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The seasonal sea-ice zone in the glacial Southern
Ocean as a carbon sink
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Reduced surface–deep ocean exchange and enhanced nutrient consumption by phyto-

plankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However,

identification of the biological and physical conditions involved and the related processes

remains incomplete. Here we specify Southern Ocean surface–subsurface contrasts using a

new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian

opal, in combination with numerical simulations. Our data do not indicate a permanent glacial

halocline related to melt water from icebergs. Corroborated by numerical simulations, we find

that glacial surface stratification was variable and linked to seasonal sea-ice changes. During

glacial spring–summer, the mixed layer was relatively shallow, while deeper mixing occurred

during fall–winter, allowing for surface-ocean refueling with nutrients from the deep reservoir,

which was potentially richer in nutrients than today. This generated specific carbon and opal

export regimes turning the glacial seasonal sea-ice zone into a carbon sink.
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T
he past four climate cycles are characterized by a repetitive
pattern of gradually declining and rapidly increasing
atmospheric CO2 concentrations, ranging between B180

p.p.m. during glacials and B280 p.p.m. during interglacials1.
Although multiple processes on land and in the ocean are
involved in the modulation of the observed CO2 variability2,
physical and biological processes in the Southern Ocean (SO)
have been identified to be the key in these changes3. This view is
supported by the tight relationship between CO2 and Antarctic
temperature development4. Most important are changes in ocean
ventilation/stratification, sea-ice extent, wind patterns,
atmospheric transport of micronutrients (for example, iron)
and biological productivity and export, according to proxy and
model-based studies3,5–11. Despite the scientific progress, the
different hypotheses on the SO’s sensitivity to modulate the
carbon cycle and the identification of involved processes remain
under debate. In the SO, the availability of silicon nutrients (Si),
the consumption by primary producers (diatoms) and cycling
pathways are key for effective carbon sequestration8,12. The
widespread deposition of biogenic opal, which consists primarily
in diatoms but also in radiolarians and, to a minor extent, in
sponge spicules, allows for the application of specific opal-based
proxies to trace these processes and related environmental
conditions. However, controversial views exist for the
interpretation of the proxies used to trace past productivity
and their impact on the carbon cycle3,5,13. Similarly, glacial–
interglacial changes in surface ocean stratification, which control
ocean atmosphere exchange and the availability of nutrients, have
been discussed contentiously. This has resulted in different
notions of the impact of physical and biological processes in
ice-free and ice-covered areas on the glacial–interglacial climate
evolution3,5,13. Isotope records of diatom-bound nitrogen (d15N)
are interpreted to indicate a low-productivity glacial seasonal
sea-ice zone (SIZ) resulting from constricted nutrient supply to
the surface ocean, owing to permanent and enhanced near-
surface stratification3,13. Further information on surface water
(euphotic zone) conditions comes from oxygen isotopes (d18O) of
diatoms, used to identify meltwater supply from the Antarctic
continent14–17. Silicon isotope (d30Si) measurements on diatoms
and sponge spicules provide insights into the development of
silicon utilization in surface waters18–20 and the silicon inventory
of the deep ocean19,21,22. A yet unexploited window into
subsurface and deeper water conditions presents the isotope
signal from radiolarians (protozooplankton). In combination
with the diatom isotope data, these signals provide an enhanced
framework to detect changes of upper and lower water column
conditions, and thus the pattern and glacial–interglacial
variability of stratification and nutrient exchange.

Here we apply the new approach to combine d18O and d30Si
measurements of diatom and radiolarian opal to two late
Quaternary sediment cores (PS1768-8 and PS1778-5) from the
sea ice-free Antarctic Zone and from the Polar Front Zone of the
Atlantic sector of the SO, respectively (Fig. 1). We are aware that
the calibration of the new proxies requires further investigations,
especially with respect to the isotope fractionation of radiolarians.
Here we attenuate the lack of data on radiolarian fractionation by
combining d30Si measurements from surface sediments and
water-column samples available from the study area. As least
information is available on oxygen isotope fractionation of
radiolarians, we primarily base our d18O-related interpretations
on the signals from diatom opal. Altogether, the combination of
our opal isotope results with other proxy data and climate
simulations using a fully coupled global atmosphere–ocean
general circulation model23 (AOGCM) enables the establishment
of coherent paleoceanographic scenarios. This combined data/
modelling interpretation implies that the glacial near-surface

stratification in the SIZ was variable. Relatively deep mixing
during fall and winter allowed for surface-ocean refueling with
nutrients from a potentially enriched deep reservoir, which
generated a carbon sink in the glacial SIZ.

Results
Opal-based isotope proxies. A critical requirement for appro-
priate analyses and interpretation of d18O and d30Si in diatom
(d18Odiat and d30Sidiat) and radiolarian (d18Orad and d30Sirad) opal
is the extraction and separation of both microfossil groups
(Methods, Supplementary Figs 1–4 and Supplementary Table 1).
Our diatom fraction (10–40 mm) used for isotope measurements
to reconstruct surface water conditions is dominated by two
species: Eucampia antarctica in the lower part of the cores and
Thalassiosira lentiginosa in the upper core portions. The shift in
species composition is abrupt and its timing is unrelated to the
glacial–interglacial change of the opal isotope signals (Methods
and Supplementary Fig. 5), which suggests that the diatom
isotope signals are not biased by species-related effects. Except for
two studies from the North Pacific, this is in line with other
investigations, indicating vital effects to be either non-existent or
within the analytical reproducibility14,17,24. In contrast to the
diatoms, the species composition of the individual radiolarian
fractions does not significantly vary throughout the investigated
core sections, so that species-related isotope effects in the
different fractions remain unlikely. The radiolarian fraction
4250 mm (PS1768-8) consists of two large-sized species
(Actinomma antarctica and Spongotrochus glacialis adult),
mainly dwelling in the upper 100–400 m of the water column,
thus representing surface–subsurface conditions (Supplementary
Table 2). Radiolarians assembled in the 125- to 250- mm fraction
(PS1768-8) and the 4125-mm fraction (PS1778-5) display a more
diverse species composition, also including species with a deeper
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Figure 1 | Map of the study area. The map shows the location of sediment

core PS1768-8 in the sea-ice free Antarctic Zone (AZ) of the Atlantic sector

of the Southern Ocean and core PS1778-5 from the Polar Front Zone (PFZ).

Also indicated are sites of water column sampling29 (pink diamonds),

surface sediment sampling (yellow dots), and locations of cores discussed

in the text (grey dots). Locations of the modern winter ice edge (MWIE)

and the GWIE were derived from data in refs 34,67, respectively. Oceanic

fronts from ref. 68: Antarctic Polar Front (APF), Subantarctic Front (SAF)

and Subtropical Front (STF); the latter two delimit the Subantarctic Zone

(SAZ). Light-blue-shaded areas represent the zones of modelled transects

(Fig. 5b–e).
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habitat (4400 m)25 (Methods). We also rule out seasonal effects,
because sediment trap studies show that the diatom and
radiolarian export in the SIZ of the SO occur synchronously
and are restricted to spring–summer26.

The d18O signal in diatoms generally depends on both
temperature and d18O in seawater17. A robust relationship
between diatom d30Si and silicic acid utilization is derived from
culture experiments and field data19,20,24,27–30. Diatom culture
studies point to a mean fractionation factor of � 1.1% (ref. 24)
and show limited variation with species and growth rate19. Larger
variability in diatom d30Si fractionation was derived from field
data ranging between approximately � 0.6% and � 2.3%, which
reflects the natural variation but also the methodological
challenge of calculating fractionation offsets19 (Fig. 2b).
Although the oxygen and silicon isotope fractionation of
diatoms is rather well investigated, the knowledge concerning
the isotope fractionation of radiolarians is less developed. The
generation of such data is complicated by the lack of successful
radiolarian culturing experiments31 and isotope measurements of
radiolarians collected in the water column. A first approach
to obtain information on this important issue relies on the
modelling of a fractionation offset ranging between � 1.1% and
� 2.1% derived from deglacial d30Sirad values32. To assist
the interpretation of our results, we moved a step forward
and estimated the radiolarian fractionation offset (Dd30Sirad)
by using d30Sirad values from four surface sediment samples from
the Atlantic sector in combination with d30SiSi(OH)4 values from
surface and deeper waters close to the surface sediment sample
sites29 (Figs 1,2a,b, and Supplementary Table 3). Considering
that the fractionation of diatoms and sponges is suggested
to occur in equilibrium with the surrounding water19,24,
it is reasonable to assume that this is also true for the
fractionation of radiolarians. For the calculation of Dd30Sirad,
we used the following equation adapted from ref. 21

e � Dd30Sirad ¼ d30Sirad� d30SiSi OHð Þ4 ð1Þ
where e is the fractionation factor by opal-producing organisms,
d30Sirad is the silicon isotope composition of radiolarian opal and
d30SiSi(OH)4 is the silicon isotope composition of sea water. The
Dd30Sirad values were calculated with d30SiSi(OH)4 values averaged
from two different water depth intervals (0 to B300–400 m and 0
to B1,000 m), to cover all possible depth ranges of the included
species (Fig. 2b and Supplementary Table 3). The obtained
Dd30Sirad values range between � 0.5% and � 0.9%, and show a
linear relationship with the Si(OH)4 concentrations. The d30Sirad

fractionation offset calculated in our study is more positive than
the fractionation applied in ref. 32 (� 1.1% to � 2.1%).
However, both fractionation estimates are in the range of the
observed diatom fractionation (Fig. 2b). The modern d30Sirad

values display an inverse trend to the Si(OH)4 concentrations29,33

in the upper 400 and upper 1,000 m of the water column
(Fig. 2a and Supplementary Table 3). Higher d30Sirad values
of approximately þ 1.4% correspond to lower Si(OH)4

concentrations of 30–45mM l� 1, whereas lower d30Sirad values
of þ 0.7% and þ 0.8% correlate with higher Si(OH)4

concentrations of 67–98 mM l� 1, which is comparable to the
relationship between d30Si values and Si(OH)4 concentrations
documented for diatoms and sponges.

To test the reliability of the available information on diatom
and radiolarian fractionation we calculated d30SiSi(OH)4 from
d30Si values of radiolarians and diatoms averaged over the
Holocene in both cores (Methods and Supplementary Table 4)
and related the obtained d30SiSi(OH)4 data to d30SiSi(OH)4 and
Si(OH)4 concentrations reported from modern water column
studies29 (Fig. 3a). In our d30SiSi(OH)4 calculation we considered a
fractionation of � 1.1% for diatom d30Si data24. Considering the

remaining uncertainty in the definition of radiolarian
fractionation offsets, we tested the applicability of three offset
values. This includes Dd30Sirad of � 0.8% (average estimated
offset from this study, Supplementary Tables 3 and 4), � 1.5%
(average estimated offset from ref. 32) and � 1.2% representing
an average over both. We note that the Holocene d30SiSi(OH)4
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Figure 2 | d30Si data of radiolarians (d30Sirad) and Dd30Si offsets in

surface sediments compared with Si(OH)4 concentrations and to Dd30Si

offsets of diatoms. (a) d30Si data of radiolarians (d30Sirad) in four surface

sediments from the study area compared with Si(OH)4 concentrations in

sea water. Colours refer to different surface sediments (red: PS63/026-2,

green: PS63/035-2, blue: PS63/042-2, orange: PS63/043-2) (for site

location, see Fig. 1 and Supplementary Table 3). Filled circles and squares

present the d30Sirad values (Supplementary Table 3) plotted versus Si(OH)4

concentrations measured at different water depth intervals (filled circles:

upper B300–400 m and filled squares: upper 1,000 m) at nearby seawater

sampling stations29 (Fig. 1 and Supplementary Table 3), whereas the open

symbols display the d30Sirad values plotted versus annual and summer

Si(OH)4 concentrations at different water depth intervals in the study area

according to the World Ocean Atlas33 (Supplementary Table 3). (b) Dd30Si

offsets between d30Si values of seawater samples27–29,69 and d30Si values

of radiolarians (d30Sirad) and diatoms (d30Sidiat), respectively, versus

seawater Si(OH)4 concentrations at the seawater sampling stations.

Coloured symbols display different surface sediments (see Fig. 2a).

Different symbols (circles and squares) display the Dd30Si offsets between

d30Sirad values of the four surface sediment samples and seawater d30Si

values at different water depth intervals (filled circles: upper B300–400 m

and filled squares: upper 1,000 m, see Fig. 2a) at the nearby oceanographic

stations29 The dashed area illustrates the diatom d30Si fractionation offset

of � 1.1±0.4% obtained from diatom culture studies24. The white dots

with error bars display the Dd30Si offsets between d30Sidiat and d30Si of

seawater obtained from field data27–29,69. Error bars show ±2s s.d.
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values reconstructed from d30Si of diatoms and surface–
subsurface dwelling radiolarians (4250mm fraction) are in the
range of d30SiSi(OH)4 values reported from the modern mixed
layer (ML) in the Atlantic sector of the SO29 (Fig. 3a). The
d30SiSi(OH)4 values reconstructed from the d30Si data in the
radiolarian fractions 125–250mm and 4125 mm, which also
include species with a deeper habitat, are shifted towards lower
values. These d30SiSi(OH)4 values are in the range of d30SiSi(OH)4

data and Si(OH)4 concentrations from the Circumpolar Deep
Water (CDW)28,29 (Fig. 3a). While the application of Dd30Sirad

values of � 1.2% and � 1.5% leads to realistic seawater Si(OH)4

concentrations, estimates calculated with a fractionation offset of
-0.8% tend to result in overestimated Si(OH)4 concentration.
This is most apparent for the result from the 125- to 250-mm
radiolarian fraction (PS1768-8) reaching values comparable to
those in modern Northwest Pacific Deep Water20, which exceed
CDW concentrations (Fig. 3a). Although information on isotope
fractionation in radiolarians remains incomplete and requires
additional efforts (for example, in water column studies and new
approaches for radiolarian culturing), our Dd30Sirad calculations
and their relation to modern Si(OH)4 concentrations point to a
similar fractionation in diatoms and radiolarians. This
assumption represents a step towards quantification of past

Si(OH)4 concentration and its variability in surface and
subsurface to intermediate-deeper water.

Down-core data interpretation. During the last glacial, core
PS1768-8 (52�35.610S, 4�28.50E, water depth 3,270 m) was posi-
tioned in the northern glacial SIZ and core site PS1778-5
(49�00.70S, 12�41.80W, water depth 3,380 m) was in the area of
the glacial winter sea-ice edge (GWIE)34 (Fig. 1 and
Supplementary Fig. 6). This is in agreement with glacial-time
winter sea-ice concentrations (WSICs) based on a new transfer
function35, which display glacial sea-ice concentrations B60% in
the PS1768-8 record (Fig. 4e) and B40% at PS1778-5 (Fig. 4i).
We assigned sea-ice concentrations of 40%–50% to be indicative
of the average paleo-sea-ice edge, because these values are in the
middle of the abrupt decline of Antarctic sea-ice concentration,
which marks the modern sea-ice edge35,36. A similar definition of
the average sea-ice edge was proposed based on microwave
remote-sensing observations37. Our sediments document the last
glacial, the glacial–interglacial transition and the early part of the
Holocene (Fig. 4). In the absence of biogenic carbonate, which
hampers the development of continuous foraminiferal oxygen
isotope records and carbonate-based AMS14C data series in the
studied cores, the generation of age models for both cores
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Figure 3 | Reconstructed d30SiSi(OH4) values and Si(OH)4 seawater concentrations compared with values in modern water masses.

(a) Average Holocene and (b) glacial-time d30SiSi(OH4) values and Si(OH)4 concentrations in seawater reconstructed from d30Sirad data and d30Sidiat values

in cores PS1768-8 and PS1778-5 compared with modern seawater d30SiSi(OH4) values and Si(OH)4 concentrations in different water masses29

(Supplementary Table 4). The blue triangles indicate the d30SiSi(OH4) values reconstructed from the d30Sidiat data of the two cores by using a Dd30Si offset

of � 1.1% (light blue: core PS1768-8 and dark blue: core PS1778-5), the coloured diamonds indicate the d30SiSi(OH4) values reconstructed from the d30Sirad

data of the size fraction 4250mm in core PS1768-8, the coloured dots indicate the d30SiSi(OH4) values reconstructed from the d30Sirad data of the size

fraction 125–250mm in core PS1768-8 and the coloured squares indicate the d30SiSi(OH4) values reconstructed from the d30Sirad data of the size fraction

4125mm in core PS1778-5. The Dd30Si offsets applied to the d30Sirad data were �0.8% (orange), � 1.2% (red) and � 1.5% (yellow) (see Methods). The

obtained d30SiSi(OH)4 values were related to d30SiSi(OH)4 values from water stations and to their ranges in Si(OH)4 concentrations20,28,29. The modern

d30Si values and Si(OH)4 concentrations were measured on seawater samples from the mixed layer (ML; grey triangles)29, Winter Water (WW; grey

diamonds)29, CDW (grey dots)28,29 and Northwest Pacific Deep Water (‘NWPDW’; grey squares)20. The reconstructed glacial-time d30SiSi(OH4) values

and Si(OH)4 concentrations (b) may allow to discriminate Glacial Mixed Layer (GML), Glacial WW (GWW) and Glacial CDW (GCDW). Double-headed

arrows display the range in Si(OH)4 concentrations that can be attributed to the reconstructed d30SiSi(OH4) values. It is worth noting that d30SiSi(OH4)

estimations based on Dd30Sirad of �0.8% may tend to overestimated Si(OH)4 concentrations.
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considers the dating strategy and stratigraphic data from a
compilation of last glacial sea-surface temperature and sea-ice
records from the Atlantic sector of the SO38 (Methods and
Supplementary Figs 7,8).

In both cores, PS1768-8 and PS1778-5, the d18Odiat and
d18Orad signals display a similar pattern with decreasing values

from the last glacial period to the early Holocene (Fig. 4c,g). The
d18Odiat and d18Orad values range between þ 45.1% and
þ 41.7%, thus being close to the d18Odiat values obtained from
other SO sediment cores14–16. The major shifts from glacial to
Holocene d18O values occur in close relation to sea-surface water
temperature (SST) increase overprinting the ice volume signal
(Supplementary Figs 7 and 8). The early–middle Holocene
diatom and radiolarian d18O records from PS1768-8 display a
trend similar to a planktic foraminifer d18O record from the
nearby core TN057-13 (ref. 15, Fig. 1 and Supplementary Fig. 7).
At both sites, our d18Odiat records are inconsistent with distinct
glacial freshwater supply resulting from iceberg melting. This
differs from the d18Odiat records reported from cores TN057-13
(ref. 15) and RC13-259 (ref. 14) recovered in our study area
(Fig. 1). These records are characterized by generally lower glacial
values and higher d18Odiat values during the last deglaciation and
the Holocene. In TN057-13, the d18Odiat record is punctuated by
d18Odiat decreases that are in close correlation with increased
values of ice rafted debris (IRD)15. According to a more recent
geochemical study, IRD in TN057-13 primarily consists of
volcanic tephra from the South Sandwich Islands transported
by sea ice to the studied site39. Measurements of d18O on samples
that contain, besides biogenic silica, also non-biogenic
components such as terrigenous minerals and volcanic tephra,
may result in lower d18O values and thus bias the isotopic signal
towards freshwater-related values17,40. Therefore, the apparent
anti-correlation between the content of IRD (mostly tephra) and
d18Odiat values in core TN057-13 may not only be explained by
salinity decrease due to iceberg melting but also by a contribution
from d18O-depleted tephra to the d18Odiat signal. In contrast, IRD
deposition in core PS1768-8 decreases between 18 and 16 cal. ka
BP. Thus, the d18Odiat values show no correlation with IRD
(Supplementary Fig.7), which suggests that the d18Odiat data
presented here may be more reliable than those of ref. 15. This is
confirmed by the purity of the cleaned samples in this study,
which is exceptionally high, ranging between 97.9% and 99.8%
SiO2 (Methods and Supplementary Table 1), ruling out bias of
our d18Odiat values.
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Figure 4 | Oxygen and silicon isotope records of diatoms and

radiolarians from cores PS1768-8 and PS1778-5 compared with other

paleoclimatic records over the last 30 kyr. (a) d18O record of Antarctic ice

core drilled at EPICA Dronning Maud Land (EDML) site70 against

AICC2012 (Antarctic Ice Core Chronology 2012)62. (b) 14C ventilation ages

plotted as benthic-planktic foraminifera age difference (B-P) and benthic-

atmospheric difference (B-ATM) from core MD07-3076 (Fig. 1)57.

(c–f) Proxies from core PS1768-8 located in the glacial SIZ. (c) d18O and

(d) d30Si records from one diatom and two radiolarian fractions (4250 mm

and 125–250mm) measured at the same aliquot of biogenic opal. The red

dashed arrow points to the d30Sidiat value obtained from a nearby seafloor

surface-sediment sample assumed to be of modern age (Supplementary

Table 7). Error bars indicate range of replicate and triplicate measurements

(Supplementary Tables 8–12). (e) Diatom transfer function-based estimates

of WSIC35. (f) Biogenic silica percentages and biogenic silica rain rates50.

(g–j) Proxies from core PS1778-5 located close to the GWIE. (g) d18O and

(h) d30Si records of diatoms and radiolarians (4125mm fraction) measured

at the same aliquot of biogenic opal. The red and blue dashed arrows point

to the d30Sidiat and d30Sirad values obtained from a nearby seafloor surface

sediment sample assumed to be of modern age (Supplementary Table 7)

(i) Diatom transfer function-based estimates of WSIC. (j) Biogenic silica

percentages. Arrows in f and j indicate age pointers (black arrows mark

AMS14C dates and red arrows mark ages obtained by diatom and

radiolarian biofluctuation stratigraphy, see Supplementary Tables 5 and 6).

Blue-shaded area delineates Marine Isotope Stage (MIS) 2 and the late part

of MIS 3.
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The d30Si signal of diatoms in core PS1768-8 ranges generally
around þ 1% in the glacial and increases to about þ 1.2% in the
Holocene (Fig. 4d). The values correspond well to those reported
from the nearby core RC13-269 (ref. 41 and Fig. 1). In the
northern core PS1778-5, we observe distinctly higher glacial
d30Sidiat values around þ 1.6% and a slight decrease by B0.05%
towards the Holocene, which is however within the analytical
error (Fig. 4h).

In comparison with the diatom records, the contrasts between
glacial and interglacial d30Sirad values are generally more
pronounced. During glacial conditions, the silicon isotope signals
of diatoms and radiolarians in core PS1768-8 display offsets,
with B0.6% lower d30Sirad values in the 4250mm fraction that
represents surface–subsurface conditions and B1.7% lower
d30Sirad values in the 125- to 250-mm fraction, which also
includes signals from intermediate-deeper waters. Even more
pronounced is the offset between the glacial diatom and
radiolarian d30Si signals from the northern core PS1778-5 where
the radiolarian fraction 4125mm combines species dwelling
at surface–subsurface and intermediate-deeper water depth
(Methods). The glacial d30Sirad values range around � 1.1%
and thus are B2.7% lower than the diatom values. During the
deglacial transition, surface–subsurface d30Sirad values in the
southern core PS1768-8 increase to d30Sidiat values and remain
close to the diatom values during the Holocene (Fig. 4d). Such
deglacial convergence of the diatom and radiolarian records is
also observed in core PS1778-5, but an offset of B0.9% between
d30Sidiat and d30Sirad persists into the early Holocene (Fig. 4h).

We interpret the glacial offsets between the d30Sidiat and
d30Sirad records as resulting from the presence of a glacial surface-
water stratification separating the diatom and radiolarian habitats
at the time of their production (spring–summer). Considering
that the d18Odiat records are not indicative of significant
freshwater supply, we suggest that the stratification is primarily
induced by sea-ice melt during spring, as melting sea ice has no
significant effect on the oxygen isotopic composition of surface
waters42 but largely affects surface ocean salinity and thus the
surface water structure even beyond the winter sea-ice edge. The
effect of sea-ice melting during spring is assisted by seasonal
warming and weakening winds as observed in the modern SO.
Assuming that the offsets between the d30Sidiat and d30Sirad

records reflect stratification in the upper water column, they
would point to glacial surface waters with increased silicic acid
consumption and subsurface and intermediate deepwaters with
higher silicic acid availability. The deglacial convergence between
the d30Sidiat and d30Sirad records may point to a deepening of the
spring–summer ML depth (MLD), leading to the same Si pool for
surface–subsurface-dwelling radiolarians (4250 mm fraction) and
surface-dwelling diatoms at site PS1768-8. Considering that this
interpretation is strongly based on a radiolarian isotope signal
obtained from a nearly monospecific 4250 mm fraction, we are
confident that the d30Sirad signal represents environmental
change rather than fractionation effects.

Modelling glacial sea ice and MLD variability. To further
evaluate the physical changes associated with sea-ice variations,
we re-analysed two model simulations with conditions during the
Last Glacial Maximum (LGM)23 and interglacial periods43,
respectively, and performed two additional sensitivity
experiments to test the impact of a deglacial CO2 rise and a
poleward wind field shift in the SO. All model results are based on
simulations using the same fully coupled AOGCM23. The model
configuration includes the atmosphere component ECHAM5 (ref.
44) at T31 resolution (B3.75�) with 19 vertical layers,
complemented by a land-surface scheme including dynamical
vegetation (JSBACH)45. The ocean component MPI-OM46,

including the dynamics of sea ice formulated using viscous-
plastic rheology47, has an average horizontal resolution of
3�� 1.8� with 40 uneven vertical layers. The performance of
this climate model was evaluated for SO Holocene43 and
glacial23 conditions, showing that the glacial and interglacial
(pre-industrial) sea-ice field (Supplementary Fig. 9) and general
ocean circulation can be simulated reasonably well, providing a
suitable reference to explore the underlying physical mechanism
accounting for the proxy records developed in this study. The
model has also been applied to analyse glacial millennial-scale
variability48 and warm climates in the Miocene49. For further
details of the model and experimental configuration, see Methods
and Supplementary Figs 9–11.

By re-analysing model results for the LGM23 from two
latitudinal transects (centred at the respective core locations)
across the SO in 10� longitudinal windows (Fig. 1), we identify
strong seasonal changes in sea-ice cover in the area of both core
locations (Fig. 5b,c) consistent with the interpretation of a link
between vertical stratification changes and seasonal sea-ice
variations. These variations result in annual sea-surface salinity
and accompanying MLD variations that favour an increase of the
MLD during the season of sea ice growth, followed by an MLD
decrease when sea ice declines. Hence, the glacial simulation
shows a relatively shallow glacial ML during austral spring–
summer, reaching minimum values of 40–60 m in the study area
(Fig. 5), which can be attributed to the melting of sea ice during
this time. Such a pattern would separate the main habitat depth of
diatoms from the deeper living radiolarians as suggested by the
glacial diatom-radiolarian d30Si offset (Fig. 4d,h). An MLD
deepening is simulated for fall–winter seasons, which is promoted
by enhanced vertical mixing during sea-ice formation (Fig. 5).

To test the robustness of this interpretation, zonal hetero-
geneities in sea-ice distribution need to be taken into account.
Therefore, we evaluated the seasonal MLD changes for both the
exact latitudes of the core locations (Fig. 5, dashed lines) and the
latitudes where the physical conditions coincide with the
proxy-based LGM WSIC (Fig. 5, solid lines). The respective
WSIC amounts on average to 60% at PS1768-8 and to 41.6% at
PS1778-5 (Supplementary Fig. 6). This approach ties the proxy-
based information from the sediment cores to physical conditions
simulated by the model. Based on this approach, we can estimate
that during glacial spring–summer the MLD reached minimum
values between 40 and 60 m at both studied sites and increased
during sea-ice formation in fall–winter, reaching a maximum
depth of up to 350 m at the site located in the area of the GWIE
(Fig. 5a).

Discussion
The combination of proxy data and AOGCM modelling implies
that the sea surface of the glacial SIZ and the GWIE, at least in the
Atlantic sector, was distinctly stratified during austral spring–
summer with a relatively shallow MLD (40–60 m; Fig. 5).
Increased glacial deposition of iron50,51 released from the
melting winter sea ice transformed the glacial SIZ into a
seasonally high productivity region governed by primary
producers with low Si:N demand5, leading to enhanced
utilization of nitrate3,13, slightly reduced consumption of silicic
acid and low opal export50 (Fig. 4f). A similar productivity regime
was triggered by iron-fertilization experiments in the modern SO,
showing that involved diatoms (for example, Chaetoceros) follow a
‘boom-and-bust’ life cycle strategy characterized by rapid biomass
build-up during favourable growth conditions, succeeded by mass
mortality and rapid population decline. Such a productivity regime
results in enhanced organic carbon but low biogenic opal export to
the deep ocean and thus leads to the decoupling of biogenic carbon
and opal export12. In contrast to modern conditions, this would

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9136

6 NATURE COMMUNICATIONS | 6:8136 | DOI: 10.1038/ncomms9136 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


convert the glacial SIZ, which was enlarged during the glacial34,52,
into an efficient carbon sink during spring–summer. Authigenic
uranium concentrations, a potential proxy for organic carbon
deposition, support this view, because they display increased values
in sediments deposited in the glacial SIZ50.

For the area of the GWIE (PS1778-5), modelling suggests even
longer-lasting spring–summer stratification compared with the
glacial SIZ (PS1768-8) (Fig. 5). However, in this environment a
different productivity-export regime developed. This regime is
characterized by the production of thick-shelled diatoms (Si:N
ratios 44, ref. 53) leading to enhanced silicic acid utilization
(d30Sidiat¼ þ 1.62% to þ 1.86%) at the sea surface and high
percentages of biogenic opal in the sediments5,50 (Fig. 4h,j).
Species involved (for example, Fragilariopsis kerguelensis)5 follow

a ‘persistence’ strategy and are hallmarked by enhanced ability to
withstand grazing pressure. They are most prominent producers
in the modern iron-limited open SO and present efficient silica
sinkers12 with a major contribution to the modern Antarctic opal
belt5. Sediment records suggest that this regime extended from
the glacial SIZ into the area of the modern Subantarctic Zone as
mirrored by increased opal flux and dominant deposition of
F. kerguelensis5,50.

The northward displacement of the zone of enhanced opal
burial (opal belt) together with winter sea-ice expansion50 during
glacial periods was identified to represent a phenomenon most
difficult to explain3. Queries concern the northward transfer of
required nutrients from the glacial Antarctic Zone, assuming that
surface water stratification resulted in reduced nutrient supply
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Figure 5 | Modelled monthly averaged MLD, sea-ice concentration and salinity in the Atlantic sector of the Southern Ocean during the LGM.

(a–e) Monthly averaged MLDs for PS1768-8 and PS1778-5 overlaid in b and c with sea-ice concentration (%), and in d and e with sea-surface salinity

(psu). Shown are latitudinal transects zonally averaged between 0 and 10�E (for PS1768-8), and 5 and 15�W (for PS1778-5). Dashed lines indicate the

respective changes at the exact latitudinal positions of the cores, whereas the solid lines show the changes at the latitudinal position, where the physical

conditions coincide with the reconstructed proxy-based LGM WSIC. The transect zone and core locations are indicated in Fig. 1. The relatively deep glacial

MLD at ca. 60–65�S in the Weddell Sea (b–e) are mainly attributed to strengthened brine rejection associated with enhanced in-situ sea-ice formation and

northward sea-ice export, which are key processes for SO deep water formation during the LGM (for example, see ref. 23).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9136 ARTICLE

NATURE COMMUNICATIONS | 6:8136 | DOI: 10.1038/ncomms9136 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and almost complete consumption of available nutrients in
this zone during the glacial3,13. Suggested explanations address
increased leakage of silica into the Subantarctic region3,54 and
northward-shift in wind-driven upwelling13. We emphasize a
process (nutrient supply by winter mixing) that has been
previously rejected13. Our modelling suggests that the shallow
spring–summer stratification was disrupted by a significant MLD
increase during glacial austral winter. The simulations indicate
that the winter MLD is more than double the summer MLD in
the area of PS1768-8 (B200 m) and up to 350 m close to the
GWIE (Fig. 5a). Around the GWIE and north of it, thus in the
zone of enhanced glacial opal export50, modelling indicates even
deeper ML conditions during glacial winter (Fig. 5). Such a deep
MLD would allow for efficient nutrient refueling of glacial winter
surface waters. A deep winter mixing would provide high nutrient
(for example, Si(OH)4) availability at the onset of spring–summer
production when surface water stratification is suggested to
develop. A similar winter mixing process between ML, Winter
Water and CDW is also suggested to take place in the modern SO
(refs 29,30). During spring–summer stratification, nutrient supply
to the ML may be accomplished by diapycnal diffusion as
described from the modern SO (ref. 55).

Amplification of the nutrient injection into the glacial surface
ocean may stem from the presence of a deep reservoir that was
more enriched in Si(OH)4 compared with modern conditions.
The d30Sidiat values at both studied sites point to similar isotopic
compositions of the glacial ML and the modern ML (Fig. 3).
However, the glacial radiolarian-derived d30SiSi(OH)4 signal that
can be related to surface–subsurface conditions (fraction
4250mm) is close to modern d30SiSi(OH)4 values reported from
the nutrient replete Winter Water and CDW in the Atlantic
sector south of the Antarctic Polar Front. In contrast to the
Holocene, the glacial radiolarian-derived d30SiSi(OH)4 values from
the fractions 125–250 mm and 4125 mm, which reflect inter-
mediate and deeper water conditions as well, are distinctly lower.
These lower values fall in the range of d30SiSi(OH)4 values reported
from the modern deep Northwest Pacific (approximately
þ 0.5%), which are related to the highest Si(OH)4 concentrations
observed in the World Ocean (B160–180 mmol l� 1)20 (Fig. 3b).
Although our estimates still bear uncertainties, our
reconstructions using different radiolarian fractionation offsets
consistently result in lower glacial d30SiSi(OH)4 values and thus
higher glacial Si(OH)4 concentrations in SO intermediate
deepwaters compared with the Holocene.

The suggested presence of higher Si(OH)4 concentrations in
glacial circumpolar deep waters may be challenged by sponge
spicule-based d30Si records from the Scotia Sea, interpreted to
indicate that the glacial deep Si(OH)4 concentrations were not
different from modern conditions21. However, the records exhibit
very negative d30Si values (� 3% to � 3.5%) and thus are in a
range where the application of this proxy to sponge spicules is
prone to larger uncertainties56. Another sponge spicule-derived
d30Si record from the area straddled by the Subtropical Front
(ODP1089, Fig. 1), indicating no significant glacial–interglacial
contrast in bottom water Si(OH)4 concentration in the Atlantic
sector22, is not in conflict with our results. Indeed, this
observation allows for approximation of the northern extent of
higher Si(OH)4 concentrations trapped in the glacial SO.
Presuming a similar relationship between modern and glacial
biogenic opal deposition and decline of high silicic acid
concentration throughout the water column (Supplementary
Fig. 12), the northward displacement of the biogenic opal belt by
B5� in latitude50 would place the glacial silicic acid front in the
area between 50 and 45�S, but not as far north as the area of site
ODP1089 (Fig. 1). This is in line with a northward migration of
the Subantarctic Front as postulated from the mapping of 14C

reservoir ages57. Further support comes from the pattern of LGM
surface water temperature34 and model simulations, indicating a
frontal northward displacement by B5�–7� in latitude from
interglacial to glacial conditions (Supplementary Fig. 10).

A glacial SO trapping nutrients more efficiently than at present
is consistent with the scenario of an Antarctic deep water body,
whose age relative to the atmosphere was more than two times
older than during the Holocene, and which was presumably CO2

enriched57 and characterized by increased salinity as mirrored by
our model23 and suggested by proxy data58. Possible mechanisms
that have an impact on the nutrient trapping may include wind-
generated changes of upwelling and downwelling in the SO,
sea-ice extent variability and the availability of iron54. A glacial
northward export of the nutrient Si (Silicic Acid Leakage
Hypothesis) would be in some conflict with a glacial SO
nutrient enrichment, but data suggest that enhanced Si leakage
was confined to the deglacial period19. Indeed, the sponge spicule-
derived d30Si record from the Subantarctic Atlantic (ODP1089,
Fig. 1) indicates a bottom water spillout of the SO reservoir during
this time, marked by a distinct d30Si excursion towards more
negative values (increased Si(OH)4 concentrations)22. Such
Si(OH)4 export would support the hypothesis that an expansion
of Si(OH)4-enriched Antarctic Bottom Water was the source for
maximum opal fluxes (diatom blooms) in the coastal upwelling
area off northwest Africa during the last deglaciation59.

The glacial–interglacial transition is characterized by successive
changes, starting with the retreat of the sea ice that is
accompanied by an increase in opal sedimentation between
18,000 and 16,000 years ago (Fig. 4e,f). This is followed by a steep
increase in ocean ventilation at about 15,000 years ago58 (Fig. 4b),
which marks the rapid intensification in Atlantic thermohaline
circulation at the onset of the Bølling60. Assuming that the
deglacial convergence between our d30Sidiat and d30Sirad records
reflects a deepening of the spring–summer MLD as proposed
above, the MLD deepening would coincide with increased
biogenic opal rain (Fig. 4d,f). Owing to a data gap in our
4250 mm radiolarian record in PS1768-8, we cannot document
exactly the onset of the change in surface water structure in the
glacial SIZ. However, considering that the available record is
closely tied to the retreat of sea ice and increasing deposition of
biogenic opal (Fig. 4d–f), we speculate that the process of MLD
deepening was initiated around 18,000 years ago, and that the
MLD possibly reached its maximum thickness at around 14,000
years. In core PS1768-8, this is documented by the lowest d30Sidiat

values in the studied sediment interval (Fig. 4d). These d30Sidiat

minima that are only recorded by surface dwellers (diatoms)
during a time of enhanced ventilation and maximum biogenic
opal export suggest that the supply of silicic acid exceeded the
consumption by diatoms during this time interval. This points to
the injection of nutrient-rich deep waters into the euphotic zone5,
interpreted to result from enhanced wind-driven upwelling
governing biogenic opal production and export6.

The deglacial MLD deepening leads to conditions that persist
in the Holocene (PS1768-8) as recorded by diatom and surface–
subsurface radiolarian (4250 mm) d30Si, which can be related to
modern ML conditions in the Atlantic sector of the SO (Fig. 3a).
The Holocene down-core data are comparable to available
d30Sidiat and d30Sirad data from surface sediments (assumed to
reflect modern conditions) in the study area (Fig. 4d,h).

It has been postulated that the destratification and enhanced
upwelling during the last deglaciation allowed for a CO2 release
from the deep SO, providing a direct link to the coinciding
increase in atmospheric CO2 (ref. 6). The primary mechanisms
proposed to drive the destratification is a southward shift in the
Southern Westerlies winds in response to a displacement of the
Earth’s thermal equator, the Intertropical Convergence Zone6.
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Another mode of operation can be derived from our sensitivity
experiments applying a prescribed atmospheric CO2 increase
from 180 to 240 p.p.m.v. (representing a surrogate for deglacial
warming) and a poleward shift of the Southern Westerlies wind
belt by 3� (Supplementary Figs 10 and 11). The sensitivity
experiments show that the poleward shift of the Westerlies has a
negligible effect on the position of the Antarctic Polar Front and
MLD in comparison with the changes induced by the increase in
atmospheric CO2 (Supplementary Figs 10 and 11). This suggests
that the destratification during the last deglaciation can be
primarily attributed to sea-ice margin retreat induced by
atmospheric warming and an associated southward shift of the
seasonal sea-ice melting zone.

The view that sea ice presents the major player in governing SO
glacial surface-water structure and related ocean–atmosphere
exchange, nutrient cycling and biological productivity and export
regimes entrains major implications to be considered for the
estimation of SO effects on the climate system. Quantification of
the impact of physical and biological processes in the SO on the
glacial carbon cycle requires consideration of seasonal variability
in sea-ice extent and related seasonal and spatial variability in
surface ocean mixing rates. Other factors to be taken into account
are the development of specific productivity regimes making the
SIZ an efficient carbon sink and the area north of the sea-ice edge
a region that primarily affects the Si cycle, and the potential
establishment of a nutrient-enriched deep SO reservoir.

Methods
Stratigraphy. To generate reliable age models for the studied cores, which lack
continuous foraminiferal isotope records and carbonate-based AMS14C data series,
we considered the strategy and stratigraphic data presented in a compilation of last
glacial sea-surface temperature and sea-ice records from the Atlantic sector of
the SO38. We have revised the correlation of 12 cores including PS1768-8 and
PS1778-5 using 53 AMS14C dates from 8 cores (with 3 AMS14C dates available
from PS1768-8) in addition to intercore correlation based on different parameters.
The AMS14C dates were converted to calendar years and presented as cal. ka BP
(103 years before present). Parameters used for intercore correlation include the
abundance pattern of the radiolarian Cycladophora davisiana and the diatom
E. antarctica, together with foraminiferal oxygen isotope records, if available.
Correlations were performed with AnalySeries 2.0 (ref. 61). The age assignment of
the radiolarian and diatom abundance pattern was inferred from AMS14C dates
obtained from 12 cores from the study area38. Stratigraphic pointers for both cores
(including the AMS14C dates from PS1768-8) and their definition are presented in
Supplementary Tables 5 and 6. Although this approach to construct age models for
SO records bears uncertainties due to interpolations, especially in (mostly glacial)
intervals that could not be dated by continuous 14C dates or d18O data, we are
confident that our age model is robust enough to allow for appropriate
documentation of the environmental development from the last glacial into the
present interglacial. According to our age models, the summer SST and WSIC
began to shift towards Holocene values between 18 and 16 cal. ka BP (Fig. 4 and
Supplementary Figs 7 and 8). This timing fits well with the onset of Southern
Hemisphere warming and the start of CO2 release documented in Antarctic ice
cores, dated independently of our approach62,63. Increase and decline of biogenic
opal sedimentation is similar to the pattern recorded from the nearby core
TN057-13 (ref. 6). However, in contrast to TN057-13, the biogenic opal, summer
SST and WSIC records in our core PS1768-8 display no distinct variations, which
can clearly be attributed to short-term climate variability (for example, the
Antarctic Cold Reversal) during the last deglacial period. This may be attributed to
three- to fourfold higher sedimentation rates at site TN057-13 (ref. 6) compared
with site PS1768-8.

Isotopes in biogenic opal. A prerequisite for measuring d18O and d30Si in diatom
and radiolarian opal is the careful extraction and separation of sufficient purified
material from both microfossil groups (Supplementary Figs 1–4). This is because
the different life strategies and depth habitats of the two microfossil groups and
different species within these groups, as well as contamination by sponge spicules
and non-biogenic components (for example, rock fragments and clay minerals),
may affect the isotope signal. For our study we have applied a new method, which
allows for the separation of pure diatom and radiolarian fractions from the same
sample aliquot. With our technical setup, an average of 2 mg purified diatom
or radiolarian opal per sample is needed to obtain combined d18O and d30Si
measurements from the same sample aliquot. This represents the lowest amount
yet used for such combined measurements in comparison with other measuring
techniques64. Considering that replicates and triplicates should be measured, as far

as sample availability allows, to test the reproducibility of the measurements, the
amount of opal to be separated and to be enriched increases accordingly. This
precludes in general the separation of radiolarians by picking single radiolarian
skeletons, because such a procedure takes an extraordinary expenditure of time.
To generate well-established and large sample sets, a routine preparation method
has been developed allowing for the removal of non-biogenic components and
biogenic carbonate followed by the separation and enrichment of radiolarians and
diatoms in specific size fractions.

Sample preparation includes wet-chemical cleaning and extraction of
radiolarian and diatoms through different sieving and settling techniques
(Supplementary Fig. 1). The samples are first washed with HCl and H2O2 to
remove carbonates and organic material. Mineral grains are removed through
density separations (on average ten density treatments for silica-rich sediments
from the SO) using specific sodium polytungstate solutions. The separation of
radiolarians from diatoms and sponge spicules is accomplished through several
sieving and settling steps combined with ultrasonic treatment. Our tests show that
after ultrasonic treatment radiolarians are still intact, whereas diatoms break up
and can be removed through sieving. Repetitions of ultrasonic treatment and
sieving steps lead to the separation and enrichment of radiolarians and diatoms in
different size fractions. For isotope determinations, we use the pure 10–40 mm
diatom fraction (both cores), the 4250-mm and the 125- to 250-mm pure
radiolarian fraction for core PS1768-8. As there was not enough material, we could
only use one radiolarian fraction (4125 mm) for core PS1778-5 and one
radiolarian fraction (4250mm or 4125 mm) for each surface sediment sample
(Supplementary Tables 3 and 7). The smaller size fraction 40–125 mm contains
radiolarians and diatoms of similar size, which are difficult to separate from each
other and thus were not used for isotope measurements. Microscopic slides for
determining the species composition of diatoms and radiolarians were prepared
after completion of the preparation and separation of the preparation line
(Supplementary Fig. 1).

For the combined oxygen and silicon isotope measurements, the cleaned
radiolarian and diatom samples were dehydrated at 1,100 �C by inert gas flow
dehydration under a He flow and further reacted to SiF4 and O2 by laser
fluorination under BrF5 atmosphere. The liberated oxygen was cleaned of any
byproducts and analysed with a PDZ Europa 2020 mass spectrometer according to
the method described in refs 65,66. The 18O/16O reference ratio of known isotopic
composition is measured in analogy to the 18O/16O sample and the final d18O
value was calculated relative to Vienna standard mean ocean water. For silicon
isotope measurements, the separated and cleaned SiF4 gas was directed into glass
vials and measured separately with a Finnigan MAT 252 mass spectrometer and
measured against the 30Si/28Si reference ratio of a SiF4 gas of known isotopic
composition18. The final d30Si value was calculated relative to NBS-28. To test the
reproducibility of the measurements at least, replicates and triplicates were
measured on all samples with sufficient amount of material (Supplementary
Tables 3 and 7–12). The analytical precision of silicon isotope measurements was
better than ±0.12% (d30Si; 1s) for all used working standard materials18. The
overall precision for all working standards used for oxygen isotope measurements
lies between±0.2% and 0.3% (1s) (refs 40,66).

Purity of samples prepared for isotope measurements. In general,
contamination of biogenic opal samples by minerals (for example, quartz, feldspar,
micas, clay minerals, rock fragments and volcanic tephra) can bias, especially the
d18O signal towards lower values17,40, a pattern that may lead to misinterpretation
of the isotope results. Considering that the contaminants may be silicates that are
difficult to remove with the generally applied cleaning methods, the purity of the
samples cleaned for isotope measurements needs to be tested. We can document
that the cleaning procedure applied in our study leads to very well-purified diatom
and radiolarian samples. Our testing of samples from core PS1768-8 using
inductively coupled plasma optical emission spectrometry and energy-dispersive
X-ray spectrometry indicates (1) a high degree of purification with the near absence
of elemental compositions, indicating non-biogenic components, and (2) SiO2

contents ranging between 98.5% and 99.5% (inductively coupled plasma optical
emission spectrometry), and 97.9% and 99.8% (energy-dispersive X-ray
spectrometry) (Supplementary Table 1).

Effect of dissolution on the isotope signals. Only few studies concern the
potential impact of diagenesis on the opal isotope signal, which come to opposing
results concerning the effect of dissolution on the d30Si signal19. The diatoms
extracted in this study are mainly composed of heavily silicified diatoms such as
E. antarctica and T. lentiginosa, and are not affected by dissolution (Supplementary
Fig. 3). The (rare) occurrence of very well-preserved thinly silicified diatoms (for
example, Rhizosolenia sp.) confirms the excellent preservation of the diatom
assemblage (Supplementary Fig. 3). This also concerns the radiolarian fractions,
which are mainly composed of large and heavily silicified specimens, which are well
preserved, although they were treated in the ultrasonic bath for several hours
(Supplementary Fig. 4).

Species composition of diatom and radiolarian fractions. For the isotopic
measurements, we used a pure diatom fraction (10–40 mm) for the representation
of surface-water conditions. This fraction mainly consists of the species
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E. antarctica (glacial indicator) and T. lentiginosa making up between 70% and
98%, and 78% and 97% of the species composition in the extracted diatom fractions
of PS1768-8 and PS1778-5, respectively (Supplementary Fig. 5). The amount of
these species in the original diatom assemblages is on average only between 20%
and 29%. The difference in diatom species composition between the original
sample and the extracted fraction results from our techniques for purification and
extraction of a specific size class allowing for the generation of samples containing
the least possible number of species. The shift from E. antarctica-dominated
fractions to fractions with increased T. lentiginosa abundances occurs abruptly
between three sample depths and is unrelated to the more gradual change in
isotope signal across the glacial–interglacial shift (Supplementary Fig. 5). Small-
sized sea-ice-related diatoms (for example, Fragilariopsis curta) that are not or only
rarely included in the 10–40 mm diatom fraction do not affect the isotope signal.

For the isotopic measurements on radiolarians, we used three radiolarian
fractions to document surface–subsurface and intermediate deepwater conditions.
In core PS1768-8, we measured the 4250mm fraction, which is composed of two
radiolarian species: A. antarctica, which accounts for 490% of radiolarians in this
fraction, and S. glacialis (adult forms), which ranges between 1% and 10% in this
fraction. As different radiolarian species live in different water depths, we used data
from a plankton study in the Atlantic sector of the SO (ref. 25), to get information
about the depth habitat of radiolarians in the upper 1,000 m of the water column
(Supplementary Fig. 13 and Supplementary Table 2). Both species occur in the
upper 200–400 m with S. glacialis predominantly occurring in the upper 100 m and
A. antarctica in the upper 300–400 m. As there was not enough material to separate
the 4250-mm fraction from core PS1778-5, we used here the 4125-mm fraction
for radiolarian isotope measurements. This fraction is also dominantly composed
of the two species A. antarctica and S. glacialis, but in contrast to the 4250-mm
fraction from core PS1768-8 the 4125-mm fraction also contains deeper living
species (for example, Spongopyle osculosa, Spongogurus pylomaticus and
Cromyecheinus antarctica) that occur in water depths 4400 m (ref. 25). As the
d30Sirad values of the 4125-mm fraction exhibit distinctly lower values (glacial
average � 1.06%) than the d30Sirad values from the 4250-mm fraction from core
PS1768-8 (average glacial values þ 0.54%), we segregated the 125- to 250-mm
fraction from core PS1768-8 to get more information about this latitudinal
difference in the d30Si signature. The d30Sirad measurements from this fraction
show distinctly lower values (glacial average � 0.67%) than the d30Sirad values
from the 4250-mm fraction. The fraction 125–250 mm also includes deeper
dwelling radiolarians similar as in the 4125-mm fraction from core PS1778-5. This
suggests that the presence of deeper dwelling radiolarians shifts the d30Si signal to
lower values. C. davisiana, a species typical for glacial assemblages, is not included
to the fractions 4125 mm because of its small size, which impedes a potential
impact of this species on glacial results.

Estimation of d30SiSi(OH)4 and Si(OH)4 concentrations. The estimation of
Holocene and glacial silicic acid changes were carried out as follows:

1. The average d30Si values of the diatom (10–40 mm) and radiolarian fractions
(4250, 125–250 and 4125mm) for the Holocene (until 12 cal. ka BP) and the last
glacial period (B19–29 cal. ka BP) were calculated (Supplementary Table 4).

2. Based on the average diatom and radiolarian d30Si values, the d30SiSi(OH)4

values for the Holocene and last glacial period were calculated using the formula:

Dd30Si ¼ d30SiBSi � d30SiSi OHð Þ4 ð2Þ

d30SiSi OHð Þ4 ¼ d30SiBSi � Dd30Si ð3Þ

where d30SiBSi is the silicon isotope composition of biogenic silica (diatoms or
radiolarians), d30SiSi(OH)4 is the silicon isotope composition of the input sea water
(Supplementary Table 4) and Dd30Si is the fractionation offset. The calculations
were performed using different Dd30Si values: Dd30Sidiat¼ � 1.1% (ref. 24),
Dd30Sirad¼ � 0.8% (average Dd30Sirad this study, Supplementary Table 4),
Dd30Sirad¼ � 1.2% (average Dd30Sirad of this study and ref. 32),
Dd30Sirad¼ � 1.5% (average Dd30Sirad of ref. 32).

3. The reconstructed d30SiSi(OH)4 values were related to d30SiSi(OH)4 values
and Si(OH)4 concentrations from different water masses reported from modern
water-column studies20,28,29. We note that our reconstructed d30SiSi(OH)4 values
reflect a rather broad range in Si(OH)4 concentrations (Fig. 3 and Supplementary
Table 4). In spite of this large range in variability, our calculated d30SiSi(OH)4

values for the diatoms and different radiolarian fractions are in the range of
d30SiSi(OH)4 values of specific water masses and reflect their range in Si(OH)4

concentrations20,28,29 (Fig. 3 and Supplementary Table 4).

Reconstruction of WSIC. WSIC (%) was estimated from the diatom assemblage
composition preserved in the sediment records using the transfer function
technique. For our study we selected the estimations obtained with the Imbrie and
Kipp transfer function method using a setup with 172 reference sites, 28 diatom
taxa/taxa groups, logarithmic-transformed diatom data, quadratic regression and a
three-factor model with a root mean square error of prediction of 7.3% (ref. 35).
Similar patterns of sea-ice concentration were also obtained with three other
transfer function techniques, all showing the onset of sea-ice retreat after the last
glacial period at around 18,000 years ago35. Although the diatom signal used for

the estimate of WSIC is based on a signal produced during the diatom spring–
summer bloom, experimental (sediment trap) data and statistical test show that
this signal reflects the occurrence probability of winter sea ice, which is well
correlated with the WSIC at a given site (ref. 35 and references included therein).

Model setup and experimental design. For our simulations we use the
experimental settings of the LGMW simulations in ref. 23, which is integrated for
4,000 years from a cold ocean state, to evaluate MLD characteristics under LGM
(21 ka) and present-day conditions, as well as for the sensitivity experiments.
The thermodynamics of sea ice relate changes in sea-ice thickness to a balance of
radiant, turbulent and oceanic heat fluxes. The effect of snow accumulation is taken
into account, along with snow–ice transformation when the snow–ice interface
sinks below the sea level because of snow loading. The impact of ice growth and ice
melting is included in the model, assuming a sea-ice salinity of 5 PSU46. In
experiment WIND, the implementation of the poleward wind field shift
(3� southwards) of the Westerlies in the SO (experiment WIND, Supplementary
Figs 10 and 11) has been performed in analogy to ref. 43. In experiment CO2, a
deglacial CO2 increase from 180 to 240 p.p.m.v. has been applied. Both experiments
have been integrated for 600 years. All figures show climatological mean
characteristics averaged over a period of 100 years at the end of each simulation.
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