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Abstract

Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future envi-

ronmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the

environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate

variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects.

Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested

by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within-clutch

variation in offspring size in response to experimental manipulation of maternal thermal environment and pre-

dictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females

were influenced by both temperature and environmental predictability. Mothers that developed at ambient tempera-

ture (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying

selection for different-sized offspring in different environments. Mothers in unpredictable environments had smaller

mean egg sizes and tended to have greater within-female egg size variability, especially at 21 °C, suggesting that

mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting

future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared

at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for off-

spring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming sce-

narios in this system. Offspring of variable environment mothers were smaller but more variable in size than

offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used

both TGP and diversified bet-hedging strategies to cope with the dual stress of ocean warming and environmental

uncertainty.
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Introduction

Population persistence in changing environments

requires that organisms adjust their phenotypes to

match local conditions. This can be achieved by rapid

evolution (genetic tracking) and/or adaptive pheno-

typic plasticity (Chevin et al., 2010). Adaptive pheno-

typic plasticity is expected to evolve when

environmental cues of future conditions are predictable

or recurring (Via, 1993; Simons, 2011). Plasticity can

occur both within generations (organisms respond to

their immediate environment) and across generations

via transgenerational plasticity (TGP). In the case of

TGP, anticipatory parental effects (sensu Marshall &

Uller, 2007; Burgess & Marshall, 2014) on offspring phe-

notypes will only be favoured if the parental environ-

ment is a good predictor of the environment offspring

will experience (Mousseau & Fox, 1998; R€as€anen &

Kruuk, 2007). When environmental conditions vary

unpredictably, and parents cannot predict their off-

spring’s environment, the evolution of bet hedging is

expected, for instance, parents should produce a range

of offspring phenotypes with at least some having the

optimal phenotype (Einum & Fleming, 2004; Marshall

et al., 2008; Fischer et al., 2011; Simons, 2011). Given

that recent climate predictions forecast an increase in

weather variability (IPCC 2012), such as more frequent

and severe storms and other extreme events including

heat waves, droughts and flooding (Thornton et al.,
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2014), bet hedging is likely to become an increasingly

important strategy to mediate some of the impacts of

rapid climate change (Crean & Marshall, 2009). Indeed,

it was recently shown that projections based on mean

temperature change alone differ substantially from

those incorporating changes to temperature variation,

and that increased variation might pose an even greater

risk to species than climate warming (Vasseur et al.,

2014). Nevertheless, bet hedging is currently under-rep-

resented in treatments of evolutionary responses to

environmental variance (Simons, 2011).

Theoretical evidence for bet hedging at reproduction

as an adaptive strategy in unpredictable environments

has been established for half a century (Cohen, 1966;

Seger & Brockmann, 1987; Philippi & Seger, 1989). Bet

hedging should be advantageous because it increases

geometric-mean fitness (e.g. cumulative fecundity

across generations), but does so at the expense of

expected fitness within a generation. Thus, bet-hedging

strategies appear to be detrimental over the short-term

(Slatkin, 1974; Simons, 2011). Two main forms of bet

hedging are commonly recognized: conservative and

diversified (Seger & Brockmann, 1987; Philippi & Seger,

1989; but see Olofsson et al., 2009 for a third form). Con-

servative bet hedging or ‘playing it safe’ occurs when,

for example, mothers produce larger offspring than

would be the optimum in a stable environment with

the same long-term mean quality. This strategy can

result in greater reproductive success during poor years

if larger offspring are more than successful than smaller

offspring in poor conditions (Einum & Fleming, 2004).

Diversified bet hedging occurs when mothers increase

the phenotypic variance among individual offspring,

thereby spreading the risk of reproductive failure in

uncertain environments among an array of offspring

phenotypes (Crean & Marshall, 2009). There is theoreti-

cal support for both forms (Einum & Fleming, 2004;

Marshall et al., 2008), but ultimately, the relative bene-

fits of one or the other strategy will depend on the

specific offspring trait-fitness function (Smith & Fret-

well, 1974; Marshall et al., 2008). Empirical evidence for

bet hedging, on the other hand, is rather scant. While

there are numerous correlative studies invoking bet

hedging as an explanation for within-clutch variation

in offspring phenotypes (reviewed in Crean & Mar-

shall, 2009 and Simons, 2011), direct tests that manipu-

late environmental predictability are rare (but see

Halpern, 2005; Manenti et al., 2014; Furness et al., 2015).

Recent comparative studies of populations along gradi-

ents of environmental predictability (Morrongiello

et al., 2012; Garcia-Roger et al., 2014) and direct tests of

Cohen’s predictions regarding propagule dormancy

(Graham et al., 2014; Gremer & Venable, 2014; Simons,

2014) highlight the importance of bet hedging as a

potential mechanism for organisms to cope with

increasing climate variability.

Bet hedging entails an inherent trade-off between

maximizing within-generation fitness and minimizing

among-generation variation in reproductive success

(Marshall et al., 2008). Although evidence for paternal

environment effects on offspring phenotypes is accu-

mulating (e.g. Crean et al., 2013; Shama & Wegner,

2014), the majority of studies have investigated how

mothers deal with the challenge of managing this trade

off. Within a generation, mothers maximize fitness via

plasticity in the mean offspring phenotype, whereas

across generations, they manage the variance in fitness

via bet hedging (Crean & Marshall, 2009). Because envi-

ronmental variance is composed of both predictable

and unpredictable components, the concurrent evolu-

tion of both plasticity and bet hedging is expected,

although little studied (but see Simons, 2014; Furness

et al., 2015). The number of studies showing changes in

the mean offspring phenotype as a result of TGP has

risen dramatically over the past few years (reviewed in

Bonduriansky et al., 2012; Salinas et al., 2013), but very

few have explicitly estimated the predictability of envi-

ronmental cues (but see Galloway & Etterson, 2007),

hence the adaptive significance of this plasticity

remains unclear (Burgess & Marshall, 2011). Moreover,

although correlative and comparative studies of bet

hedging suggest that females can adjust the variability

of offspring phenotypes (see references listed above),

experiments that manipulate maternal environmental

predictability are needed to determine if mothers can

dynamically modify this variation (Crean & Marshall,

2009).

Optimality models predict that under constant envi-

ronmental conditions, a single, optimal offspring size

will be favoured, and different sizes will be optimal in

different environments depending on the offspring

size-fitness relationship in each environment (Marshall

et al., 2008). Consistent with this, there are numerous

studies showing that mothers can shift the phenotype

of their offspring to match local conditions (reviewed in

Burgess & Marshall, 2014), that is, they exhibit adaptive

phenotypic plasticity. When environmental conditions

are good, some models predict that mothers should

produce smaller, but more offspring to maximize

fecundity, whereas under harsh conditions, they should

produce fewer, larger offspring that are presumed to be

of higher quality (Einum & Fleming, 2004). Yet, evi-

dence is accumulating to support the argument that

‘bigger is not always better in harsh environments’ (Ka-

plan, 1992). For example, smaller offspring may be

favoured under size-selective predation, or when larger

size is associated with higher physiological demands

under heat stress (see Morrongiello et al., 2012 for more
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examples). When environmental conditions are unpre-

dictable, mothers should maximize fitness by produc-

ing a range of offspring sizes in the hope that at least

some will have the optimal size for local conditions. By

using such a diversified bet-hedging strategy, mothers

decrease the variance in fitness across years, but do so

at a cost to fitness within a year, since the more off-

spring size varies, the more offspring that are away

from the optimal size (Crean & Marshall, 2009).

The aim of this study was to test the potential to pro-

duce variably sized offspring in both warming and

unpredictable environments by investigating whether

stickleback (Gasterosteus aculeatus) mothers adjust mean

offspring size and within-clutch variation in offspring

size in response to experimental manipulation of mater-

nal thermal environment and predictability, in this

case, varying sea surface temperatures (SST). Previous

studies of this population found that elevated water

temperatures (21 °C) simulated in accordance with a

2100 climate scenario (Sheppard, 2004) had detrimental

effects on growth (Schade et al., 2014) and development

(Ramler et al., 2014), in comparison to water tempera-

tures that reflected local, ambient summer conditions

(17 °C). Yet, when mothers were acclimated to elevated

temperature during reproductive conditioning, off-

spring reached (relatively) larger sizes in the warmer

environment as a result of maternal TGP (or anticipa-

tory maternal effects) in response to predictable envi-

ronmental cues of future water temperatures (Shama

et al., 2014). But what happens when environmental

cues are unpredictable, for example, when seas surface

temperatures change by several degrees over short time

periods in response to variable weather patterns and

extreme events such as heat waves (Thornton et al.,

2014; Vasseur et al., 2014)? When environmental cues

are unpredictable, mothers should adopt a bet-hedging

strategy and produce a range of offspring sizes (Mar-

shall et al., 2008).

In the current study, the prediction was that not only

the mean but also the variance in offspring phenotypes

should differ depending on maternal thermal environ-

ment and predictability. Given that previous work has

also shown that stickleback mothers that developed at

elevated temperature (21 °C) produced more, but smal-

ler eggs than mothers that developed under ambient

conditions (Shama & Wegner, 2014), the specific predic-

tion here was that mothers acclimated to constant, but

different temperatures (17 °C or 21 °C) should produce

offspring of a mean optimal size to match local condi-

tions. Under variable environmental conditions

(switching between ambient and elevated temperature),

mothers should produce a range of offspring sizes, with

some matching the optimal mean size for both experi-

mental temperatures. In other words, when mothers

can predict the thermal environment their offspring

will experience, TGP in mean offspring size should be

favoured, whereas environmental uncertainty should

promote increased variance in offspring size (Crean &

Marshall, 2009; Simons, 2011).

Materials and methods

Environmental predictability in the wild

To characterize the predictability of environmental conditions

that mothers and offspring experience in the wild, SST from

the study area were obtained from the Coastal Observing

System for Northern and Arctic Seas data web portal of the

Helmholtz-Zentrum Geesthacht Zentrum f€ur Material-und

K€ustenforschung (http://www.cosyna.de). Temperatures

were recorded every 30 min from 15 March to 31 December

2012 using a Directional Waverider Buoy (Datawell bv, Haar-

lem, the Netherlands) located off the west coast of Sylt,

Germany (54°790N, 8°270E).

Fish crosses and experimental design

The experiment used marine three-spine sticklebacks from

three generations: wild-caught grandparental fish (F0), labora-

tory-reared parental fish (F1) and laboratory-reared F2 off-

spring (Box 1). Grandparent fish originated from an oceanic

population in the Sylt-Rømø Bight (55°050N, 8°390E) that were

caught by trawling in February 2012, brought to the labora-

tory, and held at 17 °C for 2 months during reproductive con-

ditioning. Crosses were made over a 2-week period in May

2012 to produce 11 F1 families with a 17 °C male 9 17 °C
female thermal acclimation history. Offspring from each fam-

ily were split and reared at 17 and 21 °C (Box 1). Families

were reared separately for the first 60 days posthatch. After

this, juvenile F1 fish from all families within each rearing tem-

perature were pooled, divided amongst several 25-L aquaria

to reach a final density of 25–30 fish per aquarium, and reared

to adulthood (see Shama et al., 2014 for details).

When the F1 fish were 10 months old, (now) adult fish from

within each rearing temperature were randomly split into

environmental predictability treatments and held under these

conditions for another 2 months, corresponding to the period

of F1 reproductive conditioning (Box 1). Specifically, fish

reared at 17 °C were either maintained at a constant tempera-

ture of 17 °C (17con), or switched weekly between 17 and

21 °C (17var). Similarly, fish reared at 21 °C were either main-

tained at 21 °C (21con) or switched weekly between tempera-

tures (21var). Fish in constant temperature treatments were

also switched among aquaria of the same temperature each

week to account for possible confounding effects of physically

moving to different aquaria. F2 crosses were performed over a

2-week period in May 2013 to produce 38 families. Each of

19 F1 females was mated to two F1 males, one from 17 °C and

one from 21 °C (crossing methods as in Shama et al., 2014). As

the focus of the study was maternal environment predictabil-

ity, only males from the constant temperature treatments were

used in crosses. F2 egg clutches from each family were then
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split and reared at 17 °C and 21 °C (n = 76 split clutches/fam-

ilies in total; Box 1).

Egg traits and offspring body size

Each split clutch of eggs was photographed under a dissecting

microscope for digital analyses of egg size and clutch size (us-

ing LEICA QWIN imaging software; Leica Microsystems

Imaging Solutions Ltd., Cambridge, UK). Egg size was esti-

mated by measuring the diameter (�0.01 mm) of 20 eggs per

female. The 20 measured eggs were chosen based on the clar-

ity of their outer perimeter in the photographs. Clutch size

was estimated as the total number of eggs per female. Split-

clutches were placed individually in 1-L glass beakers contain-

ing filtered seawater and an air supply, and beakers were held

in water baths heated to either 17 °C or 21 °C. Hatching suc-

cess was estimated as the proportion of hatchlings from each

split clutch (no. hatchlings/no. eggs). Hatchlings were held in

beakers for the first 30 days, and water in the beakers was

changed every week. At 14 days posthatch, hatchling densi-

ties were reduced to approximately 10 offspring per beaker.

At 30 days posthatch, 10 randomly chosen offspring from

each split clutch were photographed under a dissecting micro-

scope for digital analysis of body size (standard length

�0.01 mm, using LEICA QWIN). At this point, the 10 off-

spring were transferred to a 2-L aquarium connected to a

flow-through seawater system set at either 17 °C or 21 °C for

another 60 days. At 60 and 90 days posthatch, standard length

was again measured on the 10 offspring per family by digital

photography. Throughout the experiment, juvenile fish were

fed daily with live Artemia sp. nauplii ad libitum.

Data analyses

Correlograms were used to assess the predictability of SST in

the wild (see also Burgess & Marshall, 2011). Correlograms

are plots of the autocorrelation between successive terms in a

data series, in this case, a time series of water temperature

data. Autocorrelation measures the dependence of values in a

series on the values before it at a distance of k lags, and can be

used to show, for example, whether water temperature on a

given day is a good predictor of water temperature at some

F1 parental generation: 

x

Rearing temperture 

Maternal environmental
predictability 

17 °C 21 °C

17con

17 °C
21 °C

n = 11 families

Paternal temperature  

F2

17 °C
21 °C

17var 21con 21var

17 °C
21 °C

17 °C
21 °C

Rearing temperture 17 °C
21 °C

x x x x

n = 10 families n = 8 families n = 12 families n = 8 families

17 °C
21 °C

17 °C
21 °C

17 °C
21 °C

F0

Box 1 Experimental design using 3 generations of marine sticklebacks to investigate potential transgenerational
plasticity (TGP) and bet hedging in response to ocean warming and increased climate variability.

Schematic of the experimental design that used three generations of marine sticklebacks (G. aculeatus): wild-caught

F0 grandparent fish (acclimated to 17 °C), laboratory-bred F1 parental fish and laboratory-bred F2 offspring. F1

parental fish developed at either ambient (17 °C) or elevated (21 °C) temperature, and females were further

exposed to either constant or variable environments during reproductive conditioning. Each female was mated to

two males (one from 17 °C, one from 21 °C), and families of F2 offspring were split and reared at both experimen-

tal temperatures (17 °C and 21 °C).
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time point in the future (Burgess & Marshall, 2011, 2014).

Daily means for SST from 01 May through 31 August 2012

(n = 123 days) were used in the analyses, and reflect the time

period that fish from the grandparental population were pre-

sent and potentially reproductive in the Sylt-Rømø Bight

(L.N.S. Shama, personal observation). The raw SST data did

not exhibit stationarity (Shapiro-Wilk normality test,

W = 0.914, P < 0.001), so were first detrended by taking the

residuals of a linear model of SST as a function of time (ad-

justed R2 = 0.927; Legendre & Legendre, 1998). After detrend-

ing, the data exhibited stationarity (Shapiro-Wilk normality

test, W = 0.987, P = 0.319) and autocorrelations were calcu-

lated using the acf function within the R package ‘TSA’.

Generalized linear mixed effects models (GLMMs) were

used to quantify the effects of temperature and environmental

predictability on traits related to reproductive output of F1

parental fish (egg size, clutch size and hatching success) and

F2 offspring body size. Body size is a decisive component of

fitness for sticklebacks, influencing, for example, fecundity in

females and success in fights for territories and sperm compe-

tition in males (Dufresne et al., 1990). To show that the rela-

tionship between size and fitness also holds for the parental

fish used here, the effect of female size on egg traits related to

reproductive output was also analysed. Specifically, egg size

and clutch size were modelled with female identity as a

random effect, female size and clutch size (or egg size) as

covariates, and maternal developmental temperature and

environmental predictability (plus their interaction) as fixed

effects. Offspring body size at 30, 60 and 90 days was mod-

elled with family as a random effect, density, egg size and

female size as covariates, and offspring rearing temperature,

parental (sire and dam) developmental temperatures and

environmental predictability (and their interactions) as fixed

effects. Since only sires from the constant temperature treat-

ments were used in crosses, no sire by environmental pre-

dictability term was included in the models. Egg size, clutch

size and offspring body size were modelled with Gaussian

errors using Maximum Likelihood within the lme function of

the R package ‘nlme’.

Given the potential for maternal environment unpre-

dictability to lead to increased variation in offspring size,

and hence, heterogeneity of variances among predictability

treatment groups, homogeneity of variances was first

checked using Levene’s test. Each response variable with

significant heterogeneity of variances was then modelled

using the weights function (variance classes) that allows

unequal variances across groups in lme. Moreover, given that

the focus of the study was not only response means but also

their variance, and that standard deviations and variances

typically show strong relationships with means (see Crean &

Marshall, 2009), the coefficient of variation (CV) of egg size

and offspring body size were also modelled using lme. Two

levels of egg size variability were estimated using the CV:

within-female variability (within-female egg size CV aver-

aged across all females in a treatment) and among-female

variability (CV of mean egg size per female in each treat-

ment; see also Morrongiello et al., 2012). Note: only within-

female egg size variability was modelled using lme, as there

was only one value per treatment (i.e. no error) for among-

female variability. Differences between within- and among-

female variability per treatment were tested with t-tests.

Hatching success was modelled with the same fixed effects

as above, but with binomial errors, family as a random

effect, and an individual-level random effect to account for

overdispersion using glmer implemented in the R package

‘lme4’. All models were fit using individuals, that is, indi-

vidual eggs for analyses of egg size and hatching success,

and individual fish for offspring body size. For graphical

display, offspring body size at 30, 60 and 90 days are shown

as residual body size (standard length corrected for density).

All analyses were run in the R statistical environment (R

Development Core Team, 2011).

Results

Environmental predictability

Sea surface temperature on any particular day was a

good predictor of water temperature up to 9 days in

the future (Fig. 1). The correlogram shows a significant

positive correlation between SSTs for 9 days, but the
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Fig. 1 Predictability of temperature in the wild reflected as (a) sea surface temperature (SST) profile, and (b) correlogram showing the

autocorrelation of values in the series on values found at a distance of k lags (1 lag = 1 day). Red bars (a) delineate the time span within

the annual SST profile (May through August) from which daily means were used in the analysis. Dashed blue lines in the correlogram

(b) approximate 95% confidence limits for an independent data series for which the autocorrelation is zero.
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strength of the autocorrelation decreases after 6 days.

The significant negative correlation at 50 days and

nearly significant correlations at approximately 70, 90

and 105 days likely reflect abrupt changes in tempera-

ture direction (step changes; Legendre & Legendre,

1998) within the data series (Fig. 1b). For this popula-

tion of sticklebacks, eggs that develop at 17 °C hatch

after 7 days, and those that develop at 21 °C hatch after

5 days (see below). A significant autocorrelation of SST

for 6–9 days indicates that the environment into which

mothers lay eggs is a good predictor of the conditions

larvae will experience during very early life.

Maternal environment predictability and reproductive
output

Mean egg size was significantly influenced by clutch

size and the interaction between maternal development

temperature and environmental predictability

(Table 1). Mothers acclimated to 17 °C variable condi-

tions (17var) produced smaller eggs than mothers in

17con, whereas eggs from 21 °C mothers had similar

mean sizes regardless of environmental variability

(Fig. 2a). Overall, eggs of 17 °C mothers were larger

than those from 21 °C mothers (ANOVA: dam °C

Table 1 Linear mixed effects models of mean egg size, the coefficient of variation (CV) of egg size (within-female variability), and

clutch size of stickleback (Gasterosteus aculeatus) females depicting the influence of maternal developmental temperature (dam °C)
and environmental predictability (predictability)

Source

Mean egg size CV of egg size Clutch size

denDF F P denDF F P denDF F P

Intercept 361 20549.198 <0.001 14 596.132 <0.001 13 198.503 <0.001
Female size 13 0.258 0.620 14 0.802 0.386 13 0.443 0.517

Clutch size 13 13.432 0.003

Egg size 13 10.531 0.006

Dam °C 13 3.830 0.072 14 0.973 0.341 13 1.283 0.278

Predictability 13 0.687 0.422 14 0.552 0.470 13 1.015 0.332

Dam °C 9 Predictability 13 5.236 0.040 14 0.161 0.694 13 6.996 0.020

Numerator degrees of freedom were 1 in all cases. denDF denotes denominator degrees of freedom. Significant terms are

highlighted in bold.
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Fig. 2 Reproductive output traits of female sticklebacks (Gasterosteus aculeatus) for each maternal temperature and predictability combi-

nation. Treatment combinations are depicted as 17con (17 °C constant), 17var (17 °C variable), 21con (21 °C constant) and 21var (21 °C

variable). (a) mean egg size, (b) coefficient of variation (CV) of egg size, shown as within-female variability (black bars) and among-fe-

male variability (grey bars), (c) clutch size and (d) mean hatching success (hatching proportion) for offspring reared at 17 °C (open cir-

cles) and 21 °C (closed circles). Points or bars reflect means for all females within a treatment (�SD or SE); lines join maternal thermal

environments; **P < 0.01, ***P < 0.001.
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F1,17 = 5.308; P = 0.034). The variance in mean egg size

differed among treatment groups (dam °C 9 pre-

dictability: Levene’s Test F3,376 = 6.910; P < 0.001), so

mean egg size was modelled using the variance classes

function in lme.

Within-female egg size variability (CV of egg size),

however, was not significantly influenced by maternal

temperature or environmental predictability (Table 1).

Yet, there was a nonsignificant trend of higher within-

female CVs of egg size in variable environments,

especially for eggs of 21 °C mothers (Fig. 2b). A post hoc

power analysis using the ‘pwr’ package in R revealed

that Cohen’s d for both maternal temperatures

combined was 0.423 (calculated using the mean and

standard deviation of egg size CV in constant and

variable environments), which represents a large effect

size. Splitting egg size CVs by maternal temperature,

however, showed that Cohen’s d at 17 °C was 0.1718,

but was 0.5506 at 21 °C. Nevertheless, a linear model

approach using three model terms (dam°C 9 pre-

dictability) showed that the power of the experiment

using n = 19 females was 0.5333, and n = 30 females

would have been necessary to reach a power level

above 0.800 (Cohen, 1988). Among-female egg size vari-

ability differed significantly from within-female vari-

ability in constant environments, but not in variable

environments (t-tests: 17con t = 7.303; P = 0.002, 21con

t = �9.199; P < 0.001). Among-female variability for

egg size was highest for 21con mothers, and lowest for

17con mothers, with mothers in variable environments

showing similar CV values (Fig. 2b).

Mean clutch size differed significantly among mater-

nal temperature and predictability treatments, and

traded-off with egg size (Table 1). Mothers in 21var

environments produced larger clutches than mothers in

21con, whereas 17 °C mothers produced clutches of

similar size in both predictability treatments (Fig. 2c).

Mean clutch size was inversely related to mean egg

size, although 21var mothers produced much larger

clutches without a correspondingly large reduction in

mean egg size (Fig. 2a). In other words, 21var mothers

produced eggs of approximately the same size as their

constant environment counterparts despite having lar-

ger clutches, and this difference was not driven by

female size (P > 0.05 for all egg traits; Table 1). There

was also no significant difference in female size among

acclimation treatments (ANOVA: dam °C F1,14 = 1.611;

P = 0.225, predictability F1,14 = 0.058; P = 0.814, dam

°C 9 predictability F1,14 = 0.034, P = 0.857).

Hatching success varied with offspring environ-

ment, maternal and paternal developmental tempera-

ture and environmental predictability (Table 2). Mean

time to hatching was 7.32 � 0.48 days at 17 °C and

5.23 � 0.51 days at 21 °C. Eggs from 17var mothers

had lower hatching success at 21 °C (offspring tem-

perature), but higher hatching success at 17 °C,
whereas eggs from 17con mothers had similar hatch-

ing success at both temperatures (Fig. 2d). Overall,

eggs from 21 °C mothers had higher hatching success

at 17 °C than at 21 °C (26.65% vs. 9.87%), but there

was no influence of maternal environmental pre-

dictability at either offspring temperature. That is,

environmental variability only affected the hatching

success of eggs from 17 °C mothers, and eggs from

21 °C mothers were more robust to temperature

variability.

Maternal environment effects on offspring body size

Density had significant effects on offspring body size

(Table 3). Offspring in families with higher densities

reached smaller body sizes. Mean density per family

was 8.97 fish at 17 °C and 7.20 fish at 21 °C, but the

Table 2 Generalized linear mixed effect model (GLMM) for

Gasterosteus aculeatus hatching success showing the influence

of offspring rearing temperature (offspring °C), parental

developmental temperature (dam °C, sire °C) and maternal

environment predictability (predictability)

Random effects Variance SD

Family (intercept) 5.589 2.364

Hatch (intercept) 0.007 0.086

Fixed effects Estimate SE z value

Pr

(>|z|)

(Intercept) 6.267 14.817 0.423 0.672

Egg size �2.849 7.125 �0.400 0.689

Female size �0.057 0.146 �0.387 0.699

Offspring °C �0.049 0.058 �0.857 0.392

Dam °C �0.757 1.486 �0.510 0.610

Sire °C �1.233 1.135 �1.086 0.277

Predictability 0.137 1.225 0.112 0.911

Offspring 9 Dam °C �1.893 0.087 �21.809 < 0.001

Offspring 9 Sire °C 0.444 0.075 5.899 < 0.001

Dam 9 Sire °C 1.249 1.562 0.800 0.424

Offspring °C 9

Predictability

�1.408 0.075 �18.649 < 0.001

Dam °C 9

Predictability

�0.963 1.630 �0.591 0.555

Offspring 9 Dam 9

Sire °C
�0.005 0.095 �0.052 0.958

Offspring 9 Dam

°C 9 Predictability

1.859 0.099 18.736 < 0.001

Model fit with individual-level variation (accounting for

overdispersion) by the Laplace approximation and a binomial

error distribution using glmer implemented in the R package

lme4 (R Development Core Team, 2011). SD and SE denote

standard deviation and standard error, respectively. Signifi-

cant terms are highlighted in bold.
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range of densities per family in the different rearing

temperatures overlapped (Fig. S1). Differences in densi-

ties between rearing temperatures stem from differ-

ences in hatching success (lower hatching success at

21 °C). Nevertheless, any growth advantages of lower

densities at 21 °C would only dampen the size differ-

ences between rearing temperatures (see below). More-

over, density 9 offspring °C interactions were not

significant at 30 days (F1,349 = 3.406; P = 0.066), 60 days

(F1,349 = 1.479; P = 0.225) or 90 days (F1,342 = 0.004;

P = 0.949), indicating that any potential effects of den-

sity on offspring body size were the same in both tem-

peratures (Fig. S1). Egg size and female size influenced

offspring body size (Table 3), but these effects were

the same in both maternal and offspring temperatures

(egg size/female size 9 dam °C/offspring °C always

P > 0.05).

Variances among treatment groups were not homo-

geneous for offspring body size at 30, 60 or 90 days

(Levene’s test 30 days: F7,345 = 3.896; P < 0.001,

60 days: F7,345 = 5.207; P < 0.001, 90 days:

F7,338 = 5.415; P < 0.001), so size was modelled using

the variance classes function in lme. At 30 days, off-

spring from variable environment mothers grew better

at 21 °C than at 17 °C (Fig. 3a), and this likely drove

the small, overall size difference between offspring

temperatures (21 °C > 17 °C) at this early stage

(Table 3). The significant dam °C 9 predictability inter-

action stems from the same pattern, with smaller off-

spring of 21var mothers when reared at 17 °C. At

60 days, offspring were now larger at 17 °C than 21 °C
(Table 3), and offspring from 21 °C mothers were lar-

ger than offspring from 17 °C mothers (Fig. 3b). Over-

all, offspring of mothers from variable environments

were smaller than those from constant environment

mothers, and this difference was greater for offspring

of 21var mothers that were reared at 17 °C (Fig. 3b). At

90 days, differences between offspring rearing temper-

atures were even more pronounced (Table 3), and the

pattern of larger offspring from 21 °C mothers and lar-

ger offspring from constant environment mothers

remained (Fig. 3c). Again, this was mainly driven by

smaller offspring of 21var mothers that were reared at

17 °C. Essentially, offspring of variable environment

mothers suffered in terms of mean body size, and this

effect was strongest for offspring of 21var mothers

when they were reared in a nonmatching environment

as their mothers (at 17 °C). These effects were already

present at early growth stages (30 days), and increased

over time. At 90 days, there was also evidence for

maternal TGP of offspring body size in the stressful

environment (offspring °C 9 dam °C interaction;

Table 3). That is, at 21 °C, offspring of 21 °C mothers

were larger than offspring of 17 °C mothers, but at

17 °C, offspring reached similar sizes for both maternal

developmental temperatures (Fig. 3c).

The CV of offspring body size at 30, 60 and 90 days

was modelled using the same random and fixed effects

as mean body size (Table S1). A significant interaction

between offspring °C and predictability was detected at

Table 3 Linear mixed effects models for stickleback (Gasterosteus aculeatus) mean body size at 30, 60 and 90 days posthatch depict-

ing the influence of offspring rearing temperature (offspring °C), parental developmental temperatures (dam °C, sire °C) and mater-

nal environment predictability (predictability)

Source

Size 30 days Size 60 days Size 90 days

denDF F P denDF F P denDF F P

Intercept 314 25742.25 <0.001 314 64844.75 <0.001 306 83721.79 <0.001
Density 314 27.79 <0.001 314 305.01 <0.001 306 396.74 <0.001

Egg size 24 14.17 0.001 24 4.82 0.038 25 0.73 0.400

Female size 24 2.65 0.116 24 5.22 0.031 306 4.35 0.038

Offspring °C 314 4.84 0.029 314 71.16 <0.001 306 182.12 <0.001

Dam °C 24 5.98 0.022 24 23.68 <0.001 25 16.94 <0.001

Sire °C 24 5.27 0.031 24 0.05 0.824 25 1.16 0.291

Predictability 24 1.48 0.236 24 14.16 0.001 25 9.76 0.005

Offspring 9 Dam °C 314 0.61 0.436 314 2.19 0.140 306 5.53 0.019

Offspring 9 Sire °C 314 0.14 0.714 314 4.45 0.036 306 2.14 0.144

Dam 9 Sire °C 24 0.03 0.862 24 0.06 0.810 25 1.12 0.300

Offspring 9 Predictability 314 2.77 0.097 314 2.29 0.131 306 0.74 0.390

Dam °C 9 Predictability 24 4.76 0.039 24 6.68 0.016 25 2.57 0.122

Offspring 9 Dam 9 Sire °C 314 0.40 0.527 314 0.41 0.523 306 0.72 0.397

Offspring 9 Dam °C 9 Predictability 314 1.62 0.204 314 2.23 0.136 306 0.24 0.625

Body size was measured as standard length (mm) at 30, 60 and 90 days posthatch. Numerator degrees of freedom were 1 in all

cases. denDF denotes denominator degrees of freedom. Significant terms are highlighted in bold.

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13041
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90 days (F1,10 = 5.663; P = 0.039). At 90 days, offspring

reared at 21 °C had higher CVs of body size when their

mother was acclimated to a variable environment (both

17var and 21var), whereas at 17 °C, only offspring of

21var mothers had a higher CV of body size (Fig. 3f). In

other words, offspring of 21var mothers had higher
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CVs of body size regardless of rearing temperature,

whereas offspring of 17var mothers had higher CVs

only when reared in the stressful environment. A simi-

lar pattern was also evident at 60 days (Fig. 3e),

although the interaction term in the model was not sig-

nificant (P = 0.152).

Paternal environment effects

Significant offspring 9 sire °C interactions for hatching

success (Table 2) and offspring body size at 60 days

(Table 3) suggest paternal TGP (Fig. 4). For hatching

success, positive paternal TGP benefits were only pre-

sent at 17 °C: hatching success was higher at 17 °C
when fathers developed at 17 °C, whereas hatching

success at 21 °C was similar for both paternal tempera-

tures (Fig. 4a). For offspring body size at 60 days, posi-

tive paternal TGP benefits were seen at both rearing

temperatures – offspring reached a larger size at 21 °C
if their fathers developed at 21 °C, and a larger size at

17 °C if their fathers developed at 17 °C – although the

effects were stronger at 21 °C (Fig. 4b).

Discussion

Bet hedging is expected to evolve when mothers are

exposed to unpredictable cues for future environmental

conditions, whereas TGP should be favoured when

cues reliably predict the environment offspring will

experience (Simons, 2011). In line with theoretical

expectations, when stickleback mothers could predict

the thermal environment of their offspring, TGP bene-

fits led to greater mean offspring sizes at elevated tem-

perature. In varying thermal conditions, mothers may

have dynamically modified the variability in offspring

size, but at a cost to mean offspring size. By directly

manipulating maternal thermal environment and pre-

dictability, this study demonstrates that both TGP and

potential bet hedging at reproduction can play impor-

tant roles in mediating some of the impacts of ocean

warming and increasing climate variability. Addition-

ally, the findings highlight the importance of consider-

ing both the mean and variance of traits responding to

climate change, as these are likely to vary indepen-

dently depending on the predictability of environmen-

tal cues.

Environmental predictability

Local SSTs that stickleback mothers and offspring expe-

rience in the wild are predictable for up to 9 days in the

future. Since the time to hatching for this population

ranges from 5 to 7 days under summer conditions, the

environment into which mothers lay eggs is a good

predictor of the conditions offspring will experience

during embryogenesis and larval development, upon

hatching, and for the first days of free-swimming life.

After this initial phase, the temperature of the offspring

environment becomes increasingly independent of the

temperature of the maternal environment (see also Bur-

gess & Marshall, 2011). Here, the strength of the effects

of offspring and maternal thermal environment on off-

spring body size was similar for the first 30 days of

growth, after which offspring environment had a much

stronger influence. Given that maternal environment

cues are reliable predictors of the early offspring envi-

ronment for this population, anticipatory maternal

effects on trait means associated with reproductive out-

put are likely to evolve (Mousseau & Fox, 1998;

R€as€anen & Kruuk, 2007; Burgess & Marshall, 2014). Yet,

variability and abrupt changes in temperature direction

within the local SST profile indicate that mothers may

also experience unpredictable environmental condi-

tions (i.e. <9 days predictability) within the reproduc-

tive season, leading to the evolution of bet-hedging

strategies (Einum & Fleming, 2004; Marshall et al., 2008;

Crean & Marshall, 2009; Burgess & Marshall, 2011;

Fischer et al., 2011; Simons, 2011). Switching females

between experimental temperatures every 7 days corre-

sponded to the profile of temperature changes seen in

the wild, and led to greater variance in offspring size,

suggesting that mothers may be capable of dynamically

adjusting the variability of offspring sizes depending

on environmental predictability.

Maternal environment predictability and reproductive
output

Stickleback mothers allocated resources to eggs differ-

ently depending on the temperature and predictability

of the environment they experienced during develop-

ment and reproductive conditioning. Overall, females

produced larger, but fewer eggs at 17 °C and smaller,

but more eggs at 21 °C, in line with other findings of

egg size plasticity in response to oviposition tempera-

ture (Bownds et al., 2010; Liefting et al., 2010; Shama &

Wegner, 2014). Since reproductive output varied with

maternal environment independent of female size, the

plasticity of mean egg size shown here was not simply

due to physiological constraints (Heath & Blouw, 1998),

but rather, more likely reflects selection for different-

sized offspring in different environments (Marshall

et al., 2008). If the relationship between offspring size

and performance differs in each environment (Smith &

Fretwell, 1974), for example, if smaller eggs at elevated

temperature are advantageous due to their lower oxy-

gen demands (Kaplan, 1992; Kolm & Ahnesj€o, 2005;

Bownds et al., 2010), then the egg size plasticity found

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13041
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here would constitute an anticipatory maternal effect or

adaptive TGP (Mousseau & Fox, 1998; Marshall &

Uller, 2007; R€as€anen & Kruuk, 2007). Still, size-related

oxygen demands will depend on the proportion of yolk

vs. higher respiring embryo tissue in eggs at different

temperatures (Hendry & Day, 2003), which remains to

be tested for sticklebacks.

Mothers in unpredictable environments had smaller

mean egg sizes and tended to have greater within-fe-

male egg size variability, especially at 21 °C (see also

Morrongiello et al., 2012), suggesting that mothers may

have used a diversified bet-hedging strategy to spread

the risk of incorrectly predicting future environmental

conditions (Crean & Marshall, 2009) by producing a

broader range of eggs sizes (Marshall et al., 2008).

Developmental instability in stressful environments has

been proposed as an alternate explanation for increased

within-clutch size variance (Crean & Marshall, 2009),

but was likely not the case here as mothers exposed to

constant stress (21con, see below) had the lowest

within-female egg size variance overall. Interestingly,

mean egg size of 21var mothers was only slightly smal-

ler than that of 21con mothers, despite originating from

much larger clutch sizes. Optimality models predict

that mean egg size should decrease for 17var mothers if

smaller eggs are favoured at elevated temperature,

because producing a range of egg sizes that includes

smaller eggs will lower the overall mean. At 21 °C,
however, the mean should increase because more, lar-

ger eggs that are favoured at 17 °C should be produced

(Marshall et al., 2008; Bownds et al., 2010). Here, mean

egg size of 21var mothers was not greater than that of

21con mothers; hence, there was only partial size com-

pensation at elevated temperature. Nevertheless, given

the much larger clutch sizes of 21var mothers, (relative)

mean egg size was indeed larger. Moreover, hatching

success at elevated temperature of 21var eggs did not

show the same decrease relative to 21con as did eggs

from 17 °C mothers, suggesting that possible bet hedg-

ing at elevated temperature led to (relatively) larger

eggs that were more robust to stressful conditions in

terms of hatching environment.

Among-female variability in egg size is expected to

be higher than within-female variability when mothers

experience predictable environments and can therefore

provision offspring according to local optima, whereas

within-female variability should be higher than

among-female variability in unpredictable environ-

ments (Marshall et al., 2008; Morrongiello et al., 2012).

The variability in egg size found here fits well to these

predictions when mothers developed at 21 °C, but less
so when mothers developed at 17 °C. Selection can act

differently on the two sources of female variation

depending on maternal thermal environment (Marshall

et al., 2008), but this cannot be confirmed by the cur-

rent data, as the study cannot make adaptive inference

for the variance expression found (see below). Never-

theless, females in 17con environments had the lowest

among-female variability in egg size, and females in

21con had the highest, with females in variable envi-

ronments intermediate between the two. Given that

prolonged exposure to 21 °C has been shown to be a

stressful environment for this population having nega-

tive effects on several traits (e.g. hatching success

(Shama & Wegner, 2014), growth (Schade et al., 2014)

and development (Ramler et al., 2014), it may be that

females in 21con had the greatest among-female vari-

ability in egg size because the stressful environment

exacerbated individual differences among females

(Charmantier & Garant, 2005). Females in 17con expe-

rienced the least thermal stress, and females in variable

environments switched between stressful and non-

stressful environments. In any case, females that devel-

oped at 21 °C fit well to theoretical predictions of

diversified bet-hedging, indicating that stickleback

mothers may use this as a strategy to cope with the

dual stress of ocean warming and environmental

uncertainty.

It is important to note that the results presented here

demonstrate the expression of plasticity that can be

adaptive and variance expression that can be inter-

preted as diversified bet hedging. Additional work

would be needed to make adaptive inference in both

cases. For instance, egg size-performance relationships

at different temperatures and fitness benefits of smaller

size at elevated temperature (e.g. higher reproductive

success) need to be established. Similarly, whether off-

spring of mothers from variable environments grow or

reproduce better in variable vs. constant environments

could be determined (L.N.S. Shama, unpublished data).

The finding of increased offspring size variation in

unpredictable environments conforms to three of

Simons’ six criteria for evidence of bet hedging (Si-

mons, 2011; see also Furness et al., 2015). Namely, a

trait showing a high degree of variance was identified

(offspring size), an environmental factor that leads to

habitat unpredictability was identified (varying SST),

and variation in the trait of interest was expressed

within the same cohort while controlling for genetic

and environmental sources of variation (e.g. common

garden experiment using F2 families). The other three

of Simons’ (2011) criteria for evidence of bet hedging

could not be demonstrated here: establishment of vari-

able fitness consequences, demonstrating the advan-

tages of these consequences under fluctuating selection,

and finding a match between bet hedging trait expres-

sion and fluctuating selection. Nevertheless, the pattern

found here is in the predicted direction, but more

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13041
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experiments would be needed to establish the variance

expression as adaptive bet hedging.

Managing the mean and variance of offspring size (TGP
and bet hedging)

Several recent climate change-related studies have

demonstrated changes in the mean offspring phenotype

as a result of TGP (reviewed in Munday et al., 2013;

Salinas et al., 2013; Sunday et al., 2014). In most cases,

offspring reared in an environment matching that of

their parents showed better trait performance in terms

of mean response of the variable being measured. Here,

offspring reared at 21 °C had larger mean body sizes if

their mother also developed at 21 °C, whereas this TGP

benefit was not present under ambient (17 °C) condi-

tions, suggesting that anticipatory maternal effects will

be highly relevant for climate change scenarios in this

system. A similar result was found in a previous study

using wild caught females that experienced acute accli-

mation only during reproductive conditioning (Shama

et al., 2014). In that study, maternal TGP effects on off-

spring size were strongest at elevated temperature, but

were not mediated by egg size, implying that mothers

were not simply producing larger or better-provisioned

offspring. Rather, mothers exposed to elevated temper-

atures adjusted their mitochondrial metabolic capacity,

and this acute acclimatory response was transferred to

offspring resulting in (relatively) better growth at

higher temperatures (Munday, 2014; Shama et al.,

2014).

In the present study, egg size plasticity in response to

maternal developmental temperature resulted in smal-

ler eggs at 21 °C, yet surprisingly, these smaller eggs

grew to become larger offspring – offspring from 21 °C
mothers were larger than offspring of 17 °C mothers

overall – indicating that the TGP benefits on offspring

growth were not egg size-mediated despite the occur-

rence of egg size plasticity. Paternal TGP benefits on

offspring growth may have played a role (see also

Crean et al., 2013; Shama & Wegner, 2014), since off-

spring grew better in their respective paternal environ-

ment (at 60 days), especially at elevated temperature.

Acclimation to elevated temperature has been shown to

influence plasticity of sperm phenotype (Adriaenssens

et al., 2012), and methylomes – DNA methylation pat-

terns that can regulate gene expression – are paternally

inherited, as recently demonstrated in zebra fish (Jiang

et al., 2013). Still, the mechanism(s) underlying the lar-

ger sizes of offspring from mothers that developed at

21 °C remain unclear, and further studies are needed to

determine if plasticity of mitochondrial respiration

(Shama et al., 2014) and/or other epigenetic marks that

affect genes associated with thermal tolerance (Herman

et al., 2014) underlie the TGP benefits on mean off-

spring size.

Similar to the pattern for egg size, offspring of vari-

able environment mothers were smaller but more vari-

able in size than offspring from constant environment

mothers, particularly at elevated temperature. In terms

of mean size, offspring of 21var mothers suffered most

when reared in the nonmatching environment of their

mothers (17 °C), indicating that TGP benefits at 21 °C
may have offset some of the losses in mean offspring

size in the unpredictable environment. In terms of

increased variance in offspring size, it is likely that the

effects of diversification employed at reproduction per-

sisted into later developmental and growth stages. That

the strength of these effects increased over time, espe-

cially under a warming ocean scenario, possibly indi-

cates different mechanisms of response operating over

different time spans or life history stages (see also Fur-

ness et al., 2015). For instance, offspring of mothers

exposed to both stressors (21var) had higher CVs of

body size regardless of rearing temperature, whereas

offspring of 17var mothers had higher CVs only when

reared at 21 °C, indicating that the phenotypic variance

resulting from possible bet hedging at reproduction by

17var mothers was only expressed under stressful con-

ditions (Herman et al., 2014). By rearing split-clutches

of offspring in different environments, the test of

expression of trait variance used here was actually a

test of plasticity of the expression of variance. In other

words, for classical bet hedging, one would expect the

expression of trait variance regardless of rearing envi-

ronment. The fact that variance was higher at elevated

temperature indicates context-dependent expression of

variance, that is, plastic expression of variance, and

may be more consistent with the idea of plastic fine-

tuning of a bet-hedging strategy (see also Sadeh et al.,

2009; Furness et al., 2015), whereby responses to both

maternal and offspring environments interact, resulting

in a combination of diversification (by mothers) and

plasticity (by offspring).

Since climate change is expected to bring an increase

in environmental variability (IPCC 2012), the likelihood

that populations will persist under these conditions

may depend on the evolution of bet hedging (Simons,

2011). Here, stickleback mothers exposed to variable

environments may have spread the risk of future envi-

ronment uncertainty by producing a range of offspring

sizes. At the same time, mothers exposed to pre-

dictable, but elevated temperatures primed their off-

spring via TGP to grow better under warmer

conditions. When both predictable and unpredictable

environmental variance influence offspring phenotype,

and hence, fitness, both plasticity and bet hedging are

expected to evolve, and diversified bet hedging may

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13041
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occur around the norm of reaction as suggested here

(Simons, 2011; Furness et al., 2015). In this study, when

the environmental cue was applied was critical in

determining its effects. For instance, mean egg size ‘de-

cisions’ by mothers likely developed based on lifetime

or possibly early-life exposure (Donelson et al., 2012;

Burton & Metcalfe, 2014; Shama & Wegner, 2014),

whereas the diversification of egg sizes resulted from

the cue of environmental variability experienced only

during reproductive conditioning. That is, egg size

plasticity leading to a mean egg size that is appropriate

for future environmental conditions is likely estab-

lished at an early developmental stage (constant envi-

ronment at this time point), but is fine-tuned later

during reproductive conditioning to account for envi-

ronmental variability.

Striking a balance between adaptive plasticity and bet

hedging in a warming and increasingly variable climate

will be necessary to optimize fitness as environmental

conditions change (Simons, 2011, 2014). Here, stickleback

mothers responded differently depending on whether

warming alone, or warming in conjunction with

increased climate variability occurred (Vasseur et al.,

2014). With warming alone, offspring size decreased, but

TGP benefits offset some of the size losses resulting in

partial size compensation. Smaller size at elevated tem-

perature is a common finding in climate change studies

(Daufresne et al., 2009), but may or may not reduce

fitness, as discussed above. With gradual increases to

the mean temperature, many species, especially those at

mid-latitudes, are expected to benefit due to lengthening

of the growing season. On the other hand, increased

variability could counteract any benefits due to greater

magnitudes and durations of heat waves (Vasseur et al.,

2014). In this study, the effects of possible bet hedging at

reproduction on offspring size were exacerbated by

warming, that is, variance was more strongly expressed

at 21 °C. Here again, TGP benefits at 21 °C offset some

of the losses in offspring size in the variable environ-

ment. With only increased climate variability (17var),

there was less change to mean offspring size, but con-

text-dependent expression of variance depending on the

environment offspring ultimately experienced. A greater

understanding of the roles of both TGP and bet hedging

will be crucial for predicting how populations will

respond to climate change, and if these strategies are suf-

ficient to buffer the ecological and evolutionary implica-

tions of warming and increasing climate variability

(Crean & Marshall, 2009; Gremer & Venable, 2014).
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Additional Supporting Information may be found in the
online version of this article:

Figure S1. Relationship between density and body size
(measured as standard length �0.01 mm) for Gasterosteus
aculeatus offspring reared at 17 °C (open symbols; dashed
lines) and 21 °C (closed symbols; solid lines) at (a) 30 days,
(b) 60 days and (c) 90 days posthatch.
Table S1. Linear mixed effects models for Gasterosteus
aculeatus coefficient of variation (CV) of body size at 30, 60
and 90 days posthatch depicting the influence of offspring
rearing temperature (offspring °C), parental developmental
temperatures (dam °C, sire °C) and maternal environment
predictability (predictability).
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