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Abstract

Permafrost regions cover approximately 24 % of the northern hemisphere land surface and are very 

sensitive to climate changes. Therefore they are important to better understand the climate of the 

past. Unfortunately,  established climate archives like ice caps, deep lakes and marine deposits are 

rare in such regions. But permafrost regions contain ground ice potentially providing palaeo-climate 

information, the most appropriate ground ice type for palaeo-climatic reconstruction are ice wedges. 

Ice wedges are vertical structures in permafrost ground, that grow by snow melt water penetrating 

into frost cracks. Their isotope composition can provide temperature data of ten thousands of years. 

So  far  temperature  reconstructions  from  ice  wedges  are  restricted  by  the  missing  correlation 

between isotope data and corresponding temperatures. This study deals with the calibration of a 

stable isotope thermometer for ice wedges by a tracer experiment. The experiment was carried out 

on a recent ice-wedge polygon on Samoylov Island, located in the largest river delta in northern 

Asia, the Lena Delta in northern Siberia. The tracers (colored Lycopodium spores) allowed to assign 

ice-wedge ice to the year of its formation. Therefore the isotope data of the ice could be measured 

and correlated with measured temperature data for a particular year. For a correlation like this it is  

important to understand different factors which might influence the isotope composition of the ice 

wedge. One such factor is isotope fractionation during refreezing, which was studied using a high-

resolution experiment and turned out to be negligible. Additionally environmental conditions like 

temperature and snow-depth influence frost cracking and therefore determine the time period of ice 

wedge growth. These conditions were investigated by frost-cracking experiments, which identified 

December  as  the  main  season for  thermal-contraction  cracking at  Samoylov  Island.  Two main 

seasons  for  penetration  of  snow and  melt  water  into  frost  cracks  were  found:  the  first  one  in 

December when frost cracking takes place and the second one at snow melt in spring. Therefore the 

isotope signal of an ice wedge represents spring and winter temperatures. A shift in seasonality 

between the first two years and the later years was observed in the isotope signal. For the years  

2004 to 2010 a isotope-temperature equation was obtained. 

Recent ground ice from an ice-wedge was successfully attributed to the year of its formation and 

showed that the isotope signal from ice-wedge samples is influenced by both, spring and winter 

temperatures.
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Zusammenfassung

Permafrostgebiete  bedecken  etwa  24 %  der  Landoberfläche  der  nördlichen  Hemisphäre  und 

reagieren empfindlich auf  Klimaänderungen.  Deshalb können sie  dazu beitragen das  Klima der 

Vergangenheit besser zu verstehen. Leider sind etablierte Klimaarchive wie Eiskappen, tiefe Seen 

und marine  Ablagerungen in diesen Regionen selten.  Dafür  weisen  sie  Grundeis  auf,  wie  z.B. 

Eiskeile.  Diese  können  Informationen  über  das  Klima  der  Vergangenheit  liefern.  Eiskeile  sind 

vertikale Strukturen im Permafrost die durch Wasser, welches in Frostrisse eindringt wachsen. Ihre 

Isotopenzusammensetzung kann Temperaturinformationen über zehntausende Jahre liefern. Bisher 

werden  solche  Temperaturrekonstruktionen  jedoch  durch  die  fehlende  Korrelation  zwischen 

Isotopenzusammensetzungen und zugehörigen Temperaturen eingeschränkt.  Diese Arbeit  befasst 

sich  mit  der  Kalibrierung  eines  stabilen  Isotopen  Thermometers  für  Eiskeile  mit  Hilfe  eines 

Tracerexperiments, welches an einem rezenten Eiskeilpolygon auf Samoylov Island im Lenadelta 

durchgeführt wurde. Die Tracer (eingefärbte Lycopodiumsporen) ermöglichten es, Eissegmente aus 

den  Eiskeilen  dem Jahr  ihrer  Entstehung  zuzuordnen.  Auf  diese  Weise  konnte  die  gemessene 

Isotopenzusammensetzung dieser Segmente mit den Temperaturdaten aus dem entsprechenden Jahr 

korreliert werden. Für solch eine Korrelation ist  es wichtig die verschiedenen Faktoren,  die die 

Isotopenzusammensetzung  in  Eiskeilen  beeinflussen  können,  einzubeziehen.  Dazu gehören  z.B. 

Fraktionierungsprozesse beim Gefrieren. Diese wurden durch die feine Beprobung einer Eisader 

untersucht und erwiesen sich als vernachlässigbar. Andere Faktoren sind Umweltbedingungen wie 

Temperatur  und  Schneetiefe  die  Frostsprengungsprozesse  beeinflussen  können  und  damit  den 

Zeitraum  für  Eiskeilwachstums  festlegen.  Diese  Bedingungen  wurden  durch  Frostsprengungs-

experimente untersucht und zeigten, dass die Hauptsaison für Frostsprengung auf Samoylov Island 

im  Dezember  liegt.  Zwei  Zeitfenster  für  das  Eindringen  von  Schnee  und  Schmelzwasser  in 

Frostrisse konnten beobachtet werden: das Erste im Dezember wenn es zu Frostsprengung kommt 

und das Zweite im Frühjahr. Daher enthalten Isotopendaten aus Eiskeilen sowohl Frühjahrs- als 

auch  Wintertemperaturen.  Zwischen  den  ersten  beiden  und  den  folgenden  Jahren  wurde  eine 

Saisonalitätsverschiebung von Dezember- zu Frühjahrstemperaturen im Isotopensignal festgestellt. 

Für  die  Jahre  2004  bis  2010  konnte  eine  Funktion  zwischen  Temperatur-  und  Isotopendaten 

ermittelt werden. Rezente Eiskeilproben konnten mit Hilfe der Tracer erfolgreich dem Jahr ihrer 

Entstehung  zugeordnet  werden und zeigen  das  sowohl  Frühjahrs-  als  auch  Wintertemperaturen 

einen Einfluss auf das Isotopenverhältnis in Eiskeilproben haben.
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1. Introduction

To better  understand the  recent  changes  of  the climate system it  is  important  to  recognize the 

development of the climate in the past. However, direct meteorological observations mostly go back 

to the 19th century only, especially in the Arctic (e.g. Polyakov et al., 2003). To get information 

about past climate variations climatic archives are needed. 

Established climate  archives  are  ice  caps,  deep  lakes  and  marine  deposits  (Opel  et  al.,  2010). 

However  such  archives  are  not  available  in  permafrost  regions  which,  constitute 24 % of  the 

northern hemisphere land surface (Boike et al., 2012) and are very sensitive to climate changes 

(Osterkamp,  2005; Lemke  et  al.,  2007; Romanovsky  et  al.,  2007).  Permafrost  areas  are 

characterized by cold continental climate with little precipitation and contain ground ice (Zhang et 

al., 1999). Ground ice includes all types of ice contained in frozen ground (International Permafrost 

Association, 1998) and can provide palaeo climate information (Meyer et al., 2002, b). The most 

appropriate ground ice type for palaeo-climatic reconstruction are ice wedges (e.g. Vaikmäe, 1989; 

Vasil’chuk, 1991, 1992). These are vertically-foliated structures in the permafrost which grow by 

water that trickles into frost cracks and refreezes there to ice (French, 1996). Therefore ice wedges 

consisting of massive ground ice (French, 1996).

In  ice  bodies  hydrogen  and  oxygen  isotopes  of  ice  are  useful  tools  to  reconstruct  palaeo 

temperatures due to their isotopes dependency on condensation temperatures (Dansgaard, 1964). 

Stable isotopes in ice cores are widely used for climate reconstructions (e.g. North Greenland Ice 

Core Project Members, 2004) and show isotope variations of 0.695 ‰ per 1 ° C (Dansgaard, 1964). 

Paleoclimate  reconstruction  from ground ice  especially from ice  wedges  is  also possible  using 

stable isotopes. Nonetheless ice wedges were little used for palaeoclimate studies in the past 30 

years. Mainly scientists from north America, Russia and German dealt with this issue (Mackay, 

Vaikmäe, Michel, Vasil´chuk, Nikolaev, Mikhalev, Meyer, Opel, Lacelle, Lachniet, Fritz).

The main source for the growth of ice wedges is melting snow (Mackay, 1983; Vaikmäe 1989).  

Therefore Michel (1982), Mackay (1983), Vaikmäe (1989) and Vasil’chuk (1991) consider oxygen 

isotope variations in ice wedges as an indicator for winter temperature changes. Vasil'chuk (1992), 

Nikolaev  and  Mikhalev  (1995), Meyer  (2002,  2010)  and  Opel  (2010) showed  that  climate 

reconstruction with ice wedges is possible. Even long time palaeoclimate record of 10. 000-s of 

years  can  be  achieved  when  ice  wedges  of  different  generations  are  available  (Meyer et al., 

2002, b). The temporal assessment with 14C dating can provide an up to centennial-scale resolution 

for stable isotopes in ice wedges (Meyer et al., 2010). Different factors that influence the isotope 

3
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composition of ice wedges include various processes from the formation to the deposition of air 

humidity and changing moisture sources (Jouzel et al., 1997), seasonality of precipitation and ice-

wedge formation (Jouzel et al., 1997) and alteration processes (Meyer et al., 2002, b) were studied.

So far the missing correlations of single ice veins forming ice wedges to the year of their formation 

restrict  the  temperature  reconstruction  with  ice  wedges  (Meyer,  2002,  a).  Therefore  a  tracer 

experiment was carried out on a ice-wedge polygon at Samoylov Island. Samoylov Island is located 

in a zone of continuous permafrost (Boike et al., 2008) in the north of Siberia characterized by 

mainly  low-center  ice-wedge  polygons  and  therefore  well  suited  for  the  experiment.  Colored 

Lycopodium spores were used as tracers expected to penetrate into the ice wedge with the melt 

water to enable a relation of the ice to the respective year of its formation. Afterwards the  18O 

values of the ice formed in a discrete year can be correlated with temperature data from a climate 

station. That way a correlation might be found and a stable isotope thermometer for ice wedges can 

be  calibrate  (Meyer,  2002,  a).  Such  a  calibration  study  is  subject  of  this  bachelor  thesis. 

Furthermore, this experiment could help to understand processes related to ice-wedge growth better. 

4

Fig. 1: Investigation area
A - Location of the Lena River Delta (red square) on global scale, B - Map of the Lena River Delta in Siberia., with 
Samoylov Island (red square) (Satellite image provided by Statens Kartverk, UNEP/GRID-Arendal and Landsat)
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2. Study area and study objects

2.1. Study area

The study area is located on Samoylov Island (72220 N, 126300 E). It is one of 1500 islands within 

the Lena River Delta in northern Siberia close to the Laptev Sea (Fig. 1). The delta is the largest 

river delta in northern Asia (Gilg et al., 2000) and one of the most important regions for the research 

of permafrost  processes  (Rachold & Grigoriev,  1999).  To make scientific  investigation projects 

possible a research base was built on Samoylov Island. This station is equipped with an automatic 

climate and soil station which records  hourly  data since 1998, though  several gaps exist  due to 

technical problems  (Boike et al., 2008).  Furthermore, there are official meteorological stations at 

Tiksi located 120 km to the south-east and at Stolb located 6 km to the north-east of Samoylov 

Island.

The region is dominated by dry continental arctic climate. Rapid changes of cold, moist, arctic air 

masses  from the  north  and  warm,  dry,  continental  air  masses  from the  south  characterize  the 

weather from spring to autumn (Boike et al., 2008). The mean annual air temperature from 2002 to 

2010  was  -12.11 °C.  The  main  rainfall  season  is  from  the  middle  of  June  to  the  middle  of 

September (Boike et al., 2008). The snow season normally starts between middle of September and 

middle of October and ends between middle of May and middle of June (Boike et al., 2013, Tab.  I). 

The precipitation in winter is far less than in summer (Boike et al., 2013). Less than a third of the 

annual precipitation is snow. Commonly snow melt starts in middle of May and the snow cover 

normally disappears by early June (Boike et al., 2013).

Samoylov Island is  located in the south of the Lena Delta in a zone of continuous permafrost  

(Boike et  al.,  2008).  The island is  dominated by wet  polygon tundra (Boike et  al.,  2008).  The 

permafrost thaws maximally 0.5 m deep during summer (Sachs et al., 2008). This soil layer that 

thaws in summer and refreezes in winter is called active layer (AL).

           Tab. I: Snow free periods of the years 2003 till 2008 (Boike et al., 2013)

2003 2004 2005 2006 2007 2008

End of snow melt 12 May 16 June 12 June - 31 May 26 May

Beginning of snow coverage 16 Oct 7 Oct - - 8 Sep -

5
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The island is subdivided into four geomorphological areas (Akhmadeeva et al., 1999): a lower and a 

middle flood plain which are annually flooded and a  high flood plain,  which is  located in the 

western part and only flooded during high floods. These flood plains belong to the  1st Lena river 

terrace,  which  is  the  active  Lena Delta  (dark  green in  Fig.1).  This  terrace  is  characterized  by 

polygonal-patterned ground (Meyer, 2002, a). The flood plains are separated by a cliff from an old 

river terrace which is the fourth geomorphological area (Meyer, 2002, a).

2.2. Study objects

As introduced above ice wedges are vertical  structures in  permafrost  composed of massive ice 

(French, 1996) and widespread in non-glacial high latitude areas (Meyer et al., 2010). They form by 

the periodic occurrence of frost cracking and freezing processes. Rapid cooling in winter leads to 

thermal contraction, which can result in frost cracking in the upper permafrost (Lachenbruch, 1962). 

The snow melt  in spring provides water that can trickle into these cracks and refreeze there as 

narrow, subvertical ice veins (Lachenbruch, 1962). It is assumed that the water penetrating into the 

frost crack is mainly melt water of the previous winter precipitation (Meyer et al., 2002, c).

The frequency of frost cracking is highly variable (Mackay, 1992). Frost cracks are most likely to 

occur near the ice wedge center, often at the same location due to the weakness of the zone created 

by previous ice veins (Mackay, 1974). This leads ideally to gradual ice-wedge growth with younger 

ice in the middle and older ice towards the rim (Mackay, 1974, 1992).

Whether an ice vein will form or not depends on the occurrence of thermal-contraction cracking and 

on  the  availability  of  melt  water  (French, 1996).  Best  conditions  for  frost  cracking  are  air 

temperature drops of 1.8°C/day over four days (French, 1996). Also low heat insulation above the 

ice wedge caused by soil, vegetation or snow cover is conducive for cracking (Mackay, 1974). In 

general, ice wedges only form in areas with mean annual air temperatures below –6 ° C (Péwé, 

1966). After Mackay (1974), frost cracking mostly occurs between mid January and mid March at 

North  Kanada.  Christiansen  (2005)  detected  the  main  cracking  season  at  Spitsbergen  between 

February and June after ground temperatures drop below -15 °C. 

Since it is assumed that the main source for ice-wedge growth is melt water, the stable isotope 

composition of ice veins can be related to the mean winter temperature of the year of formation 

(Vasil’chuk, 1992; Nikolayev & Mikhalev, 1995; Vasil’chuk & Vasil’chuk, 1998).  Michel (1982) 

concludes from experiments that water, which rivulets into a frost crack of an ice wedge, forming 

6
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ice  veins,  refreezes  to  rapidly  for  isotope  fractionation  (see  chapter  3.1)  due  to  the  cold  soil 

temperatures. 

Several processes influencing the isotope composition need to be considered when using isotopes 

for  climate  reconstruction.  Changing  moisture  sources  (Jouzel  et  al.,  1997)  and  seasonality  of 

precipitation may have great impact on the isotope composition of ice wedges (Jouzel et al., 1997). 

In addition isotope fractionation during snow melt has to taken into account: with the first melt 

water having lighter δD and δ18O values than the last (Meyer et al., 2002, b). Furthermore, it was 

found that alteration processes of old ice wedges due to the migration of water from the enclosing  

ice, can modify the isotope signal (Meyer et al., 2002, b). In summer, the AL above the ice wedge 

contains water which can not drain into the soil due to the ice below. Ice segregation can lead to an 

transition horizon between active layer and ice wedge. Therefore approximately the upper 10 cm of 

an ice wedge are not usable for climate reconstruction (Shur et al., 2005; Meyer et al., 2010).

At the surface the frost cracks generate linear structures. Several frost cracks next to each other 

form ice-wedge polygon patterns (French, 1996) (Fig.2). When ice wedges become inactive and 

permafrost starts to thaw water accumulates in the trough above the ice wedge (French, 1996). The 

latent heat of the water in the trough in turn may support the degradation of the ice wedge below 

(Greene, 1966).  The ice-wedge polygons on Samoylov Island can be divided in different polygon 

types by their stage of development (Meyer, 2002, a). The appropriate polygon types for this study 

are the juvenile and the mature type. The polygons are usually still in growth and show recent, 

clearly visible frost cracks (Meyer, 2002, a). They contain no water in their troughs above the ice 

wedge and show no signs of degradation (Meyer, 2002, a). The juvenile type is characterized by a 

low relief with little elevation differences from the polygon center to the polygon wall and it is still  

quite small.  The mature type is  already well  developed and shows a relatively high relief  with 

elevation differences in the polygon of about 0.5 m. This leads to a clearly defined catchment area 

for the penetrating snow (Meyer, 2002, a).

7
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3. Methodological background 

3.1. Stable isotope geochemistry principles of H and O isotopes

Isotopes are atoms which contain the same number of protons but a different number of neutrons 

and  they  therefore  differ  in  their  mass  (Hoefs,  1997).  The  isotopes  of  hydrogen  and  oxygen 

considered in this study are stable. Hydrogen has two and oxygen has three stable isotopes (Tab. II). 

8

Fig. 2: Investigated ice-wedge polygon on Samoylov Island 
The figure is displayed in relative elevation and includes location of cracking 
experiments and bore holes. Ice cores with position of all detected spores are 
schematically illustrated next to their bore hole.
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The light isotopes (H,  16O) are the most abundant ones (Tab. II).  The isotope composition of a 

substance is generally given as ratio of the two considered isotopes of an element normalized to the 

more prevalent isotope e.g. 2D/1H or 18O/16O (Clark & Fritz, 1997). Isotope compositions are related 

to  a  known  reference  because  determining  variations  in  stable  isotope  concentrations  is  less 

complicated than measuring total abundances and it is, thus, difficult to measure an absolute isotope 

ratio (Clark & Fritz, 1997). For hydrogen and oxygen isotope compositions in water the standard is 

in general  Vienna Standard Mean Ocean Water (VSMOW). For samples  from cold regions the 

Standard Light Antarctic Precipitation (SLAP) can also be used. The well mixed water of the ocean, 

as the biggest reservoir for water, is defined as 0 ‰ by  VSMOW.  The difference between the 

sample and the standard is used, expressed by delta values in permil [Eq. 1] (Hoefs, 1997): 

 δsample = ((Rsample/RST)-1) * 103 (‰)  [Eq. 1]

where Rsample is the considered isotope ratio of a sample and RST is the defined isotope ratio of a 

standard sample (Hoefs, 1997). Substances with relatively more heavy isotopes compared to the 

standard have positive δ-values, substances with less heavy isotopes have negative ones.

       Tab. II: Stable hydrogen and oxygen isotopes and their relative environmental abundance 

Element Isotope mass Abundance    Isotope mass Abundance   Isotope mass Abundance  

Hydrogen   1H 99.9844 2D 0.0156

Oxygen 16O 99.7630 17O 0.0375 18O 0.1995

The different atomic mass induce different physical properties of the isotopes (Hoefs, 1997). Due to 

the same number of electrons the chemical properties are similar but by reason of mass difference 

they differ in reaction rate (Urey, 1947). These differences in properties are called isotope effects 

(Hoefs, 1997) and lead to isotope fractionation (Urey, 1947). Isotope fractionation describes the 

exchange of isotopes between two reservoirs (Hoefs, 1997). 

In Fig. 3 the energy of a diatomic molecule is shown as a function of the distance between the two 

atoms (Clark & Fritz, 1997). The upper horizontal line represents the dissociation energy of the 

molecule with light isotopes and the lower line the counterpart of the molecule with heavy isotopes. 

This implicates that light isotopes containing molecules has a weaker bond and requires less energy 

to dissociate than heavy ones (Clark & Fritz, 1997). Hence light isotopes react faster than heavy 

ones (Hoefs, 1997). 

9
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In general the fractionation is higher the lower the temperature is. Two main fractionation processes 

are distinguished: isotope exchange reactions and kinetic processes (Hoefs, 1997).

Isotope exchange includes all  processes which changes the isotope distribution among different 

reservoirs (Hoefs, 1997). These reactions are a special case of a chemical equilibrium and can be 

expressed as [Eq. 2]: 

                    aA1 + bB2 = aA2 + bB1                      [Eq. 2]

where the subscript indicate that the species A and B contain either the light (1) or heavy isotope (2) 

(Hoefs, 1997). For this formula it is necessary that forward and backward reaction rates are equal, 

that there is enough mixing time and that product and reactant reservoirs are well mixed (Clark & 

Fritz, 1997).

Isotope  exchange  reactions  are  characterized  by  the  fractionation  factor  (α)  [Eq.  3].  The 

fractionation factor is stated by the ratio (R) of two isotopes in one chemical compound (A) divided 

by the corresponding ratio for an other chemical compound (B) (Hoefs, 1997):

αA-B = RA/RB [Eq. 3]

10

Fig. 3: Model of isotopic effects 
Potential energy as a function of interatomic distance for a diatomic molecule with 
light or heavy isotopes (Clark & Fritz, 1997).
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The δ-value and the fractionation factor are related by [Eq. 4] (Hoefs, 1997): 

    δA – δB = δA-B ≈ 103 lnαA-B         [Eq. 4]

For  the  water  isotopes,  differences  in  the  vapor  pressure  during  evaporation  and  condensation 

processes lead to significant isotope fractionation (Hoefs, 1997). While lighter molecules enrich in 

the vapor, heavy molecules remain in the liquid (Hoefs, 1997). Here, the extent of fractionation 

depends on the temperature (Hoefs, 1997).

The kinetic effects are primarily dependent from differences in reaction rates of isotopic molecules 

(Hoefs,  1997).  They occur when the equilibrium is  unbalanced by incomplete or unidirectional 

processes. These are substantial in evaporation, dissociation, biologically mediated reactions, and 

diffusion and can provide information on reaction pathways. (Hoefs, 1997)

On a global scale,  δD and δ18O of fresh surface waters generally correlate linearly between the 

various reservoirs (ocean, vapour, rain, runoff, groundwater, snow and ice), due to temperature-

dependent fractionation at the phase transitions of water in the hydrological cycle (Clark & Fritz, 

1997). This relationship can be represented graphically in a co-isotope plot, where δD is plotted 

against δ18O and is described by the "Global Meteoric Water Line" (GMWL) [Eq. 5] (Craig, 1961). 

 δD = 8.0* δ18O + 10 ‰  [Eq. 5]

The position relative to the GMWL in a δD-δ18O diagram is given by the deuterium excess (d) 

[Eq. 6] (Dansgaard, 1964).

      d = δD - 8 * δ18O [Eq. 6]

The  deuterium  excess  (d-excess)  reflects  the  sensitivity  of  oxygen  and  hydrogen  isotopes  to 

evaporation conditions in the moisture source region and kinetic fractionation processes. It depends 

on  relative  humidity,  sea  surface  temperature  and  wind  speed  in  the  moisture  source  region 

(Merlivat & Jouzel, 1979) and therefore can be used to identify precipitation  sources.

Due to isotope fractionation, atmospheric water vapour is isotopically lighter than the source water 

and has, thus, a lower δ-value. Towards higher latitudes, altitudes or distance from the ocean the 

isotope composition of an air mass becomes progressively lighter due to the fact that with every 

precipitation event, the air mass loses proportional more heavy than light isotopes (Meyer et al., 

2002, c), again with the rate of the fractionation depending on temperature. The lowest δ18O and δD 

11



            Recent cryogenic processes at Samoylov Island, North Siberia for calibrating a stable-isotope thermometer for ice wedge  

values are attributed to the coldest temperatures (Meyer et al,. 2000, c). For this reason it is possible  

to  use  the  isotope  composition  accumulated  in  glacier  and  permafrost  ice  for  temperature 

reconstructions.

3.2. Isotope measurement

There are different methods to measure isotope ratios of a given water sample. An approved method 

at the Alfred Wegener Institute in Potsdam are measurements with Finnigan MAT Delta-S mass  

spectrometers. A second possible technique is the measurement with a laser-optical device (Picarro 

L2120-i) which offers the opportunity to measure very small sample volumes. Therefore all water 

samples in this thesis were measured with the Picarro L2120-i and for comparison some samples 

were also measured with the mass spectrometer.

3.2.1. Finnigan MAT Delta-S mass spectrometer

The Finnigan MAT Delta-isotopes mass spectrometer is a gas mass spectrometer which divides 

isotopes by their mass-to-charge ratio.

It provides two equilibration units with a capacity of 24 sample bottles each. Overall, 48 samples 

could be measured per auto sampler in one measuring sequence. The sample bottles are ~25 ml 

glass bottles in which 1 ml to 5 ml sample water are filled for isotopic analysis. The bottles are 

evacuated with a two-stage rotary pump (Meyer et al., 2000). The remaining bottle volume is filled 

with hydrogen gas for δD measurements. After finishing the complete sequence the hydrogen gas is  

evacuated and replaced by carbon dioxide for δ18O measurements. 

The H2O sample and the gas (CO2,  H2) exchange isotopes until an equilibrium is reached. The 

equilibrium should  be  reached  for  hydrogen  after  approximately  45 min  and  for  oxygen  after 

200 min.  To  ensure  that  the  equilibrium  is  fully  achieved,  an  exchange  time  of  180 min  for 

hydrogen and 400 min for oxygen isotopes is used (Meyer et al., 2000).  Due to the temperature-

dependency of the fractionation the units are placed into a water-shaking bath which covers the 

bottles  to  two  thirds  and  keeps  them  at  a  constant  temperature  of  18 ± 0.01 ° C.  For  best 

temperature homogenization the water baths are shaken with a frequency of 90 min-1 (Meyer et al., 

2000). The temperature should not vary more than ± 0.05 ° C due to the temperature coefficient of 

the fractionation factor of deuterium between H2O and H2  of - 5.4 ‰ / ° C (Meyer et  al.,  2000). 

12
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Catalysts are needed for the hydrogen isotope exchange. For this purpose hydrophobic sticks with 

activated platinum are used (Meyer et al., 2000).

The equilibrated sample gas is transferred into the so called sample bellow. To remove water vapor 

the gas passes a cooling trap with dry ice and ethanol of -78 °C (Meyer et al., 2000). As a reference 

the standard NGT (North, Greenland Traverse) is used. The first bottle of each unit contains NGT 

which is equilibrated with hydrogen or carbon dioxide gas like the samples. The equilibrated gas is 

subsequently transmitted into the standard bellow of the inlet system and is measured versus every 

sample of the equilibration unit (Meyer et al., 2000). The pressure in the standard bellow is higher 

than in the sample bellow to provide sufficient gas for the whole measuring sequence (Meyer et al., 

2000). 

Alternately sample and reference gas are injected from sample and standard bellows into the mass 

spectrometer.  This procedure is  repeated ten times for each sample in  order to allow statistical 

evaluation. The 1σ error is generally less than ± 0.8 ‰ for δD and ± 0.1 ‰ for δ18O otherwise the 

measurement has to be repeated (Meyer et al., 2000).

In the mass spectrometer the gas molecules are impact ionized at a heated tungsten filament and 

accelerated in a magnetic field. An electro magnet deflects the ions differently and divides them by 

their mass and their charge. The intensity of the different isotopes is detected in so called Faraday 

cups and the isotope ratio is calculated. For δD the measurements are carried out at 5 nA H2 and for 

δ18O at 10 nA mass 44 intensity (Meyer et al., 2000). 

For isotope composition calculation the ISODAT software was applied.  δD and δ18O values are 

displayed  as  permil  differences  relative  to  VSMOW (Meyer  et  al.,  2000).  Six  bottles  per  unit  

contain standards for quality control and linear corrections. The selection of the standards depends 

up on the expected isotope composition of the samples (Meyer et al., 2000).  Here NGT, KARA 

(Kara See Water),  HDW2 (mixed water  from the Potsdam region)  and SEZ (Severnaja  Zemlja 

water) were selected.

Advantage of mass spectrometry is the long-term experience with this method of about 50 years. 

However mass spectrometers need a larger sample volume than Picarro.

13
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3.2.2. Picarro L2120-i Isotopic H2O

The  Picarro L2120-i Isotopic H2O allows simultaneous measurement of D/H and  18O/16O ratios 

(Gkinis et al., 2010). It operates with Wavelength-Scanned Cavity Ringdown Spectroscopy (WS-

CRDS). This is an optical spectroscopic method, which enables to measure small sample volumes. 

Only 1.8 µl water are necessary for one single stable isotope measurement (IAES, 2009).

An autosampler (PAR HTC-Xt) allows for the measurement of sample sequences (56*2 samples). 

The samples are taken with a syringe from a 2 ml glass vial through a septum cap and are then 

injected through another septum into the evaporation module. The syringe is purged after every 

sample  with  1-methyl-2-pyrrolidone-liquid  to  reduce  memory  effects  (IAES,  2009).  In  the 

evaporation module the water sample is evaporated and subsequently transported to the resonator. 

In order to prevent isotopic fractionation effects an immediate evaporation is necessary.(Gkinis et 

al., 2010) To avoid condensation the distance between evaporation module and resonator has to be 

as short as possible. The water vapor concentration arriving in the resonator should be between 

18000 ppm and 22000 ppm. The amount of injected water and the dry gas flow are important for a 

stable water mixing ratio and therefore they are automatically controlled (Gkinis et al., 2010).

The resonator consists of three highly reflective mirrors (>99.999 %) where the sample exposed to a 

infrared laser. The laser beam is repeatedly reflected by the mirrors and passes the sample vapor 

continuously.  That  way,  optical  path  lengths  of  about  20 km are  reached.  This  intensifies  the 

measured absorption lines and a high signal-to-noise ratio is reached (IAEA, 2009). 

When the detected signal reaches a steady state condition, the laser is turned off. The light intensity 

in the resonator slowly leaks out due to the slight reduced reflectivity of the mirrors and due to the 

absorption of the gas (IACE, 2009). This process called ring down is tracked by a quantitative  

photodetector in real-time (Fig. 4). Thus, it is possible to scan the absorption lines that are unique to 

H2
16O, H2

18O and HD16O and obtain  δD and δ18O data simultaneously (Gkinis et al., 2010). The 

absorption line intensity is linearly dependent from the concentration of molecules in the resonator. 

The laser exciting vibrations frequency and rotation in the molecules depends on the mass of the 

atoms. This leads to lines at different frequencies for the different molecules (IACE, 2009). To 

isolate and measure these unique spectral lines, a high resolution and absolute wavelength precision 

is necessary. The resulting isotope ratio depends on the relative absorption line intensities. Because 

WS-CRDS  measures  decay  rates,  fluctuations  in  the  laser  intensity  have  no  effect  on  the 

measurement (IACE, 2009).

For  δD  and  δ18O  a  precision  better  than  0.5 ‰  and  0.1 ‰  is  promised  by  the  manufacturer, 
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respectively  (Picarro,  2014,  a).  At  the  isotope  laboratory  of  the  Alfred  Wegener  Institute  all 

measurements with precisions less than 0.8 ‰ for δD and 0.1 ‰ for δ18O were repeated. For long 

sample series there is a drift of about ± 0.3 ‰ for δ18O and ± 0.9 ‰ for δD (Picarro, 2014, a). 

Therefore within this project only short series were measured. 

To ensure  optimal  measurements  the  WS-CRDS analyzer  features  a  high-precision  wavelength 

monitor and a thermal and pressure controlled optical cavity (Picarro, 2014, a). The temperature 

control and the pressure control are within 0.002 °C and 0.003 atm accurate respectively.

The Picarro is prone to a memory effect which can not be completely eliminated,  even though 

Picarro  has  a  temperature  controlled  and  stabilized  vaporization  system (Gkinis  et  al.,  2010). 

Therefore, only the last three of six consecutive measurements are used for the statistical evaluation.

The same standards as for mass spectrometry are used for quality control. In general the first and 

the last five samples of one sequence are standards. Due to the memory effects the standard with the 

most similar isotope composition to the expected isotope composition of the samples is positioned 

prior to and after the samples. Also the standard with most similar isotope composition is used, if a 

standard is put additionally between the samples.

The data can be received as delta ratio to the reference standard V-SMOW as usually done (IAEA, 

2009). An advantage of Picarro is the possibility of measuring small sample volumes. Furthermore, 

it is relatively small and immune against changing external conditions. Therefore it can be used in 

the field.  On the other hand Picarro is  very susceptible  to  memory effects  and so far a  higher 

precision than that of the mass spectrometer is not achieved. 
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Fig. 4: Schematic illustration of the ring down measurement with a 
Picarro CRDS analyzer.
(modified according to Picarro, 2014, b).
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4. Methods

4.1. Field work

4.1.1. Selection of an ice-wedge polygon

The selected ice-wedge polygon (Fig. 2) is  located at  the 1st Lena river terrace.  It  is  hexagonal 

shaped, 20.6 m in diameter, located near the old weather and soil station of Samoylov Island and 

shows  a  low  inclination  towards  north  east  (Meyer, 2002, a). It  is  a  mature  polygon  type 

(Meyer, 2002, a). These polygons are quite common for the 1st Lena river terrace and usually show 

the occurrence of recent frost cracking and ice wedge growth (Meyer, 2002, a). It is characterized 

by clearly visible frost cracks and a well-developed relief between polygon wall and polygon center 

of about 0.5 m (Meyer, 2002, a). The center of the polygon was moist but did not show open water. 

The troughs above the ice wedge were up to 10 cm wide and 20 cm deep. There were no signs of 

degradation  like  pond water  in  the  troughs  above  the  frost  cracks.  At  the  beginning  of  the 

experiment the site showed good frost cracking conditions due to low isolation from the overlying 

soil, vegetation or snow (Meyer, 2002, a). A thin snow cover is likely since the snow may easily 

drift  away  by  wind  due  to  the  elevated  position  of  the  ice-wedge  polygon  on  the  island 

(Meyer, 2002, a). Snow depth has been monitored by a snow depth sensor (Campbell Scientic Sonic  

Ranging Sensor SR50) (Meyer, 2002, a). The AL above the permafrost was measured to be between 

0.2 m and 0.6 m thick.

The location near the old weather and soil station on Samoylov Island and a newly installed soil and 

weather station directly at the research polygon gives the ideal opportunity to compare climate data 

with isotope compositions  of the ice wedges (Meyer, 2002, a).  Furthermore,  the  meteorological 

stations at Tiksi and Stolb were used to fill any data gaps during recording of meteorological data 

on Samoylov Island.
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Fig. 5: Lycopodium spore tracers . 
Type 1: red safranine, orange G, bismarckbrown; Type 2: malachite green, crystal violet, methyl orange, nile  
blue A, bengalrosa
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4.1.2. Spore (tracer) experiment

The aim of this experiment is to assign recently forming ground ice to the year of its formation and 

relate  the  isotope  composition  of  the  ice  formed  in  a  particular  year  with  the  corresponding 

temperature to calibrate a isotope thermometer. Therefore colored  Lycopodium spores with a size 

ranging from 11 μm to 45 μm were applied as tracers to the selected ice-wedge polygon. There are 

two different  types  of  Lycopodium Clavatum spores.  The first  type  has  little  hairs  whereas  the 

surface of the second type is rather even (Fig. 5). Over an 8-year-period every year in August/- 

September  spores  with  a  different  color  were  applied  to  the  polygon.  The  color  identifies  the 

respective year (I. e. 2002 = red safranine) (Fig. 5). In the years 2002/03, 2008/09 and 2009/10 the 

spores were mainly of type 1 whereas in the other years they were of type 2. 

The experiment started in 2002 and ended in 2010. The spores are assumed to behave like sediment 

particles.  They  are  easily  recognizable  under  the  microscope  and  relatively  resistant  against 

weathering which makes them suitable tracers. They were disseminated around the frost cracks and 

were expected to penetrate into the cracks by the melt water and snow which may contribute to the 

growth of the ice wedge (Fig. 6). This way it should be possible to identify all types of ground ice, 

formed in a specific year by the color of the spores contained within. Before using the spores in the 

field it was successfully tested if it is possible to detect them in the sediment.
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Fig. 6: Scheme of the tracer experiment (Meyer, 2002, a).
A: Scheme Lycopodium spores application on an ice wedge. B: Scheme of penetrating lycopodium spores 
into a frost crack.
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4.1.3. Sampling (Ice wedge drilling)

In order to find spores back in the studied polygon, 13 ice cores were taken with a Kovacs Mark II  

9 cm Ice Coring System in 2010 (Fig. 2). The ice cores are termed LD10 BH-1 to -13 where LD10 is 

the short form for expedition Lena Delta 2010 and  BH stands for borehole. Only the ice which 

formed in 10 years was needed for this experiment. All drilling holes are located in the frost crack 

area in order to obtain the ice formed in the last few years.

The ice quality depends on a variety of factors such as the moisture standing in the troughs above 

the frost cracks. In consequence the quality of the ice cores differs (App. 1). Only the cores with  

sufficiently high quality (BH2, 3, 4 , 5, 8, 10, 11, 12, 13) were used for the experiment. Due to the 

high moisture content no drilling was possible in the southern part of the polygon (Fig. 2).

4.1.4. Frost cracking experiment

A frost cracking experiment was carried out in 2002 to 2007 parallel to the tracer experiments in 

order to determine whether and when frost cracking occurs at the selected ice-wedge polygon. This 

experiment should reveal the frequency and the timing of frost cracking. (Meyer, 2002, a)

For the frost cracking experiments two 1 m long steel poles which were inserted as deep as possible 

into the permafrost on both sides of a frost crack and were connected with a copper wire (Fig. 7). 

Copper was chosen for its high linear extension coefficient of 16.1 * 10-6  K-1. It was intended that 

copper resist temperature fluctuations but breaks when sudden ruptures caused by frost cracking 

occur.
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Fig. 7: Scheme of frost cracking experimental set up. 
(Meyer., 2002, a).
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In  the  first  year  (2002/03)  experiments  with  different  copper  wires  (0.5 mm,  two-wire  braid 

(HO3VH-H,2x0.75 mm), single-wire braid (HO3VH-H, 1x0.75 mm)) were carried out in order to 

detect which wire works best. Finally, it has been decided to use the two-wire braid Cu wire for the 

following years. The test has shown that this wire responded well to sudden ruptures and  stands 

temperature fluctuations more reliable than the others due to its composition of many individual 

wires. In order to protect the wire from animals Tabasco was used.

Six frost crack detecting wires were implemented at the ice-wedge polygon in the first year. In the  

following year the experimental setup got increased to 10 and since 2004/05 there are 11 frost crack 

detecting wires installed (Fig. 2). The last experimental setup differs from the others. The copper 

wire does not run between two steal poles above the ground but underground directly through the 

ice of the wedge. It was suspected to freeze into the ice and break when the ice cracks.

The first  ten experiments were termed cracking experiment 1 to 10. The latest  one was termed 

cracking experiment 20. The southern rim of the polygon was used for other research projects and 

therefore no cracking experiments were carried out in this area.

Six out of the ten experiments and the cracking experiment 20 were equipped with voltage data 

loggers (type ESIS Minidan Volt). Those loggers, were connected to the breaking cables sending 

signals every 20 minutes. In case of a breaking wire the circuit is interrupted and the measurement 

stops. Thereby the precise moment, position in the polygon and frequency of frost cracking can be 

detected. (Meyer, 2002, a). Furthermore, temperature loggers were installed in intervals of 15 cm at 

depths of 0.05 m, 0.20 m 0.35 m and 0.50 m into the ground (Fig. 2, 7). They allow to record the 

temperature gradient at the moment of thermal-contraction cracking. (Meyer, 2002, a)

4.2. Laboratory work

4.2.1. Subsampling of the ice cores in the cold-laboratory

The frozen ice cores were brought into the cold laboratory (GFZ, Potsdam, Germany), where they 

were cut for stable isotope analysis and spore detection. The cores where divided lengthwise in two 

halves. The first half was taken for archiving and the second one was cut into 5 cm slices for a 

better overview. The obtained 5 cm slices were termed i.e.  LD10-BH3-2 40-45 cm. LD10 denotes 

the Expedition,  BH3 marks the borehole, the next counter denotes the precise ice block when the 

material  of one borehole is divided into several parts  (for example if  the drilling took place in 

several steps) and the last numbers give information about the original depth.

19



            Recent cryogenic processes at Samoylov Island, North Siberia for calibrating a stable-isotope thermometer for ice wedge  

The most promising, undisturbed slices with clearly visible ice veins that seemed to contain spores 

were selected for further preparation. Once thawed parts were carefully removed with a band saw or 

the microtome before dividing the sample into three to six pieces. The pieces were numbered from 

right to left with A1 to A6. The focus was to obtain homogenous, single ice veins but not every ice 

segment contained an ice vein and not all ice veins could be separated precisly, for instance if two 

veins cross each other or an ice vein is absent. The ice vein samples were marked with a plus (+) 

and samples containing two ice veins with double pluses (++).

In total 108 samples were received (App. 2), 68 of which contained visible ice veins. 

4.2.2. High-resolution experiment

A particular ice slice with clearly visible ice veins (Fig. 9) was selected for an additional experiment 

to  yield  information  whether Michel's  (1982)  assumption  of  no  fractionation  occurring  during 

refreezing of ice veins is correct. This is important for this bachelor thesis because single recent ice 

veins  are  difficult  to  subsample  within  the  sawing  process  and  external  parts  with  potentially 

different isotope composition might be removed.

For this  high-resolution experiment  the selected ice slice was divided lengthwise into 2 mm to 

5 mm  wide  sections  with  a  microtome (Fig.  9).  The  sections  were  melted  and  the  isotope 

composition of every single section was measured. As a consequence, several isotope data for one 

ice vein were obtained. If a fractionation during freezing occurred,  the isotope compositions of 

these samples should differ over the ice vein. The last frozen, inner samples should display a more 

negative isotope composition than the first frozen, outer samples. Due to the small sample volume 

the stable isotope measurements were carried out with the Picarro L2120-i Isotopic H2O.

4.2.3. Spore analysis

The 108 samples, archived in the ice laboratory, were melted and investigated for spores and their  

isotope composition. First, a rapid test was carried out to get an overview about the spore content.  

Fore this purpose, the water samples were shaken until all particles moved into suspension. A drop 

of water was subsequently pipetted from the sample and applied to an microscope slide. The pipette 

was exchanged after every sample. The microscope slides were dried and covered with a cover 

plate. To fix the cover plate glycerin was used first. But its low melting point of about 18 °C never 

really  fixed  the  cover  plate  and  made  it  necessary  to  use  nail  polish  instead.  The  prepared 
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microscope slides were analyzed for spores with a Zeiss-Axioskop-Microscope. The spores of a 

sample were counted and the respective colors were noted (App. 3).

The remaining sample was filtered using filtration units and 0.45 μm cellulose acetate membrane 

filters in order to separate the water from the sediment. The filters with the sediment were archived 

in plastic containers. The water was bottled for isotope analyzes. 

To verify the results of the first pipette test, a second test was done with the sediment samples. For 

this purpose, one third of the filters containing sediment was used. The sediment was removed from 

the filter by soaking it with distilled water only. Other substances like KOH or HCl were tested, but 

found inappropriate because KOH reduce the color of the spores and HCl did not substantially 

improve the visibility of the spores by removing carbonate components from the sample. 

The remaining sediment was finally rinsed from the filter with distilled water and the filter was 

checked under the microscope to make sure that no sediment was left on the surface. The dissolved 

samples  were  sieved  with  a  mesh  size  of  63 μm  to  remove  greater  particles  to  increase  the 

recognizability  of  the  spores.  After  every sample  the  sieve  was  thoroughly cleaned  to  prevent 

contamination. 

Furthermore,  a  contamination  test  was carried  out.  For  this  purpose the  sample  containing  the 

highest number of  spores (LD10-BH8-1/2 55-60 cm A2)  was sieved and afterwards the cleaned 

sieve was rinsed again with distilled water. The distilled water was applied to a microscope slide 

and analyzed for spores. The whole test was repeated three times (App. 5). 

The  sieved  samples  were  filled  into  50 ml  bottles  where  they  were  concentrated  by removing 

surplus water with an pipette once the sediment with spores moved to the ground. The remaining 

water that could not be discarded by pipette without removing sediment was evaporated in the oven 

at 50 °C until approximately 5 mm of water remained in the bottles. To ensure that no spores were 

lost during the concentration random samples of the removed water were applied to an microscope 

slide and examined under the microscope for spores. 

The concentrated sediment samples were applied to microscope slides in the same way like for the 

quick test and analyzed for spores under the Zeiss-Axioskop-Microscope. Samples that showed a 

clear result in the quick test were not tested again (App. 4). This concerns all samples where more 

than four spores of only one color were found. 

Statistical methods like PCA (Principal Component Analysis) and cluster analyzes were used to 

simplify the data and to assign the samples to specific years of formation.
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4.2.4. Temperature data

To compare the isotope composition of ice-wedge samples with the average temperatures from 

Samoylov station,  correlation  matrices  were  calculated  and the  isotope  composition  (δD,  δ18O) 

plotted as a function of the temperature.

In  these  correlation  matrices,  the  monthly  average  temperatures  from  November  to  May,  the 

average  winter  temperatures  (December  to  February)  (Twinter),  the  average  spring  temperatures 

(March to May) (Tspring) and the average temperatures of the cold season (November to May) (Tcold 

season) from 2002 to 2010 were considered.

The temperature data of the old and new climate station on Samoylov Island are combined in one 

dataset (Boike et al.,  2008). Due to several gaps in the temperature measurements of Samoylov 

Island the temperatures from Tiksi and Stolb were proved on comparability to fill the gaps.

22



Bachelor Thesis                                                                                                                                                                         Clara Kleine  

5. Results

5.1. Comparision of Picarro and mass spectrometer measurements 

Despite  different  methodical  approaches  (Finnigan  MAT  Delta-S  mass  spectrometer,  Picarro 

L2120-i) there  are  only small  differences  in  the  measured  isotope  composition  of  one  sample 

(Fig. 8). For δ18O the average deviation is 0.14 ‰ and for δD it is 1.1 ‰ between the measurements 

with the mass spectrometer and the Picarro (App. 6). Only one sample (BH3-1 50-51 cm A3+; 

number  2  in  Fig.  8)  shows  relatively  high  deviations  of  0.54 ‰ in  δ18O  and  5.4 ‰ in  δD. 

Considering the small sample volume, which might have been to small for the mass spectrometer, a 

correlation developed by Meyer et al., (2000) exists. Unfortunately, the exact sample volume, which 

is  needed for the correlation,  was not  noted.  Therefore no exact  correction can be carried out. 

Nevertheless,  the  correction  wold  approach  the  isotope  compositions.  For  example  a  assumed 

sample volume of 0.5 ml leads to a δD of – 162.5 ‰. With a δD of -164.6 measured at Picarro, the 

deviation between the data is only 2.1 ‰.

The standard deviation (SD) of the  δ18O measurements is slightly better  for the  Finnigan MAT 

Delta-S mass spectrometer (δ18O = 0.09 ‰) than for Picarro L2120-i  (δ18O = 0.11 ‰). For the δD 

measurements  it  is  the  contrary,  the  maximal  standard  deviation  is  better  for  Picarro  L2120-i  

(δD = 0.2 ‰) than for the mass spectrometer (δD = 0.7 ‰). This trend is also confirmed by the 

average of the standard deviation (App. 6).
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Fig. 8: Comparison of δ18O results of Finnigan MAT Delta-S mass spectrometer and Picarro L2120-i.
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5.2. High-resolution experiment

The high resolution experiment shows different isotope compositions for every sample of an ice 

block of 45 mm subsampled into 10 samples.  The isotopic composition varies from -24.98 ‰  to 

22.12 ‰. The isotope variations between the samples are quite low in the central area of the ice 

block and becomes higher towards the rim (Fig. 9). 

Sample 9, 3 and sample 5 to 7 are single ice veins. In samples 5 to 7, located in the central section  

of  the  ice  block,  it  was  possible  to  take  three  samples  within  one  ice  vein.  Here  the  isotope 

variations are quite small. The δ18O values at the rims (5, 7) are slightly higher than in the center 

(6). The fluctuation of the isotope values in the vein between the highest (5) and the lowest (6) 

value is 0.32 ‰ for δ18O and 1.1 ‰ for δD. Between part 6 and 7 the difference is only ± 0.2 ‰ and 

± 0.9 ‰ for  δ18O and δD, respectively. The course of the d-excess values within the ice vein is 

contrary to the δ18O variations.
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Fig. 9: δ18O and d-excess measurement results of the High resolution experiment
A: δ18O and d-excess values of the ice samples displayed in the original position in the ice piece (in mm 
from the left rim). Single ice veins are red highlighted. B: Photo of the selected ice piece for the high-
resolution experiment with marked separation lines 
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5.3. Frost-cracking experiment

In order to understand how frost cracking influence the tracer experiment rate, time and location of 

observed cracking events has been evaluated as well as the conditions leading to frost cracking.

All cracking events occurred between 16 Nov and 06 Feb. The main number of thermal-contraction 

cracking is  detected  in  December  (N = 5)  followed by November  (N = 3)  (Fig. 10).  In  January 

(N = 1) and February (N = 2) cracking events were only detected in 2003/04.

.

In 2002/03, in 33 % of the experiments frost cracking was detected. In the following year 2003/04 

nearly every experiment cracked (90 %). Afterwards the rate of detected cracking events decreased 

(Fig. 10). Only 36 % of the experiments cracked in 2004/05 and just 12 % in 2005/06. Finally, in 

2006/07 no cracking events could be observed (App. 7). Except from 2002/03 to 2003/04 the frost-

cracking experiments detect a decreasing trend of cracking events 

To determine if the decreasing number of detected cracking events are correlated to the snow depth, 

the data from the snow-depth sensor (Kattenstroth, 2009) and the number of cracking events were 

compared  (Fig.  11). However  the  snow-depth  data  are  from the  polygon  center  not  from the 

polygon rim, where the frost  cracking occurs. In general the snow cover is much higher in the 

center than at the rim. Nevertheless the data show the approximate variation of snow depth.

The snow depth in the polygon center varies between 10 cm to 25 cm in the years 2003 to 2008 

(Fig. 11). In 2003/04, the snow cover was highest with a max. snow depth of 56 cm. The highest 

measured snow cover at the rim of the polygon was 17 cm (Kattenstroth, 2009). When correlating 

monthly snow depth with the frost-cracking events, no relevant correlation could be found (0.03). 
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Fig. 10: Number of detected frost-cracking events
A: Detected cracking events in percent of installed experiments. B: Number of cracking events grouped in 
monthly occurrence. (The cracking event in November 2003/04 is later identified as outlier).
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An other factor, that might have influence on the frost-cracking events are the Twinter. The correlation 

between average Twinter  and the total  number of frost crackings detected in one winter is -0.93. 

Hence the colder the winter was the more cracking events could be observed.

The data of the installed temperature logger show that the strongest cooling events in the soil occur 

in November and December. The cooling rates increases to -1.2 °C/day in the soil layer above the 

permafrost in 40 cm depth (Fig. 12). The average cooling rates in these months were -0.3 °C/day in

 2002/03 and 2003/04. The temperature variations in the upper soil layers show the same trends but 

they  are  much  higher.  In  5 cm depth,  the  highest  cooling  rate  is  -6.6 °C/day  in  2002/03  and 

-3.3 °C/day in 2003/04. The average cooling rate in both years in November and December are 

-0.3 °C/day (App. 8). 

Due  to  the  fact  that  this  soil  station  only  measured  from 2002  to  early  2004,  the  data  were 

complemented with data from a second soil station in the southern area of the investigated polygon.  

The data from the years 2002 to 2004 show that the measured temperature trends of both stations 

are quite the same (Fig. 12) 
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Fig. 11:Comparison of snow depth and number cracking events
Monthly frost cracking events with known date of occurrence are summed up in red bars and monthly snow 
depth by blue bars (Kattenstroth, 2009). The total number of cracking events detected in one winter is 
highlighted with red boxes.
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In general, frost cracking often occurs at the end of strong cooling phases, right before the minimal 

temperatures are reached (Fig. 12). There is one exception where frost cracking was detected at an 

early cooling stage at 08 Nov 2003 occurring at around 0 ° C right before the temperature starts to 

drop. Therefore it might have been caused by other effects and is discarded as outlier.

The cooling trend at 40 cm depth preceding the rupture of the breaking cable shows in average 

temperature decrease of about -0.5 ° C/day over 13 days (App. 09), when leaving out the outlier.

                     Tab. III: Overview of cracking experiments

                            (X = detected cracking event; gray = no cracking experiment installed; - = no cracking observed; 

            (X) = outlier, No. = total number of observed cracking events; E = east; N = north; W = west) 

Cracking experiment No. 1 2 3 4 5 6 7 8 9 10 20

Location in the polygon / E E E E N N N W W W W

2002/03 2 X - X - - -

2003/04 9 X X X X X - X X X X

2004/05 4 - X - - - X X - - (X) -

2005/06 1 - - - - - - - - - - X

2006/07 0 - - - - - - - - - - -

For the location of the crackings events in the studied polygon no clear orientation can be observed 
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Fig. 12: Ice-wedge-polygon-soil temperatures
Soil temperature measured in 40 cm depth at the first soil station at the investigated polygon (blue) and a the 
second soil station in the  south of the polygon (black) with marked data of frost-cracking events (vertical red 
lines).

outlier
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(Tab. III).  Thermal-contraction cracking seems to occur all over the polygon. There might be a 

slight trend from east to west during the years, but due to the decreasing rate of events and the  

different number of cracking experiments this observation is indistinct.

5.4. Comparison of temperature data of Samoylov to other measuring 

stations

The correlation of the temperatures from Samoylov Island, Stolb (6 km NE) and Tiksi (120 km SE) 

(Fig. 13) should show which data are suitable to fill the data gabs in the Samoylov temperature data. 

In winter and spring the temperature variations of Samoylov and near station Stolb are quite similar 

with  a  maximum difference  of  1 °C  (average  spring  temperature  2006/07  and  average  winter 

temperature  2008/09).  The  only exception  is  in  2010,  where  average  spring  temperature  from 

Samoylov Island differs by almost 3 °C from the temperatures measured at Tiksi and Stolb. Most 

likely the Samoylov Island temperatures are erroneous in this year. 

The temperature from Tiksi is about 1 °C higher than on Samoylov Island in winter. In spring the 

temperatures of Samoylov and Tiksi are more similar and do not differ by more than by 1 °C.

The coldest winter was in 2003/04, followed by 2008/09. The winters in 2002/03, 2004/05, 2007/08 

and 2009/10 were also quite cold. The warmest winters were in 2005/06 and 2006/07. For spring 

temperatures the two coldest years were in 2004 and 2006. 

Fig 13: Comparison of average temperatures from Samoylov Island, Stolb and Tiksi
A: average spring temperatures B: average winter temperatures
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5.5. Spore (tracer) experiment

5.5.1. Discovered spores

Different colored spores were used to assign single ice veins to the year of there formation. It was 

not possible to recognize the spores on a macroscopic scale in the ice, except for the red safranine 

spores. Nevertheless many spore containing ice-vein samples were achieved. Furthermore,  some 

cloud-like structures were discovered by dividing the ice cores. They might have been formed by 

snow, falling into a frost crack. 

Most of the spores were clearly visible and easy to recognize in the ground ice sample under the 

microscope. Especially the red safranine and crystal violet ones were easily notable. Also malachite 

green and nile blue were conspicuous but may be confused with each other. Bengal rose showed 

signs of discoloration but still could be recognized. However, some colorless spores were found, 

that may have once been of bengal rose color. Methyl orange, orange G and bismarck brown were 

difficult to recognize due to their similarity to the color of the sediment. The Lycopodium Clavatum 

spores of the hairy type 1 are far more easy to recognize than the spores of type 2 - even when 

colors are not clearly visible. 

The results  of test  1 (pipette method) and 2 (concentration method) confirm each other largely 

(Fig. 14). The main trends of number of spores found in both tests are the same. However, in test 

two the number of spores found is however higher. Also spores of colors that could not be found in 

the first test (methyl orange, bengal rose, orange G and bismarck brown) were found in the second 

one. Apparently, the removal of the large sediment and organic particles made it easier to recognize 

even colorless spores.

The highest number of spores was of red safranine color (N = 881), higher than the number of all 

other  recovered  spores  (green: 366,  violet: 196,  orange: 21,  blue: 43,  rose: 1,  orange  G: 8, 

brown: 21). The number of spores found from the years 2002 to 2007 decreases with exception of a 

minimum in 2005. After 2007 the number of spores slightly increases again. In total 42 colorless 

spores were found. Many samples contained spores from two or more years within one sample. 

The contamination test showed that the highest contamination is less than 0.2 % during filtration 

(App. 5). No spores could be found in the removed water which was investigated to examined spore 

loss during pipetting.
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5.5.2. Statistical classification of the samples

Apparently, red safranine spores (2002/03) had a much higher probability to penetrate into the ice 

wedge than  spores  of  the  following years.  To correct  this  effect,  the spore containg data  were 

normalized, between 0 and 1 for the total number of spores of one color. Spores contained in one 

sample were given in percent  to  assess which color dominates in  a discrete  sample (App. 10). 

Samples with out spores were removed from the data set. 

Afterwards, a cluster analysis and PCA (Principal Component Analysis) were carried out with the 

program R to assign the samples to specific years. The performed PCA is based on the euclidean 

distance and simplified the data to point out general similarity trends between the samples. The 

PCA result was plotted in a diagram where principal component one (PC1) was plotted against 

principal component two (PC2) (App. 11). The years 2002/03, 2003/04 and 2005/06 are clearly 

different from the other years. The differences decrease for the years 2004/05, 2006/07 and 2009/10 

to almost none between 2007/08 and 2008/09. 

The first cluster analysis was an euclidean cluster analysis. In this procedure the zero values are 

included in the similarity determination. For this cluster analysis the distance was calculated with a 

distance matrix computation and hierarchically clustered. 

To verify if the zero values alter the results, a second cluster analysis (bray-curtis clustering) was 

carried out. This method does not include zero values but considers present spores only. Therefore 

the distance was calculated with the dissimilarity indices for community ecologists method and 

hierarchically clustered again. 

To show the results of the cluster analyzes the euclidean clustered and bray curtis clustered data 
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Fig 14: Quantitative results of the spore investigation tests 1 (A) and 2 (B)

Spore investigation test one Spore investigation test two
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were plotted as a cluster dendrogram (App. 12, 13). The attribution to the years of the different 

samples are the same in both cluster analyzes. 

Because some samples (N = 11) could not be assigned with these methods, a k-means clustering 

was carried out. It was implied that eight clusters should be created. This corresponds to the number 

of years in the experiment. An ideal cluster is defined when all values of the sample are zero except 

for one spore color. For this spore color the value is set to one.

The k-means clustering  classified  all  samples  (App.  15).  The new clusters  contained the  same 

samples as the previous clusters, with incorporation of these samples that could not be assigned to a  

discrete year before. With this procedure, all samples containing spores were attributed to the most 

probable year of formation.

5.5.3. Isotope variations over the years

The isotope compositions of all ice wedge samples can now be related to a specific year. Figs. 15 

and 16 show the  δ18O values of the samples plotted against the probable year  of formation.  In 

Fig. 15 all samples are represented as single data points. There are quite a lot samples for the years 

2002/03, 2003/04 and 2004/05. For 2005/06, 2006/07 and 2009/10 the number of samples decreases 

but still shows a usable amount. Only one sample could be assigned to 2007/08 and two to 2008/09. 

The isotope variations within one year are quite high, especially in 2004/05 where the δ18O values 

vary by more than ±6 ‰.
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Fig. 15: δ18O values of the samples assigned to the respective year (by k-clustering).
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Fig. 16  is  a  box  and  whiskers  plot  where  the  whiskers  mark  min.  and  max.  values  and  are 

maximum 1.5 times of the length of the interquartile range (IQR) (Tukey, 1977). All boxes overlap 

in their ranges and there are only small differences between the median values. In 2004/05, one δ18O 

value  is outside the 1.5*IQR. This could be indicative for an outlier, but since the data point is 

within the 3*IQR it not necessarily have to be one. Due to the fact that no further reasons which 

identify the value as an outlier could be found, the data point is not discharged from the data set. 

5.5.4. Comparison of isotope compositions and temperatures

To compare the isotope composition of the ice-wedge samples to temperatures, median, maximum, 

minimum, and average isotope compositions were compared with the measured temperatures at 

Samoylov Island and Stolb. 

The median was chosen for its robustness to outliers (like the one that might occur in 2004/05). 

Unfortunately, some of the data are unsuitable to calculate a median e.g. data from 2008/09, with 

only two values. Therefore the average isotope compositions were also correlated.

The gaps in the temperatures measured at  Samoylov Island were filled with temperatures from 

Stolb. Furthermore, the spring temperatures from 2010, which were earlier found to be erroneous 

(see chapter. 5.4) were replaced by Stolb temperatures (App. 16). In order to compare the isotope 

data to a constantly measured data set, they were also correlated to Stolb temperatures. Due to the 

large distance and the differences  between Twinter of  Tiksi  and Samoylov Island (Fig.  13),  Tiksi 

temperatures are not considered here. 
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Fig. 16: Box plot of δ18O values of the samples assinged to the respective year (by k-clustering).
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The average monthly temperatures from November to May as well as Twinter, Tspring and Tcold season from 

2002/03 to 2009/10 were correlated to the isotope compositions with a correlation matrix in R. 

It is remarkable that the temperature variations between the different years are in general much 

higher than the isotope variations (App. 16, 20). This makes it difficult to recognize similarities and 

matching trends. Therefore the isotope and temperature values were normalized to values between 

zero and minus one and then also correlated (App. 17, 21). 

5.5.4.1. Correlation of isotope and temperature data over all eight years

The correlation matrices over all eight years (Tab. IV) show the highest correlation in December 

and the second highest in April/May.  The average isotope composition has a strong correlation 

coefficient with TDecember. The median isotope composition shows a little weaker correlation with 

TDecember, but higher correlations for TApril than the average isotope data (Tab. IV). 

The temperature  values  from Samoylov  Island and Stolb  show quite  similar  correlation  trends 

(Tab. IV). In December and April the correlation coefficients are slightly better for Samoylov Island 

than for Stolb, but in May it is the opposite (Tab. IV).

The correlations of the maximal Isotope data show the best correlation with April temperatures, 

while the minimal isotope compositions correlates best with December and January temperatures 

(Tab. IV). 

Tab. IV: Correlation matrix of Stolb and Samoylov temperatures and δ18O data over all eight years 

(gray = negative correlation; yellow = positive correlation ; red = highest correlation in one column)

location δ18O
Average temperature

Nov Dec Jan Feb Mar Apr May Winter Spring Cold Season

Samoylov

Max. 0.12 -0.12 -0.22 -0.44 -0.42 0.35 -0.41 -0.50 -0.06 -0.27

Min. -0.30 0.14 0.23 -0.28 -0.16 -0.20 -0.00 0.03 -0.18 -0.18

Average -0.16 0.51 -0.29 -0.40 -0.36 0.03 0.01 -0.07 -0.12 -0.15

Median -0.24 0.32 -0.34 -0.42 -0.24 0.25 -0.01 -0.24 0.05 -0.10

Stolb

Max. -0.10 -0.11 -0.12 -0.39 -0.27 0.38 -0.37 -0.42 0.01 -0.16

Min. -0.28 0.18 0.16 -0.22 -0.15 -0.18 -0.09 0.06 -0.18 -0.17

Average -0.23 0.47 -0.49 -0.37 -0.34 0.01 0.09 -0.210 -0.102 -0.20

Median -0.31 0.28 -0.47 -0.43 -0.22 0.23 0.08 -0.37 0.06 -0.13
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5.5.4.2.   Differentiation between ice-vein and no-ice-vein samples.

To verify whether there is a different in correlation when considering only clearly identifiable ice-

vein  samples  or  no-ice-vein  samples,  both  sample  types  were  compared  to  Samoyliv  Island 

temperatures. The correlation matrix (App. 18) shows that the isotope composition of the ice-vein 

samples fit  better  than the non ice-vein samples. Conspicuous is that the highest correlation of 

average  and  median  isotope  compositions  of  the  ice-vein  samples  is  in  April  (raverage = 0.44; 

rmedian = 0.43) followed by December (raverage = 0.33; rmedian = 0.20). The isotope composition of the 

samples without ice veins fit best to May (raverage = 0.22; rmedian = 0.23 ) and March (raverage = 0.20; 

rmedian = 0.21) but show only weak correlations.

Correlating the isotope composition of the ice-vein samples with Stolb temperatures all correlations 

are weak. Best correlations for the average isotope composition are December and May (r = 0.29) 

followed by April (r = 0.25). When using median isotope compositions, May and April (r = 0.22) fit 

better than December (r = 0.16). The correlation of the non ice vein samples is far weaker. They are 

weakly correlate in March (r = 0.09), May (r = 0.12) and February (r = 0.06). 

5.5.4.3.   Correlation of isotope and temperature data over different time periods

To determine how correlations change over time, isotope composition and temperature data were 

additionally correlated in two- and four-year steps. 

The correlations in two-year steps show an increasing number of positive correlation coefficients 

over the years (App. 19). In 2002/03 and 2003/04, only the winter months temperatures correlate 

with the δ18O data. In the following years also the spring month temperatures show a correlation.

    Tab. V: Correlation matrix of Samoylov temperatures and δ18O data in four year steps

     (gray = negative correlation; yellow = positive correlation ; red = highest correlation in one column)

δ18O Years
Temperature

Nov Dec Jan Feb Mar Apr May Winter Spring Cold Season

Average

2002-05 -0.80 0.60 -0.76 -0.92 -0.74 -0.20 -0.88 -0.57 -0.96 -0.57

2004-07 0.44 0.74 0.651 -0.45 -0.40 0.45 0.24 0.68 0.26 0.66

2006-09 0.96 0.42 0.41 0.18 0.25 0.47 0.88 0.65 0.79 0.74

Median

2002-05 -0.97 0.04 -0.53 -0.97 -0.47 0.37 -0.51 -0.68 -0.09 -0.68

2004-07 0.03 -0.07 0.61 -0.57 -0.07 0.80 0.36 -0.16 0.60 0.63

2006-09 0.99 0.57 0.54 0.06 0.24 0.62 0.87 0.69 0.90 0.84
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When  correlating  temperatures  and  isotope  composition  in  four-year  steps  the  correlation 

coefficients increase over the years (Tab. V). In 2002-2005, the only positive correlations are in 

December and April. In 2004-2007, all month except February and March show moderate or strong 

correlation. Finally, in 2006-2009 all correlation coefficients are positive. In 2004-2007, the highest 

correlation for the average isotope data is in December, while the highest correlation for the median 

isotope data is in April. In 2006-2009, the correlations of both isotope data types are highest in 

November, but also the correlation of Tspring is very high (Tab. V).

The temporal course of the isotope curve in the first two years is always opposite to all average 

monthly temperatures (Fig. 17) except for December (Tab. IV). When leaving out the first two years 

(2002/03-2003/04) the correlation trend changes completely (Tab. VI) compared to the correlation 

over all eight years. Overall, the correlations are much stronger and reaching up to with no negative 

correlations  anymore.  The  correlation  coefficients  with  Tspring  are  higher  than  the  correlation 

coefficients with Twinter. Tcold season show the strongest correlations.

Tab. VI: Correlation matrix of Samoylov temperatures and δ18O data from 2004 to 2010

(gray = negative correlation; yellow = positive correlation ; red = highest correlation in one column)

δ18O
Temperature

Nov Dec Jan Feb Mar Apr May Spring Spring Cold Season

Median 0.28 0.15 0.30 0.00 0.29 0.52 0.67 0.23 0.60 0.75

Average 0.43 0.38 0.27 0.10 0.19 0.23 0.71 0.46 0.38 0.67
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Fig. 17: Compareision of normalized δ18O data and Samoylov temperatures 
A: normalized median δ18O data and normalized average Samoylov temperatures from November to May; 
B: normalized median δ18O data and normalized average Samoylov temperatures from November to May
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In summary, there are two correlation maxima between temperature and isotope composition: one in 

winter (December) related to the first years and one in spring (April) related to the later years. The 

highest  correlation  (r  =  0.51)  over  the  considered  8  years  has  been  found between  December 

temperatures  and average  δ18O. Leaving  out  the  first  two years  the  correlation  for  all  average 

monthly temperatures improves.

5.5.5. Calibration of an stable-isotope thermometer for ice wedges

To calibrate a stable isotope thermometer a linear regression is calculated between temperature and 

isotope data (Fig.18). Depending on the data selected to set up this equation show different results. 

The three most important equations are given here exemplary more calculations can be found in the 

appendix (App. 22). For December temperatures from Samoylov Island and average δ18O data (best 

correlation over all eight years) the linear regressions [Eq: 7] is as follows: 

T = 7.17 * δ18O + 133.69 R2 = 0.26 [Eq: 7]

When choose  Tcold season Samoylov Temperatures and average δ18O data to consider the whole cold 

season variations over the eight years the equations [Eq: 8] is:

T = -1.09 *δ18O -47.86 R2 = 0.02 [Eq: 8]

Finally,  when  only  take  the  last  six  years  into  account  (best  Tcold  season correlation)  the  linear 

regressions [Eq: 9] is as follows: 

T = 4.40 * δ18O + 77.34 R2 = 0.45 [Eq: 9]
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Fig.18: Linear regression between Tcold season and average δ18O
A: considering all eight years. B: considering only the last six years.
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6. Discussion

6.1. Methodical aspects 

The comparison of  the measurements  with  Finnigan MAT Delta-S mass  spectrometer and with 

Picarro L2120-i showed identical values of individual samples for both methods. When considering 

the accepted precision of Picarro and the mass spectrometer (± 0.1 ‰ for δ18O and ± 0.8 ‰ for δD) 

a difference of 0.2 ‰ and 1.6 ‰ can be explained for δ18O and δD, respectively. Only two samples 

show higher differences: BH3-1 50-51 cm A3+ with 0.54 ‰ difference in δ18O and 5.4 ‰ in δD and 

BH10-2 37-42 cm A3+ with a difference of 1.7 ‰ in δD. The deviation of the second sample only is 

0.1 ‰ and therefore negligible. But the deviations in sample  BH3-1 50-51 cm A3+ are more than 

three times as high as the next highest deviation. This could be caused by the small sample volume 

which might not have been enough for the mass spectrometer measurement and did not allow for 

repeated measurement.  When correct measured isotope composition with a correction for small 

sample volumes (Meyer 2000) the deviation gets smaller. However, this deviation is an exception.

The comparison shows both  methods  provide  useful  isotope  data  and  can  be  used  for  isotope 

analyzes. Except one all measured values of the Picarro and the mass spectrometer confirm each 

other. Consequently the measurements with the  Picarro L2120-i can be used for this experiment 

despite the short experience time with the machine. 

6.2. Interpretation of temperature differences between measuring stations

The comparison of the temperature data from Samoylov Island, Stolb and Tiksi shows suitable 

results, though there is a quite constant temperature offset of about 1 °C observed between Tiksi and 

Samoylov in  winter (Fig.  13).  The higher winter  temperatures  at  Tiksi might be caused by the 

increased maritime influence to coastal Tiksi compared to Samoylov or Stolb. In spring, when river 

and sea are completely frozen the temperatures of Samoylov, Stolb and Tiksi differ less. Overall, the 

temperature curves have the same shape. Especially the temperatures from Stolb are suitable to fill 

the gaps in the Samoylov temperature data set.  Only in spring 2010 a striking difference of the 

temperatures of Tiksi and Stolb compared to Samoylov Island is noticeable which is most likely an 

error in the Samoylov Island data set.
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6.3. Evaluation of fractionation effects during refreezing

The high-resolution experiment allowed to separate one ice vein into three pieces (Fig. 9), sample 5 

to 7). Isotope compositions for the different parts of that vein were obtained, with variations in this 

ice vein that are only slight. Except the δ18O difference between part 5 and 6 all variations within 

the vein are low enough to be explained by the precision of Picarro L2120-i Isotopic H2O. The δ18O 

difference between part  5 and 6 is  0.12 ‰  to high to  be explained by the highest certified 1σ 

deviation.  Furthermore, the highest measured  1σ deviation in this sequence was  0.07 ‰ for  δ18O 

and  0.2 ‰  for  δD.  The  doubled  amount  of  this  deviation  got  exceeded  by  all  δ18O  and  δD 

differences within the ice vein. Therefore a fractionation is possible. 

If there was fractionation during refreezing in the ice vein the isotope composition at the rim of the 

ice vein should be higher than in the center because it freezes first. Such a trend can be observed in 

the measured isotope composition. Also the increases d-excess between part 5 and 7 and part 6 

supports the theory of a fractionation (Fig. 9). This could indicate that contrary to Michels (1982) 

assumption there is fractionation in ice veins during refreezing, but only at a very small scale. For 

verification more measurements have to be carried out. Anyway, if there is fractionation ocorring it  

seems to be of negligible influence for climate interpretation. Therefore preparation inaccuracies at 

the rim of an ice vein do not affect the isotope composition and consequently are not taken into 

account for the spore experiment.

6.4. Assessment of frost-cracking experiments

Apart  from the  increasing  number  of  cracking  events  between  2002/03  and  2003/04  the  frost 

cracking experiment showed a decreasing frequency of cracking events. This trend indicates that the 

polygon was quite active when the experiment started but decreased progressively during the years. 

This can not be explained by variations in the snow depth which may isolate the soil and prevent 

frost cracking since there is no negative correlation between snow depth and the number of frost-

cracking  events  (r = 0.03).  The  highest  detected  snow  cover  at  the  polygon  rim  was  17 cm 

(Kattenstroth,  2009).  Mackay  (1993)  assumed  that  depths  of  more  than  50 cm  prevent  frost 

cracking.  Such values were not achieved and therefore the isolation was never  high enough to 

completely prevent frost cracking. Consequently the snow cover does not seem to be the crucial 

factor for the decreasing trend of frost cracking. 

38



Bachelor Thesis                                                                                                                                                                         Clara Kleine  

When looking at Twinter at Samoylov Island with data gaps filled by Stolb temperatures there is a 

correlation of r = 0.93 between decreasing temperatures and increasing numbers of frost cracking. 

Likely changing winter temperatures are responsible for the decreasing number of frost cracking.

That would also fit to field observations, which indicate signs of degradation like ponding water in 

the troughs above ice wedges.  Additional the increasing moisture content in the soil can  slacken 

steel  poles and  prevent  the copper  wire from breaking  even when thermal-contraction cracking 

takes place.  This could erroneously strengthen the observed decreasing trend in the  detected frost 

cracking with duration of experiment. Nevertheless this trend suggests deteriorating conditions for 

the tracer experiment. 

Except for one cracking events detected in early November, the most events occurred at the end of 

the cooling phase, close before the minimum temperature got reached (Fig. 12). The early event on 

the 08. November, 2003 occurred at zero degrees before the temperature dropped. Therefore it is 

unlikely that a frost-cracking event took place and rather other reasons i.e. animal bite has to be 

taken into account. The observation of cracking occurring at the end of the cooling phase match the 

results  from  Christiansen  (2005)  according  to  which  cracking  occurs  after  surface  ground 

temperatures in the polygon center drop below -15 °C. But the main season for thermal-contraction 

cracking is detected in December. This is earlier than Mackay (1974) (between mid January and 

March at north Canada) and Christiansen (between February and July at Spitsbergen) observed. 

Probably the more continental climate at Samoylov is responsible for the differences. In general 

temperature variations are stronger as more continental the climate is (Clark & Fritz, 1997). Due to 

the observation of the earliest cracking season at the most continental location (Samoylov Island) 

and the latest cracking season to the most maritime influenced area (Spitsbergen) it seems that as 

more continental the climate as earlier frost cracking occurs.

The calculation of temperature conditions preceding frost cracking was done without the outlier 

(event from 8 Nov 2003) and leads to a average cooling rate of 0.5 ° C/day over a period of 13 days 

at 40 cm depth. This temperature drop is less than the 1.8°C/day French (1996) observed as best 

conditions for frost cracking. Due to the fact that French (1996) refers to air temperatures, which in 

general fluctuate far more than soil temperatures in 40 cm depth the values are not comparable. The 

average monthly air temperatures at Samoylov Island varies by approximately 50 °C (Kattenstroth, 

2009) over one year. The average monthly soil temperatures in 40 cm depth varies by about 25 °C, 

which is just half the amount. But even doubling the average cooling rate to 1 °C it is still less than 

French (1996) calculated,  on the other hand the determined time period of temperature drop is 

longer in this experiment.
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6.5. Appraisal of the Spore experiment

The spores turned out as suitable tracers because they truly penetrated into the ice and could be 

recognized under the microscope. Only bengal rose seems to discolor which may explain the small 

recovery rate  of  those spores.  Methyl  orange,  orange G and Bismarck brown were difficult  to 

recognize due to their similarity with the color of the sediment but still could be identified. For 

future experiments  it  would be advantageous to  use more striking colors  and avoid the use of 

discoloring substances. Furthermore, the spores of Lycopodium Clavatum type 1 turned out as more 

suitable due to their easy recognizable shape.

Both spore analyzes tests confirm each other (App. 3, 4). Test 2 improves the results of test 1 with a 

higher total number of recovered spores and additional spore colors that could not be found in 

test 1.  The higher  sediment  concentration and the removal  of  great  sediment  particles  in  test 2 

significantly improve the experiment. 

Both tests show a decreasing number of recovered spores from 2003/04 to 2007/08. This fits to the 

decreasing number of thermal-contraction cracking events detected in the cracking experiment. If 

there is less cracking, there are less possibilities for spores to penetrate into the ice-wedges. There 

were not as many cracking events observed in 2002/03 than in 2003/04 but this may be due to the  

smaller number of cracking experiments and the inconsistent experiment set-up in 2002/03. Even if 

there was roughly the same amount of cracking events in 2002/03 and 2003/04 this would not 

explain the predominance of red safranine spores and another explanation has to be found.

Furthermore, 85 samples with differently colored spores were recovered, 36 of them containing 

more than two different colors. This might be caused by two crossing ice veins which could not be 

separated in the cold laboratory. But there are only two (App. 2) such samples and even they only 

could explain two different colored spores in one sample. Contamination during sample preparation 

has to be taken into account, but as the contamination test shows (App. 5) this could explain only a 

negligible small number of spores. Although a contamination might take place during ice division 

but that was not examined. This could only explain few scattered spores and not the great amount of 

mixed colored spores observed in many samples. More likely is that there are internal processes in 

the polygon which generate this effect. Possibly there were spores of previous years trapped in the 

active layer when the new ones were applied to the polygon. Hence, a mixture of spores could 

penetrate into the ice. In this case the younger spores would be crucial for classification. This theory 

is supported by the red safranine spores which still could be found in the active layer of sediment 
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cores drilled in 2010. In this case, it should be expected that the amount of spores from the previous 

year is the most frequent in a sample. But this is not the case. The red safranine spores are generally 

the most frequent ones, followed by malachite green, crystal violet and nile blue. The spores of the 

other four  years are only present in very small numbers.  Overall, it seems that the red safranine 

spores  have  a  higher  probability  for  penetrating  into  the  ice  independent  from the  number  of 

cracking events. Consequently other variables have to be considered. The spores were applied to the 

polygon by different  people.  This  might  make  a  difference,  but  would  not  explain  the  clearly 

decreasing trend in the number of spores over the years. Possibly the conditions for penetration into 

the ice were better in 2002/03 than in all other years. As mentioned above, there were no signs of 

degradation at the polygon in the first years but in the later years. This degradation could have 

influenced the tracer experiment, and increased the likelihood to remove spores by wind or water 

before frost cracking takes place.

Another consideration could be an alteration in precipitation. If in the subsequent years there is 

more rain in the season after the spores are applied and before it is cold enough for snow the spores 

can be flushed away before any frost cracking takes place.

6.6. Comparison of the statistical methods 

It is necessary to compensate the decreasing amount of spores, therefore the standardization was 

done as described above (see chapter 5.5.4.) to at least partially prevent an overestimation of the 

spores of the first years (i.e. red safranie).  Due to the uncertainty in the predominating processes, 

which leads to the different amount of spores and the mixed spores, statistical methods like cluster  

analyzes were used for the assignment of the samples to the discrete years. The results of the two 

different cluster analyzes confirm each other. There are no differences in the results of the euclidean 

and the bray-curtis clustering and the k-means clustering further adds the samples that could not be 

assigned  before.  Nevertheless  the  clusters  lead  to  a  simplification.  The  clustering  has  some 

weaknesses of the algorithm, for example samples could not be assigned to two years in case they 

contain spores of both years. Furthermore, logical connections, like a sample that contains the same 

amount of spores from two years probably belongs to the second year, are not considered. There are 

other statistical algorithms which offer the opportunity to assign one sample to different years. For 

future studies this might be a chance to even improve the results. But for now the results of the k-

cluster analyze seems to provide best approximation. 
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6.7. Evaluation of the ice-wedge isotope thermometer calibration

The variation of average δ18O values between 2002/03 and 2009/10 is very low and varies between 

– 22.95 and -22.32 also illustrated in the overlapping ranges of the box plot (Fig. 16). The similarity 

is particularly striking when comparing the isotope compositions of the different years to the related 

temperatures (App. 20). Ideally both curves should have the same shape and an isotope variation of 

0.7 ‰ per 1 °C mean annual air temperature variation would be expected (Dansgaard, 1964). 

The isotope variations observed in this experiment seems much lower. Likely this low variation is 

caused by the large time period of ice wedge growth which might smooth the differences between 

the  arithmetical  mean  and  median  δ18O  compositions  of  the  different  years.  To  prove  this 

assumption the time period of ice wedge growth has to be determined. The correlation coefficients 

between temperature and δ18O are highest in December and April/May, likely indicating two main 

penetration events. The first in December is probably related to thermal-contraction cracking takes 

place and snow fall into the crack. This theory is supported by the highest number of observed frost 

cracking events in December, as well as by cloud-like structures found in the ice of the ice cores 

during preparation, which might have formed rather by solid snow entering a frost crack than by 

snow melt water. This snow is presumably fresh and not compressed so far. It seems that snow and 

hoarfrost afterwards seals the crack (Christiansen, 2005) until spring when snow begins to melt and 

rain and snow melt water from the surface penetrates into the crack. Due to the fact that the AL is 

still frozen in spring no melt water from the AL can alter this signal. The relatively low correlations 

between the δ18O data and the February and March temperatures might represent the time period 

when the frost cracks are sealed by hoarfrost and snow. 

It seems that the isotope signal assigned to a specific year can represent both Twinter as well as Tspring. 

This  is  further  supported by the highest  correlation of the maximal  δ18O values  with the April 

temperatures  and  the  minimal  δ18O  values  with  the  December  and  January  temperatures. 

Furthermore, it explains the high variation within the  δ18O values of the samples assigned to one 

year (Fig. 15). This high variation could smooth the differences between the mean and median 

isotope data of the different years like described before. Though this effect should be compensated 

when  comparing  the  isotope  variations  with  the  temperatures  from  the  whole  growth  phase 

(Tcold season). But still the interannual variation of Tcold season  (4.51 °C) is more than seven times higher 

than the variation of the ice-wedge isotope compositions (0.6 ‰) with 0.13 ‰ per 1 °C.

Hence, the processes responsible for ice-wedges growth have to be considered. Assuming that the 
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main dates for penetration are (1) the moment of frost cracking and (2) the opening of the frost  

crack during the early thawing period the temperatures in this phases might be quite similar. As 

introduced above (see chapter 5.3) the frost-cracking experiment showed that most cracking events 

appeared just  before the minimal temperature was reached. The thawing period starts when the 

temperature rises at the surface above 0 °C and large amounts of snow melt water are generated. 

Hence  the  temperatures  in  the  time  period  of  ice-wedge growth  might  be  quite  similar  in  the 

different years and therefore the isotope compositions. 

To calibrate a stable-isotope thermometer it has to be considered which temperature and isotope 

data are appropriate. The Samoylov temperatures are most suitable temperature data for correlation, 

since they display the temperatures directly from the investigation area and - as mentioned above – 

for data gaps and the outlier temperatures might be complemented with Stolb data (see chapter 6.2). 

For,  the  isotope  data  the  median  seems  to  provide  more  suitable  data  for  the  first  five  years 

(Fig. 17). Unfortunately, no median can be calculated for the data from 2008/09 (Fig. 15). Hence 

the average isotope data were used for the calibration. 

The only month which shows a strong correlation over all eight years is December (r average = 0,51). 

But the reason for the high correlation with December temperatures and the low correlation with all 

other months is based on the first two years (Fig. 17). 

The correlation over smaller time periods could indicate if  there is a shift in seasonality of the 

processes  involved  (i.e.  frost  cracking,  snow  fall,  crack  infill). The  correlation  shows  only 

coincidences with December between 2002 to 2005 (R = 0.60). From 2004 to 2007 also a strong 

correlation with January (r = 0.65) is calculated and moderate correlation coefficients for TNovember 

(r = 44), TApril (r = 0.45) and TMay (r = 0.24) were found. The TDecember correlation still is the strongest 

(r = 0.74). When consider longer temperature time seasons the correlations for Twinter (r = 0.68) and 

Tcold seasen (r = 0.66) are both strong. In the last  four years, TNovember shows the highest correlation 

(r = 96) followed by TMay (r = 0.88).  Also TApril (r = 0.47),  TDecember (r = 0.42) and TJanuary (r = 4.1) 

show moderate correlations. The correlation with Tspring (r = 0.79) is now stronger than the one with 

Twinter (r = 0.65). The correlation of Tcold season is also strong (r = 0.74). This indicates a seasonality 

shift from a more winter temperature to a more spring temperature influenced isotope signal. Except 

for February all average months temperatures show at least moderate correlations in different time 

periods and likely all have an effect on the isotope composition. Consequently, the Tcold season have to 

be selected for the isotope thermometer, especially when considering longer time intervals (i.e. a 

decade or more). 
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Unfortunately, the correlation coefficient between Tcold season  and average isotope composition data is 

not even moderate (r= -0.15). As mentioned before this relies on the first two years. 

The correlation for 2004-2010 shows much higher correlation coefficients with all  temperatures 

(Tab. VI) and has the strongest correlation with Tcold  season (r =0.67). This could indicate a higher 

influence of December precipitation on the isotope signal in the first two years than in the following 

six  years.  When choosing the  last  six  years  for  the  calibration  of  an  isotope  thermometer  the 

equation would be as follows: 

T = 4.40 * δ18O + 77.34 R2 = 0.45 [Eq. 9]

Consequently the δ18O data variation is 0.1 ‰ per 1°C. But in Eq. 9 the years with the best database 

were left  out.  Furthermore,  if  the assumption is  right  that  there was a shift  from a December-

influenced isotope signal to a more spring-influenced isotope signal a thermometer calibrated with 

this data would only represent an isotope temperature correlation for a ice wedges influenced by 

spring temperatures.

Due to the alteration of the polygon and the changes of associated processes during the experiment 

the data are not enough to obtain a suitable calculation. For significant results the experimental 

setup has to be extended.
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7. Conclusions

This study aims to improve temperature reconstructions from ice wedges by means of a tracer 

experiment,  carried out at Samoylov Island, Northern Siberia. The experiment compares stable-

isotope data from ice-wedge ice to the respective temperatures of the year of ground-ice formation. 

This way a calibration of a stable isotope thermometer for ice wedges was carried out. Furthermore 

different environmental factors which might influence the isotope composition of the ice wedge 

were examined.

The comparison of temperature data from three Russian meteorological stations revealed that in 

winter there is a temperature shift of about one centigrade at Tiksi compared to Samoylov Island 

and Stolb, likely caused by a greater maritime influence in Tiksi. All other temperatures differ by 

less  than  one  degree  and  all  temperature  curves  have  the  same  shape.  Consequently,  the 

temperatures from Stolb can be used to fill the gaps in the Samoylov temperature dataset. 

A high-resolution stable isotope experiment shows that there could be a very small fractionation in 

ice veins during refreezing of snow melt water, but for verification more measurements are needed. 

If fractionation takes place, this only slightly above the methodological error and therefore should 

have no significant effect on the isotope composition of long-term climate reconstruction with ice 

wedges 

Frost-cracking experiments reveal that most cracking events occurred at the end of a several-day 

cooling period, shortly before the winter minimum temperatures are reached. The main season for 

frost cracking at Samoylov Island is in December, but lasts from mid November to mid February. In 

40  cm  depth  the  conditions  preceding  frost-cracking  events  show  average  cooling  rates  of 

0.5 °C/day over a periode of about 13 days. A decreasing number of frost cracking events between 

2003/04  to  2007/08  indicates  deteriorating  conditions  in  the  ice-wedge  polygon  for  the  tracer 

experiment, further confirmed by water standing in the apexes above ice wedges at the end of the  

experiment. 

Lycopodium spores turned out to be suitable tracers, which could be easily recognized under the 

microscope,  especially spores of Lycopodium Clavatum type 1 due to their  easily recognizable 

shape. Only bengal rose spores lost color and should therefore not be used again.

During the first years of the experiment, the spores had apparently better conditions to penetrate 

into  the  frost  cracks  than  the  spores  of  the  later  years.  Reasons  for  this  might  be  either  the 

degradation of the polygon or changes in precipitation seasonality. Nevertheless statistical methods 
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made it possible to assign the samples to the discrete year of ground-ice formation. Spores of all  

colors (thus all years) were found again, which allowed to relate and statistically evaluate the ice-

wedge isotope data to the meteorological conditions of the discrete period of formation.

The comparison of Finnigan MAT Delta-S mass spectrometer and Picarro L2120-i shows that the 

Picarro provides reliable data even for small sample volumes.

The  correlation  of  temperature  and  isotope  data  indicates  that  there  are  two  main  ice-wedge 

penetration periods: one in December when thermal-contraction cracking takes place and another 

one in April/May when the snow begins to melt and may trickle into open cracks. This finding is 

further  supported  by  the  highest  correlation  of  maximum δ18O data  to  April  temperatures  and 

minimum δ18O data to December/January temperatures as well as by cloud-like structures found in 

the ice wedges during preparation, which might be indicative rather for solid snow entering a frost 

crack than for snow melt water. The lowest correlation always occurs in February, were the cracks 

are probably sealed by snow and hoar frost. Due to the different penetration periods the isotope 

composition of recent ice wedges varies greatly within one year. However, the variability of the 

average isotope composition in the different considered years is low and show much lower variation 

(0.13 ‰ per 1 °C) as Dansgaard (1964) predicted for mean annual air  temperatures (0.7 ‰ per 

1 °C). This is likely due to the processes leading to ice-wedge growth i.e. frost-crack infill occurring 

after  strong  cooling  in  winter  and  at  temperatures  slightly  >  0°C in  spring.  This  restricts  the 

seasonality of the considered precipitation period in this kind of short-term monitoring program and 

further might be accompanied by homogenization of the isotope signal in snow.  

Considering the variation over longer timescales (2002-2010), the δ18O data in the first two years 

only correlate with the winter months. In the following years there are also accordances with the 

spring temperatures indicating a shift in seasonality of ground-ice formation. All average monthly 

temperatures between November and May except February show at least moderate correlations with 

the isotope composition between 2004 and 2010. Consequently, all temperatures of the cold season 

(Nov-May) have to be considered to calibrate the isotope thermometer. Due to changing processes 

in the polygon and due to the observed seasonality shift after the first two years the most reliable  

equation of T = 4.40 * δ18O + 77.34 (R2 = 0.45) was  obtained for the last six years (2004-10).

In this  thesis,  a  detailed study of  the Siberian frost-cracking processes has  been carried out  to 

successfully attribute recent ground ice (i.e. ice wedges) to their year of formation. For the first  

time,  statistical  evidence  indicating  that  ice-wedge  processes  have  both  a  spring  and  winter 

component, which has to be taken into account for further climate reconstruction.
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8. Outlook 

With respect to the great number of recovered spores the tracer experiment generally worked fine, 

but could be improved in further investigations. As tracers, rather spores of Lycopodium Clavatum 

Type 1 should be chosen due to their distinctive shape. Furthermore, more durable colors have to be 

used  to  dye  spores  to  prevent  decoloration  as  it  was  observed  for  bengal  rose  spores  and 

additionally striking colors are advisable. 

In  order  to  prevent  interfering  processes  like the  alteration of  the  ice-wedge polygon which is 

potentially responsible for the decreasing recovery rate of the spores over the years, the experiment 

has to be expanded to several polygons. Furthermore the experiment should be extended over a 

longer time period to determine whether the stable isotope maximum in 2003/04 is an outlier. 

To  assign  the  samples  to  specific  years,  an  improved  statistical  algorithm  would  offer  the 

opportunity  to  assign  one  sample  to  different  years,  especially  when  comparable  amounts  of 

differently colored spores are detected within one sample. Further logical considerations at samples 

with spores of several years could be done to assign them to the year which fits best i.e. latest 

spores being indicative for cracking activity. 

Additionally, the high-resolution experiment should be repeated to confirm the results of the first  

one. The sampling resolution should be increased to more than three samples within one ice vein. 
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App. 1: Overview boreholes

Borehole Part AL Ice Spores note
Number of 
5 cm slices

Parts selected for 
further preparation

BH1 1 0-40 cm 40-46 cm - - 1 -

BH2 1 0-40 cm 40-56 cm - - 3 46-51 cm

BH3 1 0-38/40 cm 40-85 cm maybe orange
muddy, moist bit in the ice ok, 

clear ice veins
9

48-49 cm
49-50 cm
50-51 cm
51-54 cm
69-71 cm

BH4
1 0-38 cm 38-48 cm red in AL very moist, 2 -

2 48-58 cm - - 2 48-53 cm

BH5

1 0-40/42 cm - - nice core - -

2 - 40-84 cm - - 9
50-55 cm
70-75 cm
80-84 cm

3 - 84-94 cm - - 2 90-94 cm

BH6 1 - - - only mud no ice - -

BH7 1 - - - only mud no ice - -

BH8

1 0-35 cm 35-40 cm red Moist, ice fragments 1 35-40 cm

2 - 45-90 cm red In three parts 9

55-60 cm
60-65 cm
80-85 cm
87-90 cm

3 - 90-100 cm green - 2 90-100 cm

BH9 1 - - - Smal ice fragments - -

BH10
1 0-37 cm - - - - -

2 - 37-73 cm maybe brown - 7 37-42 cm

BH11 1 0-40 cm 40-94 cm - - 11
55-58 cm
84-94 cm

BH12 1 0-37 cm 37-101 cm - - 17
37-45 cm
96-101 cm

BH13

1 0-34 cm 34-85 cm - - 10
66-71 cm
76-81 cm

2A - 85-100 cm - - 3 -

2B - - - - - -

2C - - - - - -

X



App. 2: Received samples 

Received samples

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

LD10-BH2-1             46-51 cm      A1
LD10-BH2-1                  46-51 cm A2+
LD10-BH2-1                  46-51 cm A3+
LD10-BH2-1 46-51 cm A4
LD10-BH3-1 48-49 cm A1+
LD10-BH3-1 48-49 cm A2+
LD10-BH3-1 48-49 cm A3
LD10-BH3-1 49-50 cm A1+
LD10-BH3-1 49-50 cm A2
LD10-BH3-1 49-50 cm A3
LD10-BH3-1 50-51 cm A1
LD10-BH3-1 50-51 cm A2+
LD10-BH3-1 50-51 cm A3+
LD10-BH3-1 50-51 cm A4+
LD10-BH3-1 50-51 cm A5
LD10-BH3-1 51-54 cm A1
LD10-BH3-1 51-54 cm A2(+)
LD10-BH3-1 51-54 cm A3+
LD10-BH3-1 51-54 cm A4+
LD10-BH3-1 51-54 cm A5
LD10-BH3-1 69-71 cm A1+
LD10-BH3-1 69-71 cm A2
LD10-BH3-1 69-71 cm A3+
LD10-BH3-1 69-71 cm A4
LD10-BH4-2 48-53 cm A1+
LD10-BH4-2 48-53 cm A2
LD10-BH4-2 48-53 cm A3+
LD10-BH4-2 48-53 cm A4
LD10-BH4-2 48-53 cm A5
LD10-BH5-2-2 50-55 cm A1
LD10-BH5-2-2 50-55 cm A2+
LD10-BH5-2-2 50-55 cm A3+
LD10-BH5-2-2 50-55 cm A4
LD10-BH5-2-3 70-75 cm A1+
LD10-BH5-2-3 70-75 cm A2++
LD10-BH5-2-3 70-75 cm A3+
LD10-BH5-2-3 70-75 cm A4
LD10-BH5-2-3 80-84 cm A1
LD10-BH5-2-3 80-84 cm A2+
LD10-BH5-2-3 80-84 cm A3+
LD10-BH5-2-3 80-84 cm A4+
LD10-BH5-2-3 80-84 cm A5+
LD10-BH5-2-3 80-84 cm A6+
LD10-BH5-3 88-94 cm A1
LD10-BH5-3 88-94 cm A2+
LD10-BH5-3 88-94 cm A3
LD10-BH8-2-1/2 55-57 cm A1+
LD10-BH8-2-1/2 55-57 cm A2
LD10-BH8-2-1/2 55-57 cm A3
LD10-BH8-2-1/2 55-57 cm A4+
LD10-BH8-2-1/2 55-57 cm A5+
LD10-BH8-2-1/2 55-57 cm A6+
LD10-BH8-2-1/2 57-60 cm A1+
LD10-BH8-2-1/2 57-60 cm A5+
LD10-BH8-2-2 60-65 cm A1+
LD10-BH8-2-2 60-65 cm A2
LD10-BH8-2-2 60-65 cm A3+
LD10-BH8-2-2 60-65 cm A4+
LD10-BH8-2-2 60-65 cm A5+
LD10-BH8-2-2 60-65 cm A6
LD10-BH8-2-4 80-85 cm A1
LD10-BH8-2-4 80-85 cm A2

Received samples 

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

LD10-BH8-2-4 80-85 cm A3+
LD10-BH8-2-4 80-85 cm A4+
LD10-BH8-2-4 80-85 cm A5
LD10-BH8-2-6 87-90 cm A1+
LD10-BH8-2-6 87-90 cm A2
LD10-BH8-2-6 87-90 cm A3+
LD10-BH8-2-6 87-90 cm A4+
LD10-BH8-2-6 87-90 cm A5+
LD10-BH8-3 90-95 cm A1+
LD10-BH8-3 90-95 cm A2+
LD10-BH8-3 90-95 cm A3+
LD10-BH8-3                95-100 cm A1+
LD10-BH8-3                95-100 cm A2+
LD10-BH8-3                95-100 cm A3+
LD10-BH10-2 37-42 cm A1+
LD10-BH10-2 37-42 cm A2+
LD10-BH10-2 37-42 cm A3+
LD10-BH10-2 37-42 cm A4
LD10-BH11-1-2 55-57 cm A1
LD10-BH11-1-2 55-57 cm A2++
LD10-BH11-1-2 55-57 cm A3
LD10-BH11-1-2 57-59 cm A1+
LD10-BH11-1-4 84-89 cm A1
LD10-BH11-1-4 84-89 cm A2+
LD10-BH11-1-4 84-89 cm A3+
LD10-BH11-1-4 84-89 cm A4
LD10-BH11-1-4 90-94 cm A1+
LD10-BH12-1-1 37-45 cm A1
LD10-BH12-1-1 37-45 cm A2+
LD10-BH12-1-1 37-45 cm A3+
LD10-BH12-1-5 96-98 cm A2+
LD10-BH12-1-5 96-98 cm A3
LD10-BH12-1-5 96-98 cm A4+
LD10-BH12-1-5 96-98 cm A5+
LD10-BH12-1-5          98-101 cm A2+
LD10-BH12-1-5          98-101 cm A3+
LD10-BH12-1-5          98-101 cm A4(+)
LD10-BH13-1-2 66-69 cm A1+
LD10-BH13-1-2 66-69 cm A2
LD10-BH13-1-2 66-69 cm A3
LD10-BH13-1-2 69-71 cm A1+
LD10-BH13-1-2 76-81 cm A1
LD10-BH13-1-2 76-81 cm A2+
LD10-BH13-1-2 76-81 cm A3(+)
LD10-BH13-1-2 76-81 cm A4+
LD10-BH13-1-2 76-81 cm A5

XI



App. 3: Results spore analysis test 1

Sample 
Red 

safranine 
2002

Mmalachit 
green 
2003

Crystal violet
2004

Methyl 
orange
2005 

Nile blue 
2006

Bengal rose 
2007

Orange G
2008

Bismarck 
brown 
2009

LD10-BH2-1 46-51 cm A1
LD10-BH2-1 46-51 cm A2+
LD10-BH2-1 46-51 cm A3+
LD10-BH2-1 46-51 cm A4
LD10-BH3-1 48-49 cm A1+
LD10-BH3-1 48-49 cm A2+
LD10-BH3-1 48-49 cm A3
LD10-BH3-1 49-50 cm A1+
LD10-BH3-1 49-50 cm A2
LD10-BH3-1 49-50 cm A3
LD10-BH3-1 50-51  cm A1
LD10-BH3-1 50-51  cm A2+
LD10-BH3-1 50-51  cm A3+
LD10-BH3-1 50-51  cm A4+
LD10-BH3-1 50-51  cm A5
LD10-BH3-1 51-54 cm A1
LD10-BH3-1 51-54 cm A2(+)
LD10-BH3-1 51-54 cm A3+
LD10-BH3-1 51-54 cm A4+
LD10-BH3-1 51-54 cm A5
LD10-BH3-1 69-71 cm A1+
LD10-BH3-1 69-71 cm A2
LD10-BH3-1 69-71 cm A3+
LD10-BH3-1 69-71 cm A4
LD10-BH4-2 48-53 cm A1+
LD10-BH4-2 48-53 cm  A2
LD10-BH4-2 48-53 cm A3+
LD10-BH4-2 48-53 cm A4
LD10-BH4-2 48-53 cm A5
LD10-BH5-2-2 50-55 cm A1
LD10-BH5-2-2 50-55 cm A2+
LD10-BH5-2-2 50-55 cm A3+
LD10-BH5-2-2 50-55 cm A4
LD10-BH5-2-3 70-75 cm A1+
LD10-BH5-2-3 70-75 cm A2++
LD10-BH5-2-3 70-75 cm A3+
LD10-BH5-2-3 70-75 cm A4
LD10-BH5-2-3 80-84 A1
LD10-BH5-2-3 80-84 A2+
LD10-BH5-2-3 80-84 A3+
LD10-BH5-2-3 80-84 A4+
LD10-BH5-2-3 80-84 A5+
LD10-BH5-2-3 80-84 A6+
LD10-BH5-3 88-94 cm A1
LD10-BH5-3 88-94 cm A2+
LD10-BH5-3 88-94 cm A3
LD10-BH8-1 35-40 cm A1/2+
LD10-BH8-2-1/2 55-57 cm A1+
LD10-BH8-2-1/2 55-57 cm A2
LD10-BH8-2-1/2 55-57 cm A3
LD10-BH8-2-1/2 55-57 cm A4+
LD10-BH8-2-1/2 55-57 cm A5+
LD10-BH8-2-1/2 55-57 cm A6+
LD10-BH8-2-1/2 57-60 cm A1+
LD10-BH8-2-1/2 57-60 cm A5+
LD10-BH8-2-2 60-65 cm  A1+
LD10-BH8-2-2 60-65 cm A2
LD10-BH8-2-2 60-65 cm A3+
LD10-BH8-2-2 60-65 cm A4+
LD10-BH8-2-2 60-65 cm A5+
LD10-BH8-2-2 60-65 cm A6
LD10-BH8-2-4 80-85 cm A1
LD10-BH8-2-4 80-85 cm A2
LD10-BH8-2-4 80-85 cm A3+
LD10-BH8-2-4 80-85 cm A4+
LD10-BH8-2-4 80-85 cm A5
LD10-BH8-2-6 87-90 cm A1+
LD10-BH8-2-6 87-90 cm A2
LD10-BH8-2-6 87-90 cm A3+
LD10-BH8-2-6 87-90 cm A4+
LD10-BH8-2-6 87-90 cm A5+
LD10-BH8-3 90-95 cm A1+
LD10-BH8-3 90-95 cm A2+
LD10-BH8-3 90-95 cm A3+
LD10-BH8-3 95-100 cm A1+
LD10-BH8-3 95-100 cm A2+
LD10-BH8-3 95-100 cm A3+
LD10-BH10-2 37-42 cm A1+

-
1
-
1
1
-
-
1
1
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
4
2
-
-
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-
-
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24
9
-
1
-
5
15
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-
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> 30
> 30
> 15

2
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3
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1

> 30
-
7
2
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-
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-

> 15
1
-
-
-
1
-
-

> 15
-
-
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-
-
-

-
1
-
1
-
-
-
2
-
-
-
-
-
-
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-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1

> 15
1
-
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2
1
1
3
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-
2
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3
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1
2
-
-
-
-
-
-
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-
2
-
-
-
-
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1
1
-
-
-
-
-
-
-
-
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-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
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-
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-
-
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4
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-
2
4
-
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Sample Red 
safranine 

2002

Mmalachit 
green 
2003

Crystal violet
2004

Methyl 
orange
2005 

Nile blue 
2006

Bengal rose 
2007

Orange G
2008

Bismarck 
brown 
2009

LD10-BH10-2 37-42 cm A2+
LD10-BH10-2 37-42 cm A3+
LD10-BH10-2 37-42 cm A4
LD10-BH11-1-2 55-57 cm A1
LD10-BH11-1-2 55-57 cm A2++
LD10-BH11-1-2 55-57 cm A3
LD10-BH11-1-2 57-59 cm A1+
LD10-BH11-1-4 84-89 cm A1
LD10-BH11-1-4 84-89 cm A2+
LD10-BH11-1-4 84-89 cm A3+
LD10-BH11-1-4 84-89 cm A4
LD10-BH11-1-4 90-94 cm A1+
LD10-BH12-1-1 37-45 cm A1
LD10-BH12-1-1 37-45 cm A2+
LD10-BH12-1-1 37-45 cm A3+
LD10-BH12-1-5 96-98 cm A2+
LD10-BH12-1-5 96-98 cm A3
LD10-BH12-1-5 96-98 cm A4+
LD10-BH12-1-5 96-98 cm A5+
LD10-BH12-1-5 98-101 cm A2+
LD10-BH12-1-5 98-101 cm A3+
LD10-BH12-1-5 98-101 cm A4(+)
LD10-BH13-1-2 66-69 cm A1+
LD10-BH13-1-2 66-69 cm A2
LD10-BH13-1-2 66-69 cm A3
LD10-BH13-1-2 69-71 cm A1+
LD10-BH13-1-2 76-81 cm A1
LD10-BH13-1-2 76-81 cm A2+
LD10-BH13-1-2 76-81 cm A3(+)
LD10-BH13-1-2 76-81 cm A4+
LD10-BH13-1-2 76-81 cm A5
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App. 4: Results spore analysis test 2

(grey = clear results in test one)

Sample 
Red 

safranine 
Mmalachit 

green 
Crystal 
violet

Methyl 
orange

Nile blue Bengal rose Orange G
Bismarck 

brown 
colorless

LD10-BH2-1 46-51 cm A1
LD10-BH2-1 46-51 cm A2+
LD10-BH2-1 46-51 cm A3+
LD10-BH2-1 46-51 cm A4
LD10-BH3-1 48-49 cm A1+
LD10-BH3-1 48-49 cm A2+
LD10-BH3-1 48-49 cm A3
LD10-BH3-1 49-50 cm A1+
LD10-BH3-1 49-50 cm A2
LD10-BH3-1 49-50 cm A3
LD10-BH3-1 50-51  cm A1
LD10-BH3-1 50-51  cm A2+
LD10-BH3-1 50-51  cm A3+
LD10-BH3-1 50-51  cm A4+
LD10-BH3-1 50-51  cm A5
LD10-BH3-1 51-54 cm A1
LD10-BH3-1 51-54 cm A2(+)
LD10-BH3-1 51-54 cm A3+
LD10-BH3-1 51-54 cm A4+
LD10-BH3-1 51-54 cm A5
LD10-BH3-1 69-71 cm A1+
LD10-BH3-1 69-71 cm A2
LD10-BH3-1 69-71 cm A3+
LD10-BH3-1 69-71 cm A4
LD10-BH4-2 48-53 cm A1+
LD10-BH4-2 48-53 cm  A2
LD10-BH4-2 48-53 cm A3+
LD10-BH4-2 48-53 cm A4
LD10-BH4-2 48-53 cm A5
LD10-BH5-2-2 50-55 cm A1
LD10-BH5-2-2 50-55 cm A2+
LD10-BH5-2-2 50-55 cm A3+
LD10-BH5-2-2 50-55 cm A4
LD10-BH5-2-3 70-75 cm A1+
LD10-BH5-2-3 70-75 cm A2++
LD10-BH5-2-3 70-75 cm A3+
LD10-BH5-2-3 70-75 cm A4
LD10-BH5-2-3 80-84 A1
LD10-BH5-2-3 80-84 A2+
LD10-BH5-2-3 80-84 A3+
LD10-BH5-2-3 80-84 A4+
LD10-BH5-2-3 80-84 A5+
LD10-BH5-2-3 80-84 A6+
LD10-BH5-3 88-94 cm A1
LD10-BH5-3 88-94 cm A2+
LD10-BH5-3 88-94 cm A3
LD10-BH8-1 35-40 cm A1/2+
LD10-BH8-2-1/2 55-57 cm A1+
LD10-BH8-2-1/2 55-57 cm A2
LD10-BH8-2-1/2 55-57 cm A3
LD10-BH8-2-1/2 55-57 cm A4+
LD10-BH8-2-1/2 55-57 cm A5+
LD10-BH8-2-1/2 55-57 cm A6+
LD10-BH8-2-1/2 57-60 cm A1+
LD10-BH8-2-1/2 57-60 cm A5+
LD10-BH8-2-2 60-65 cm  A1+
LD10-BH8-2-2 60-65 cm A2
LD10-BH8-2-2 60-65 cm A3+
LD10-BH8-2-2 60-65 cm A4+
LD10-BH8-2-2 60-65 cm A5+
LD10-BH8-2-2 60-65 cm A6
LD10-BH8-2-4 80-85 cm A1
LD10-BH8-2-4 80-85 cm A2
LD10-BH8-2-4 80-85 cm A3+
LD10-BH8-2-4 80-85 cm A4+
LD10-BH8-2-4 80-85 cm A5
LD10-BH8-2-6 87-90 cm A1+
LD10-BH8-2-6 87-90 cm A2
LD10-BH8-2-6 87-90 cm A3+
LD10-BH8-2-6 87-90 cm A4+
LD10-BH8-2-6 87-90 cm A5+
LD10-BH8-3 90-95 cm A1+
LD10-BH8-3 90-95 cm A2+
LD10-BH8-3 90-95 cm A3+
LD10-BH8-3 95-100 cm A1+
LD10-BH8-3 95-100 cm A2+
LD10-BH8-3 95-100 cm A3+
LD10-BH10-2 37-42 cm A1+
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Sample 
Red 

safranine 
2002

Mmalachit 
green 
2003

Crystal 
violet
2004

Methyl 
orange
2005 

Nile blue 
2006

Bengal rose 
2007

Orange G
2008

Bismarck 
brown 
2009

colorless

LD10-BH10-2 37-42 cm A2+
LD10-BH10-2 37-42 cm A3+
LD10-BH10-2 37-42 cm A4
LD10-BH11-1-2 55-57 cm A1
LD10-BH11-1-2 55-57 cm A2++
LD10-BH11-1-2 55-57 cm A3
LD10-BH11-1-2 57-59 cm A1+
LD10-BH11-1-4 84-94 cm A1
LD10-BH11-1-4 84-94 cm A2+
LD10-BH11-1-4 84-94 cm A3+
LD10-BH11-1-4 84-94 cm A4
LD10-BH12-1-1 37-45 cm A1
LD10-BH12-1-1 37-45 cm A2+
LD10-BH12-1-1 37-45 cm A3+
LD10-BH12-1-5 96-98 cm A2+
LD10-BH12-1-5 96-98 cm A3
LD10-BH12-1-5 96-98 cm A4+
LD10-BH12-1-5 96-98 cm A5+
LD10-BH12-1-5 98-101 cm A2+
LD10-BH12-1-5 98-101 cm A3+
LD10-BH12-1-5 98-101 cm A4(+)
LD10-BH13-1-2 66-69 cm A1+
LD10-BH13-1-2 66-69 cm A2
LD10-BH13-1-2 66-69 cm A3
LD10-BH13-1-2 69-71 cm A1+
LD10-BH13-1-2 76-81 cm A1
LD10-BH13-1-2 76-81 cm A2+
LD10-BH13-1-2 76-81 cm A3(+)
LD10-BH13-1-2 76-81 cm A4+
LD10-BH13-1-2 76-81 cm A5
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App. 5: Results contamination test

Number of spores found in the original sample 

Red 
safranine 

 Malachite 
green

Crystal 
violet

Methyl 
orange

Nile blue Bengalrosa
Orange 

G
Bismarck

brown
colorless Sum

Test 1 279 152 44 2 24 1 9 9 26 546

Test 2 405 190 76 4 26 7 16 11 34 769

Test 3 297 180 59 1 18 1 2 2 10 570

Number of spores found in the distilled water sample 

Red 
safranine 

 Malachite 
green

Crystal 
violet

Methyl 
orange

Nile blue Bengalrosa Orange G
Bismarck

brown
colorless Sum

Test 1 1 - - - - - - - - -

Test 2 - - - - - - - - - -

Test 3 - 1 - - - - - - - -

Contamination in %

Test 1 Test 2 Test 3 Total number 

Sample 546 769 570 1885

DW 1 - 1 2

Contamination in % 0,18 - 0,17 0,10

Highest contamination ~ 0,2 %
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App. 6: Comparison of Picarro and mass spectrometer

Measurement results Picarro and mass spectrometer

Sample 

Picarro Mass spectrometer

δ18O [‰] 1σ δD [‰] 1σ d excess δ18O [‰] 1σ δD [‰] 1σ d excess

LD10-BH3-1 (49-50) A3 -21,94 0,02 -166,7 0,1 8,8 -21,88 0,0 -165,9 0,2 9,1

LD10-BH3-1 (50-51) A3+ -21,18 0,01 -159,1 0,1 10,4 -21,15 0,0 -159,2 0,7 10

LD10-BH3-1 (69-71) A3+ -23,03 0,01 -174,4 0,0 9,8 -22,98 0,0 -174,1 0,3 9,7

LD10-BH3-1 (69-71) A3+ -23,33 0,05 -177,6 0,2 9 -23,26 0,0 -177,1 0,5 8,9

LD10-BH4-2 (48-53) A1+ -22,68 0,03 -168,6 0,1 12,9 -22,49 0,02 -168,2 0,2 11,7

LD10-BH4-2 (48-53) A2 -24,16 0,07 -182,9 0,1 10,4 -24,06 0,02 -182,1 0,1 10,4

LD10-BH4-2 (48-53) A3+ -24,75 0,02 -187,5 0,1 10,6 -24,56 0,03 -186,9 0,2 9,6

LD10-BH4-2 (48-53) A4 -23,56 0,06 -178,4 0,1 10,1 -23,4 0,02 -177,5 0,3 9,7

LD10-BH10-2 (37-42) A1+ -21,77 0,11 -164,4 0,1 9,8 -21,8 0,06 -163,8 0,4 10,6

LD10-BH10-2 (37-42) A2+ -23,44 0,02 -176,4 0,2 11,0 -23,41 0,07 -175,2 0,3 12,1

LD10-BH10-2 (37-42) A3+ -23,13 0,03 -174,2 0,2 10,8 -22,93 0,09 -172,5 0,3 10,9

Minimum -24,75 0,01 -187,5 0 8,8 -24,56 0 -186,9 0,1 8,9

Maximum -21,18 0,11 -159,1 0,2 12,9 -21,15 0,09 -159,2 0,7 12,1

Average -23,00 0,04 -173,65 0,12 10,33 -22,90 0,03 -172,95 0,32 10,25

Median -23,13 0,03 -174,4 0,1 10,4 -22,98 0,02 -174,1 0,3 10

Comparison of measurement results

Picarro Mass spectrometer Difference

δ18O [‰] δD [‰] δ18O [‰] δD [‰]
Difference
δ18O [‰]

Difference
δD [‰]

LD10-BH3-1 (49-50) A3 -21,88 -165,9 -21,88 -165,9 0 0

LD10-BH3-1 (50-51) A3+ -21,69 -164,6 -21,15 -159,2 -0,54 -5,4

LD10-BH3-1 (69-71) A3+ -23,03 -174,4 -22,98 -174,1 -0,05 -0,3

LD10-BH3-1 (69-71) A3+ -23,33 -177,6 -23,26 -177,1 -0,07 -0,5

LD10-BH4-2 (48-53) A1+ -22,68 -168,6 -22,49 -168,2 -0,19 -0,4

LD10-BH4-2 (48-53) A2 -24,16 -182,9 -24,06 -182,1 -0,1 -0,8

LD10-BH4-2 (48-53) A3+ -24,75 -187,5 -24,56 -186,9 -0,19 -0,6

LD10-BH4-2 (48-53) A4 -23,56 -178,4 -23,40 -177,5 -0,16 -0,9

LD10-BH10-2 (37-42) A1+ -21,77 -164,4 -21,8 -163,8 -0,03 -0,6

LD10-BH10-2 (37-42) A2+ -23,44 -176,4 -23,41 -175,2 -0,03 -1,2

LD10-BH10-2 (37-42) A3+ -23,13 -174,2 -22,93 -172,5 -0,2 -1,7

Maximum difference 0 0

Minimum difference ± 0,54 ± 5,4

Average difference ± 0,142 ± 1,127

Median difference ± 0,1 ± 0,6
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App. 7: Overview results frost-cracking experiments

Year Logger-Nr. Frost cracking Date Note

2002/3 1
2
3
4
5
6

yes
no
yes
no
no
no

26.12.2002
-

09.12.2002
-
-
-

ripped, afterwards contacted by individual wires 
-
-
-
-

changing contact and no contact

2003/4 1
2
3
4
5
6
7
8
9

10

yes
yes
yes
yes
yes
no
yes
yes
yes
yes

Later 6.2.2004
-
-
-
-

31.12.2003
07.01.2004
10.02.2004
08.11.2003

-

-
-

contact still possible by individual wires 
-

contact still possible by individual wires 
bite marks

-
contact still possible by individual wires
contact still possible by individual wires  

-

2004/5 1
2
3
4
5
6
7
8
9

10
20

no
yes

not complete
no

not complete
yes
yes
no
no
yes
no

-
17.12.2004

-
-
-

22.11.2004
12.12.2004

-
-
-
-

pole loose
-

pole very loose
pole very loose
still contact to about 10 fibers

-
-

pole very loose
pole loose

-
-

2005/6 1
2
3
4
5
6
7
8
9

10
20

no
no
no
no
no
no
no
no
no
no
yes

-
-
-
-
-
-
-
-
-
-

16.11.2006

-
-
-
-
-
-
-
-
-
-
-

2006/7 1
2
3
4
5
6
7
8
9

10
20

no
no
no
no
no
no
no
no
no
no
no

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
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App. 8: Soil temperature data from the investigated polygon in 5 cm and 40 cm depth

Soil temperature data from 2002/03

Soil temperature data from 2003/04

App. 9: Temperature conditions in 40 cm soil depth preceding a frost-cracking event

(red highlighted = cracking event found as outlier)

Date of cracking event 09.12.02 26.12.02 08.11.03 31.12.03 07.01.04 06.02.04 10.02.04 22.11.04 12.12.04 17.12.04 16.11.06

Temperature drop in 

°C/day before the event 
-0.41 -0.55 -0.02 -0.50 -0.44 -0.33 -0.76 -0.57 -0.56 -0.50 -0.51

Number of days with 

temperature drop before 

the event

24 12 3 13 18 6 8 19 10 15 9
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App. 10: Normalized spore numbers over rows and columns

(Samples containing no spores were left out)

Sample Synonym
Red 

safranine 
2002

Mmalachit 
green 
2003

Crystal 
violet
2004

Methyl 
orange
2005 

Nile blue 
2006

Bengal rose 
2007

Orange G
2008

Bismarck 
brown 
2009

LD10-BH10-2 37-42 cm A1+
LD10-BH10-2 37-42 cm A2+
LD10-BH10-2 37-42 cm A3+
LD10-BH10-2 37-42 cm A4
LD10-BH11-1-2 57-59 cm A1+
LD10-BH11-1-4 84-94 cm A4
LD10-BH12-1-1 37-45 cm A1
LD10-BH12-1-1 37-45 cm A2
LD10-BH12-1-1 37-45 cm A3
LD10-BH12-1-5 96-98 cm A2+
LD10-BH12-1-5 96-98 cm A3
LD10-BH12-1-5 96-98 cm A4+
LD10-BH12-1-5 96-98 cm A5+
LD10-BH12-1-5 98-101 cm A2+
LD10-BH12-1-5 98-101 cm A3+
LD10-BH12-1-5 98-101cm A4+
LD10-BH13-1-2 66-71 cm
LD10-BH13-1-2 66-71 cm
LD10-BH13-1-2 66-71 cm
LD10-BH13-1-2 76-81 cm
LD10-BH13-1-2 76-81 cm
LD10-BH13-1-2 76-81 cm
LD10-BH13-1-2 76-81 cm
LD10-BH2-1 46-51 cm A1
LD10-BH2-1 46-51 cm A2+
LD10-BH2-1 46-51 cm A3+
LD10-BH2-1 46-51 cm A4
LD10-BH3-1 48-49 cm A2+
LD10-BH3-1 49-50 cm A1+
LD10-BH3-1 49-50 cm A2
LD10-BH3-1 49-50 cm A3
LD10-BH3-1 50-51  cm A1
LD10-BH3-1 50-51  cm A3+
LD10-BH3-1 50-51  cm A5
LD10-BH3-1 51-54 cm A1
LD10-BH3-1 51-54 cm A3+
LD10-BH3-1 51-54 cm A5
LD10-BH3-1 69-71 cm A1+
LD10-BH4-2 48-53 cm A1+
LD10-BH4-2 48-53 cm A2
LD10-BH4-2 48-53 cm A3+
LD10-BH4-2 48-53 cm A4
LD10-BH4-2 48-53 cm A5
LD10-BH5-2-2 50-55 cm A1
LD10-BH5-2-2 50-55 cm A2+
LD10-BH5-2-2 50-55 cm A4
LD10-BH5-2-3 70-75 cm A2++
LD10-BH5-2-3 70-75 cm A3+
LD10-BH5-2-3 70-75 cm A4
LD10-BH5-2-3 80-84 A1
LD10-BH5-2-3 80-84 A3+
LD10-BH5-2-3 80-84 A4+
LD10-BH5-2-3 80-84 A5+
LD10-BH5-2-3 80-84 A6+
LD10-BH5-3 88-94 cm A1
LD10-BH5-3 88-94 cm A2+
LD10-BH8-1 35-40 cm A1/2+
LD10-BH8-2-1/2 55-57 cm A1+
LD10-BH8-2-1/2 55-57 cm A2
LD10-BH8-2-1/2 55-57 cm A3
LD10-BH8-2-1/2 55-57 cm A4+
LD10-BH8-2-1/2 55-57 cm A5+
LD10-BH8-2-1/2 55-57 cm A6+
LD10-BH8-2-1/2 57-60 cm A1+
LD10-BH8-2-1/2 57-60 cm A5+
LD10-BH8-2-2 60-65 cm A1+
LD10-BH8-2-2 60-65 cm A2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

100,00
100,00
100,00
39,13
0,00
0,00

100,00
31,29
20,56
0,31

100,00
100,00
4,34

100,00
0,51
0,00
13,85
13,85
100,00
0,86
4,38
0,00
0,41
0,00
11,68
12,77
1,16
0,00

100,00
24,33
100,00
100,00
0,00
0,31
0,00

100,00
0,65
0,00

100,00
100,00
53,94
100,00
1,85
4,38
0,51
0,79

100,00
0,46

100,00
100,00
0,00
0,00

100,00
100,00
100,00
100,00
100,00
48,51
9,28
3,76
4,38
65,86
15,68
43,93
6,51
54,07
3,10

0,00
0,00
0,00
60,87
0,00
0,00
0,00
48,67
11,28
0,00
0,00
0,00
6,75
0,00
1,06

100,00
86,15
86,15
0,00
1,34
0,00
0,00
3,03
0,00
48,43
0,00
21,61
0,00
0,00
75,67
0,00
0,00
0,00
0,00

100,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
15,69
34,99
4,68
0,00
34,14
42,41
14,38
27,00
16,18
9,49

0,00
0,00
0,00
0,00
0,00
0,00
0,00
20,04
68,16
0,00
0,00
0,00
88,91
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
2,75
7,25
39,89
87,23
15,82
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
46,06
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
35,80
18,89
15,42
0,00
0,00
41,91
31,59
12,35
29,75
10,42

0,00
0,00
0,00
0,00

100,00
0,00
0,00
0,00
0,00
99,69
0,00
0,00
0,00
0,00
27,15
0,00
0,00
0,00
0,00
0,00
0,00

100,00
15,51
0,00
0,00
0,00
61,41
0,00
0,00
0,00
0,00
0,00

100,00
99,69
0,00
0,00
0,00

100,00
0,00
0,00
0,00
0,00
98,15
0,00
0,00
0,00
0,00
0,00
0,00
0,00

100,00
100,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
38,35
0,00
0,00

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
95,62
0,00
7,98
92,75
0,00
0,00
0,00

100,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
95,62
99,49
38,97
0,00
30,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
36,84
0,00
95,62
0,00
0,00
10,10
15,79
0,00
13,32

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
71,27
0,00
0,00
0,00
0,00
0,00
0,00
0,00
40,71
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
63,68

0,00
0,00
0,00
0,00
0,00

100,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
97,81
0,00
0,00
29,61
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
99,35
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
60,23
0,00
69,54
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
76,14
0,00
0,00
0,00
0,00
0,00
0,00
0,00

XX



Sample Synonym
Red 

safranine 
2002

Mmalachit 
green 
2003

Crystal 
violet
2004

Methyl 
orange
2005 

Nile blue 
2006

Bengal rose 
2007

Orange G
2008

Bismarck 
brown 
2009

LD10-BH8-2-2 60-65 cm A3+
LD10-BH8-2-2 60-65 cm A4+
LD10-BH8-2-2 60-65 cm A5+
LD10-BH8-2-2 60-65 cm A6
LD10-BH8-2-4 80-85 cm A1
LD10-BH8-2-4 80-85 cm A2
LD10-BH8-2-4 80-85 cm A3+
LD10-BH8-2-4 80-85 cm A4+
LD10-BH8-2-4 80-85 cm A5
LD10-BH8-2-6 87-90 cm A1+
LD10-BH8-2-6 87-90 cm A4+
LD10-BH8-2-6 87-90 cm A5+
LD10-BH8-3 90-95 cm A1+
LD10-BH8-3 90-95 cm A2+
LD10-BH8-3 90-95 cm A3+
LD10-BH8-3 95-100 cm A1+
LD10-BH8-3 95-100 cm A2+
LD10-BH8-3 95-100 cm A3+

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

5,52
32,53
10,68
17,72
2,64
18,01
8,83
9,77
4,52
4,65
19,43
4,65
0,98
4,01
4,22
16,33
44,56
100,00

16,10
67,47
56,48
15,75
7,99
67,23
30,51
60,78
49,19
0,00
80,57
0,00
0,00
8,33
52,52
0,00
55,44
0,00

24,75
0,00
32,84
38,91
6,24
14,77
22,11
29,45
46,30
95,35
0,00
95,35
0,00
0,00
43,26
83,67
0,00
0,00

27,44
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00

0,00
0,00
0,00
27,63
4,43
0,00
38,55
0,00
0,00
0,00
0,00
0,00
0,00
87,66
0,00
0,00
0,00
0,00

0,00
0,00
0,00
0,00
75,29
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00

26,19
0,00
0,00
0,00
3,42
0,00
0,00
0,00
0,00
0,00
0,00
0,00
99,02
0,00
0,00
0,00
0,00
0,00
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App. 11: Results of the PCA with PC1 plotted against PC2

(Table of attribution numbers see App. 14) 
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App. 12: Cluster dendrogram of the euclidean clustering

(Table of attribution numbers see App. 14) 
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App. 13: Cluster dendrogram of the bray-curtis clustering

(Table of attribution numbers see App. 14) 
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App. 14: Table of attribution numbers

Sample Abbreviation Sample Abbreviation
LD10-BH10-2 37-42 cm A1+

LD10-BH10-2 37-42 cm A2+

LD10-BH10-2 37-42 cm A3+

LD10-BH10-2 37-42 cm A4

LD10-BH11-1-2 57-59 cm A1+

LD10-BH11-1-4 84-89 cm A4

LD10-BH12-1-1 37-45 cm A1

LD10-BH12-1-1 37-45 cm A2+

LD10-BH12-1-1 37-45 cm A3+

LD10-BH12-1-5 96-98 cm A2+

LD10-BH12-1-5 96-98 cm A3

LD10-BH12-1-5 96-98 cm A4+

LD10-BH12-1-5 96-98 cm A5+

LD10-BH12-1-5 98-101 cm A2+

LD10-BH12-1-5 98-101 cm A3+

LD10-BH12-1-5 98-101 cm A4(+)

LD10-BH13-1-2 66-69 cm A2

LD10-BH13-1-2 66-69 cm A3

LD10-BH13-1-2 69-71 cm A1+

LD10-BH13-1-2 76-81 cm A1

LD10-BH13-1-2 76-81 cm A3 (+)

LD10-BH13-1-2 76-81 cm A4+

LD10-BH13-1-2 76-81 cm A5

LD10-BH2-1 46-51 cm A1

LD10-BH2-1 46-51 cm A2+

LD10-BH2-1 46-51 cm A3+

LD10-BH2-1 46-51 cm A4

LD10-BH3-1 48-49 cm A2+

LD10-BH3-1 49-50 cm A1+

LD10-BH3-1 49-50 cm A2

LD10-BH3-1 49-50 cm A3

LD10-BH3-1 50-51  cm A1

LD10-BH3-1 50-51  cm A3+

LD10-BH3-1 50-51  cm A5

LD10-BH3-1 51-54 cm A1

LD10-BH3-1 51-54 cm A3+

LD10-BH3-1 51-54 cm A5

LD10-BH3-1 69-71 cm A1+

LD10-BH4-2 48-53 cm A1+

LD10-BH4-2 48-53 cm A2

LD10-BH4-2 48-53 cm A3+

LD10-BH4-2 48-53 cm A4

LD10-BH4-2 48-53 cm A5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

LD10-BH5-2-2 50-55 cm A1

LD10-BH5-2-2 50-55 cm A2+

LD10-BH5-2-2 50-55 cm A4

LD10-BH5-2-3 70-75 cm A2++

LD10-BH5-2-3 70-75 cm A3+

LD10-BH5-2-3 70-75 cm A4

LD10-BH5-2-3 80-84 A1

LD10-BH5-2-3 80-84 A3+

LD10-BH5-2-3 80-84 A4+

LD10-BH5-2-3 80-84 A5+

LD10-BH5-2-3 80-84 A6+

LD10-BH5-3 88-94 cm A1

LD10-BH5-3 88-94 cm A2+

LD10-BH8-1 35-40 cm A1/2+

LD10-BH8-2-1/2 55-57 cm A1+

LD10-BH8-2-1/2 55-57 cm A2

LD10-BH8-2-1/2 55-57 cm A3

LD10-BH8-2-1/2 55-57 cm A4+

LD10-BH8-2-1/2 55-57 cm A5+

LD10-BH8-2-1/2 55-57 cm A6+

LD10-BH8-2-1/2 57-60 cm A1+

LD10-BH8-2-1/2 57-60 cm A5+

LD10-BH8-2-2 60-65 cm A1+

LD10-BH8-2-2 60-65 cm A2

LD10-BH8-2-2 60-65 cm A3+

LD10-BH8-2-2 60-65 cm A4+

LD10-BH8-2-2 60-65 cm A5+

LD10-BH8-2-2 60-65 cm A6

LD10-BH8-2-4 80-85 cm A1

LD10-BH8-2-4 80-85 cm A2

LD10-BH8-2-4 80-85 cm A3+

LD10-BH8-2-4 80-85 cm A4+

LD10-BH8-2-4 80-85 cm A5

LD10-BH8-2-6 87-90 cm A1+

LD10-BH8-2-6 87-90 cm A4+

LD10-BH8-2-6 87-90 cm A5+

LD10-BH8-3 90-95 cm A1+

LD10-BH8-3 90-95 cm A2+

LD10-BH8-3 90-95 cm A3+

LD10-BH8-3 95-100 cm A1+

LD10-BH8-3 95-100 cm A2+

LD10-BH8-3 95-100 cm A3

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85
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App. 15: Results k-clustering 

Red safranine
2002

Malachite green
2003

Crystal violet
2004

Methyl orange
2005

Nile blue
2006

Bengalrosa
2007

Orange G
2008

Bismarck brown
2009

LD10-BH10-2 37-42 cm A1+ LD10-BH10-2 37-42 cm A4 LD10-BH12-1-1 37-45 cm A3+ LD10-BH11-1-2 57-59 cm A1+ LD10-BH13-1-2 76-81 cm A5 LD10-BH8-2-4 80-85 cm A1 LD10-BH12-1-5 98-101 cm A3+ LD10-BH11-1-4 84-94 cm A4

LD10-BH10-2 37-42 cm A2+ LD10-BH12-1-1 37-45 cm A2+ LD10-BH12-1-5 96-98 cm A5+ LD10-BH12-1-5 96-98 cm A2+ LD10-BH2-1 46-51 cm A1 LD10-BH13-1-2 76-81 cm A5 LD10-BH13-1-2 76-81 cm A1

LD10-BH10-2 37-42 cm A3+ LD10-BH12-1-5 98-101 cm A4(+) LD10-BH2-1 46-51 cm A3+ LD10-BH13-1-2 76-81 cm A4+ LD10-BH3-1 48-49 cm A2+ LD10-BH8-2-2 60-65 cm A2 LD10-BH3-1 51-54 cm A5

LD10-BH12-1-1 37-45 cm A1 LD10-BH13-1-2 66-69 cm A2 LD10-BH4-2 48-53 cm A3+ LD10-BH2-1 46-51 cm A4 LD10-BH5-2-2 50-55 cm A1 LD10-BH5-2-2 50-55 cm A4

LD10-BH12-1-5 96-98 cm A3 LD10-BH13-1-2 66-69 cm A3 LD10-BH8-2-1/2 55-57 cm A1+ LD10-BH3-1 50-51 cm A3+ LD10-BH5-2-2 50-55 cm A2+ LD10-BH5-2-3 70-75 cm A3+

LD10-BH12-1-5 96-98 cm A4+ LD10-BH2-1 46-51 cm A2+ LD10-BH8-2-1/2 57-60 cm A1+ LD10-BH3-1 50-51 cm A5 LD10-BH8-2-1/2 55-60 cm A4+ LD10-BH8-2-1/2 55-60 cm A3

LD10-BH12-1-5 98-101 cm A2+ LD10-BH3-1 49-50 cm A2 LD10-BH8-2-2 60-65 cm A1+ LD10-BH3-1 69-71 cm A1+ LD10-BH8-3 90-100 cm A2+ LD10-BH8-3 90-100 cm A1+

LD10-BH13-1-2 69-71 cm A1+ LD10-BH3-1 51-54 cm A1 LD10-BH8-2-2 60-65 cm A3+ LD10-BH4-2 48-53 cm A5

LD10-BH3-1 49-50 cm A1+ LD10-BH8-2/1 55-57 cm A2 LD10-BH8-2-2 60-65 cm A6 LD10-BH2-3 80-84 cm A3+

LD10-BH3-1 49-50 cm A3 LD10-BH8-2/1 55-57 cm A6+ LD10-BH8-2-6 87-90 cm A1+ LD10-BH5-2-3 80-84 A4+

LD10-BH3-1 50-51 cm A1 LD10-BH8-2/1 57-60 cm A5+ LD10-BH8-2-6 87-90 cm A5+

LD10-BH3-1 51-54 cm A3+ LD10-BH8-2-2 60-65cm A4+ LD10-BH8-3 95-100 cm A1+

LD10-BH4-2 48-53 cm A1+ LD10-BH8-2-2 60-65 cm A5+

LD10-BH4-2 48-53 cm A2 LD10-BH8-2-4 80-85 cm A2

LD10-BH4-2 48-53 cm A4 LD10-BH8-2-4 80-85 cm A3+

LD10-BH5-2-3 70-75 cm A2++ LD10-BH8-2-4 80-85 cm A4+

LD10-BH5-2-3 70-75 cm A4 LD10-BH8-2-4 80-85 cm A5

LD10-BH5-2-3 80-84 A1 LD10-BH8-2-6 87-90 cm A4+

LD10-BH5-2-3 80-84 A5+ LD10-BH8-3 90-95 cm A3+

LD10-BH5-2-3 80-84 A6+ LD10-BH8-3 95- 100 cm A2+

LD10-BH5-3 88-94 cm A1

LD10-BH-3 88-94 cm A2+

LD10-BH8-1 35-40 cm A1/2+

LD10-BH8-2-1/2 55-57 cm A5+

LD10-BH8-3 95-100 cm A3+
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App. 16: Initial values for the correlation of temperature and δ18O data

δ18O Samoylov Stolb

Max. Min. Average Median Nov Dec Jan Feb Mar Apr May Twinter Tspring Tcold season Nov Dec Jan Feb Mar Apr May Twinter Tspring Tcold season 

2002/03 - 21.18 - 24.52 - 22.84 - 22.78 - 21.5 - 31.2 - 31.2 - 29.6 - 20.6 - 16.3 - 4.5 - 30.7 - 13.8 - 22.1 - 21.5 - 31.2 - 31.2 - 29.6 - 20.6 - 16.3 - 3.5 - 30.7 - 13.8 - 22.1

2003/04 - 20.64 - 23.87 - 22.42 - 22.48 - 24.7 - 27.1 - 32.7 - 36.5 - 29.9 - 19.9 - 8.0 - 32.1 - 19.2 - 25.5 - 24.7 - 27.1 - 32.7 - 36.7 - 30.2 - 20.0 - 8.4 - 32.2 - 19.6 - 25.7

2004/05 - 20.81 - 26.08 - 22.81 - 22.65 - 21.7 - 31.7 - 28.9 - 31.0 - 25.7 - 15.8 - 5.2 - 30.5 - 15.6 - 22.9 - 21.9 - 31.7 - 28.9 - 30.9 - 25.8 - 15.8 - 5.2 - 30.5 - 15.6 - 22.9

2005/06 - 21.69 - 23.73 - 22.76 - 22.85 - 19.7 - 26.2 - 29.9 - 28.7 - 28.3 - 26.6 - 6.8 - 28.3 - 20.5 - 23.7 - 19.7 - 26.2 - 29.9 - 28.7 - 28.3 - 26.6 - 6.8 - 28.3 - 20.5 - 23.7

2006/07 - 21.42 - 23.87 - 22.66 - 22.67 - 22.2 - 25.3 - 26.5 - 33.9 - 24.7 - 11.6 - 3 - 28.6 - 13.1 - 21.0 - 22.2 - 25.3 - 26.6 - 33.9 - 22.3 - 11.7 - 2.3 - 28.6 - 12.3 - 20.7

2007/08 - 22.91 - 22.91 - 22.91 - 22.91 - 23.5 - 29.7 - 29.1 - 31.0 - 23.1 - 21.1 - 4.3 - 29.9 - 16.2 - 23.1 - 23.5 - 29.7 - 29.5 - 31.5 - 24.4 - 21.55 - 4.7 - 30.2 - 16.9 - 23.5

2008/09 - 21.01 - 22.99 - 22.99 - 22.95 - 23.7 - 32.6 - 27.2 - 35.1 - 28.4 - 15.6 - 6.9 - 31.6 - 17.0 - 24.2 - 23.2 - 31.8 - 26.5 - 34.3 - 27.2 - 14.8 - 8.1 - 30.9 -16.7 - 23.7

2009/10 - 21.51 - 23.24 - 22.52 - 22.65 - 22.2 - 30.8 - 27.4 - 32.5 - 25.6 - 15.7 - 2.8 - 30.2 - 12.1 - 22.24 - 22.2 - 30.8 - 29.5 - 31.0 - 25.6 - 15.7 - 2.8 - 30.4 - 14.7 - 22.5

Max. - 20.64 - 22.91 - 22.42 - 22.42 - 19.7 - 25.3 - 26.5 - 28.7 - 20.4 - 11.4 - 3.0 - 28.3 - 12.1 - 21.3 - 19.7 - 25.3 - 26.5 - 28.7 - 20.6 - 11.7 - 2.8 - 28.3 - 12.3 - 20.7

Min. - 22.91 - 26.08 - 22.99 - 22.95 - 24.7 - 32.6 - 32.7 - 36.5 - 29.9 - 26.6 - 8.0 - 32.1 - 20.5 - 25.5 - 24.7 - 31.8 - 32.7 - 36.7 - 30.2 - 26.6 - 8.4 - 32.2 - 20.5 - 25.7

Diff. ± 2.27 ± 3.17 ± 0.57 ± 0.47 ± 5.0 ± 7.3 ± 6.2 ± 7.8 ± 9.5 ± 15.2 ± 5.0 ± 3.8 ± 8.4 ± 4.5 ± 5.0 ± 6.6 ± 6.3 ± 68.0 ± 9.7 ± 14.9 ± 5.6 ± 3.9 ± 8.3 ± 5.0

App. 17: Normalized initial values for the correlation of temperature and δ18O data

δ18O Samoylov temperatures Stolb temperatures

Max Min. Average Median Nov Dec Jan Feb Mar Apr May Twinter Tspring Tcold season Nov Dec Jan Feb Mar Apr May Twinter Tspring Tcold season 

2002/03 -0.24 - 0.51 - 0.74 - 0.65 - 0,36 - 0.81 - 0.76 - 0.11 - 0.02 - 0.32 - 0.29 - 0.63 - 0.20 - 0.24 - 0.35 - 0.91 - 0.76 - 0.11 - 0.00 - 0.31 - 0.29 - 0.61 - 0.18 - 0.28

2003/04 - 0.00 - 0.30 - 0.00 - 0.00 - 1.00 - 0.25 - 1.00 - 1.00 - 1.00 - 0.56 - 1.00 - 1.00 - 0.85 - 1.00 - 1.00 - 0.28 - 1.00 - 1.00 - 1.00 - 0.56 - 1.00 - 1.00 - 0.88 - 1.00

2004/05 - 0.07 - 1.00 - 0.68 - 0.37 - 0.44 - 0.88 - 0.39 - 0.30 - 0.56 - 0.29 - 0.44 - 0.59 - 0.41 - 0.41 - 0.43 - 0.98 - 0.39 - 0.28 - 0.54 - 0.28 - 0.42 - 0.57 - 0.40 - 0.44

2005/06 - 0.46 - 0.26 - 0.59 - 0.80 - 0.00 - 0.13 - 0.55 - 0.00 - 0.83 - 1.00 - 0.77 - 0.00 - 1.00 - 0.60 - 0.00 - 0.14 - 0.55 - 0.00 - 0.80 - 1.00 - 0.72 - 0.00 - 1.00 - 0.61

2006/07 - 0.34 - 0.30 - 0.42 - 0.41 - 0.50 - 0.00 - 0.00 - 0.67 - 0.45 - 0.01 - 0.00 - 0.08 - 0.12 - 0.00 - 0.50 - 0.00 - 0.01 - 0.64 - 0.18 - 0.00 - 0.03 - 0.07 - 0.00 - 0.00

2007/08 - 1.00 - 0.00 - 0.86 - 0.92 - 0.76 - 0.60 - 0.42 - 0.30 - 0.28 - 0.64 - 0.26 - 0.43 - 0.48 - 0.46 - 0.75 - 0.68 - 0.48 - 0.34 - 0.40 - 0.66 - 0.33 - 0.49 - 0.56 - 0.57

2008/09 - 0.16 - 0.03 - 1.00 - 1.00 - 0.80 - 1.00 - 0.11 - 0.82 - 0.84 - 0.28 - 0.78 - 0.88 - 0.58 - 0.71 - 0.71 - 100 - 0.00 - 0.69 - 0.69 - 0.21 - 0.94 - 0.66 - 0.53 - 0.60

2009/10 - 0.38 - 0.10 - 0.17 - 1.37 - 0.50 - 0.75 - 0.15 - 0.49 - 0.00 - 0.00 - 0.30 - 0.51 - 0.00 - 0.06 - 0.50 - 0-85 - 0.28 - 0.28 - 0.52 - 0.27 - 0.00 - 0.55 - 0.29 - 0.36
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App. 18: Correlation matrix of ice-vein and no-ice-vein samples

(gray = negative correlation; yellow = positive correlation ; red = highest correlation in one column)

Samoylov temperatures Stolb temperatures

δ18O
ice-vein samples

δ18O
no-ice-vein samples

δ18O
ice-vein samples

δ18O
no-ice-vein samples

Averages Median Averages Median Averages Median Averages Median

November -0,22 -0,28 -0,32 -0,31 -0.28 -0.33 -0.32 -0.32

December 0,33 0,19 -0,08 -0,09 0.29 0.16 -0.10 -0.10

January 0,07 0,03 0,01 0,02 -0.19 -0.24 -0.00 -0.00

February -0,47 -0,48 0,15 0,15 -0.38 -0.38 0.06 0.07

March 0,08 0,07 0,20 0,21 -0.25 -0.32 0.12 0.13

April 0,44 0,43 -0,31 -0,30 0.25 0.22 -0.32 -0.31

May 0,05 -0,029 0,22 0,23 0.29 0.22 0.09 0.10

Twinter -0,06 -0,17 0,06 0,06 -0.17 -0.29 -0.02 -0.02

Tspring 0,30 0,27 -0,05 -0,04 0.12 0.06 -0.12 -0.11

Tcold season 0,20 0,12 -0,07 -0,06 -0.00 -0.10 -0.15 -0.14

Max 0,44 0,43 0,22 0,23 0.29 0.22 0.12 0.13

Min -0,47 -0,48 -0,32 -0,31 -0.38 -0.38 -0.32 -0.32

App. 19: Correlation matrix with Samoylov temperatures in two year stapes

(gray = negative correlation; yellow = positive correlation)

Average δ18O Median δ18O

2002 to 03 2004 to 05 2006 to 07 2008 to 09 2002 to 03 2004 to 05 2006 to 07 2008 to 09

November -1 1 1 1 -1 -1 1 1

December 1 1 1 1 1 -1 1 1

January - 1 - 1 1 -1 -1 1 1 - 1

February - 1 1 - 1 1 -1 - 1 - 1 1

March - 1 - 1 - 1 1 -1 1 - 1 1

April - 1 - 1 1 1 -1 1 1 1

May - 1 - 1 1 1 -1 1 1 1
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App. 20:  Visual comparison of δ18O and temp 

and

Average δ18O and season temperature data

Average δ18O and monthly winter temperature data

Median δ18O and monthly spring temperature data

erature data 

Average δ18O and monthly spring temperature data

Median δ18O and season temperature data

Median δ18O and monthly winter temperature data
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App. 21: Visual comparison of normalized 

δ18O

Average δ18O and season temperature data

Average δ18O and monthly winter temperature data

Median δ18O and monthly spring temperature data

 and temperature data

Average δ18O and monthly spring temperature data

Median δ18O and season temperature data

Median δ18O and monthly winter temperature data
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App. 22: Linear regression equation of δ18O and temperature data

  From 2002 to 2010

November

Average δ18O: T = -1.3 *δ18O – 51.99 (R2 = 0.027)

Median δ18O: T = -2.262 *δ18O – 73.87 (R2 = 0.05)

December

Average δ18O: T = 7.15 * δ18O + 133.18 (R2 = 0.25)

Median δ18O: T = 5.71 * δ18O + 100.43 (R2 = 0.11)

January

Average δ18O: T = -3.14 * δ18O – 100.61 (R2 = 0.08)

Median δ18O: T = -4.61 * δ18O – 133.92 (R2 = 0.18)

Februarry

Average δ18O: T = -5.59 *δ18O – 159,33 (R2 = 0.16)

Median δ18O: T = -7.10 * δ18O – 193.67 (R2 = 0.017)

March

Average δ18O: T = -5.56 * δ18O – 152.17 (R2 = 0.12)

Median δ18O: T = -4.64 * δ18O – 131.19 (R2 = 0.06)

April

Average δ18O: T = -0.71 * δ18O – 1.71 (R2 = 0.00)

Median δ18O: T = 7.19 * δ18O +145.65 (R2 = 0.62)

May

Average δ18O: T = 0.13 * δ18O – 2.25 (R2 = 0.00)

Median δ18O: T = - 0.03 * δ18O – 5.95 (R2 = 0.00)

Winter

Average δ18O: T = - 0.53 * δ18O – 42.35 (R2 = 0.01)

Median δ18O: T = - 2.00 * δ18O – 75.79 (R2 = 0.06)

Spring

Average δ18O: T = - 1.58 * δ18O – 52.06 (R2 = 0.01)

Median δ18O: T = 0.84 * δ18O + 2.76 (R2 = 0.00)

Cold season

Average δ18O: T = - 1.088 * δ18O – 47.88 (R2 = 0.02)

Median δ18O: T = -0.83 * δ18O – 42.00 (R2 = 0.01)
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  From 2004 to 2010

November

Average δ18O: T = 3.60 *δ18O + 60,80 (R2 = 0.027)

Median δ18O: T = 2.97 *δ18O + 45.39 (R2 = 0.08)

December

Average δ18O: T = 6.74 * δ18O + 124.03 (R2 = 0.15)

Median δ18O: T = 3.43 *δ18O + 48.69 (R2 = 0.03)

January

Average δ18O: T = 2.12 * δ18O + 20.00 (R2 = 2.12)

Median δ18O: T = 2.76 *δ18O + 34.72 (R2 = 0.08)

Februarry

Average δ18O: T = 1.39 *δ18O – 0.41 (R2 = 0.01)

Median δ18O: T = 0.22 *δ18O -27.00 (R2 = 0.00)

March

Average δ18O: T = 2.34 * δ18O – 27.27 (R2 = 0.04)

Median δ18O: T = 4.40 *δ18O + 74.29 (R2 = 0.09)

April

Average δ18O: T = 7.15 * δ18O + 145.01 (R2 = 0.05)

Median δ18O: T = 19.54 *δ18O + 427.43 (R2 = 0.26)

May

Average δ18O: T = 7.49* δ18O +165.71 (R2 = 0.50)

Median δ18O: T = 8.67 *δ18O + 192.66 (R2 = 0.08)

Winter

Average δ18O: T = 3.41 * δ18O + 47.74 (R2 = 0.21)

Median δ18O: T = 2.13 *δ18O + 18.74 (R2 = 0.18)

Spring

Average δ18O: T = 5.66 * δ18O +112.73 (R2 = 0.14)

Median δ18O: T = 10.87 *δ18O + 231.44 (R2 = 0.34)

Cold season

Average δ18O: T = 4.40 * δ18O + 77.37 (R2 = 0.45)

Median δ18O: T = 5.98 *δ18O + 113.29 (R2 = 0.56)
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