Rising atmospheric CO₂ leads to large impact of biology on Southern Ocean CO₂ uptake via changes of the Revelle factor

Judith Hauck and Christoph Völker

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany judith.hauck@awi.de

The Revelle factor

Revelle and Suess, 1957:

"Because of the peculiar buffer mechanism of sea water, however, the increase in the partial CO₂ pressure is about 10 times higher than the increase in the total CO₂ concentration of sea water when CO₂ is added and the alkalinity remains constant."

$$R = \frac{\Delta p \text{CO}_2}{p \text{CO}_2} \, / \, \frac{\Delta \text{DIC}}{\text{DIC}}$$

Revelle factor: ratio of the relative change of seawater pCO_2 (or, alternatively, $CO_{2 \text{ (aq)}}$) to the relative change of DIC

The Revelle factor is a measure of the ocean's resistance to atmospheric CO_2

R = 9: CO_2 increase by 9% \rightarrow DIC increase by 1% R = 15: CO_2 increase by 15% \rightarrow DIC increase by 1%

The lower the Revelle factor, the more efficient is the anthropogenic CO_2 uptake

Figure: Revelle factor from Sabine et al (2004)

As the ocean continues to take up CO_2 , the carbonate system is pushed towards higher $CO_{2 \text{ (aq)}}$ concentrations...

...and the Revelle factor increases

→ decrease of buffering capacity: less CO₂ uptake in future relative to atm CO₂ increase (positive feedback)

T = 25°C, Zeebe and Wolf-Gladrow, 2001

Model simulation

Impact on Southern Ocean CO₂ flux

Strong increase in summer CO₂ uptake (south of 30°S) between 2012 and 2100:

But not apparent in CONST simulation which only considers climate change. Hence: Not caused by increased biological production

What then?

stronger gradient between pCO2 atmosphere and ocean

→ more CO₂ uptake

 \rightarrow R = 10: DIC draw-down by biology of 1% \rightarrow pCO2 draw-down of 10%

 \rightarrow R = 15: DIC draw-down by biology of 1% \rightarrow pCO2 draw-down of 15%

Modelled biological carbon draw-down by biology

Summer
CO_{2(aq)} drawdown
increases at
constant
biological DIC
draw-down

Dissolved CO_2 ($CO_{2(aq)}$) is responsible for gas-exchange, therefore the larger $CO_{2(aq)}$ draw-down at higher Revelle factor leads to more CO_2 uptake (negative feedback!) These two opposing effects are intrinsic emergent properties of the CO_2 system.

Revelle factor increases
= buffer factor (Egleston et al., 2010) decreases

