continued production in the summer is most likely likewise fueled by regener-
ated iron. As the turnover rate is higher for nanophytoplankton this iron "source"
is most likely higher in FESOM than in MITgcm where diatoms dominate production
(Fig. 6.5b).

Maiti et al. (2013) presented a collection of previous estimates of the export effi-
ciency from the Southern Ocean, showing that they vary widely but that the export
efficiency generally decreases with increasing NPP. This latter feature is also seen in
our study, where FESOM has a higher NPP, but lower export efficiency than MITgcm.
In MITgcm, the ratio of diatom production is higher than in FESOM, and as diatoms
have a smaller remineralization rate this leads to the larger export efficiency in this
model. This may indicate that models with diatom dominance have a higher export
efficiency, something that again must be kept in mind when evaluating model runs
regarding the marine carbon-cycle.

6.4.6 Future iron supply

The response of the Southern Ocean mixed layer depth to climate change is not
fully understood. Two counteracting mechanisms can be predicted; shallowing due
to stronger stratification (e.g. Sallée et al., 2013) and deepening due to stronger winds
(e.g. Meijers, 2014). The current study shows that the direction of change could
greatly impact the iron supply to the mixed layer, and thereby the biological pro-
duction and export in the area. As the reproduction of a realistic mixed layer depth
is already a challenge for ocean models under current forcing (e.g. Meijers, 2014;
Downes et al., 2014), the modeled response of marine NPP and EP to climate change
could be strongly influenced by unidentified biases in the ocean model, with large
implications for the predicted carbon fluxes in the model.

6.5 conclusion

Our study clearly shows that special care must be taken to adequately represent
the ocean circulation and mixing in coupled biogeochemical ocean models, both in
contemporary and in future runs, as it has a large effect on the modeled iron fluxes
across the base of the mixed layer, and thereby the net primary production and the
export efficiency.

Differences in the ocean state led to the sources of iron from below being very dif-
ferent in our two models, both in magnitude and in terms of what source dominates
the iron supply. In FESOM, the supply of iron was lower than in MITgcm and the ver-
tical eddy diffusion dominated the overall supply, while entrainment was important
north of 60◦S and during the spring bloom. Entrainment dominated the iron supply
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in MITgcm due to a larger variability of the mixed layer in this model. Horizontal
advection also plays a role in MITgcm.

The net primary production in both models was reasonable compared to satellite-
based observations, but the species composition differed significantly between them,
with diatoms being responsible for 67% of the NPP in MITgcm and 21% in FESOM.
MITgcm’s larger iron supply from below, and thereby also higher mixed layer iron
concentrations, caused the larger and more iron demanding diatoms to thrive in this
model. The larger supply of iron in MITgcm also led to a higher export efficiency
of 0.58, as opposed to 0.36 in FESOM. The ocean state, and thereby the mixed layer
dynamics, of the ocean general circulation model is thus of major importance for
studies of the carbon cycle in the Southern Ocean.
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Abstract One way to study the impact of the Southern Ocean iron sources on bi-
ological production is by using ocean general circulation biogeochemical models
(OGCBMs). Most of such studies agree that the sediment source is the most important
of the external iron sources to the Southern Ocean. Neither this benthic iron flux
nor the removal trough scavenging of iron onto organic particles are, however, well
constrained by measurements, and these fluxes thus vary widely between models.
While many OGCBMs produce relatively similar numbers for the total net primary
production (NPP) in the Southern Ocean, it is not clear to what extend the large
differences in the iron supply and iron removal affects the modeled phytoplankton
composition and opal export in the Southern Ocean.

We are presenting a sensitivity study, in which the strength of the benthic iron
flux was varied simultaneously with the counteracting scavenging of iron in the wa-
ter. We show that while changing the benthic iron flux substantially, it is possible
to recreate both the mean iron profiles and the total NPP in the Southern Ocean
by choosing an appropriate scavenging rate. The changed iron input does, however,
change the spatial distribution of the NPP along with the amount of NPP from di-
atoms. A benthic shelf iron flux of 1.2µmol Fe m−2 day−1, leading to a total input
of 2.14 × 109 mol Fe yr−1 to the Southern Ocean, leads to the best results when eval-
uating against knowledge of iron fluxes, as well as diatom distributions and opal
export. Given the large degree of freedom regarding the modeled strength of the
benthic iron flux and the scavenging rate, this study highlights the importance of
evaluating the total NPP against observations, but in particular also against obser-
vations of diatom abundance and opal export. Data for both of these are, however,
scarce, and the study thus shows how additional data collection regarding the South-
ern Ocean phytoplankton composition is necessary to further improve the evaluation
of OGCBMs.
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7.1 introduction

Iron is thought to be the main limiting factor of biological production in 30 to 50%
of the world’s surface ocean (Moore et al., 2002; Aumont et al., 2003; Dutkiewicz et
al., 2005). The main known areas are the so-called High-Nutrient Low-Chlorophyll
(HNLC) regions: The Southern Ocean (Martin et al., 1990; Boyd et al., 2000), the Equa-
torial Pacific (Kolber et al., 1994; Behrenfeld et al., 1996) and the Northern Pacific
(Martin and Fitzwater, 1988).

Traditionally, the most important external iron source to the ocean has been thought
to be aeolian dust input (e.g. Jickells et al., 2005), but several studies have shown that
the sediment source likewise plays an important role. An increase in the water’s con-
centration of dissolved iron towards the coast and shelf areas was first documented
by Johnson et al. (1997) and has later been widely confirmed (e.g. Johnson et al., 2003;
Moore and Braucher, 2008). Studies showing that coastally derived iron was carried
far into the Pacific Ocean from the Aleutians (Lam et al., 2006) and Kamchatka (Lam
and Bishop, 2008) further indicated that this source can not be ignored in large scale
iron budgets.

Determining the origin of the dissolved iron in the water is, however, difficult. A
new method for this, based on the stable isotopes of iron in seawater, has recently
been developed (John and Adkins, 2010; Conway et al., 2013). The stable isotope
technique has confirmed the importance of the sediment source of iron; Conway
and John (2014) showed that sediment derived iron was advected far from its source
region in the Equatorial Atlantic, and Radic et al. (2011) found that iron in the eastern
equatorial Pacific originated in the sediments of Papua New Guinea.

In the Southern Ocean, the aeolian iron input supplies a significant amount of new
iron in the areas downwind of Patagonia and Australia (e.g. Cassar et al., 2007), but
since half of the atmospheric supply is lost on a length scale of 1500 km (Prospero
et al., 1989) much less reaches the remoter areas of this ocean leading to widespread
iron limitation. Satellite-based measurements of Southern Ocean chlorophyll never-
theless show consistent patches of high concentrations downstream of islands such
as South Georgia (e.g. Korb and Whitehouse, 2004), the Kerguelen (e.g. Blain et al.,
2001) and Crozet Island (e.g. Pollard et al., 2009). One explanation for these blooms
is that the sediment source of iron also plays a role in the Southern Ocean, where
released iron can travel relatively far when it is transported in the fast flowing jet
streams of the Antarctic Circumpolar Current (de Baar et al., 1995; Croot et al., 2004a).
Several model studies have confirmed the importance of the sediment source of iron,
both in the Southern Ocean (Tagliabue et al., 2009; Lancelot et al., 2009; Wadley et al.,
2014) and on the global scale (Moore and Braucher, 2008). The strength of the sed-
iment source is, however, not well constrained by measurements and both the total
supply and the parameterization of iron from the sediments therefore varies widely
between models (e.g. Aumont and Bopp, 2006; Moore and Braucher, 2008; Lancelot
et al., 2009). A large variation in the strength of the sediment source of iron is possi-
ble because the magnitude of the removal of iron through particle scavenging is not
well known either, and modelers thus have a large degree of freedom regarding the
tuning of the strength of the iron sources parallel with the particle scavenging.

In the Southern Ocean, the iron availability affects the phytoplankton composition
(e.g. Takeda, 1998; Hoffmann et al., 2006; Wang et al., 2014b), which has an impact
on the mean intracellular ratio between silicate and carbon in diatoms (Baines et al.,
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2010; Assmy et al., 2013). Changes in the strength of the sediment source of iron and
the scavenging rate are thus likely to impact the model’s representation of diatoms
and opal export, especially in the Southern Ocean where diatoms play a comparably
large role (e.g. Soppa et al., 2014)

In this paper, we investigate how simultaneous changes in the strength of the
sediment source and the scavenging of iron impact the phytoplankton productivity
and composition in the Southern Ocean in a coupled biogeochemical ocean model.
We further determine the optimal setting of parameters that determine the strength
of the benthic iron flux and the scavenging rate by evaluating the changes in the
phytoplankton composition compared to observations.

7.2 methods

7.2.1 Ocean model

For the current study we are using the Finite Element Sea-ice Ocean Model (FESOM)
version 1.4 (Wang et al., 2014a) coupled to the biogeochemical model REcoM2 de-
scribed below.

FESOM is a global sea-ice ocean model, which solves the hydrostatic equations
under the commonly applied Boussinesq approximations using the finite element
method. FESOM 1.4 is an update from the version used in previous work with REcoM2

(Schourup-Kristensen et al., 2014b; Schourup-Kristensen et al., 2014a). Important im-
provements include a change of the parameterization of the diapycnal mixing from
the Pacanowski-Philander parameterization (PP, Pacanowski and Philander, 1981)
to the k-profile parameterization (KPP, Large et al., 1994). This ensures that verti-
cal turbulent mixing occurs to a larger degree in stable stratified water. Secondly,
the Gent-McWilliams parameterization (Gent and Mcwilliams, 1990), which controls
the eddy-induced horizontal advection, has been tuned to improve the slope of the
isopycnals in the Southern Ocean, something that has a large impact on the mixed
layer depth (MLD) in the area. And finally, the background vertical mixing coefficient
now increases with depth, where it was previously constant. A full description of
the current model version can be found in Wang et al. (2014a).

FESOM runs on a grid that is horizontally triangulated and unstructured, and ver-
tically stratified. In the Southern Ocean south of 35oS, the grid used for the current
study contains 16.000 surface nodes and a total of almost 477.000 nodes. The horizon-
tal resolution ranges from 15 km along the coast of the Ross Sea to around 160 km on
the southern edge of the subtropical gyres (Fig. 7.1). The bottom topography south
of 60oS is based on the Rtopo-1 dataset (Timmermann et al., 2010) and in the rest of
the Southern Ocean it is based on data from the General Bathymetric Chart of the
Ocean (www.gebco.net). Both datasets have 1 minute resolution. The grid is similar
to the one used in Schourup-Kristensen et al. (2014b).

7.2.2 Biogeochemical model

The Regulated Ecosystem Model (REcoM2) is a so-called Nutrient-Phytoplankton-
Zooplankton-Detritus model (e.g. Hauck et al., 2013; Schourup-Kristensen et al.,
2014b). The limiting nutrients include nitrogen, silicate and iron and the model addi-
tionally describes the cycling of carbon. It has two phytoplankton classes, nanophy-
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Figure 7.1: The horizontally triangulated grid used in the study, overlaid the bottom topog-
raphy.
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toplankton and diatoms and one class of zooplankton. The detritus is contained
in one class and has a sinking velocity that increases with depth following Kriest
and Oschlies (2008). REcoM2 employs variable stoichiometry between carbon and the
macronutrients following Geider et al. (1998).

The concentration of dissolved iron in the water is increased through remineral-
ization of phytoplankton and detritus, as well as by zooplankton excretion and res-
piration. Iron is removed from the water by phytoplankton growth and scavenging.
The intracellular concentration of iron is linearly correlated with the intracellular car-
bon concentration, with a Fe:C ratio of 0.005 µmol Fe (mmol C)−1 following Sunda
and Huntsman (1995), and uptake limitation is calculated using Michaelis-Menten
kinetics.

The calculation of the scavenging rate is based on Parekh et al. (2005), where only
a fraction of the dissolved iron is available for scavenging as the rest is bound to
ligands. It has been altered to make scavenging linearly correlated with the con-
centration of detritus in the water column, with the effect that the scavenging rate
becomes higher in areas of high biological production, and lower in low production
areas. The scavenging rate (Scav) is calculated as follows:

Scav = κFe ·DetC ·DFe ′
[
µmol Fe m−3 day−1

]
(7.1)

Here, DFe ′ (µmol Fe m−3) denotes the concentration of the dissolved iron that is
not bound to ligands, DetC (mmol C m−3) is the detritus concentration and κFe
((mmol C m−3)−1 day−1) is the mass specific scavenging rate.

The removal of iron by scavenging is balanced by aeolian and sedimentary iron
inputs in the model. The dust field applied in REcoM2 (Mahowald et al., 2003; Luo
et al., 2003) is assumed to contain 3.5% of iron by weight, of which 1.5% dissolves
immediately in the surface ocean upon deposition and the rest is lost from the sys-
tem.

The input of dissolved iron from the sediments is calculated following Elrod et al.
(2004), so the iron flux from the benthos to the bottom water (BenFFe) is proportional
to the release of inorganic carbon from the sediments:

BenFFe =
BenthosC · qFe:Csed

ρbenC

[
µmol Fe m−2 day−1

]
(7.2)

The vertically integrated carbon concentration in the benthos is denoted by BenthosC
(mmol C m−2), ρbenC = 200day is the remineralization time scale for benthos carbon
and qFe:Csed (µmol Fe mmol C−1) is the benthic iron to carbon release ratio. The Fe:C
ratio in the sediments can become higher than in organic material in general as
lithogenic iron in the sediments is mobilized under anoxic conditions. In the current
study it is the mass specific scavenging rate (κFe) and iron to carbon concentration
in the benthos (qFe:Csed ) that are varied as described next.

7.2.3 Experiments

For the current study we have performed a total of nine model runs, using REcoM2-
FESOM 1.4; one control run and eight sensitivity runs (Table 7.1). For all runs the
ocean model was spun-up for 300 years under the CORE-I normal year forcing (Large
and Yeager, 2009), after which the biogeochemical model was started and run for 50
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Table 7.1: Experiments performed, including the values of the Fe:C-ratio in the sediment
(qFe:Csed ) and mass specific scavenging rate (κFe).

model run sediment fe :c-ratio mass specific scavenging rate

[µmol Fe mmol C−1] [(mmol C m−3)−1 day−1]

CTRL 0.01 0.0312

SED1.1 0.10 0.312

SED1.2 0.10 0.156

SED1.3 0.10 0.078

SED1.4 0.10 0.039

SED2.1 0.68 1.061

SED2.2 0.68 0.531

SED2.3 0.68 0.266

SED2.4 0.68 0.133

years, likewise under CORE-I forcing. The results presented here are the averages of
the last 10 years of the runs.

To investigate the effect of the strength of the sediment source of iron on the
biological production in the Southern Ocean south of 35oS, two sets of experiments
were performed (Experiment 1 and 2), each with a constant benthic Fe:C release ratio
(qFe:Csed , Eq. 7.2). In experiment 1, the benthic Fe:C release ratio was ten times higher
than in the CTRL run, and in experiment 2, it was set to 0.68 µmol Fe mmol C−1 as
estimated by Elrod et al. (2004).

For the two experiments, the scavenging rate was increased as compared to the
CTRL run to account for the additional iron input. For each experiment, four dif-
ferent scavenging rates were tested (κFe, Eq. 7.1), leading to total of four sensitivity
runs in each experiment. These runs were named SED1.1 to 1.4 and SED2.1 to 2.4 in
experiment 1 and 2, respectively (Table 7.1).

7.3 results

7.3.1 Sensitivity study

Iron
In REcoM2, the magnitude of the released iron from the sediments depend on the
prescribed benthic Fe:C release ratio as well as the carbon concentration within
the sediments (Eq. 7.2). The release consequently differs between all of the model
runs, with the total input to the Southern Ocean south of 35oS ranging from 0.22×
109 mol Fe yr−1 in the CTRL run to 15.8× 109 mol Fe yr−1 in SED2.3 (Table 7.2). The
benthic Fe:C ratio has a large impact on the amount of iron released from the sed-
iments, and the total iron input varies with almost a factor 10 between experiment
1 and 2, whereas the intra-experiment difference, brought on by differences in the
scavenging rate, is small (Table 7.2). The total iron release nevertheless increases
with decreased scavenging rate in the first three studies (1.1 to 1.3 and 2.1 to 2.3), but
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Table 7.2: Total iron input to the Southern Ocean south of 35oS from the sediments in all
runs, the mean iron flux into the water on the upper 500m of the water column
and the percentage of the external iron input contributed by the sediments. Input
from dust: 0.28 × 109 mol Fe yr−1.

run iron input mean flux benthic input

[109 mol Fe yr−1] [µmol Fe m−2day−1] [%]

CTRL 0.22 0.12 44.0

SED1.1 2.00 1.33 87.7

SED1.2 2.10 1.30 88.2

SED1.3 2.14 1.20 88.4

SED1.4 2.00 0.96 87.7

SED2.1 13.8 9.60 98.0

SED2.2 14.9 9.70 98.2

SED2.3 15.8 9.42 98.3

SED2.4 15.1 7.83 98.2

then decreases again (Table 7.2). The increase happens as less scavenging means that
more iron is available in the water for biological production, which leads to more
carbon sinking into the sediments, thereby increasing the iron release (Eq. 7.2). This
biological feedback mechanism will be discussed further below.

Turning to the vertical distribution of the mean benthic iron flux per unit area,
it is largest in the sediments shallower than 500m, with the maximum iron input
occurring at a depth of 50m in all runs (Fig. 7.2). The strength of the mean iron
flux in the upper 500m of the ocean differs greatly between experiment 1 and 2,
concurring with the total iron input to the Southern Ocean (Table 7.2 and Fig. 7.2).
The small intra-experimental dependence of the mean iron flux in the upper 500m
on the scavenging can be explained by the fact that the removal of iron through
scavenging is less important in areas where iron is continuously supplied, such as
the shelf area. The supply allows for biological production to continue in coastal
regions despite of a high scavenging rate, and the organic carbon maintains the
benthic iron release.

In contrast to the mean sediment flux, the mean iron profile in the Southern Ocean
does not change substantially between the CTRL run, experiment 1 and experiment
2, but it changes slightly when the scavenging is changed (Fig. 7.3). On the shelves
(>−1000m, Fig. 7.3a and b), decreased scavenging leads to increased iron concen-
trations throughout the water column (Fig. 7.3a and b). The largest increases in the
iron concentration on the shelves occur in the runs with the highest benthic Fe:C ra-
tio, as more iron is delivered to the water in these runs (Fig. 7.3b). In the open water
(<−1000m, Fig. 7.3c and d), the same pattern occurs, with higher iron concentrations
in the runs with less scavenging, though the effect is less clear in the deep water than
in the shallow water. One thing that stands out is the fact that it is possible to virtu-
ally produce the open ocean iron profile of the CTRL run in both experiment 1 and
2 (Fig. 7.3c and d). Compared to the observations, all of the model runs have too low
surface iron concentrations in the open ocean, whereas the deep iron concentrations
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Figure 7.2: Vertical profiles of the mean flux from the sediment into the water calculated
south of 35oS. a) Experiment 1 (Fe:Csed = 0.1µmol Fe mmol C−1), and CTRL run.
b) Experiment 2 (Fe:Csed = 0.68µmol Fe mmol C−1), and CTRL run.

become too high, especially in SED2.1 to 2.4 where the sediment input is highest. For
the shelves, the modeled iron profiles are closer to the observations than in the open
ocean (Fig. 7.3).

Residence time of iron
The residence time of iron in the model (Tres) is calculated using the removal rate
of iron, which depends on the scavenging of iron onto particles and on the sinking
speed of iron-containing detritus. The residence time is calculated for the Southern
Ocean south of 35oS for the upper 500m and for the whole water column (Table 7.3).

Tres =
FeV

Fe removal rateV

=
FeV

ScavV + 0.005µmol Fe mmol C−1 ·DetV ·wDet ·H−1
(7.3)

Here the term FeV denotes the water’s iron inventory (µmol Fe), ScavV denotes
the total scavenging loss as described in Eq. (7.1) multiplied by the water volume
(µmol Fe day−1). DetV is the water’s inventory of detritus (mmol C), wdet is the
sinking speed of the detritus and H is the depth of the water column considered.

The residence time in the model is clearly affected by the rate of scavenging, both
in the upper 500m of the water column and in the whole water column of the South-
ern Ocean. The longest upper ocean residence time of 18 years occurs in the CTRL
run where the scavenging rate is the lowest, and the shortest residence time occurring
in SED2.1 where the scavenging is highest (Table 7.3). The scavenging rate controls
the residence time directly by removing iron from the water, but it also controls it
indirectly as less scavenging leads to higher iron concentrations in the water, which
in turn leads to more biological production and thereby also a higher export of iron
through the sinking of detritus. In the CTRL run, the scavenging component and the
sinking component of Eq. (7.3) are of equal magnitude, but as scavenging is increased
in experiment 1 and 2, the scavenging becomes more important. In experiment 2 the
scavenging is on average 50 times higher than the removal of iron through sinking
of detritus.
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Figure 7.3: Vertical profiles of the mean iron concentration in the Southern Ocean south of
35
◦S. a) Experiment 1, mean iron profiles on the shelves (>−1000m). b) Experi-

ment 2, mean iron profiles on the shelves (>−1000m). c) Experiment 1, mean iron
profiles in the open ocean (<−1000m). d) Experiment 2, mean iron profiles in the
open ocean (<−1000m). All subplots additionally have the vertical profile from
the CTRL run and from the observations from Tagliabue et al. (2012), Table 1.
Notice the double log-scale.

Table 7.3: Residence time of iron in the Southern Ocean south of 35o for the entire water
column and waters shallower than 500m.

run upper 500 m whole water column

CTRL 18.1 years 266.8 years

SED1.1 2.5 years 45.2 years

SED1.2 3.6 years 53.0 years

SED1.3 5.5 years 68.3 years

SED1.4 9.2 years 101.7 years

SED2.1 3.6 months 7.8 years

SED2.2 5 months 8.6 years

SED2.3 7.2 months 9.8 years

SED2.4 13 months 13.4 years
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The residence time is consistently higher when calculated for the whole water col-
umn than when calculated for the upper 500m of the water column. This is because
the iron concentration is highest in the deep water (e.g. Fig. 7.3) and because the
detritus concentration decreases with depth leading to less removal of iron through
both sinking and scavenging.

Biology
The total NPP south of 35oS in the nine runs ranges from 4.9 Pg C yr−1 in run SED2.1
to 10.3Pg C yr−1 in run SED1.4 (Fig. 7.4a). For both experiment 1 and 2, the total
NPP increases with decreasing scavenging, as decreased scavenging means that more
iron is available for biological production. The NPP from diatoms is especially depen-
dent on the water’s iron concentration as diatoms have a higher requirement for iron
than the smaller nanophytoplankton due to their higher half saturation constant. But
when iron is available, diatoms also have a higher growth rate than the nanophyto-
plankton, and all in all this leads to larger differences in the fraction of NPP from
diatoms within the experiments. The NPP from diatoms is largest in run SED1.4 and
2.4.

The intracellular Si:C ratio in the diatoms has been shown to increase under iron
limitation (e.g. Takeda, 1998). This dependence is build into the REcoM2 code and
when the Si:C ratio is averaged for the Southern Ocean south of 35oS, this ratio
indicates in which runs the diatoms are more iron stressed. The intracellular ratio is
allowed to vary between set limits of 0.004 to 0.8 mmol Si mmol C−1 in REcoM2, and
in all runs, the mean Southern Ocean Si:C ratio lies between 0.5 and 0.8. The ratio
does, however, decrease with decreased scavenging rate, as this means that more
iron is available in the mixed layer (Fig. 7.3).

Another quantity that is related to iron limitation is export of biogenic silica (opal).
A large fraction of the global export of opal, takes place in the Southern Ocean (e.g.
Dunne et al., 2007). In REcoM2, the total export of opal is, not surprisingly, highly
correlated with the diatom fraction of the NPP (Fig. 7.4), and thus increases with
decreasing scavenging in the water. Of the sensitivity runs, only SED1.4 has a larger
opal export than the CTRL run.

In our study it is clear that the mean state of the biology is dependent on the rate
of scavenging and the resulting iron availability, but less on the magnitude of the
sediment source. It is interesting to note that the CTRL is very similar to the run
SED1.3 regarding the NPP and the mean Si:C ratio (Fig. 7.4a, b and c), whereas they
differ regarding the export of opal (Fig. 7.4d). Regarding experiment 2, the NPP of
the CTRL run lies between the result of SED2.3 and SED2.4.

7.3.2 Spatial distribution

For the spatial distribution we compare the CTRL run with SED1.3, as these runs
produce a similar result regarding the total NPP, but not for the contribution of di-
atoms to NPP and the opal export. Regarding experiment 2, the NPP in the CTRL run
lies between the results from SED2.3 and SED2.4 (Fig. 7.4) and we will to compare to
run SED2.3.

Iron fields
In the CTRL run, the mean iron concentration in the upper 100m is highest in the
belt between 40 and 60oS, with the highest concentrations occurring downstream
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Figure 7.4: a) Total NPP south of 35◦S for every run. b) The mean percentage of NPP by di-
atoms south of 35◦S in all runs. c) Mean intracellular C:Si-ratio in diatoms south
of 35◦S in all runs. d) Total export of opal south of 35oS in all runs. The values
written above the bars in subplot a) and c) denote the total NPP and opal export
south of 50oS, respectively.
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Figure 7.5: a) Mean surface iron concentration in the upper 100m south of 50◦S in the CTRL
run, b) The difference in the mean iron concentration in the upper 100m between
SED1.3 and CTRL. c) The difference in the iron concentration in the upper 100m
between SED2.3 and CTRL

Figure 7.6: a) Mean benthic input of iron in the Southern Ocean south of 50◦S in model run
a) CTRL, b) SED1.3, c) SED2.3. Notice the nonlinear scale.

of Patagonia, South Africa and Australia (Fig. 7.5a), where iron is supplied through
dust and from the sediments (Fig. 7.6a). The CTRL run has a small input from the
shelves around the Antarctica (Fig. 7.6a), but not enough to increase the iron concen-
tration here (Fig. 7.5a), possibly because it is immediately removed from the surface
by coastal downwelling or utilized for phytoplankton growth.

In SED1.3, the increased iron flux from the shelf of New Zealand increases the
iron concentration in the Pacific sector of the Southern Ocean (Fig. 7.5b), the area
with the lowest iron concentration in the CTRL run. The second place of elevated
iron concentrations is around the Kerguelen Plateau, where the sediment flux also is
relatively high (Fig. 7.5b and 7.6b). The open ocean part of the Southern Ocean does,
however, also have areas with slightly lower iron concentrations in SED1.3 compared
to the CTRL run due to the higher scavenging rate in SED1.3.

The much higher benthic input in SED2.3 along with the higher scavenging rate
creates a strong off-shore gradient, with high concentrations close to the shore and
very low in the open ocean (Fig. 7.5c).

Net primary production
The spatial distribution of the NPP is correlated with the iron concentration in the
upper 100m of the water column in the CTRL run, with higher rates between 40 and
60oS, especially in the Atlantic and Indian sectors of the Southern Ocean (Fig. 7.7a).
When the sedimentary iron input is increased in SED1.3 and SED2.3, the total NPP is
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Figure 7.7: a) Mean NPP in CTRL run. b) Difference in the rate of total NPP between CTRL
and SED1.3. c) Difference in the rate of total NPP between CTRL and SED2.3. d)
Mean NPP from diatoms in CTRL run. e) Difference in the rate of diatom NPP

between CTRL and SED1.3. f) Difference in the rate of diatom NPP between CTRL
and SED2.3.

increased downstream of the Patagonian shelf, in the Pacific sector of the Southern
Ocean, downstream of New Zealand and around the Kerguelen plateau, where the
iron concentrations were also elevated, but it is decreased in the rest of the Southern
Ocean (Fig. 7.7b and c). The magnitude of the changes in both directions are largest
in SED2.3 as both the near-shore iron input and the off-shore iron removal is the
largest in this model run (Fig. 7.5).

Regarding the NPP from the diatoms in the CTRL run, it mainly takes place down-
stream of the Patagonian shelf, where iron is added from the dust and the sedi-
ments, but it also occurs in the Indian sector of the Southern Ocean south of 60oS,
where iron must be supplied from below (Fig. 7.7d). When the sediment source is
increased, the diatom growth is increased downstream of shelves, especially in the
Pacific Ocean, and on the shelves of Patagonia, Kerguelen and along the Antarctic
coast (Fig. 7.7e and f). In the open ocean south of 50oS, the production of diatoms
is, however, decreased, especially in SED2.3 where the scavenging is strongest. The
similarity in the patterns between the change in the total NPP and the NPP from the
diatoms show that diatoms are to a large degree responsible for the changes in the
NPP between the runs, especially south of 40oS.

Silicon
Due to a slow dissolution rate of biogenic silica, the export of opal is highly corre-
lated with the diatom production in the CTRL run, with the largest export occurring
downstream of New Zealand and the Patagonian shelf. A large export, however, also
takes place south of 50oS where the external iron input is much smaller (Fig. 7.7a and
7.8a). When the benthic flux and scavenging rate of iron is increased in SED1.3 and
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Figure 7.8: a) Mean opal export across 100m. b) Difference in opal export between SED1.3
and CTRL runs. c) Difference in opal export between SED2.3 and CTRL run. d)
Mean intracellular Si:C ratio in CTRL run. e) Difference in intracellular Si:C ratio
between SED1.3 and CTRL. f) Difference in intracellular Si:C ratio between SED2.3
and CTRL.

2.3, the opal export increases downstream of the main shelves, but decreases south
of 50oS, similar to NPP from diatoms (Fig. 7.8b and c).

The diatom intracellular ratio between silicon and carbon affects the export of the
two compounds. In the CTRL, low diatom Si:C ratios clearly occur in the same ar-
eas where the production from diatoms is high, but not necessarily where the iron
concentrations are high. This indicates that the Si:C ratio is a proxy for good growth
conditions for the diatoms, rather than for iron concentrations. The dependence of
the Si:C ratio on the iron concentration is clear when we examine the changes be-
tween the CTRL run and SED1.3 and 2.3, as the ratio decreases south of 60oS, where
the iron concentration also decreases and it increases downstream of the shelfs where
the iron concentration is increased (Fig. 7.8e and f).

7.4 discussion

7.4.1 Magnitude of the sediment flux

Measurements of the flux of iron into the water on the Southern Ocean continental
shelves cover a large range of values. In the lower end, a newer study found an aver-
age iron flux of 0.36µmol m−2 day−1 for the Ross Sea (Marsay et al., 2014), whereas
Blain et al. (2008) measured 136µmol Fe m−2 day−1 on the Kerguelen plateau. These
fluxes represent single sites, while our values are averaged over time and space
(Table 7.2). While our CTRL run flux of 0.12µmol m−2 day−1 is relatively close to
the value found by Marsay et al. (2014), the mean value of the flux south of 35oS
should most likely be somewhat higher than the value in the Ross Sea, and the value
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of 136µmol Fe m−2 day−1, measured on the highly productive Kerguelen Plateau
during the peak of iron release, is too high as a mean for the area south of 35oS.
In between these is the mean value of 9.2µmol m−2 day−1 found by de Jong et al.
(2012) measured on the continental shelves in the Atlantic sector of the Southern
Ocean, which is very similar to our mean values from experiment 2 (Table 7.2). Their
value represents several sites and could indicate that the flux in our experiment 2 is
realistic, thereby implying that the scavenging scheme should be changed in REcoM2

to deal with the increased iron input from such a large flux. A global mean flux of
4.3µmol m−2 day−1 based on shelf fluxes was suggested by Elrod et al. (2004), and
falls between our mean shelf fluxes in experiment 1 and 2 (Table 7.2). Since many
of the observations Elrod et al. (2004) based their number on were located in high-
productivity areas such as the Californian upwelling zone, it is probably too high as
a mean for the Southern Ocean, where biological production generally is lower. This
dataset thus points towards the flux in experiment 1 as the more realistic one.

The strength of the iron flux in experiment 1 (Table 7.2) also fits well with that used
by some other OGCBMs; Moore et al. (2004) used a constant value of 2µmol m−2 day−1

in areas shallower than 1100m, whereas Aumont and Bopp (2006) used a depth de-
pendent release rate of iron that was set to a maximum of 1µmol m−2 day−1. The
parameterization of the iron release used in the current study (Elrod et al., 2004),
which leads to a spatially varying iron release, has also been used by Moore and
Braucher (2008) and Wadley et al. (2014). In the CESM model (Moore and Braucher,
2008), it lead to an input rate ranging from 0 to 16.5µmol Fe m−2 day−1, very similar
to the values in our SED2.3 model run (Fig. 7.6), and not unreasonable compared
to the measurements mentioned above. But as is the case for the observations, the
modeled fluxes vary significantly.

In the current study, the total input of iron to the Southern Ocean varied with
more than an order of magnitude, from 0.22× 109 mol Fe yr−1 in the CTRL run to
15.8× 109 mol Fe yr−1 in SED2.3 (Table 7.2). Observation-based estimates of the total
iron input do not exist, but it is possible to compare the iron input in REcoM2 to other
OGCBMs. Tagliabue et al. (2009) had an input of 1.34× 109 mol Fe yr−1 in a model
study covering the area south of 35oS. This is slightly lower than the input of 2.00 to
2.14× 109 mol Fe yr−1 we see in our experiment 1 (Table 7.2). In another model study,
Lancelot et al. (2009) had a total input of 0.38× 109 mol Fe yr−1 from the sediments
south of 60oS. This is very similar to the input in our SED1.3 run, in which the input
was 0.36× 109 mol Fe yr−1 in the same area.

7.4.2 Iron concentration and scavenging

The modeled mean iron profiles tend to have low surface iron concentrations and
high deep iron concentrations compared to the mean profile of the observations, es-
pecially in the open ocean (Fig. 7.3). This shows that while most of the iron from the
sediments is added from depths shallower than 500m (Fig. 7.2), most of the scaveng-
ing, which is dependent on the detritus concentration, also removes iron in the upper
part of the water column. In reality, the maximum mean values are generally close to
0.6µmol Fe m−3, though it varies between the major ocean basins (e.g. Johnson et al.,
1997; Moore and Braucher, 2008; Tagliabue et al., 2012). The modeled deep water con-
centrations close to 1µmol Fe m−3 are thus likely overestimated. Johnson et al. (1997)
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suggested that the scavenging rate of iron increases when the concentration reaches
0.6µmol Fe m−3, thereby explaining this apparent maximum. In REcoM2, binding of
dissolved iron to ligands decreases scavenging when the iron concentration is lower
than 1µmol Fe m−3. Decreasing the assumed ligand concentration would be a way
to increase the scavenging rate in the model, something that could be necessary for
realistic runs with an increased sediment source, especially when the strength is high
as in experiment 2.

Regarding the surface iron concentrations, Klunder et al. (2011) observed a north-
ward increase in the Atlantic sector of the Southern Ocean, ranging from 0.15µmol Fe m−3

in the Weddell Gyre to 0.25µmol Fe m−3 at 55oS. In the Indian sector of the South-
ern Ocean, Grand et al. (2015), on the contrary, found that the surface iron con-
centrations decreased northwards from Antarctica, with maximum coastal values of
1.7µmol m−3, and the concentration falling to 0.2µmol m−3 north of the Polar Front.
In our runs, the iron concentration north of 60oS fit well with these results, and the
surface iron concentration increases from south to north similar to the result from
Klunder et al. (2011) (Fig. 7.5). Towards the south, the modeled iron concentrations
are, however, relatively low, and while the coastal iron input is increased in SED1.3
and SED2.3 (Fig. 7.6b and c), the iron concentration around Antarctica has not in-
creased towards the values from Grand et al. (2015).

In experiment 2, the combination of low surface mixed layer iron concentrations
and high deep water iron concentration compared to the observations (Fig. 7.3) indi-
cate that the value of 0.68µmol Fe (mmol C−1) for the benthic Fe:C ratio is too high
for our model setup. In the open ocean that is not downstream from shelves, the iron
concentration has been decreased in many areas in SED1.3 when compared to the
CTRL run, and for SED2.3, the changes in the spatial distribution makes it clear that
the scavenging needed to keep the sediment input in check is simply too large to be
realistic as it removes too much dissolved iron in the open ocean.

One thing that might change the effect of the scavenging rate is the aeolian iron
deposition. In the CTRL run, the sediment source make up 44% of the total external
iron input, whereas it comprises approximately 88 and 98% in experiment 1 and
2, respectively. In the model study by Lancelot et al. (2009), the sediment source
comprised 90% of the iron input south of 60oS, concurrent with SED1.3, whereas the
sediment source comprised 72% of the input south of 35oS in the study by Tagliabue
et al. (2009). For the global ocean, the sediment source made up 58% of the total iron
supply in the study by Moore and Braucher (2008). Provided that these numbers are
reasonable, and we do not know if they are, our CTRL run and experiment 1 have the
more reasonable ratios between the sediment input and the dust input (Table 7.2).

7.4.3 Residence time of iron

The residence time of iron in the ocean is much lower than that of the macronutrients
and also lower than the time scale of the thermohaline circulation (Johnson et al.,
1997). The residence time can be calculated through the rate of iron removal or the
rate of the input. As the flux of the iron input and associated scavenging varies
widely between models, so does the residence time. At the higher end of the range
lies the global mean residence time of 233 years found be Parekh et al. (2005). In
this model, the only external iron source was aeolian, and the residence time in our
CTRL run (267 years, Table 7.3) is relatively close to their result as this run only has
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a small sedimentary iron input. Moore and Braucher (2008) conversely calculated a
global mean residence time of 12 years in a model with a relatively large input of
iron from external sources, and also a higher scavenging rate. Their surface water
residence time estimate ranged from 5 months in high-input areas to 1.4 years in
areas with less iron input. The sediment input in this model is, on the global scale,
approximately similar to ours in experiment 2, and the calculated residence time of
the current study fits relatively well with their estimates, both for the surface water
and for the whole ocean (Table 7.3). Iron removal or input rates are, however, difficult
to constrain and measurement-based estimates of the residence time therefore also
differ significantly.

In a study based on measurements, Bruland et al. (1994) estimated a residence time
of iron in the central North Pacific deep water ranging from 70 to 140 years. In the
North Atlantic deep water, the residence time has been found to be 270 years, while
it was estimated to be one to five months in the surface water (Bergquist and Boyle,
2006). In the Equatorial Atlantic the surface residence time is similarly short, ranging
from 280 days to 10.5 years have been found in the Equatorial Atlantic, which is un-
der influence from the Saharan dust plume (Croot et al., 2004b). These studies cover
the whole range of residence times calculated in the current study (Table 7.3). In this
study, the residence time is based on removal of iron, which is strongly controlled
by the scavenging. Decreasing the assumed concentration of ligands in the model
could move the high scavenging towards the coast, thereby reducing it in the open
ocean. This in turn would impact the residence time. But the processes are complex
and difficult to predict, and in order to utilize the residence times to optimize the
iron cycle in the model a more in depth study would be necessary.

7.4.4 Biological production

The higher values for NPP occur in the runs SED1.3 and 1.4 along with SED2.3 and 2.4,
in which the iron scavenging is relatively small and the surface iron concentrations
high. The fraction of the total NPP that is carried out by diatoms has previously been
shown to be dependent on the available iron (Wang et al., 2014b), and we also see
how the diatoms become more abundant in the runs where the iron concentration
is higher in the mixed layer (Fig. 7.4c). The increase in diatoms does, however, occur
downstream of islands and continental shelfs, while diatoms decrease in abundance
in the open ocean (Fig. 7.7e and f). This means that it is only in the runs SED1.4, 2.3
and 2.4 that the diatom make up a larger fraction of the total NPP than in the CTRL
run (Fig. 7.4c). In a study based on satellite-based measurements, Bracher et al. (2009)
showed that diatoms dominate production in the Southern Ocean south of 30oS,
whereas other studies have shown less production by diatoms (e.g. Alvain et al., 2005;
Hirata et al., 2011). In a study focussing on the Southern Ocean, Soppa et al. (2014)
show that diatoms dominate in areas with high iron input, especially downstream
of the Patagonian shelf and in the Atlantic sector of the Southern Ocean in general,
but also south of Australia, and east of New Zealand and the Kerguelen Plateau.
In our study, the spatial distribution of the diatom production broadly follows the
same pattern (Fig. 7.7), but diatom productivity in the Atlantic sector of the Southern
Ocean is relatively low, most likely due to too little sedimentary input from the
shelves around the Antarctic Peninsula and South Georgia (Fig. 7.5 and 7.6). One
factor that plays a role in this, is the resolution of the model grid, which is increased
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in coastal regions in FESOM (Fig. 7.1), but not enough to capture the narrow shelves
adequately in both of these regions and especially around South Georgia (Fig. 7.1).
We do consequently not capture the South Georgia bloom or the bloom downstream
of the Antarctic Peninsula, which shows up in high-resolution runs (e.g. Wadley et
al., 2014). If these blooms were captured, they would likely contain a large degree of
diatoms as is the case in the Kerguelen bloom and downstream of the other major
shelves (Fig. 7.7e and f).

In commonly used OGCBMs, the fraction of the biomass from diatoms in the South-
ern Ocean ranges from 20 to 100% (Vogt et al., 2013), and thereby differs widely, but
they have in common that the diatoms are more abundant in areas with higher iron
availability. Diatoms do not dominate production in any of our runs, with the high-
est percentage of NPP from diatoms occurring in SED1.4, where they comprise 28%
of the total NPP. Our model results are thus at the lower end of what other models
have found, especially SED1.1 and 1.2 (Fig. 7.4b), but close to the results by Alvain
et al. (2005), as described above.

One thing that can help constrain the appropriate amount of diatom primary pro-
duction in the Southern Ocean is by comparing the amount of vertically exported
opal in our model to the amount found in previous studies. While our higher values
of opal export fit well with the results in the lower end of the range from Dunne
et al. (2007), the low opal export in the runs SED1.1 and 1.2 as well as SED2.1 to 2.3
show that too little iron is available in these runs to make them realistic (Fig. 7.4). As
diatoms are dependent on a higher iron concentration than the nanophytoplankton
to grow, the low open ocean surface iron concentrations in SED2.3 (Fig. 7.5c) along
with the changes that occur in the spatial distribution of the diatom NPP (Fig. 7.7f)
make it clear that although the NPP from diatoms has increased downstream of the
major shelves in SED2.3, where the surface iron concentration has been increased,
it has decreased in the open ocean due to the larger scavenging that occurs here,
leading to a relatively small opal export.

Another factor affecting the silicon export is the intracellular Si:C ratio of the
diatoms. In REcoM2, this number decreases with increasing iron availability, vary-
ing from 0.544mol Si (mol C)−1 in SED1.4 to 0.76mol Si (mol C)−1 in SED1.1 and 2.1
(Fig. 7.4). On a global scale, the Si:C ratio has been shown to vary with a factor of 4

to 5, with the mean value being 0.11mol Si mol C−1 (e.g. Sarthou et al., 2005). Com-
pared to the other major oceans, the Southern Ocean is, however, highly silicified,
with measured values of the Si:C ratio ranging from 0.31 to 0.6mol Si mol C−1, de-
pendent on the iron availability (e.g. Brzezinski et al., 2003; Hoffmann et al., 2007;
Baines et al., 2010). The mean numbers for the Si:C ratios in REcoM2 are rather high
compared to observed estimates, and consistent with a highly iron limited regime.

7.5 conclusion

We have shown, that given different strengths of the sediment source of iron, com-
bined with an appropriate rate of iron removal from the water through scavenging,
it is possible to create virtually identical mean iron profiles for the Southern Ocean
along with reasonable numbers for the total NPP. The phytoplankton composition
and the spatial distribution of the NPP did, however, change with changed strengths
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of the iron flux. When choosing a combination of the benthic iron influx and scav-
enging rate in a model it is therefore necessary to evaluate the model’s NPP from
diatoms along with the amount of opal exported against previous studies, as these
are highly dependent on the iron availability in the model. While our CTRL run
produced reasonable values for the biogeochemistry, the sediment source of iron is
relatively small in this run, and the NPP from diatoms is most likely also too small.
Based on the knowledge we have about the benthic iron flux, as well as the above
mentioned parameters, we found that our model run SED1.3 gave better results, with
a mean shelf iron input of 1.2µmol Fe m−2 yr−1, leading to a total benthic iron influx
of 2.14 × 109 mol Fe yr−1 to the Southern Ocean. The open ocean NPP is, however,
still relatively small in this run, as is the fraction of the NPP from diatoms and the
export of biogenic silicon. Further sensitivity runs with different parameterizations
of the scavenging could improve this by decreasing the off-shore iron gradient.
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D I S C U S S I O N

Iron limitation of the Southern Ocean has been recognized as one of the main reasons
for its High Nutrient Low Chlorophyll (HNLC) status since the early 1990’ies (e.g.
Martin, 1990; Martin et al., 1990). Since then, substantial effort has gone into assessing
the role of iron in the Southern Ocean. In the current thesis, the role of the iron
supply from the sediments and from the deeper reservoirs has been assessed. It
has in particular been explored how the representation of the Southern Ocean iron
supply in large scale Ocean General Circulation Biogeochemical Models (OGCBMs)
affect the prediction of the net primary and export production (NPP and EP) in these
models, and what these results teach us about the the iron supply in nature.

Publication I documents the results of the coupling between the biogeochemical
model REcoM2 to the Finite Element Sea-ice Ocean Model (FESOM). The modeled
global biogeochemical surface fields capture the large scale features, with low pro-
duction in the subtropical gyres and higher around the Equator and in the temper-
ate regions. The model results are comparable to those of other non-eddy resolving
OGCBMs, with the spatial distribution of the chlorophyll a and NPP being especially
good. In the Southern Ocean, the NPP and EP fits well with satellite-based estimates
and the results of other OGCBMs. Production here is strongly iron limited and domi-
nated by nanophytoplankton.

Publication II and III, address the role of the iron input from the sediments and
the vertical iron supply across the base of the mixed layer in the Southern Ocean.
The ocean component of OGCBMs are known to have a large effect on the results for
NPP and EP, especially in the Southern Ocean (e.g. Doney et al., 2004; Najjar et al.,
2007). Publication II investigates how the vertical iron fluxes across the mixed layer,
the NPP and the EP, differ between two model runs which only differ in the choice of
Ocean General Circulation Model (OGCM) used; one was run with the Massachusetts
Institute of Technology general circulation model (MITgcm) and one with FESOM. The
study showed that the OGCM has a large impact on the vertical iron fluxes and the
NPP. In MITgcm the total vertical flux is four times higher than in FESOM and the
dominating pathway is entrainment, while it is diffusion in FESOM. The differences in
the ocean circulation and mixing induce differences in the total NPP and the fraction
of the NPP that is exported to the deep water. The study highlights the importance of
assessing the the skill of the OGCM, and indicates that the vertical iron fluxes across
the base of the mixed layer could play a large role regarding the differences in NPP

and EP that has previously been established (e.g. Doney et al., 2004; Najjar et al.,
2007).

The Southern Ocean is located far from major dust sources, and the sediment
source of iron is thus thought to supply the bulk of new iron (e.g. Tagliabue et al.,
2009a; Lancelot et al., 2009). The sediment source is, however, poorly constrained
by measurements and thus varies widely between models, both in strength and in
parameterization. Publication III presents a sensitivity study in which the sediment
source of iron was varied significantly along with the scavenging rate. It shows that
while the total NPP and the mean vertical iron profile can be recreated with very
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Table 8.1: Overview of the model runs presented in this thesis, stating the differences be-
tween them. Each run is described in the associated publication.

publication run name sedimentary fe :c fesom version

I Pub. I 0.01 1.3

II Pub. II 0.01 1.3

III Pub. III, CTRL 0.01 1.4

III Pub. III, SED1.3 0.1 1.4

III Pub. III, SED2.3 0.68 1.4

different strengths of the sediment source of iron, it also changes the spatial distribu-
tion of the NPP. The amount of NPP from diatoms and the resulting vertical export of
opal to the deep ocean is likewise sensitive to the changed inputs in the iron supply.

In the following, the relative importance of the different iron sources in the South-
ern Ocean will first be discussed, and it will be debated how these sources may
change in the a future ocean and what challenges modelers need to consider to take
these changes into consideration. Secondly, advantages and typical applications of
the new FESOM-REcoM2 are discussed, along with caveats and limitations. Finally, per-
spectives for future research areas and remaining open questions will be presented
here.

8.1 iron in the southern ocean

8.1.1 Current iron sources

The model runs considered here are listed in Table (8.1), along with the factors that
differ between them. The runs presented in publication I and II are identical, while
the CTRL run in publication III use an updated version of FESOM. In the runs SED1.3
and SED2.3 from publication III, the sediment source was increased as compared to
the other runs. Here, focus will mainly be on SED1.3 when the effect of the increased
sediment source is discussed.

One strength of large scale OGCBMs is that they make it possible to upscale various
processes to larger areas, such as the Southern Ocean. In the following, focus will
be on the iron supply to the surface water of the Southern Ocean. Comparing the
input of iron from the sediments (Pub. III) and the vertical flux across the base
of the mixed layer (Pub. II) is, however, not straightforward, as the fluxes refer to
different volumes of water. The vertical iron fluxes represent supply into the surface
mixed layer, while the sediment derived input is calculated into the upper 500m of
the water column (Fig. 8.1). This makes the analysis somewhat inconsistent, but still
gives an impression of the relative importance of the difference sources.

Total iron input to the Southern Ocean
In the model, the total input of iron to the surface mixed layer is approximately
14.5 × 108 mol Fe yr−1, when counting the input from dust (0.5 × 108 mol Fe yr−1,
Pub. I, II and III), the vertical flux (9 × 108 mol Fe yr−1, Pub. II) and the sedimentary
input (5 × 108 mol Fe yr−1, SED1.3, Pub. III) and while assuming that the iron added
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Figure 8.1: Conceptual plot of the iron fluxes in and out of the Southern Ocean surface water
south of 50oS in FESOM-REcoM2. The input from the sediments and the scavenging
is calculated for the upper 500 m of the water column. The uptake by phytoplank-
ton is for the vertically integrated NPP. The dust input is identical in Pub. I, II
and III. The numbers for the sediment source is from publication III, (CTRL and
SED1.3), Table (7.2). The numbers for the vertical supply to the mixed layer is
from publication II, Fig. 6.3, and counts entrainment, upwelling, horizontal ad-
vection and vertical eddy diffusion. Notice that dust is supplied to the surface
ocean, the sediment flux takes place at the bottom at all depths, and the vertical
fluxes are calculated across the base of the mixed layer. The plot gives a simplified
view of the iron fluxes in the surface water of the Southern Ocean, and does not
entail all fluxes represented in the model.
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to the upper 500m of the water column from the sediments is roughly equal to
that added to the mixed layer (Fig. 8.1). For a total modeled NPP of 3.1Pg C yr−1

in the Southern Ocean (Pub. I, II, III), the iron uptake is 13 × 108 mol Fe yr−1. This
number is very close to the 13.5 × 108 mol Fe yr−1, which Boyd et al. (2012) argued
biological production utilize in the Southern Ocean south of 50oS. The average iron
input can thus on average sustain biological production in the Southern Ocean. Iron
is, however, removed from the surface water through sinking of organic matter and
through scavenging. The former accounts for a removal of 3.5 × 108 mol Fe yr−1

(Fig. 8.1), and the remainder of the iron in organic matter is thus remineralized above
that depth. As scavenging of iron onto particles in the water account for a removal
of 3.5 to 20 × 108 mol Fe yr−1 (CTRL and SED1.3, Pub. III), the remineralized iron
also plays a role for production in the Southern Ocean.

The important role of the sediment source in supplying iron to the Southern Ocean
is well established (e.g. Pollard et al., 2009; de Jong et al., 2012; Wadley et al., 2014)
and confirmed in publication III. While the Southern Ocean NPP is very reasonable in
publication I, II and the CTRL run of publication III, the surface iron concentrations
were relatively low compared to measurements (e.g. Klunder et al., 2011; Grand et al.,
2015) and the phytoplankton blooms downstream of islands such as South Georgia
(e.g. Borrione and Schlitzer, 2013) and the Kerguelen Plateau (e.g. Blain et al., 2001)
were missing, indicating that the sediment source of iron was too small. Increasing
the strength of the sediment source tenfold from the CTRL run to the SED1.3 run, the
total input to the upper 500m of the water coumn of the Southern Ocean increased
from 0.5 × 108 mol Fe yr−1 to 5 × 108 mol Fe yr−1 (Pub. III and Fig. 8.1). Both of
these numbers are smaller than the sum of the vertical iron supply to the surface
mixed layer of 9 × 108 mol Fe yr−1 (Pub. II and Fig. 8.1). As explained above, the
numbers for the two sources do not refer to exactly the same water volume (Fig. 8.1),
and a fraction of the input from the sediment source is most likely released below
the mixed layer and transported upwards by the physical transport mechanisms,
thereby being counted twice. The difference in the iron input from the sediments and
the vertical flux is nevertheless large enough to show that the vertical iron supply is
significant.

The sediment source of iron
One problem that commonly arises when a sediment source of iron is added to a
large scale OGCBM is that the coastal resolution is relatively coarse compared to the
width of the shelves in some areas, for example around Antarctica and along the west
coast of the American continent. Despite of an increased resolution around the coast
(40 km), the grid used in this thesis is still relatively coarse, with the consequence
that the sediment source of iron is underestimated in some coastal areas. Moore
and Braucher (2008) solved this by scaling the iron input in coastal grid cells by the
fraction of the cell that would be on the shelf in reality, while a reasonable solution
in FESOM would be to increase the coastal resolution, at least in studies focussing or
relying especially on the sedimentary input of iron.

It is well established that recurrent phytoplankton blooms appear downstream of
South Georgia and the Kerguelen Plateau in the Southern Ocean (Fig. 8.2a and e). In
publication III it was argued that the diatom abundance and the vertical export of bio-
genic opal ought to be used to evaluate the skill of OGCBMs, while another approach
would be to assess whether the island blooms are adequately captured with a given
strength of the sedimentary iron source. In the CTRL run of publication III both the
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Figure 8.2: Mean NPP around South Georgia (a – d) and around Kerguelen Island (e - f),
plotted using results from model run CTRL (b,f), SED1.3 (c,g) and SED2.3 (d,h)
in publication III, along with satellite-based observations (a + d), (SeaWIFS and
Behrenfeld and Falkowski, 1997)

South Georgia and Kerguelen blooms are missing (Fig.8.2b and f). While the mod-
eled Kerguelen bloom increases with the increased strength of the sediment flux in
run SED1.3 and 2.3 (Fig. 8.2f to h), the south Georgia bloom is not improved (Fig. 8.2b
to d). North of the Kerguelen, the strength of the sediment source, combined with
the size and depth of the shallow plateau fit together to produce a reasonable output,
especially in SED1.3. For South Georgia, the missing bloom can be explained by the
fact that the grid cells around South Georgia are all located at depths deeper than
1000m (Fig. 7.1, Pub. III). At this depth only little iron is released (Fig 7.2, Pub. III),
and a bloom fueled by the iron released from the sediments does not evolve. This
illustrates the importance of developing the coastal grid suitable for the aim of the
study, both regarding depth and resolution.

Vertical iron supply
The sedimentary iron source (Pub. III) and the vertical iron supply (Pub. II) are
not entirely separable, but the fact that the vertical flux dominates the supply even
when compared to model run SED1.3, where the sediment source is relatively large,
indicates that the vertical iron supply is on average the most important in FESOM. Es-
pecially the input from entrainment is interesting as it has previously been shown to
dominate the supply from below (Tagliabue et al., 2014) and to sustain the summer
bloom in some remote parts of the Southern Ocean (Carranza and Gille, 2015). The
magnitude of the modeled entrainment does, however, depend heavily on the ocean
circulation and mixing as is demonstrated by the fact that the entrainment driven in-
put of iron, which at 20.2 × 108 mol Fe yr−1, is eight times higher in MITgcm-REcoM2

than in FESOM-REcoM2 (Pub. II). As the mean seasonal amplitude of the MLD is too
small and the iron concentration at the base of the mixed layer low in FESOM as
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compared to observations (Pub. II), the influx from entrainment is most likely un-
derestimated in this model. In MITgcm, the mean seasonal amplitude is, on the other
hand, too large, leading to the iron transport through entrainment probably being
too high in this model. That the real entrainment should lie between the results
from our study fits well with the observation-based result of 9.5 × 108 mol Fe yr−1

suggested by Tagliabue et al. (2014).
Due to the complexity of the processes controlling marine NPP, it is impossible to

exactly pin-point which processes that are responsible for the differences in the two
model runs presented in publication II. Since this study was carried out, REcoM2 has
been coupled to an updated version of FESOM (Pub. III and App. A), which can help
to give a better understanding of the effect of the different modeled processes. In
the updated version, the mean seasonal cycle of FESOM’s mixed layer depth is deeper
and closer to both the observations and the MLD in MITgcm than before (Fig. 8.3).
The entrainment of iron is also positive across the Southern Ocean, as is the case in
MITgcm-REcoM2 (Fig. 6.8). But despite of these changes, all of the vertical iron fluxes
are virtually identical in FESOM 1.3 (Pub. II, Fig. 6.3) and 1.4 (Fig. 8.3), and are thus
still low compared to MITgcm (Pub. II). This shows, that even though the mixed layer
indeed plays a role, especially for the entrainment and for the access to the deeper
iron inventories, the iron supply across the base of the mixed layer is to a higher
degree dependent on the supply of iron to the base of the mixed layer. The strength
of the upwelling in the Southern Ocean, thus largely controls the iron fluxes into the
surface mixed layer by delivering iron to the permanent thermocline, below which
the MLD does not reach. The upwelling of iron to the base of the mixed layer is
controlled by the iron concentration in the deep water and by the vertical velocity
of the water. As only the circulation component differs between the two model runs
in publication II, it is tempting to conclude that the vertical velocity, and thereby
the different strengths of the meridional overturning circulation are responsible for
the differences. But since the deep iron concentration is dependent on a number of
processes, such as the sinking and remineralization of organic matter, which again
are affected by the ocean circulation in multiple ways, this view is too simplified,
though it is likely that the strength of the overturning circulation is a large part of
the explanation for the differences in the vertical iron fluxes between the models.

Other iron sources
As the deep water iron concentrations are important for sustaining the vertical iron
fluxes, the deeper iron sources could play an important role for the biological pro-
duction in the Southern Ocean. These sources include the deeper sediment input,
input from hydrothermal vents and the deep inflow of iron rich water to the deep
Southern Ocean in the North Atlantic and Upper Circumpolar Deep Water. In mod-
els, it is thus both the implementation of the external sources into the code as well
as a correct representation of the meridional overturning circulation and the mixed
layer depth that is crucial for the amount of iron available for transport into the
mixed layer from below. In the current study, the input from hydrothermal vents has
not been considered, as they are most likely relatively unimportant on the timescale
of the model runs presented here. On longer time scales they will, however, have
noticeable effects, especially in the Pacific sector of the Southern Ocean where iron
limitation is strongest (Tagliabue et al., 2010).
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Figure 8.3: Plots illustrating the vertical iron supply, here plotted for the CTRL run, Pub.
III. The CTRL run is similar to the run in Pub. II, except that FESOM has been
updated to version 1.4. Left panel: The seasonal cycle of the mean vertical iron
profile of the Southern Ocean south of 50oS, the mixed layer depth in FESOM
and the mixed layer depth from observations (Sallée et al., 2010). Right panel:
The mean iron input to the Southern Ocean south of 50oS through the different
vertical transport mechanisms. Diffusion is left out as it was not calculated online
during this model run.

8.1.2 Iron supply in a changing climate

Martin (1990) was the first to suggest that aeolian iron deposition to the Southern
Ocean plays a crucial role in the global climate. The argument behind his "iron hy-
pothesis" is that the large unused pool of macronutrients in the mixed layer of the
Southern Ocean can be utilized for biological production when the aeolian depo-
sition of iron is increased. This increased production leads to an increased draw-
down of CO2 from the atmosphere to the ocean, which reduces the atmospheric
greenhouse effect and hence lowers the atmospheric temperature. Later studies have
proven the correlation between aeolian dust deposition and changes in atmospheric
CO2 (e.g. Martínez-Garcia et al., 2011; Martínez-García et al., 2014) but it has also
been argued that while dust indeed plays a role in the glacial/interglacial cycles, the
changes in dust input are not large enough to be the controlling factor (e.g. Watson
et al., 2000).

As the climate is currently changing more rapidly than ever before, the iron hy-
pothesis becomes interesting again, as an increased temperature is likely to change
the iron supply to the Southern Ocean in several ways; increased temperature will
change the stratification and thereby the MLD (Rhein et al., 2013), changes in biologi-
cal production may change the amount of iron released from the sediments (Elrod et
al., 2004), changed circulation patterns will impact the transport of iron released by
the sediments (Misumi et al., 2014) and a higher temperature will change the supply
of iron from dust (Maher et al., 2010). These changes will affect biological production
in the Southern Ocean and thereby also the feedbacks regarding the global carbon
cycle and the climate (Boyd and Ellwood, 2010).

Ocean circulation and mixing
One consequence of a warmer ocean is that the mixed layer becomes shallower and
the stratification stronger on a global scale, leading to decreased vertical mixing of
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nutrients to the surface water along with increased light in the surface mixed layer
(Rhein et al., 2013). The decreased nutrient supply leads to decreased NPP when av-
eraged globally (e.g. Steinacher et al., 2010; Bopp et al., 2013). In the Southern Ocean,
model studies, however, show that shallower mixed layers alleviate light limitation
while nutrient supply is sustained by the large seasonal amplitude in the MLD, lead-
ing to a net increase in the NPP towards the end of the century (e.g. Bopp et al., 2001;
Steinacher et al., 2010; Bopp et al., 2013; Misumi et al., 2014). The biogeochemical
responses to 21st century forcing do, however, vary between models, especially in
the Southern Ocean (Steinacher et al., 2010; Bopp et al., 2013).

One reason for the relatively deep mixed layers in the Southern Ocean are the
subpolar westerlies, which have their maximum between the subtropical front and
the polar front. The westerlies are expected to increase and move polewards over
the coming century due to an increase in the index of the so-called Southern Annu-
lar Mode ((SAM) Sen Gupta et al., 2009; Zheng et al., 2013). This phenomenon acts
against the strengthening of the stratification that warmer temperatures bring, and
thus adds to the complexity of the future ocean circulation and mixing.

As shown in publication II, the ocean circulation and mixing differs greatly be-
tween OGCMs, even under similar prescribed forcing, with large effects on the mod-
eled NPP. The response of OGCMs to the counteracting effects of the warming signal
and the SAM-signal is thus bound to differ (e.g. Hauck et al., 2015), especially when
forcing additionally differs between earth system models. Knowing the biases of the
modeled ocean circulation and mixing under current forcing is thus critical for un-
derstanding it’s response to future changes, though a large uncertainty is further
introduced by the atmospheric component of the models.

Sedimentary supply
The strength of the iron release from the sediments depends on the redox state within
the sediments, and thereby the amount of organic matter deposited on the sea bed
(e.g. Elrod et al., 2004). As the rate of NPP is expected to increase over the next cen-
tury in the Southern Ocean (e.g. Steinacher et al., 2010; Bopp et al., 2013), the supply
of organic matter to the sediments will likely also increase, thereby increasing the
release of iron from the sediments. Whether the additional iron supply from the sed-
iments will have an effect on the biological production in the open ocean depends
on the strength and location of the horizontal advection responsible for transport
of the iron. As the subtropical gyres are currently expanding (Polovina et al., 2008),
they will enter the Southern Ocean over the coming century, thereby transporting
iron-rich water further towards the south (Misumi et al., 2014). The southwards shift
of the subtropical gyres also intensifies the coastal currents, something that could
increase the effect of the sedimentary supply of iron as they increase the off-shore
transport from the shelfs. In large scale OGCMs the coastal currents are, however, not
necessarily adequately captured. In these models, resolution thus impedes the repre-
sentation of the sediment source two-fold; by not resolving the shelves from which
the major part of the sediment derived iron is released, and also by not representing
the strong surface currents necessary for advection adequately. Here, FESOM has the
advantage of the unstructured grid that makes it possible to resolve the shelves in
future studies regarding the sediment derived iron input to the ocean.

Other iron sources
Dependent on the changes in land use and climate, the dust supply is likely to
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increase in the future (e.g. Maher et al., 2010). Large parts of the Southern Ocean are,
however, located far from land sources, and the input of iron from the sediments is
still likely to dominate the input in spite of enhanced aeolian iron inputs (Tagliabue
et al., 2009a), especially if the sediment source also increases.

As sea-ice forms, it incorporates and up-concentrates iron from the underlying
sea water, while iron supplied by dust is also stored in the ice (van der Merwe et al.,
2011). The sea-ice mainly acts to change the location and timing of the iron-input
to the water, and its primary effect is to change the phytoplankton composition (e.g.
Wang et al., 2014b). Recently, the calving of ice bergs has been shown to increase
in the Southern Ocean (Mouginot et al., 2014). Icebergs transport iron to relatively
remote areas of the Southern Ocean, releasing iron as they melt (Raiswell et al.,
2008; Lin et al., 2011). While the iron input from ice is most likely small compared
to other iron sources (Table 1.1) it is likely to directly impact biological production
locally, and can potentially be investigated with FESOM-REcoM2 as will be discussed
in section (8.4.1).

Irradiance and temperature
Future changes in radiation and temperature do not just change the iron sources
directly, but also the conversion of Fe(III) to the more bioavailable Fe(II) (Fig. 1.5).
Using an OGCBM, Tagliabue et al. (2009b) showed that including the irradiance in
the modeled iron cycle increases the amount of bioavailable iron by up to 53% in
the Southern Ocean, while including the effect of temperature on the iron speciation
decreased the amount of available iron slightly. Commonly used OGCBMs do take the
changed availability of light for phytoplankton growth into account (e.g. Steinacher
et al., 2010), but the direct effect on the iron cycle is so far only considered in a
single model (Tagliabue et al., 2009b; Tagliabue and Völker, 2011). This direct effect
of irradiance on the bioavailable iron should thus be tested in a larger amount of
models and in runs covering the next century in order to gain a better understanding
of the coming changes in the Southern Ocean. As studies already suggest that the
iron concentration in the Southern Ocean surface water will increase in the coming
century (e.g. Misumi et al., 2014), this effect could either be enhanced or decreased
as changes in the MLD also affects the average irradiation in the surface mixed layer
and thereby the iron availability.

8.2 global iron supply

As FESOM is a global model, the different iron inputs must result in an adequate
representation of the biogeochemical fields for the global ocean. During the initial
coupling of REcoM2 to FESOM, iron was not released to the water from the sediments.
Test runs did, however, indicate that large parts of the Arctic Ocean, which in real-
ity receives iron from the broad shelves among the Siberian coastline (e.g. Klunder
et al., 2012; Hioki et al., 2014), became iron limited in the absence of the sediment
source. A relatively weak sediment source was consequently added. In the Pacific
Ocean, the iron limitation is, however, strong, both in publication I and when FESOM

was updated (App. A, Fig. A.8). One explanation for this is the very narrow coastal
shelf along the west coast of South and North America, which are not captured in
the current grid, thus diminishing the sediment source in the region. Another expla-
nation is that scavenging removes iron from deep water, thereby reducing the Fe:N
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ratio in the upwelled water. Based on measurements of iron’s isotopic composition, it
has recently been argued that the sediment input from Papua New Guinea is trans-
ported across the Pacific Ocean and sustains biological production in the eastern
Pacific (Radic et al., 2011). Increasing the sediment source tenfold in publication III
does increase the surface iron concentrations in the western Pacific Ocean as iron is
brought eastwards from the coast of Japan and New Zealand, again showing that an
increased strength of the sediment source improves the skill of REcoM2. Whether the
sedimentary iron input from Papua New Guinea plays a role in supplying iron to
the surface water of the modeled Pacific Ocean is, however, an open question.

8.3 two different ocean models

Coupling a biogeochemical model to a new ocean model requires a significant amount
of effort and time, both regarding the actual work of the coupling, but even more so
for the process of tuning the coupled model to obtain reasonable results when com-
pared to observations or satellite-based estimates of the state variables. The current
thesis presents the results of such an effort, with the coupling of the biogeochemical
model REcoM2 to the Finite Element Sea-ice Ocean Model (FESOM). The question is,
however: When is it reasonable to choose FESOM-REcoM2 for a study, considering that
REcoM2 already runs coupled to the MITgcm in a successful set-up?

FESOM’s main strength is the capability to highly resolve certain areas with seam-
less transition to areas of lower resolution. This feature has not been fully utilized
in the current study, but should be further investigated in the future. As a higher
resolution is likely to improve the skill of the ocean model, it is probable that it
will also affect the biogeochemical results (e.g. Doney et al., 2004; Najjar et al., 2007;
Sinha et al., 2010). The effect of resolution was investigated by McKiver et al. (2014)
who showed that a higher resolution especially improved the distribution of surface
chlorophyll a due to a better description of the vertical velocity and MLD in the OGCM.

While it is in theory easy to change the mesh in FESOM, it does in reality require
a lot of work to first create a mesh and then tune it for the ocean. Further, when
running the coupled FESOM-REcoM2 model it may be necessary to tune the biogeo-
chemical model again. It is therefore relevant to look for tested configurations of
FESOM before embarking on a new study with FESOM-REcoM2. An additional advan-
tage of using a tested configuration is that knowledge about the ocean state exists,
and as shown in publication II, the ocean circulation and mixing is key for successful
biogeochemical modeling. For FESOM, several tuned configurations with specialized
grids exist. One example is a mesh in which the resolution is scaled towards eddy
activity, which would for instance make it possible to examine the role of mesoscale
eddy transport of nutrients into the mixed layer. Other possibilities include using
a high resolution Arctic Ocean or a mesh where the equatorial region is highly re-
solved. Another aspect to keep in mind when using a grid with local high resolution
is its increased computational demand. This is due to the larger amount of nodes
that such a mesh has, and to the smaller time step that is necessary in the whole
model domain. Higher resolution thus increases the runtime of the model.

The complexity of FESOM’s grid is an advantage for resolving complicated topog-
raphy, but it demands more of the people that process the output in terms of math-
ematical and programming abilities. The complexity of the grid thus also increases
the risk of simple mathematical errors during processing.
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The MITgcm-setup used with REcoM2 is in contrast to FESOM relatively simple to
work with as calculations are performed on a regular grid. The MITgcm also comes
with extensive experience and support in forms of a very large user group with
associated output in forms of papers and knowledge of the model’s behavior under
different circumstances. The drawback of this model is that REcoM2 runs on a single
grid of relatively coarse resolution that is not easily changed.

When choosing which model to use for a certain research question it thus makes
sense to look at the question at hand; does it require a high resolution in a certain
area, does a grid exist for this area for FESOM and is the length of the planned model
run reasonable compared to the required runtime of FESOM? Otherwise, it is most
likely a good idea to choose to work with MITgcm-REcoM2.

8.4 future directions for fesom-recom2

8.4.1 Iron sources

In publication III, the model’s sensitivity to the strength of the sediment source was
investigated, but to learn more about its effect, a mesh with higher resolution on
the continental shelves would be necessary. Higher coastal resolution would make it
possible to examine the role of the sediment source in generating the increased NPP

downstream of islands as well as the distance travelled by the iron from the coast.
Resolving the area of the ACC would make it possible to look into the frontal role

for the iron distribution, and whether frontal activity increases the iron supply by
vertical mixing as argued by Sokolov and Rintoul (2007). If resolution permits, the
role of the horizontal eddy transport could also be investigated.

Another possibility is to add iron to the surface water from melting icebergs (e.g.
Raiswell et al., 2008; Lancelot et al., 2009). An iceberg transport model has been cou-
pled to FESOM (Rackow, 2011; Wesche et al., 2013) and ongoing work adds a realistic
amount of calved icebergs to the Southern Ocean. As the melt rate is calculated in
the iceberg model, iron could be added to this melt water in realistic concentrations
and thereby be added to the water. As the iron supply from icebergs is small relative
to the other source (E.g. Table 1.1), it most likely has a local effect, and such a study
would be more reasonable if performed using a relatively high spatial resolution, as
is possible in FESOM.

8.4.2 The Arctic Ocean

The current global version of FESOM (Wang et al., 2014a) has been used for a number
of studies regarding the Arctic Ocean (e.g. Wang et al., 2012; Wekerle et al., 2013).
Due to the rapidly decreasing sea-ice extent in the Arctic Ocean, with associated
changes in mixed layer depth and light availability, NPP is also likely to change dras-
tically in the area. While contemporary model runs show that the NPP predicted
by the models agrees relatively well with the satellite-based observations, the con-
trolling limitation factors of light and nutrient concentrations differ widely between
models (Popova et al., 2012). The modeled biogeochemistry of the Arctic Ocean also
is thus also sensitive to the performance of the ocean model. As a consequence, the
models respond differently to the retreat of sea-ice over the coming century, with
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the Arctic NPP increasing in some models while decreasing in others (Vancoppenolle
et al., 2013).

As grids with a high resolution in the Arctic Ocean and associated tuned ocean
states exist for FESOM, it would be logical to investigate how FESOM-REcoM2 describes
the biogeochemistry in the Arctic. An important factor in the future Arctic Ocean
is the representation of sea-ice and associated biogeochemistry (e.g. Vancoppenolle
et al., 2013). FESOM does a good job in modeling the seasonal and interannual extent
of Arctic sea-ice (Wekerle et al., 2013), but the biogeochemistry within the sea-ice is
not incorporated into the REcoM2 code, and the light penetration through the sea-ice
is crudely parameterized. The impact of these two factors would be interesting to
further investigate with FESOM-REcoM2.

8.4.3 Climate runs

The model runs in the present thesis have all been performed with the prescribed
CORE-I and II forcing (Large and Yeager, 2004; Large and Yeager, 2009), which is a
good choice here as it reduces the complexity of the model set-up and it makes hind
cast experiments and thereby skill assessment against existing observational data
possible.

Currently, it is not possible to perform runs covering future climate changes with
FESOM-REcoM2, as the interannually varying CORE-II forcing data set ends in 2008

(Large and Yeager, 2009). For climate runs over climate relevant time scales, different
forcing must thus be considered. One option is to use the output from an atmo-
spheric model and use it as prescribed forcing. This method was used by Hauck
et al. (2015) to force the MITgcm-REcoM2 to the end of the 21st century. Another option
is to use an interactive atmospheric model component. For FESOM this has become a
realistic possibility after its coupling to the atmospheric model ECHAM6 (Sidorenko
et al., 2015; Rackow et al., 2014). In a coupled model, ocean and atmosphere are fully
interactive and inconsistencies from prescribed forcing are thus avoided. The free in-
teraction, however, adds to the degrees of freedom, with the consequence that larger
errors between the modeled and observed fields may occur as the model develops
its own equilibrium state. Running FESOM-REcoM2 with an interactive atmosphere is
interesting in relation to the current work, as it could shed light on the effect of fu-
ture changes in the MLD on the vertical iron supply to the Southern Ocean, and its
impact on EP and NPP. For studies regarding the Arctic Ocean, it would further be in-
teresting to see how the high resolution of FESOM-REcoM2 would change the model’s
reaction to future climate change. But, as highlighted in publication II of the current
thesis, such studies will, not give a definitive answer to the future changes in net
primary production, as biogeochemical changes are highly dependent on the ocean
model.

When running future scenarios with FESOM-REcoM2, it is necessary to first evaluate
the carbon cycle in the model When evaluating the skill of FESOM-REcoM2 in publi-
cation I, the carbon cycle was not considered as it was not yet in equilibrium due
to the relatively short runtime. A logical next step is thus to assess the skill of the
model with respect to Dissolved Inorganic Carbon (DIC), Total Alkalinity (TA), pH
and calcium carbonate export as done by Yool et al. (2013). This would open for the
opportunity to investigate the atmosphere-ocean flux of CO2 and the effect of ocean
acidification on the phytoplankton communities.
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9
C O N C L U S I O N

In this thesis, the results of the coupling between the biogeochemical model REcoM2

and the Finite Element Sea-ice Ocean Model (FESOM) were first documented. Sec-
ondly, the new model was used to gain a better understanding of the sources pro-
viding iron to the surface mixed layer of the Southern Ocean. The work in particular
focussed on the input of iron from the sediment and from the deeper reservoirs
through vertical transport across the base of the mixed layer, and how these sources,
and their model parameterization and strength, affect the net primary production in
the Southern Ocean.

The coupled FESOM-REcoM2 model captures the main spatial surface patterns of
the global biogeochemical fields, with relatively low biological production in the
subtropical gyres and higher in the temperate regions. The results are comparable to
those of other non-eddy resolving Ocean General Circulation Biogeochemical Mod-
els (OGCBMs), with the spatial distribution of the chlorophyll a and net primary pro-
duction (NPP) being in the better end of previous results.

The thesis shows that the representation of the ocean circulation and mixing in
the Ocean General Circulation Model (OGCM) has a large impact on the vertical
supply of iron to the surface mixed layer. The vertical iron supply in turn affects the
representation of net primary and export production as well as the phytoplankton
composition in the models, though other factors from the OGCM, such as irradiance
in the water, also plays a role. As coupled Ocean General Circulation Biogeochemical
Models (OGCBMs) are routinely used to investigate the carbon cycle in the Southern
Ocean, the study highlight the importance of evaluating the skill of the OGCM in
order to understand the biogeochemical results.

The input of iron to the water from the sediments is thought to play an impor-
tant role in the Southern Ocean, but measurements provide a large range of flux
rates. The strength of the sediment source thus varies widely between OGCBMs. In
FESOM-REcoM2 it is possible to vary the strength of the sediment source consider-
ably, and still obtain reasonable and similar results for the surface iron concentration
in the Southern Ocean. The strength of the sediment source does, however, impact
the phytoplankton composition and its spatial distribution in the model, especially
downstream of shelf regions, as well as the magnitude of the opal export. One way to
constrain the rate of iron release from the sediments is thus to evaluate the model’s
results regarding diatom production and opal export to previous estimates of these
factors.

In conclusion, OGCBMs are useful tools to gain an understanding of the marine
biogeochemical cycles. Their results are, however, dependent on the representation
of the physical and biogeochemical processes in the models and these must there-
fore be critically addressed. In this thesis this has been done with a focus on the
representation of iron limitation in the Southern Ocean.
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A
R E S U LT S O F R E C O M 2 C O U P L E D T O F E S O M 1 . 4

a.1 introduction

The Regulated Ecosystem Model with two phytoplankton classes (REcoM2) was pre-
sented in a set-up with the Finite Element Sea-ice Ocean Model (FESOM) in publi-
cation I. For publication III FESOM was updated to the newest version (v. 1.4, Wang
et al., 2014).

Here, the the results of the CTRL run of publication III are compared to obser-
vational data in a manner similar to what was done in publication I, starting with
the physical fields, then the nutrients and ending with the biological production. Fo-
cus is on the mean surface fields, calculated based on the last ten years of 50-year
simulations as described in publication III.

The results are first presented in Taylor diagrams (Taylor, 2001), in which the
model results are compared to observations. A number of plots additionally illustrate
the bias between modeled and observed surface fields. For the mixed layer depth
(MLD) and net primary production (NPP) we additionally show the seasonal cycle in
the individual ocean basins illustrated in Fig. A.1. The data we compare the model
results to is listed in Table 1 (Pub. I) along with its temporal extend and resolution.

a.2 results

a.2.1 Physics: Mixed Layer Depth

The MLD was calculated using the density threshold criteria of 0.03 kg m−3 as sug-
gested by de Boyer Montegut et al. (2004). The correlation between the observed and
the modeled mean MLD equals 0.73 (Fig. A.2a), and has thus been improved from
the correlation of 0.68 found by (Schourup-Kristensen et al., 2014).

Overall, the spatial distribution of the MLDmax is well captured, with the shallower
MLD in the tropics and deeper in the temperate areas (Fig. A.3). In the Southern
Ocean, the deep mixed layers in the Indian and Pacific sectors are captured, though
their meridional extend is somewhat off. Close to the Antarctic, the MLDmax is too
shallow as was also the case in the previous model version (Fig. A.3).

Taking the spatial distribution of each month into account, the correlation between
the observed and the modeled mean MLD is 0.58 (Fig. A.2b). The seasonal cycle of
the individual ocean basins illustrated in Fig. (A.1) all have significant correlations
with the observations (Fig. A.4). Additionally, all ocean basins, except for the North
Indian and Equatorial Pacific Basins, have correlations that are higher than 0.9. In the
Southern Ocean, the depth of the MLD over the year has been improved compared
to the previous version of FESOM, as the bias between the modeled and the observed
MLD has become smaller. Overall, FESOM does a good job in reproducing the seasonal
cycle of the MLD.
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Figure A.1: Division of the global surface ocean into individual basins used to show the
seasonal cycle of the MLD and NPP.

Figure A.2: Taylor diagrams (Taylor, 2001) showing correlation, normalized standard devia-
tion and the normalized root mean square error between values of the model
results and observations (Table 1, Schourup-Kristensen et al., 2014), weighted by
area. a) Spatial distribution. b) Spatial-seasonal distribution.
All values are surface values, except the mixed layer depth and the vertically
integrated NPP. All fields have been interpolated to a 1o by 1o grid, using linear
interpolation.
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Figure A.3: Mean MLDmax for a) observations (de Boyer Montegut et al., 2004), b) model.

Figure A.4: Mean MLD over the year in the basins depicted in Fig. A.1 for the model results
and observations de Boyer Montegut et al. (2004). The correllation coefficient
between model results and observations is written in each subplot, and the sta-
tistically significant correlations (p values < 0.05) are marked with ∗.
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Figure A.5: Mean surface concentration of dissolved inorganic nitrogen (DIN) for a) observa-
tions (Garcia et al., 2010), b) model.

Figure A.6: Mean surface concentration of dissolved inorganic nitrogen (DIN) for a) observa-
tions (Garcia et al., 2010), b) model.

a.2.2 Nutrients and nutrient limitation

For dissolved inorganic nitrogen (DIN) and silicon (DSi), the correlations between
the spatial distribution of the observations and the model results are 0.88 and 0.86,
respectively. These relatively high correlations occur as the main distribution with
high concentrations of DIN and DSi in the Southern Ocean and the northern seas,
along with low concentrations in the subtropical gyres are captured in the model
(Fig. A.5 and A.6). For DIN, the surface concentrations are, however, too high in the
tropical Pacific Ocean, as was also the case when REcoM2 was coupled to FESOM 1.3.

Due to scarcity of iron measurements, the water’s concentration of dissolved iron
can not be directly compared to a climatology of observations. The spatial distri-
bution of surface iron nevertheless appears reasonable, with the highest concentra-
tions in the Equatorial Atlantic and Indian Oceans, which are under influence of the
dust plume from the Sahara. The lowest concentrations occur in the Pacific Ocean,
whereas the Southern Ocean has intermediate surface iron concentrations (Fig. A.7).
When comparing to mean values for various ocean basins it is apparent that the
modeled iron field is closest to the observations in the Atlantic and Indian Oceans,
while the mean concentrations are too low, especially in the Pacific, but also in the
Southern Ocean (Table A.1).

The relatively low iron concentrations in the Pacific and Southern Ocean lead to
iron being the most limiting nutrient in these areas, both for nanophytoplankton
and diatoms (Fig. A.8). Nanophytoplankton is on average limited by iron in 57%
of the global ocean, while the number for diatoms is 54%. These are relatively high
numbers, showing that the iron limitation is relatively strong in the model, especially
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Figure A.7: Mean surface concentration of dissolved iron. Plotted to the scale of Schneider
et al. (2008)

Table A.1: Modeled mean surface iron concentrations (0–100 m) in the different ocean basins
shown in Fig. A.1. Observed values are from Moore and Braucher (2008), except
those marked with ∗, which are from Tagliabue et al. (2012), Table 2. The latter is
the mean of the values given for the Antarctic and Subantarctic regions.

basin latitudinal extend model obs .

North Atlantic 45 – 70
o N 0.42 0.68

North-central Atlantic 10 – 45
o N 1.25 0.68

South-central Atlantic 45 – 10
o S 0.86 0.44

North Indian 45 – 10
o S 1.37 1.21

North Pacific 45 – 70
o N 0.14 0.31

Equatorial Pacific 10
o S – 10

o N 0.02 0.84

South-central Pacific 45 – 10
o S 0.02 0.31

Atlantic Southern Ocean 90 – 45
o S 0.13 0.39

∗

Indian Southern Ocean 90 – 45
o S 0.07 0.33

∗

Pacific Southern Ocean 90 – 45
o S 0.07 0.15

∗
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Figure A.8: Annual mean limiting nutrients calculated following Schneider et al. (2008). a)
Nanophytoplankton (Fe = 56.8%, DIN = 41.3% of total area. b) Diatoms (Fe =
53.9%, DSi = 40.6% and DIN = 5.5% of total area.))

Table A.2: Net primary and export production for the global domain and south of 50oS in
FESOM-REcoM2 and in the literature.

nppglo epglo opalglo nppSO epSO opalSO

[Pg C yr−1] [Pg C yr−1] [Tmol Si yr−1] [Pg C yr−1] [Pg C yr−1] [Tmol Si yr−1]

32.4 5.9 67.4 3.1 1.2 21.2

in the Pacific Ocean. For diatoms, silicon is dominating the nutrient limitation in the
remainder of the global ocean.

a.2.3 Biological production

The global NPP is 32.4Pg C yr−1 and the export production (EP) 5.9Pg C yr−1, very
similar to the numbers in the previous version of FESOM-REcoM2. The global export
of biogenic silicon (opal) sums up to 67Tmol Si yr−1.

For the spatial distribution of chlorophyll a and NPP, the correlation between the
model results and the satellite-based estimates are 0.73 and 0.75, respectively. For
both fields, the spatial distribution, with low concentrations in the subtropical gyres
and higher between 40 and 70oS and N, is captured (Fig. A.9 and A.10). But espe-
cially the surface chlorophyll concentrations are too low in the gyres, and both fields
have too low concentrations in the Pacific Ocean due to the strong iron limitation
here (Fig. A.8).

The seasonal cycle of NPP is plotted in Fig. (A.11) for the ocean basins shown in
Fig. (A.1). The seasonal cycle of the modeled NPP has significant correlations with the
satellite based estimates in eight of the fourteen basins, and the best seasonal cycles
are found in the subtropical gyres. North and south of 45oN and S, respectively, the
spring bloom starts earlier in the model than in the satellite-based estimates, and in
the Pacific Ocean it is again clear that the modeled NPP is relatively low.

For export production (EP), the correlations are 0.28 and 0.46 when compared to
the fields from Schlitzer (2004) and Laws et al. (2000), respectively. Export production
is, however, difficult to measure, and the fields we compare to are thus uncertain.
Looking at the spatial distribution, the modeled EP (Fig. A.12) is highly correlated
with the NPP (Fig. A.10), with large export rates occurring in the upwelling zones
around the Equator, in the Southern Ocean and in the north Atlantic. As indicated
by the correlation coefficients, this is closest to the EP-field from Laws et al. (2000),
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Figure A.9: Spatial distribution of the mean surface concentration of chlorophyll a
plotted to the scale of Schneider et al. (2008). a) Satellite-based estimate
(www.globcolour.info). b) Modeled mean.

Figure A.10: Spatial distribution of the vertically integrated net primary production plotted
to the scale of Schneider et al. (2008). a) Satellite-based estimate (SEAWIFS and
Behrenfeld and Falkowski (1997)). b) Modeled mean.

while the field from Schlitzer (2004) has less export in the North Atlantic and more
in the coastal zones.

a.3 conclusion

The biogeochemical model REcoM2 has been coupled to the newest version of the
Finite Element Sea-ice Ocean Model (FESOM, v. 1.4). The results of the new model are
very similar to those of REcoM2 coupled to FESOM,1.3. The largest differences occur in
the Southern Ocean, where the mixed layer has improved from the previous version,
leading to more production in the Pacific sector of the Southern Ocean, and generally
to higher levels of chlorophyll a in the surface water.
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Figure A.11: Mean NPP over the year in the basins depicted in Fig. A.1 plotted for the model
mean and satellite-based observation (SeaWIFS and Behrenfeld and Falkowski
(1997)). The correllation coefficient between model results and observations is
written in each subplot, and the statistically significant correlations (p values
< 0.05) are marked with ∗

Figure A.12: Spatial distribution of the export production. a) Satellite-based estimate (Laws
et al., 2000). b) Inverse model based estimate (Schlitzer, 2004) c + d) Modeled
EP.
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