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Abstract We use surface air temperature to evaluate the decadal forecast skill of the fully coupled Max
Planck Institut Earth System Model (MPI-ESM) initialized using only surface wind stress applied to the ocean
component of the model (Modini: Model initialization by partially coupled spin-up). Our analysis shows that
the greenhouse gas forcing alone results in a significant forecast skill on the 2–5 and 6–9 year range even
for uninitialized hindcasts. For the first forecast year, the forecast skill of Modini is generally comparable with
previous initialization procedures applied to MPI-ESM. But only Modini is able to generate a significant skill
(correlation) in the tropical Pacific for a 2–5 year (and to a lesser extent for a 6–9 year) hindcast. Modini is
also better able to capture the observed hiatus in global warming in hindcast mode than the other methods.
Finally, we present forecasts for 2015 and the average of years 2016–2019 and 2020–2024, predicting an
end to the hiatus.

1. Introduction

It is possible nowadays to forecast the weather a few days to a week ahead with growing confidence.
This task is tackled by providing coherent initial conditions for numerical atmospheric models. In contrast,
climate projections for a century ahead are based on coupled atmosphere-ocean models, which are forced
with prescribed greenhouse gas (GHG) concentrations and aerosols based on future projections. These
projections serve as the scientific basis for the International Panel on Climate Change (IPCC) reports and
are getting more robust and authoritative with each update from the first report [Houghton et al., 1990]
to the most recent one [e.g., Stocker et al., 2013]. However, providing reliable forecasts on an intermediate
(seasonal to decadal) timescale is still challenging. Numerical simulations for this time frame require both
initial conditions (like weather forecasts) and boundary conditions (like climate projections). This leads to
so-called initialized climate predictions (or forecasts) [e.g., Cox and Stephenson, 2007; Hawkins and Sutton, 2009;
Kröger et al., 2012].

In general, model limitations (like resolution and the necessity to parameterize unresolved processes) funda-
mentally limit the ability of models to reproduce the observed climate leading to model biases [e.g., Wang
et al., 2014]. Thus, even if the model is initialized in the best possible way, the model forecast can be obscured
by drift toward the model’s own inherent climate. In spite of these inevitable limitations for decadal forecasts,
it is possible to estimate the forecast skill of numerical models by applying statistical methods [e.g., Goddard
et al., 2013].

The ongoing German research project Decadal Predictions (MiKlip, Mittelfristige Klimaprognosen) aims to
develop a system for climate forecasts for up to a decade ahead. This system is based on the Max Planck
Institute Earth System Model (MPI-ESM). Three generations of decadal forecast systems have been developed
and released during the last years, namely, Baseline-0 (B0), Baseline-1 (B1), and Prototype (PT) [e.g., Pohlmann
et al., 2013; Kruschke et al., 2015]. Here we refer to B0, B1, and PT as MPI forecast systems. The only (but essential)
difference between these systems is the initialization procedure prior to any forecast, which we shortly recall
in section 2.

Here we present model initialization by partially coupled spin-up (Modini) as an alternative initialization proce-
dure for MPI-ESM. Thoma et al. [2015] showed that Modini-MPI-ESM is able to reproduce the observed timing
of climate events or shifts as for instance observed in the El Niño Southern Oscillation (ENSO), the Pacific
Decadal Oscillation (PDO), or the Atlantic Meridional Overturning Circulation (AMOC) during the initializa-
tion phase. Ding et al. [2013] already demonstrated that Modini has potential as an initialization technique
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Table 1. Compilation of Initialization Procedures Used by MPI-ESM Forecast Systems Described in the Texta

Ocean (MPIOM) A/F Atmosphere (ECHAM6) A/F Ensemble Members

CMIP5 – – – – 10

Baseline-0 NCEP A – – 10(3)

Baseline-1 ORA-S4 A 3-D TVD and Surface Pressure (ERA40 and ERAI) F 10

Prototype ORA-S4 F 3-D TVD and Surface Pressure (ERA40 and ERAI) F 15

Modini Wind Stress (NCEPcfsr) A – – 18
aA = anomaly initialization and F = full-field initialization; 3-D TVD stands for a three-dimensional initialization of tem-

perature, vorticity, and divergence. CMIP5 refers to the MPI-ESM combination of the historical (until 2005) and the RCP4.5
scenarios (thereafter) without initialization. For Baseline-0 10(3) ensemble members exist for 1990, 1995, and 2000–2005
(1991–1994 and 1996–1999).

with the coarser resolved Kiel Climate Model (KCM) [Park et al., 2009] showing some success at hindcasting the
1976/1977 and 1998/1999 climate shifts in the Pacific. In this study, we first describe the different initialization
systems in section 2. In section 3, we then apply a standardized tool, developed within the MiKlip framework
[Illing et al., 2014; Kadow et al., 2015], to evaluate and compare the Modini-MPI-ESM forecast skill with unini-
tialized forecasts and the initialized MPI forecast systems. Finally we provide a summary and discussion in
section 4 and also present a prediction for the near-surface air temperature for the years 2015–2024.

2. Model and Experimental Setup

The common basis for all decadal forecast systems described in this article is the Max Planck Institute Earth
System Model (MPI-ESM) in its LR (low resolution) configuration. This model has contributed successfully to
the Coupled Model Intercomparison Project Phase 5 (CMIP5), which has been the basis for the fifth IPCC report
[Stocker et al., 2013]. The ocean component (called Max Planck Institute Ocean Model (MPIOM)) [Jungclaus
et al., 2013] has 40 vertical levels and a horizontal resolution of about 12 to 150km on a curvilinear orthog-
onal grid with poles over Antarctica and Greenland. The atmospheric component ECHAM6 has a horizontal
resolution of T63 (about 200km) with 47 vertical levels including the upper stratosphere up to 0.1hPa [Stevens
et al., 2013]. The MPI-ESM-LR is forced solely with changing radiative boundary conditions and known volcanic
eruptions (identical to the CMIP5-historical and RCP4.5 experiments) during hindcast/forecast periods. The
essential differences between the evaluated decadal forecast systems is the initialization procedure prior to
the forecast period.

In Baseline-0 (B0) the initial conditions are taken from an ocean-only model driven by the National Centers
for Atmospheric Prediction (NCEP) reanalysis [Kalnay et al., 1996; Müller et al., 2012]. For Baseline-1 (B1) and
Prototype (PT) thermodynamical self-consistent descriptions of the ocean state according to ORA-S4 from the
European Centre for Medium-Range Weather Forecasts (ECMWF) [Balmaseda et al., 2013] have been applied.
Additionally, the atmospheric component is initialized with 3-D temperature, 3-D vorticity, 3-D divergence,
and surface pressure fields from the ERA40 reanalysis [Uppala et al., 2005]. The main difference is that B1 has
been initialized with anomaly fields in the ocean, while PT uses a full-field initialization [Kruschke et al., 2015]
(compare Table 1). Pohlmann et al. [2013] demonstrated (with B1) that there is only little additional skill gain
from using the higher resolution MPI-ESM-MR version of the MPI-ESM; therefore, we limit our analysis to results
for the MPI-ESM-LR.

In contrast to the quite complex 3-D data assimilation procedures, necessary for the more recent MPI forecast
systems, Modini-MPI-ESM uses a simpler approach: The ocean/sea ice component of the MPI-ESM is forced by
the time series of observed wind stress anomalies added to the wind stress climatology from MPI-ESM. The
atmosphere-ocean coupling of all other exchanged variables remains identical to that in the fully coupled
MPI-ESM during the initialization [Thoma et al., 2015]. This allows the atmosphere to respond to the ocean sea
surface temperature and sea ice in a self-consistent way rather than being initialized by an external forcing
field. This method is similar to that introduced by Cane et al. [1986] and, later, modified by Chen et al. [1997]
but here applied to a fully coupled climate model. The numerical experiments have three periods: The preini-
tialization period before 1980 consists of the three original historical CMIP5 experiments performed with the
fully coupled MPI-ESM-LR. During the initialization period the ocean and sea ice components of MPI-ESM-LR
are forced with observed (reanalyzed) wind stress anomalies estimated from NCEPcfsr [Saha et al., 2010] using
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Figure 1. Sketch illustrating the Modini forecast system: During the initialization period three ensemble members are
forced. These serve as seeds for the 18 ensemble members for each forecast period, starting at the individual First
Forecast Years (FFYs).

bulk formulas according to Large and Yeager [2009] to convert wind velocity into wind stress. After a minimum
of 10years (from 1990 onward) of wind stress anomaly forcing the Modini mode is switched off on six con-
secutive days starting with 1 January of the First Forecast Year (FFY). These different switch-off dates generate
six ensemble members per original CMIP5 experiment, resulting in 18 ensemble members (Figure 1). With
2006 being the last FFY, we generate 17 historical forecasts, which are evaluated in the following section. It is
known that a larger ensemble size increases the significant prediction skill of a forecast system. We present
results for the highest number of ensemble members available in this study (section 3). Random sampling of
the ensemble members to generate ensembles of different size has shown that the main differences in pre-
dictive skill between the different forecast systems can be attributed to the initialization method rather than
the ensemble member size (not shown).

3. Results

The skill of the different initialization methods is assessed by correlating the surface air temperature (SAT)
against observations from HadCRUT4 median [Morice et al., 2012]. We estimate the correlation and the corre-
sponding significance using the Murphy-Epstein decomposition and Continuous Ranked Probability Skill Score
(MurCSS) tool, which analyzes decadal hindcast experiments in a deterministic and probabilistic way following
and extending the framework suggested by Goddard et al. [2013]. This tool has been developed as part of the
MiKlip evaluation system to improve the comparability within the project [Illing et al., 2014; Kadow et al., 2015]
and has already been applied in Pohlmann et al. [2013]. The significance is tested using a 500-fold nonpara-
metric bootstrap approach, taking account of autocorrelation. The skill assessment implies spatial averaging
on a 5 × 5∘ grid, temporal aggregation and lead time-dependent bias adjustment including an implicit drift
reduction [International CLIVAR Project Office, 2011]. In particular, we focus on the accuracy of the hindcasts
using the anomaly correlation and the Mean Squared Error Skill Score (MSESS) between the initialized fore-
casts and the observations as skill for the average over the 2–5 and 6–9 year periods for FFYs from 1990 to
2006 (Figure 2). The MSESS represents the improvement in the accuracy of a hindcast over the climatology
with respect to the observations. It takes the anomaly correlation and the conditional bias into account and
ranges from−∞ (incredibly bad) to 1 (perfect hindcast). The anomaly correlation represents the potential skill
of a prediction system and measures the (linear) dependency between the modeled and observed values. It
ranges from −1 (reversed skill) over 0 (no correlation) to 1 (great potential skill).

Note that already the uninitialized CMIP5 experiment (Figure 2, first row) has a decent skill, in particular, for the
forecast years 2–5. This indicates how important the climate background GHG forcing is for multiyear fore-
casts. The B0 and, in particular, the subsequent B1 and PT initializations show some improvements compared
to uninitialized CMIP5 forecasts for the first forecast year [Pohlmann et al., 2013], but there is no significant skill
gain for the years 2–5 or for the second pentade (years 6–9). We also do not see any obvious skill gain of PT
compared to B1 for any forecast period (2–5 or 6–9) in the analyzed time frame. (In addition to the full-field
maps shown in Figure 2, we present difference maps between individual prediction systems in Figures S1 and
S2 in the supporting information).
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Figure 2. Maps of (first and second columns) anomaly correlation and (third and fourth columns) Mean Squared Error Skill Score (MSESS) of ensemble mean
historical forecast skills of SAT calculated against HadCRUT4 median, averaged over the 2–5 and 6–9 year periods, respectively, for FFYs from 1990 to 2006.
Black regions in MSESS maps indicate areas with a value below −1. Crosses denote values significantly different from zero exceeding at a 5% level applying 500
bootstraps. Gray shaded areas mark missing values with less than 90% data consistency in the observations.

The Modini forecast system gives a similar picture for the first forecast year (1–1, Figures 2, S3, and S4): The skill
gain is, in general, somewhat between B0 and B1 (or the nearly identical PT); only over the Atlantic Ocean do
the MPI forecast systems perform better during this first year. However, on the 2–5 year range, only Modini is
able to generate (correlation) skill in the tropical Pacific, the key region for ENSO, and many teleconnected
climate signals. Despite the simpler initialization method, the skill in the Atlantic Ocean is comparable to the
MPI forecast systems. Only in the Indian Ocean do the MPI forecast systems have a higher correlation. Consid-
ering the MSESS, which also takes the conditional bias into account, Modini has less areas with nonexisting
(negative) skill, compared to the MPI forecast system (right part of Figures 2, S1, and S2). However, compared to
climatology, there is still room for improvement in all cases, including Modini. The Modini advantages persist
(although to a lesser degree) even until forecast years 6–9.

Since about 1998 the globally averaged surface temperature has increased relatively little compared to the
long-term trend. This period is often referred to as global warming hiatus [Kosaka and Xie, 2013]. Compared to
the MPI forecast systems, Modini is better able to capture this hiatus in hindcast mode. Figure 3 shows that
the temperature anomalies estimated with Modini are much closer to observations than those of B0 or PT,
which feature a strong warming during the 2–5 and 6–9 year hindcast periods.

4. Discussion and Conclusion

We have compared the hindcast performance of the MPI-ESM (LR version) using different initialization
schemes; that is, the B0, B1, and PT schemes of the German MiKlip project [Pohlmann et al., 2013; Kruschke
et al., 2015] and what we have called Modini-MPI-ESM. For the latter, initial states are created by running the
MPI-ESM using a time series of observed wind stress anomalies applied only to the ocean/sea ice component
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Figure 3. Time series (4 year running means) of global mean temperature anomalies for the hindcast years (left) 2–5 and (right) 6–9 for FFYs ranging from 1990
to 2006. Anomalies are estimated with respect to the respective mean value of each individual graph. Green (red, blue) thick line indicates ensemble mean result
for Modini (Baseline-1, Prototype). Thin lines show individual ensemble members. Black line indicates 4 year running mean observations as reference according to
HadCRUT4 median. Note that the value assigned to the abscissa corresponds to the center of the hindcast period.

of MPI-ESM. The atmospheric component of the MPI-ESM responds, in turn, to the sea surface temperature
(SST) and sea ice given to it by the ocean component of the MPI-ESM using the thermodynamic coupling of
the fully coupled model. Despite its simplicity, initialization using Modini-MPI-ESM leads to a better hindcast
performance for both SAT and SST (not shown) in the Pacific sector than any of the other schemes, especially
after the first year. We attribute this improvement to the fact that in Modini-MPI-ESM, the fully coupled model
is initialized, rather than the oceanic and atmospheric components being initialized separately, as in the B0,
B1, and PT initializations. Furthermore, using a long time series of observed wind stress for the initialization
ensures that the ocean component of the MPI-ESM is dynamically balanced with the wind stress used for the
initialization, an important consideration in the equatorial oceans [Chen et al., 1997; Bell et al., 2004; Luo et al.,
2005]. Here we used a spin-up time of at least 10years. This enables the tropical Pacific Ocean to adjust to wind
forcing before commencing the hindcasts. It should be noted that the performance of the B0 and B1 is very
similar to that shown in Pohlmann et al. [2013], even though the hindcasts were carried out over a different
time period (1961–2012 compared to 1990–2006 here).

A weak point of the hindcasts initialized using Modini-MPI-ESM is the generally weaker performance in the
Atlantic sector compared to the other schemes in the first forecast year (1–1, Figure 2), although after year
1, the performance of Modini-MPI-ESM is no worse in this sector than the other cases. We attribute this to
the fact that wind stress alone is used for the initialization in Modini-MPI-ESM. It is well known that variability
in the Atlantic on time scales of decadal and longer (for example, associated with the Atlantic Multidecadal
Variability) is strongly influenced by surface heat flux forcing [e.g., Eden and Jung, 2001], which is missing in
Modini-MPI-ESM. On the other hand, the ability of Modini-MPI-ESM to capture decadal variability in the Pacific
sector has been shown by Thoma et al. [2015] in initialization mode and by Ding et al. [2013, 2014] using the
Modini approach applied to the Kiel Climate Model. Indeed, that initialization using the Modini approach can
lead to hindcast skill out to decadal time scales in the Pacific sector has already been anticipated by Ding et al.
[2013]. A related feature of Modini is its much better performance at capturing, in hindcast mode, the hiatus

Figure 4. Predicted average SAT change for (left) year 2015, (middle) years 2016–2019, and (right) years 2016–2019 with respect to the Modini-MPI-ESM
climatology from 1990 to 2006, including an inherent model drift correction. This forecast has been initialized with Modini-MPI-ESM and started with FFY 2015.
Dotted (striped) areas indicate regions of significance in positive correlation (MSESS).
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in global warming than the MPI forecast systems. We attribute this success to the improved performance of
Modini in the Pacific sector compared to the other systems, while noting the importance of the Pacific sector
in the dynamics of the hiatus as argued by Kosaka and Xie [2013] and England et al. [2014].

Finally, we present a prediction for 2015 (corresponding to the first forecast year) and averaged over the years
2016–2019 (corresponding to forecast years 2–5) and 2020–2024 (years 6–9) based on a Modini-MPI-ESM
initialization until January 2015. The colors in Figure 4 indicate temperature anomalies with respect to the
forecast year-dependent climatology from the Modini initialized hindcasts with FFY 1990–2006, i.e., warmer
or colder than the period 1991–2006 (1992–2010 and 1996–2014) for the forecast of 2015 (2016–2019 and
2020–2024). This method implicitly corrects for an inherent forecast year-dependent model drift, although
the 16 years are shorter than the 30 years usually used to compute such a climatology.

The shaded areas in Figure 4 indicate areas where significance is estimated in correlation and/or MSESS
(and the corresponding values are positive), from the previous hindcasts according to the results described
in section 3. In general, we predict the global surface air temperature in 2015 to be 0.53K warmer than the
1990–2006 mean which would make 2015 the warmest year ever in the instrumental record, exceeding the
previous record in 2014. However, because of the short Modini climatology from 1990 to 2006, the model
drift might not be completely compensated in this forecast, and the real (to be measured) warming might be
slightly different in 2015. The warming is predicted to be most pronounced in high latitudes, but also
over most parts of the continents. Note that the warm tropical Pacific prediction for 2015 is consistent
with statements from the NOAA Climate Prediction Center who published the following synopsis on 5 March
2015: There is an approximately 50–60% chance that El Niño conditions will continue through Northern
Hemisphere summer 2015 (http://www.cpc.noaa.gov/products/analysis\_monitoring/enso\_advisory/
ensodisc.html), and also with the ENSO Tracker of the Australian Bureau of Meteorology, who raised the
El Niño status on 12 May 2015 (product code IDCKGEWW00, http://www.bom.gov.au/climate/enso/tracker/
\#tabs=History). As is usually the case when the tropical Pacific is warm, colder than normal SATs are predicted
in the North Pacific, associated with a deepened Aleutian low (Figure 4). These colder than normal SSTs in the
North Pacific persist into years 2–5 and 6–9 of the forecast, with a pattern resembling the Pacific Decadal
Oscillation (PDO). Given the importance of the PDO for influencing global mean surface air temperature
[Kosaka and Xie, 2013; England et al., 2014], it is no surprise that our forecast suggests that the current hiatus
in the rise of global mean surface air temperature will come to an end, leading to accelerated warming com-
pared to the past decade. Indeed, according to our prediction, the global mean temperature from 2016 to
2019 (2020–2024) will be 0.35K (0.28K) warmer than the 2–5 (6–9) year forecast mean for the 1990–2006
FFY hindcasts (cf. Figure 3).

The intensified cooling in the North Atlantic to the west of Europe from 2015 to years 2016–2019 is a con-
sequence of a weakening of the Atlantic Meridional Overturning Circulation (AMOC, not shown). Although
we have noted the weakness of Modini-MPI-ESM for capturing decadal and longer time scale variability in
the Atlantic sector, Modini-MPI-ESM does have skill at capturing variability associated with wind forcing of
the AMOC [Thoma et al., 2015]. Furthermore, we have seen that greenhouse gas forcing is important for
changes in SAT in years 2–5 and 6–9 of the hindcast experiments, suggesting that anthropogenic forcing
may also be a factor in the predicted weakening of the AMOC and the associated North Atlantic cooling
[Rahmstorf et al., 2015].

Baseline-1 participates in a multimodel assessment for decadal climate predictions [Smith et al., 2013]. Within
this context forecasts for 2015 and the 2015–2019 average are available online (http://www.metoffice.gov.uk/
research/climate/seasonal-to-decadal/long-range/decadal-multimodel). We have added the Baseline-1 fore-
cast and the multimodel average (MMA) forecast for temperature (five models) to the supporting information
(Figure S6) for comparison with Figure 4. Although these forecasts are based on a 1971–2000 climatology, a
qualitative assessment is possible: A common feature of the Modini, B1, and the MMA forecast is a warmer
than average Northern Hemisphere for 2015, a trend that continues until 2019. The results for the Southern
Hemisphere are not as consistent. Here only Modini shows a spatially consistent warmer-than-average sur-
face air temperature for the Southern Ocean and Antarctica, while there are contradicting results between
B1 and MMA for 2015. However, on pentadal timescales (until 2019) all models agree on a general warming
of the Southern Hemisphere as well, although qualitative differences in the models for the Southern Ocean
remain. On a regional scale the features of all models differ quite a lot, which indicates that further studies are
needed until reliable decadal predictions can be used as basis for decision making on regional scales.
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Acronyms

AMOC Atlantic Meridional Overturning Circulation
B0 Baseline-0
B1 Baseline-1
PT Prototype

CMIP5 Coupled Model Intercomparison Project Phase 5
CRUTEM4 Climatic Research Unit Temperature data set, version 4

ECHAM Acronym from ECMWF and Hamburg
ECMWF European Centre for Medium-Range Weather Forecasts

ENSO El Niño Southern Oscillation
EOF empirical orthogonal function

ERA40 ECMWF-40 Year Re-analysis
ERAI ERA-Interim reanalysis
FFY First Forecast Year

GHG greenhouse gas
GPHA Geopotential Height Anomaly

HadSST Hadley Centre SST data set
HadISST Met Office Hadley Centre’s sea ice and sea surface temperature data set

HadCRUT4 Blended data set from the CRUTEM4 surface air temperature data set and the HadSST3 sea
surface temperature data set

KCM Kiel Climate Model
IPCC Intergovernmental Panel on Climate Change

LR Low resolution: Atmospheric resolution: T63L47, default; Ocean-Sea-Ice resolution GR15L40,
default ≈1.5∘

MiKlip Decadal Climate Predictions (Mittelfristige Klimaprognosen)
Modini Model initialization by partially coupled spin-up

MPI-ESM Max Planck Institute Earth System Model
MPIOM Max Planck Institute Ocean Model
MurCSS Murphy-Epstein decomposition and Continuous Ranked Probability Skill Score

MR Mixed resolution: Atmospheric resolution: T63L95, highly resolved middle atmosphere;
Ocean-Sea-Ice resolution GR04L40, eddy permitting ≈0.4∘

MSESS Mean Squared Error Skill Score
NCEP National Centers for Atmospheric Prediction

NCEPcfsr National Center for Environmental Prediction, Climate Forecast System Reanalysis
ORA-S4 Ocean Reanalysis System 4

PDO Pacific Decadal Oscillation
RCP Representative Concentration Pathway
SAT surface air temperature
SST sea surface temperature
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