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Abstract 

While climate change takes place world-wide, the Artic regions are very sensitive to these 

changes while influencing the biodiversity of the whole world. Therefore, climate archives are 

considered to better understand the climate of the past. 

In permafrost regions, covering about 24% of the northern hemisphere land surface,  established 

climate archives such as ice caps, deep lake sediments or tree rings are rarely found. On the 

other hand, the ground ice contained in permafrost soils is expected to provide paleoclimatic 

information. Ice wedges, vertically-foliated or –banded wedge-shaped ice bodies, are 

considered the most appropriate type of ground ice for climate reconstructions. They form 

mainly by the penetration and refreezing of snow melt water in open frost cracks in early spring, 

resulting in annual layers which are expected to contain the temperature signal of the year of 

their formation. To understand the paleoclimatic signal preserved in the climate archive “ice 

wedge”, it is necessary to identify its source. For this purpose, a study on the spatial and 

temporal variability of the thickness and the isotopic composition of a snow cover during spring 

was carried out at Samoylov Island within the Lena Delta. Snow samples were collected at 

different geomorphologic units of different ice-wedge polygons and at a snow field and their 

isotopic composition has been correlated with weather data from Samoylov Island in order to 

identify annual cycles and predominant alteration processes.  

It was difficult to characterize an annual cycle while it was possible to identify a late warm 

phase in late autumn and a late cold phase in early spring. It was observed that that the snow 

cover and its isotopic composition undergo changes over time due to sublimation, evaporation 

and wind drift processes. Percolating rain water highly reduced the thickness of the snow cover 

but had no significant influence on its isotopic composition, while the collection of initial-snow-

melt-runoff water leads to a higher concentration of lighter isotopes in the polygon centers. It 

has been shown that the climate signal preserved in ice wedges is derived from early spring 

temperatures, as its isotopic composition best corresponds with that of snow from the bottom 

of the snow cover, depth hoar and ice out of snow melt water developing in the troughs above 

frost cracks, while showing an influence of moisture of precipitation of the previous summer 

period. 
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Zusammenfassung 

Während sich weltweit das Klima ändert, sind die arktischen Regionen besonders sensibel für 

diese Änderungen und beeinflussen die Biodiversität auf der ganzen Welt. Aus diesem Grund 

werden sogenannte Klimaarchive betrachtet, um das Klima der Vergangenheit besser zu 

verstehen und Rückschlüsse für derzeitige Klimaänderungen schließen zu können. 

In Permafrostregionen, welche etwa 24% der Landoberfläche der nördlichen Hemisphäre 

bedecken, sind etablierte Klimaarchive wie Eiskappen, Sedimente aus tiefen Seen oder 

Baumringe nur spärlich zu finden. Andererseits wird angenommen, dass das Grundeis welches 

in Permafrostböden enthalten ist, paleoklimatische Informationen enthält. Eiskeile, vertikal  

gebänderte, keilförmige Eiskörper, werden als der für Klimarekonstruktionen geeignetste 

Grundeistyp angesehen. Sie bilden sich hauptsächlich durch das Eindringen und 

Wiedergefrieren von Schneeschmelzwasser in Frostspalten im frühen Frühling, wodurch 

jährliche Schichten entstehen. Von diesen Schichten wird erwartet dass sie das 

Temperatursignal aus dem Jahr erhalten, in dem sie gebildet worden. Um das im Klimaarchiv 

„Eiskeil“ enthaltene Paleoclimasignal zu verstehen ist es wichtig seine Quelle zu identifizieren. 

Um dies herauszufinden wurde während des Frühlings auf der Insel Samoylov im Lena Delta 

eine Studie über die räumliche und zeitliche Variabilität der Mächtigkeit der Schneedecke und 

ihrer isotopischen Zusammensetzung vorgenommen. Es wurden Schneeproben von den 

verschiedenen geomorphologischen Einheiten von unterschiedlichen Eiskeilpolygonen und in 

einem Schneefeld genommen und ihre isotopische Zusammensetzung mit Wetterdaten von der 

Insel Samoylov korreliert, um Jahreszyklen und vorherrschende Alterierungsprozesse zu 

identifizieren. Obwohl es möglich war eine späte Warmphase im späten Herbst und eine 

Kaltphase im frühen Frühling zu identifizieren, war es schwierig einen Jahreszyklus zu 

erkennen. Es wurde beobachtet, dass die Schneedecke und ihre isotopische Zusammensetzung 

über die Zeit Veränderungen durch Sublimation, Evaporation und Windumverlagerung 

unterworfen ist. Perkolierendes Regenwasser reduzierte zwar stark die Schneedecke, hatte aber 

keinen signifikanten Einfluss auf die isotpoische Zusammensetzung, während sich in den das 

in den Polygonzentren sammelnde erste Schneeschmelzwasser hier zu einer erhöhten 

Konzentration an leichteren Isotopen führte. Es wurde gezeigt, dass das in den Eiskeilen 

erhaltene Klimasignal von den Frühfrühlingstemperaturen abgeleitet werden kann, da ihre 

isotopische Zusammensetzung am besten zu denen des Schnees am Grund der Schneedecke, 

und denen des sich in den Trögen über den Frostspalten bildenden Tiefenreifs und Eises aus 

Schmelzwasser passt, während sie einen Einfluss von Feuchtigkeit von Niederschlägen aus dem 

vorangegangenen Sommer zeigen.  
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1. Introduction 

Climate change takes place world-wide as increasing temperatures, melting glaciers, reduced 

sea ice, thawing permafrost and rising sea levels indicate (ACIA, 2004). In the Arctic regions, 

which are very sensitive to global warming (Costard et al., 2007), temperatures increase by 

twice the rate than the rest of the world (ACIA, 2004). The impacts of climate change in the 

Arctic will have implications for the biodiversity around the world (ACIA, 2004) . 

To assess the recent climate changes, it is necessary to understand the climate processes which 

took place in the past. Because meteorological observations only go back to the 20th, in some 

cases into the 19th, century, paleoclimatic archives are needed for the climate reconstruction, 

such as ice cores, lake sediments or tree rings (Opel et al., 2010). 

In permafrost regions, governing about 24% of the northern hemisphere (Zhang et al., 1999), 

such archives are less available (Opel et al., 2010). Permafrost is defined as soil or bed rock 

that remain frozen for at least two consecutive years (van Everdingen, ed. 1998 revised 2005) 

and mostly contains ground ice (Zhang et al., 1999). 

Ground ice is defined as all type of ice contained in frozen ground (van Everdingen, ed. 1998 

revised 2005) and able to provide paleoclimatic informations (Meyer et al., 2002a). Ground ice 

includes ice wedges, which are wedge-shaped ice bodies consisting of foliated or vertically 

banded ice (French, 2007) and are considered to be the most appropriate type of ground ice for 

paleoclimate reconstruction (Vaikmäe, 1989; Vasil’chuk, 1991). 

Ice cores preserve the variations in stable water isotope composition of precipitation (Clark and 

Fritz, 1997), which are widely used for paleoclimate studies, especially for paleotemperature 

reconstruction and identification of moisture sources (Merlivat and Jouzel, 1979), due to their 

dependence on condensation temperatures (Dansgaard, 1964). 

As ice wedges form through the penetration and refreezing of snow melt water they also can be 

used for paleoclimate reconstruction. Mackay (1983), Vaikmäe (1989) and Vasil’chuk (1991) 

consider oxygen isotope variations in ice wedges as an indicator for winter temperature 

changes. Nikolayev and Mikhalev (1995), Meyer et al. (2002a; 2010) and Opel et al. (2010) 

show that climate reconstruction with ice wedges is possible on different time scales. As the 

main source for the formation of ice wedges is snow melt water, the development of the isotopic 

composition in the snow cover from precipitation until snow melt has to be characterized in 

order to understand the paleoclimatic signal preserved in the paleoclimatic archive “ice wedge”. 

For this aim, about 250 snow samples were taken on different sites at Samoylov Island during 

the Lena Delta 2013 campaign (LD13). Samoylov Island is located in the zone of continuous 

permafrost within the Lena Delta (Boike et al., 2013), which is a key region for the 



Stable isotope dynamics in a seasonally changing snow cover at Samoylov Island, Northern Siberia 

4 
 

understanding of permafrost related processes and dynamics in the Siberian Arctic (Hubberten 

et al., 2006). 

In order to characterize spatial and temporal trends in the isotopic composition of a seasonal 

snow cover and the dominant processes during its alteration, depth profiles were sampled along 

transects through ice-wedge polygons and in a snow field and analyzed in their isotopic 

composition. For this purpose the spring period (2013) was selected. In spring, the snow cover 

undergoes major changes through e.g. melting, percolation, wind drift and sublimation 

processes. Hence it is assumed that these processes are responsible for generating the isotope 

signal (δ18O) which is transferred to the ice wedges later on. 

Therefore the modification of the snow cover and its isotopic composition in spring is the 

subject of this bachelor thesis to better understand the climate signal preserved in ice wedges. 

2. Study area and study objects 

2.1. Study area 

The study site on Samoylov Island is one of 1.500 islands of the Lena river delta, which is with 

an delta area of 32104km² and an catchment area of 2430000 km² the largest in the Arctic and 

one of the largest in whole Eurasia (Costard et al., 2007; Gordeev and Shevchenko, 1995). The 

total length of the Lena River exceeds 4400 km (Costard et al., 2007). The Lena is divided in 

four major delta branches, namely the Trofimovskaya branch, which is the largest followed by 

the Bykovskaya branch towards the southeast, the Tumatskaya branch to the north and the 

Olenyokskaya branch to the south (Fig. 2-1 A, B) (Schwamborn et al., 2002). 

Grigoriev (1993) identified three main geomorphological units (river terraces) within the Lena 

Delta. The first terrace is with a maximum age of 8000 yr. the youngest one (Schwamborn et 

al., 2002). It covers the main part of the eastern sector of the delta between the branches 

Tumatskaya and Bykovskaya and includes polygonal tundra, large thermokarst lakes and active 

floodplains and is therefore assumed to represent the “active” part of the delta (Akhmadeeva et 

al., 1999; Schwamborn et al., 2002). A fluvial facies built up since the Mid-Holocene changing 

from organic-rich sands at the bottom to silty-sandy peats at the surface and is characteristic for 

this terrace (Schwamborn et al., 2002). The second terrace covers most of the northwestern part 

of the delta and is characterized by organic-poor fine sands with Late Pleistocene (14.5–10.9 

ka BP) to Early Holocene age (6.4 ka BP) and a low ice content but contains a net of narrow-

standing ice veins (Schwamborn et al., 2002). The third terrace is observed in parts along the 

Olenyokskaya and the Bykovskaya branch and is characterized by sandy deposits and 
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represents a fluvial stage of the Lena River for the period of 88-43ka BP, overlain by late 

Pleistocene ice- and organic-rich silty sands, the so called Ice Complex, formed between 43 and 

14ka BP (Schwamborn et al., 2002). 

Samoylov Island is located at N72°22’, E126°30’ on the first river terrace at the Olenyokskaya 

branch (Fig. 2-1 B) (Akhmadeeva et al., 1999; Grigoriev, 1993). For this south-central part of 

the Lena delta and the Late Holocene terrace, Samoylov Island is representative (Sachs et al., 

2008; Akhmadeeva et al., 1999; Boike et al., 2013). Samoylov has an area of 12 km² and can 

be divided into two areas with different geomorphologic patterns (Fig. 2-1 C), an accumulation 

site in the western part of the island and an erosional site in the eastern part (Akhmadeeva et 

al., 1999; Hubberten et al., 2006). Fluvial and aeolian accumulation processes provide fine to 

medium sand to the west. At this part, three flood plains can be distinguished: a lower 

floodplain, a middle floodplain and a high flood plain (Hubberten et al., 2006; Meyer, 2003). 

The low and the middle flood plain are generally annually flooded by the Lena River but for 

different time spans, while the high flood plain is only reached by water during high floods 

(Meyer, 2003). 

These three geomorphological units are separated from a fourth unit in the eastern part, the old 

river terrace which is part of the first Lena river terrace (Meyer, 2003). In this part recent erosion 

processes formed an abrasion coast with cliffs up to 8 m while different erosion resistances are 

responsible for the recent shoreline with overhangs and thermokarst (Akhmadeeva et al., 1999). 

The high flood plain and the first Lena river terrace are characterized by polygonal-patterned 

ground with ice-wedge growth (Meyer, 2003). Samoylov Island reaches a maximum elevation 

of 12 m a.s.l. (Akhmadeeva et al., 1999; Meyer, 2003). The entire delta is located in a zone of 

continuous permafrost, reaching a thickness of about 500 to 600 m (Romanovskii and 

Hubberten, 2001). Samoylov Island is, according the Köppen-Geiger classification, part of the 

Fig. 2-1 Investigation Area A - Location of the Lena River Delta within the Artic regions, B – Map of the 

Lena River Delta with the four main branches and the location of Samoylov Island (white square) 

(Satellite image provided by Landsat 2000), C- Samoylov Island ( Boike et al., 2012) 
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polar tundra climate zone (Boike et al., 2013). The Lena Delta has a dry continental arctic 

climate and is characterized by low precipitation and very low temperatures (Boike et al., 2008). 

The weather at Samoylov Island during spring, summer and autumn is characterized by the 

rapid change between the advection of arctic cold and moist air masses from the north and 

continental warm dry air masses from the south (Boike et al., 2008).  

Usually rainfall occurs between the middle of May and the end of September. The summer 

rainfall annual mean from 1999 to 2011 was about 125mm. The snow season on Samoylov 

starts between the middle of September and the middle of October (Boike et al., 2013). The 

snow depth has a high spatial and temporal variability because strong winds redistribute the 

snow and snow-free surfaces in the polygonal rim and snow-filled polygon centers can be found 

at the same time (Boike et al., 2013). Between August 1998 and August 2002, the snow heights 

on Samoylov Island were measured on a polygon rim and after that moved into a polygon 

center, resulting in a measurement of greater thicknesses (Boike et al., 2013, Tab. 2-1). In spring 

2008, a mean snow depth of about 17 cm on the polygon rims and of about 46 cm in the centers 

were measured during an examination of snow-physical characteristics of 216 sites (Boike et 

al., 2013). The snow mainly consists of very loose, large-grained depth hoar and hardened, 

sediment-rich layers. The snow melt starts usually in the second half of May and by early June 

the snow cover typically disappears. While rainfall contribute 70% of the mean annual 

precipitation of 190mm, snow fall events only contribute less than 30% (Hubberten et al., 2006; 

Boike et al., 2013). 

Tab. 2-1 Dates and durations of snow covered periods for the years 1998-2011. Note that the snow sensor in 

2002 was moved from polygon rim to polygon center (after Boike et al., 2013) 

 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Snow end date n.d. 22 

May 

11 

May 

15 

May 

20 

May 

12 

May 

16 

Jun 

25 

May 

7 Jun 20 

May 

26 

May 

3 Jun 9 Jun 26 

Apr 

Snow start 

date 

26 

Oct 

8 

Oct 

19 

Oct 

4 

Oct 

23 

Oct 

21 

Oct 

28 

Sep 

26 

Sep 

3 

Oct 

24 

Oct 

4 

Oct 

15 

Oct 

11 

Oct 

n.d. 

Max. snow 

depth (cm) 

n.d. 9 13 30 27 28 56 23 n.d. 44 36 42 32 27 

Length of 

snow season 

(days) 

n.d. 208 216 208 228 201 239 239 254 229 215 242 237 197 

Length of 

snow-free 

season (days) 

n.d. 139 161 142 156 162 104 124 118 157 131 134 124 n.d. 

 

January and February are generally the coldest months with -30.1°C and -33.1°C, while July 

and August show the highest mean temperatures with +10.1°C and +8.5°C. The mean annual 

air temperature (MAAT) between 1998 and 2011 was -12.5°C (Boike et al., 2013). 

Since 1993, Samoylov Island is the focus of multidisciplinary research including climate, land 

cover, ecology, hydrology, permafrost and limnology. For this purpose, a research base was 
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built in 1999 and enhanced in 2005. In 2012, a new and more modern station was build with 

the help of the Russian federation.  

2.2. Study objects 

2.2.1. Snow  

Snow is defined as ice crystals in mainly hexagonal form precipitated from the atmosphere and 

often agglomerated into snowflakes (van Everdingen, ed. 1998, revised 2005). 

Snowy precipitation, later referred as snow, is a type of solid precipitation, which is after shape, 

structure and formation divided into snow, sleet, ice grains and hail (Wilhelm, 1975). 

The formation of solid precipitation, where water vapor in the atmosphere sublimates on ice 

nuclei or condensed water drops freeze, is therefore bound on temperatures below the freezing 

point. While the formation is related to temperatures below 0°C, snow fall is also observed at 

near surface temperatures over 0°C and higher temperatures during formation cause more snow 

fall because higher amounts of vapor are carried in the warmer air masses (Wilhelm, 1975).  

Although all types of solid precipitation have a hexagonal crystal shape, their overall shape is 

dependent on air temperature and amount of moist available during formation (Wilhelm, 1975). 

The shapes can be subdivided into ten main types such as plate crystals, snow stars, pillars, 

needles, spatial dendrites, capped pillars, irregular aggregates, sleet, ice-grains and hail 

(Wilhelm, 1975). 

The size of the snow crystals is also dependent on the temperature conditions. The density of 

the primary snow cover is dependent on the snow type, but after accumulation density 

differences within one layer of the snow cover are often eradicated fast through metamorphism 

processes which are strongly dependent on temperature, air moisture and wind speed (Wilhelm, 

1975).   

By the deposition of successive snow falls a snow cover stratified with many layers is formed, 

while each layer has its own physical properties due to the initial snow conditions at the time it 

is deposited at the surface of the previous layer and subsequent metamorphism depending on 

the load and arrangement of the ice particles within the layer and the varying field conditions 

(Singh et al., 2011). In general, changes in the snow cover are dependent upon the prevailing 

weather conditions such as temperature, precipitation, radiation and wind (Singh et al., 2011). 

The metamorphism processes can either be divided into destructive and constructive, where 

primary crystal structures are degraded and new secondary structures are build up, or into 

pressure and thermal metamorphism (Singh et al., 2011; Wilhelm, 1975). Three types of 
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thermal metamorphism such as the equi-temperature metamorphism, the temperature-gradient 

and the melt-freeze metamorphism can be differentiated (Singh et al., 2011). 

During the melt-freeze metamorphism, frequent melting and refreezing due to cyclic variations 

in the snow surface temperature as allowed at temperatures around the freezing point leads to a 

fast transformation of the hexagonal crystals into large poly-angular grains (Singh et al., 2011), 

also called firn grains (Wilhelm, 1975). 

In cold regions the whole redistribution of water within the snow cover happens in the vapor 

phase, but the crystals are also transformed into grains by melt water, preferentially during the 

melting period in spring (Wilhelm, 1975). But the main transformation is performed due to the 

equi-temperature metamorphism, where the rounding of the grains and the redistribution of 

water happens due to vapor transfer taking place because the vapor pressure at the regions of 

the branches of the crystals of the fresh snow is higher than at its centers (Singh et al., 2011; 

Wilhelm, 1975). 

At steep temperature gradients within the snow cover, the temperature-gradient metamorphism 

is predominant, a strong water vapor transport occurs and at the condensation and sublimation 

of the vapor, new hexagonal cup shaped crystals are formed within the snow cover, called depth 

hoar (Singh et al., 2011; Wilhelm, 1975). Vegetation has a strong influence on this type of 

metamorphosis, as it influences the soil temperature before the snow fall and so the snowpack 

temperature is graded between the soil and the upper snow surface (Singh et al., 2011). 

The transformation of the crystal shape leads to a settlement of the snow cover and therefore to 

compaction (Wilhelm, 1975). As shown above, evaporation and condensation processes are 

highly involved at these settlement processes (Wilhelm, 1975). By the metamorphic 

modification of structure, texture and density of the snow, its mechanical properties change as 

well (Singh et al., 2011). The snow cover can then be divided into four types named new snow, 

fine grained snow, coarse grained snow and depth hoar (Wilhelm, 1975). 

During dry periods, sublimation will cause mass loss at the surface of the snow cover, resulting 

in a further reduction of the snow-cover height (Stichler et al., 2001). Moser and Stichler (1974) 

showed, that the extent of sublimation also depends on the exposed surface area of the snow 

but not on its thickness, while being highly dependent on the temperature gradient between the 

surface and the deeper layers (Stichler et al., 2001). 
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2.2.2. Ice wedges 

Ice wedges are wedge-shaped ice bodies which are composed of vertically-banded or -foliated 

ice and are formed when hoar frost develops in opened frost cracks in winter and the cracks in 

early spring are penetrated of water from melting snow (Fig. 2-2) (French, 2007).   

Since glacier ice cores, which are widely used as archives for paleoclimatic reconstruction, are 

not available in most parts of the Eurasian Artic (Meyer et al., 2002b), other climatic archives 

such as ice wedges have to be considered. Because of the mean cold-season air temp near the 

ground surface and the δ18O in recent ground ice are highly correlated and can be used for 

paleoclimatic reconstructions (Nikolayev and Mikhalev, 1995), ice wedges are considered to 

be reliable paleoclimatic archives. 

They are widely distributed in non-glaciated high northern latitudes, in general indicative of 

periods of cold and stable climate conditions (Meyer et al., 2010) and as a strictly periglacial 

feature, they are indicative for permafrost conditions (Meyer et al., 2002a). 

The favored environments for the formation of ice wedges are poorly-drained tundra lowlands 

that are underlain by continuous permafrost (French, 2007). In unconsolidated sediments they 

are best observed, but may also occur in bedrock or on slope terrain (French, 2007) 

The frost cracks preferentially form between mid-January and mid-March and the cracking 

occurs in a zone of weakness that is preformed by the ice vein of the previous cracking event 

(Mackay, 1974). At Samoylov Island, the main season for frost cracking lies in December but 

last from mid-November till mid-February (Kleine, 2014). 

After Péwé (1966), frost cracking occurs where mean annual temperature (MAAT) is -6°C or 

colder. Although (Mackay, 1993) identified a temperature drop over 4 days with a drop of 

1.8°C/day as the best conditions for frost cracking, it is not simply related to the rapid drop in 

air temperature, since the best correlation between cracking and air temperature drop occur at 

sites with a thin snow cover while large snow covers inhibit cracking (French, 2007).  

Fig. 2-2 Development of an ice wedge through the penetration 

of melt water (after Meyer, 2003) 
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With the air temperature and the snow cover as the main factors, frost cracking is also largely 

controlled by the ground temperature and the ground-thermal gradient. If an ice wedge is 

formed after the cracking events is dependent on the amount of moisture available , as the 

formation mechanism indicate, and if a region lacks of moisture, none or only less developed 

ice wedges can be observed (French, 2007). 

Since it is assumed that the main source of ice wedges is snowmelt water and Michel (1982) 

and Kleine (2014) showed that the penetrating water freezes rapidly enough to prevent 

fractionation, the formed ice vein should contain the isotope signal of one discrete winter 

(Meyer et al., 2002a, 2002a). Meanwhile melting and freezing within the snow cover and the 

active layer can lead to isotopic fractionation (Nikolayev and Mikhalev, 1995) and therefore 

can change the isotope signal later preserved in the ice-wedge ice. 

3. Methods 

3.1. Scientific background 

3.1.1. Stable isotope geochemistry: principles of H and O isotopes 

Isotope geochemistry is a well approved method to understand processes in nature such as 

climate or hydrological dynamics and is often used to distinguish these processes or their 

products. The term isotope consists of the Greek words “iso”, (equal), and “topos”, (place). 

Consequently, isotopes are variations of atoms, which consist of the same number of protons 

and electrons and share the same place in the periodic table, but differ in the number of neutrons 

and therefore in their mass (Markl, 2008). Generally, isotopes are divided in stable and 

unstable/radioactive isotopes. 

The stable isotopes being used most in environmental studies are D/H, 18O /16O and 13C /12C 

(Clark and Fritz, 1997). In this study, only the stable isotopes of water D / H and 18O /16O are 

considered. Out of theses, the lighter isotopes 1H and 16O are the more abundant compared to 

the heavy isotopes (see Tab. 3-1). 

Tab. 3-1 Relative environmental abundance of stable hydrogen and oxygen isotopes (after Berglund and Wieser, 

2011) 

Element Isotope  Abundance Isotope Abundance Isotope  Abundance 

Hydrogen   1H 0.999 885   D 0.000 115   

Oxygen 16O 0.997 57 17O 0.000 38 18O 0.002 05 
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The electronic structure is responsible for the chemical properties of an element and its nucleus 

for the physical. Because isotopes have same number and arrangement of electrons, they are 

similar in their chemical behavior, one the other hand they have certain differences in their 

physico-chemical behavior due to their differences in mass, leading to different reaction rates 

(Urey, 1947). Due to their greater mass, heavy isotopes require greater energy to dissociate and 

have stronger bonds than the light isotopes, which therefore react faster (Clark and Fritz, 1997). 

The differences in chemical and physical properties arising from variations in atomic mass of 

isotopes are called “isotope effects” (Hoefs, 2009) and lead to isotope fractionation processes 

(Urey, 1947).  

Fractionation processes describe the partitioning of isotopes between two substances or two 

phases of a substance (i.e. water phases) due to their properties (Hoefs, 2009).  

Within these, there are two main phenomena. First the isotope exchange reaction providing an 

equilibrium isotope distribution and second, are the kinetic processes (Hoefs, 2009). 

Isotope exchange processes include all situations, in which the distribution of isotopes changes 

between different substances, phases or individual molecules, but there is no net reaction 

(Hoefs, 2009). 

The isotope exchange reaction is a special case of a general equilibrium and is expressed as 

[Eq. 1]: 

 𝑎𝐴1 + 𝑏𝐵2 = 𝑎𝐴2 + 𝑏𝐵1 [Eq. 1] 

 

where the subscripts indicate that species A and B contain either the light isotope (1) or the 

heavy (2) (Hoefs, 2009). For this reaction, it is required that the forward and backward reaction 

rates are the same, the reaction proceeded often enough to mix the isotopes between the reactant 

and product reservoirs and that these are well mixed themselves (Clark and Fritz, 1997). Isotope 

exchange reactions are characterized by the equilibrium constant K which is dependent on the 

temperature and defined as [Eq. 2]: 

 

 𝐾 =  
(

𝐴2

𝐴1)𝑎

(
𝐵2

𝐵1
)𝑏

 [Eq. 2] 

 

At high temperatures isotope fractionation tend to become zero, but do not decrease 

monotonically (Hoefs, 2009).  
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The equilibrium constant is often replaced by the fractionation factor 𝛼, which is defined as 

[Eq. 3]: 

 𝛼𝐴−𝐵 =
𝑅𝐴

𝑅𝐵
 [Eq. 3] 

 

where RA is the ratio of a chemical compound A and RB the one of another compound B.  

The fractionation factor alpha, as it is derived from the equilibrium constant, is also temperature 

dependent (Hoefs, 2009). 

The δ-value, expressing the difference between a sample and a standard, is used, because the 

measurement of the absolute isotopic abundance is difficult and considerably less accurate than 

measuring relative isotope abundances against a standard and determine relative differences 

(Clark and Fritz, 1997; Hoefs, 2009). 

Therefore, the δ-value for two compounds is defined as [Eq. 4], [Eq. 5]: 

 

 𝛿𝐴 = (
𝑅𝐴

𝑅𝑠𝑡
− 1) ∗ 103(‰) [Eq. 4] 

and  

 𝛿𝐵 = (
𝑅𝐵

𝑅𝑠𝑡
− 1) ∗ 103(‰) [Eq. 5] 

 

where RA and RB are the respective isotope ratio measurements and Rst is the defined ratio of 

the standard sample (Hoefs, 2009). 

The δ-values are related to the fractionation factor by [Eq. 6] (Hoefs, 2009): 

 

 𝛿𝐴 − 𝛿𝐵 = 𝛿𝐴−𝐵 ≈ 103𝑙𝑛𝛼𝐴−𝐵 [Eq. 6] 

 

Substances with relatively more heavy isotopes are called enriched with respect to the standard, 

or, due to their greater weight, isotopically heavier and will show more positive δ-values, while 

such with relatively less heavy isotopes are called depleted or lighter and will show more 

negative δ-values than the standard (Clark and Fritz, 1997). For the measurement of the 

hydrogen and oxygen isotopic composition of water samples, generally the Vienna Standard 

Mean Ocean Water (V-SMOW) standard is used (Hoefs, 2009). Derived from a first artificial 

standard established by Craig (1961b) (see also: Clark and Fritz, 1997), V-SMOW is defined 

as 0‰ as it should represent water of the oceans (Hoefs, 2009). As the second point of the 

intercalibration for oxygen and hydrogen isotope measurements the Standard Light Antarctic 
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Precipitation (SLAP) was defined as -55.5‰ for δ18O (Gonfiantini, 1978), being close to 

isotopically very light samples from cold regions (Clark and Fritz, 1997). 

Among the phase transitions between water in vapor, liquid and ice, evaporation and 

condensation processes involve the most effective fractionation for water isotopes. The 

differences in vapor pressure of heavy and light isotopes leads to significant isotope 

fractionation, enriching the vapor phase in lighter molecules species, while the extent of 

fractionation is temperature-dependent (Hoefs, 2009).While condensation or distillation 

processes proceed, a residual vapor reservoir will become progressively depleted with respect 

to the heavy isotopes and a residual liquid reservoir will become more enriched (Hoefs, 2009). 

The secondary effects, the so called kinetic fractionation processes depend on the differences 

in reaction rates and are associated with incomplete and unidirectional processes like 

evaporation, dissociation reactions, biologically mediated reaction and diffusion. Furthermore, 

the knowledge of these processes can provide information about the reaction pathways (Hoefs, 

2009). 

The process of diffusion also can lead to a significant isotope fractionation, because light 

isotopes are more mobile than the heavy ones (Hoefs, 2009). 

Craig (1961a) found out that, despite the complexity of these processes, water isotopes behave 

in predictable ways and that hydrogen and oxygen isotopes fractionate similarly. Therefore the 

δ-values correlate on a global scale within the hydrological cycle. Out of this finding, Craig 

(1961a) established the relationship of 18O and D in worldwide fresh waters in a δ18O-δD-plot, 

the so called Global Meteoric Water Line (GMWL) [Eq. 7]: 

 

 𝛿𝐷 = 8𝛿18O+10 [Eq. 7] 

 

The constant 10 reflects a surplus of deuterium and is also called the deuterium excess or d-

value. Dansgaard (1964) proposed the use of the d-excess for the identification of non-

equilibrium fractionations and evaporation rates, as it gives the relative position to the GMWL 

and would be 0‰ for marine waters e.g. V-SMOW. 

After Dansgaard (1964) the d-excess is defined as [Eq. 8]: 

 

 𝑑 = 𝛿𝐷 − 8𝛿18O [Eq. 8] 
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As the d-excess is dependent on sea surface temperature (SST), wind speed and relative 

humidity in the moisture source region, it can be used for its identification (Merlivat and Jouzel, 

1979).  

The slope of 8 in the co-isotope plot is also variable as it represents the ratio of the equilibrium 

fractionation factors at the time of condensation and is therefore dependent on the condensation 

temperature, being 8 at 25°C (Clark and Fritz, 1997). Furthermore the slope is only a very close 

approximation and can also be affected by so called secondary evaporation that takes place after 

condensation (Clark and Fritz, 1997). 

3.1.2. Water isotopes in the hydrological cycle 

The ocean is a well-mixed reservoir with a defined isotopic composition of 0‰. When water 

starts to evaporate from the ocean’s surface, the water vapor will be enriched in the lighter 

isotopes H and 16O because H2
16O has a higher vapor pressure than HDO and H2

18O and will 

be depleted in the heavy isotopes (Hoefs, 2009). 

When the vapor mass leaves the ocean’s surface by rising up it cools and rain will be formed 

when the dew point is reached (Hoefs, 2009). Atmospheric precipitation through condensation 

is dominated by equilibrium fractionation between vapor and water because condensation 

occurs at a humidity of 100% (Clark and Fritz, 1997). When warm air rises, rain is produced as 

cooling occurs by adiabatic expansion due to lower pressure or radiative heat loss. Along its 

way to higher latitudes and over continents, the air mass loses its water as precipitation, a 

process called rainout. It distills the heavy isotopes from the vapor mass and isotopically 

enriched rain is discarded from the air mass, whereas the residual vapor becomes progressively 

depleted in 18O and D, a so called Rayleigh distillation. Because of this, later rain will be 

depleted in respect to earlier rains while enriched with respect to the remaining vapor (Fig. 3-1) 

(Clark and Fritz, 1997). There may be differences in the isotopic composition of liquid 

precipitation and solid precipitation as rain drops may undergo evaporation and isotope 

exchange with vapor in the atmosphere on their way to the surface (Hoefs, 2009). This effect is 

strongly controlled by the amount of vapor and is described by Dansgaard (1964) as the 

“amount effect”. It is best observed in arid regions, where air is not water-saturated.  
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On the other hand, it is not observed in the Polar Regions, where the temperature effects are 

predominant (Dansgaard, 1964). 

As shown above, decreasing temperature drives the rainout process and so the precipitation will 

become more and more depleted in 18O and D. However, often trends in the evolving vapor 

mass are masked because most weather systems acquire new sources of vapor along their path 

(Clark and Fritz, 1997). 

Dansgaard (1964) calculated a relationship for the temperature dependency of meteoric waters 

on a global scale: δ18O = 0.695 Tannual-13.6 ‰ SMOW; δD = 5.6 Tannual-100 ‰ SMOW. 

The strong temperature dependency is accompanied by a partitioning of δ18O and δD between 

cold and warm regions (Clark and Fritz, 1997). 

Because of the strong temperature dependency of the δ-value and, following global weather 

trajectories, the polar regions are placed at the end of the Rayleigh distillation. Precipitation at 

higher latitudes is generally more negative than that at lower latitudes, the so called „Latitude 

Effect“. The δ-value gradients increase polewards but are relatively flat in the tropics and 

particularly over the oceans (Clark and Fritz, 1997). 

As landmasses force rainout from vapor masses, the isotopic composition evolves more rapidly 

through the vapor masses movement across a continent due to topographic effects and 

temperature extremes which is called the “Continental Effect”. Because continental stations 

show strong annual variations in temperature they also show strong seasonal differences in the 

isotope composition of the precipitation but will rather be more isotopically depleted while 

costal precipitation will rather be less depleted (Clark and Fritz, 1997). 

Fig. 3-1 Changes in the isotopic composition of meteoric waters within the 

hydrological cycle (provided by Hanno Meyer, lecture material) 
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“Seasonality Effects” will be stronger the greater the seasonal extremes in temperature are and 

stronger seasonal variations in the isotopic composition of the precipitation will be generated. 

The amplitude of seasonal variations in temperature increases with both the continentality and 

the latitude of a given site. The latitude also have an effect on the seasonal variations (Clark 

and Fritz, 1997). 

When the orography forces a vapor mass to rise over the landscape and to cool adiabatically, 

there will be rainout. At higher altitudes, the precipitation will be isotopically depleted, because 

the average temperature is lower. This effect is called the „Altitude Effect“.  

For δ18O a depletion of -0.15 to -0.5 ‰ per 100 m rise in altitude is observed (Bortolami et al., 

1979).  

3.1.3. Fractionation processes during metamorphism and alteration of the snow 

cover 

The isotopic signal of the snow is primarily dependent upon the temperature at the time of 

condensation in the atmosphere (Mackay, 1983). Nikolayev and Mikhalev (1995) found out 

that there is a clear relationship between the mean annual and the mean seasonal air temperature 

at the Earth’s surface and the mean oxygen isotope composition of precipitation in Polar 

Regions even so these relationship may not be preserved in the permafrost because the freshly 

deposited snow is strongly deflated and drifted by wind which can, together with the exposure 

to solar radiation, alter the original isotopic composition. In high latitudes, snow drifting has an 

especially strong influence on the isotopic composition of snow (Nikolayev and Mikhalev, 

1995). Furthermore, the melting and freezing within the active layer and the snow cover during 

the metamorphosis can lead to isotopic fractionation (Nikolayev and Mikhalev, 1995). 

During the alteration and metamorphism of a snow cover several processes lead to a 

fractionation of its isotopic composition  (Epstein and Mayeda, 1953; Moser and Stichler, 

1974). The δ-values of the isotopic composition in general rise with increasing metamorphism 

(Moser and Stichler, 1974). 

As mentioned above in section 2.2.1., sublimation processes play an important role during the 

recrystallization of snow crystals and formation of firn and depth hoar. These sublimation 

processes happening within the snow cover have to be distinguished from those taking place at 

the surface of the snow cover. 

As shown above in section 3.1.1., every transition between the phases of water will lead to a 

fractionation due to the differences in vapor pressure. When vapor sublimates from the surface 

of the snow crystals as described above, it will be enriched in lighter isotopes with respect to 
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the crystal (Friedman et al., 1991). When the vapor produced within the snow cover re-

condensates at the growing crystals, they will be enriched in the heavier isotopes, as they would 

condensate first due to their lower vapor pressure (Friedman et al., 1991). 

During repetitive phase transitions the lighter isotopes will preferably diffuse in the pore space 

between the firn grains, leading to non-equilibrium fractionations (Sokratov and Golubev, 

2009). 

The extent of the fractionation during this process is dependent on the temperature gradient, as 

a higher temperature difference between the bottom and the top increase the diffusion processes 

accompanying the sublimation processes (Friedman et al., 1991; Sokratov and Golubev, 2009). 

Arising from the differences in velocity (Hoefs, 2009), the lighter isotopes will preferentially 

diffuse towards the upper layers, leading to an enrichment of lighter isotopes at the top and an 

enrichment of heavier isotopes at the bottom. Johnsen et al. (2000) suggest that the diffusion 

processes will cause a smoothing of the isotopic signal within the snow cover, depending on 

the mobility of the isotope. 

The sublimation processes on the top of the snow cover, causing mass losses during dry periods, 

are also strongly dependent on the temperature gradient because the processes is mainly driven 

by the differences in the ambient air temperature and the firn-grain surface temperature in its 

deeper layers (Stichler et al., 2001). 

During daytime sublimation is strongest, because the ambient air has its highest moisture deficit 

and is accompanied by a high surface temperature of the firn (Stichler et al., 2001).  

An experiment on sublimation carried out by Stichler et al. (2001) suggested that this process 

will cause an enrichment at the surface but that the effect is restricted to a depth of 5 to 7 cm 

and that the mass loss at the surface has to be considered as it removes the enriched layer 

instantaneously and therefore limit the actual enrichment and finally ends with the next 

snowfall. The depth limitation of the sublimation could be caused by condensation and 

refreezing water vapor during night, forming ice crusts as layer boundaries and blocking the 

penetration of the heavy isotopes enriched at the surface through diffusion into deeper layers 

(Stichler et al., 2001).  

Direct measurements of the change in isotopic composition do not support this “layer-by-layer” 

mechanism, suggesting that the concentration at a sublimating surface depend on the intensity 

of the sublimation and on the self-diffusion of the molecule into the remaining bulk enriching 

the snow cover with heavy isotopes (Konishchev et al., 2003). 

When the snow begins to melt, the melt water will be depleted in heavy isotopes with respect 

to the remaining bulk, as at any phase transition from solid to liquid the heavy isotopes tend to 
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remain in the solid phase (Cooper et al., 1993). In this way, the remaining snow cover will 

become progressively enriched in the heavy water isotopes as melt proceeds (Cooper et al., 

1993). Ambach et al. (1972) showed that the isotopic composition of the individual layers 

within the snow pack remain essentially unchanged during the ablation period despite 

percolation of melt water or rain. 

Near the snow cover surface, exchanges with atmospheric water vapor can take place (Earman 

et al., 2006) and may be of particularly importance during the early accumulation when the 

temperatures are low and melting therefore limited (Lee et al., 2010). 

Despite the exchange with atmospheric vapor, the re-condensation of vapor sublimated or 

evaporated from the snow cover surface at its surface will lead to an enrichment in the upper 

layers (Moser and Stichler, 1974).  

3.1.4. Isotope measurements  

There are different methods for measuring the isotopic composition of water. Besides laser 

optical methods, the Alfred Wegener Institute in Potsdam (AWI) uses isotope-ratio-gas-mass-

spectrometers (type Finnigan-MAT Delta-S) to measure the hydrogen and oxygen isotope 

composition of given water samples. It was decided to carry out all measurements at the gas-

mass-spectrometers as an approved method at the AWI. Since there was enough sample 

material, the advantage of the laser-optical method (Picarro) using small amounts of sample 

was not needed.  

Fig. 3-2 Schematic illustration of a gas-isotope-ratio-mass-spectrometer (IRMS) 

(modified after Clark and Fritz, 1997) 
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The principle of mass-spectrometry lies in the differences in deflection depending on the 

specific mass-to-charge ratio of the isotopes. The gas inserted into the mass-spectrometer gets 

ionized at an ion source, charged and channeled into a magnetic field in which, because of the 

resulting Lorenz-force, it is deflected and separated depending on the specific charge of its 

components which then is registrated in a detector, so called faraday-cups (Markl, 2008). 

The main components of a mass-spectrometer (Fig. 3-2) are the ion source, mostly equipped 

with a tungsten-coated iridium filament forming the ions and accelerating and focusing them, 

the mass analyzer with an electro-magnet installed over the flight tube to bend the ionized beam, 

the ion detector, where the intensity of the masses of the ions collected in the faraday cups are 

converted into an electrical impulse and displayed as an isotope ratio and the inlet system, 

providing the gas for the measurements (Hoefs, 2009). 

There are different peripheral equipment to generate the gas needed for the measurements in a 

gas-IRMS and different inlet systems exist. The dual-inlet system, as it is used at the AWI, 

allows the alternate measurement of ratios in a sample and laboratory standard (Clark and Fritz, 

1997). Furthermore, two automated equilibration units (MS Analysentechnik, Berlin) to 

generate the gas are endowed. The equilibration technique allows the automated measurement 

of both water elements in one run by reducing the amount of sample needed to ~3ml, with no 

memory effects compared to other methods (Meyer et al., 2000). 

Each of the equilibration unit has a capacity of 24 sample bottles. Each of the approx. 25 ml 

glass bottles are filled with a ca. 3-5 ml aliquot of the water sample. That bottles are attached 

to a rack, where they are immersed to two thirds of their height into a water shaking bath which 

is stirred at a frequency of 90 min-1 to homogenize the water temperature. The water 

temperature in the baths is kept at a constant temperature of 18.00 ± 0.01°C within the 

measuring time to avoid condensation in the upper part of the reaction bottle (Meyer et al., 

2000). 

The water temperature of the shacking baths, and so the surface temperature of the catalyst 

sticks, used for H isotope measurements, where the equilibration is happening, should be 

constant within ±0.05°C because after Friedman, I. and O’Neil, J. R. (1977) the fractionation 

factor for deuterium has a temperature coefficient of -5.4‰/°C (Meyer et al., 2000). After 

immersing the reaction bottles into the shaking bath, they are evacuated by a two stage rotary 

pump. 

Because the hydrogen isotope measurement is carried out first, the remaining space in the 

bottles is first filled with H2 gas. The hydrogen isotopes are equilibrated between the water 

sample and the H2 gas for 120 min, with activated platinum condensed on a hydrophobic stick 
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working as a catalyst (Meyer et al., 2000). After the complete hydrogen measurement is 

finished, the sample aliquots are equilibrated with CO2 for 400 min for the oxygen isotope 

measurement.  

At each unit, the first bottle is filled with the laboratory standard NGT1 and is, after being 

equilibrated with either H2 or CO2 gas, transferred into the standard bellow of the inlet system 

and used as a reference standard for the whole unit (Meyer et al., 2000). 

Into the sample bellow, a variable volume used to regulate the pressure with that the gas is 

transferred into the gas-IRMS, a gas aliquot of the water sample equilibrated with H2 or CO2 is 

transferred after being separated from water vapor in a cooling at -78°C (Meyer et al., 2000). 

The usage of a dual inlet system allows to alternately introduce the sample and reference gases 

from the bellows into the mass spectrometer trough a viscous leak. Per sample, ten 

measurements are carried out for statistical reasons. 

To calculate the isotopic composition, the ISODAT software is used and the δD and δ18O values 

are displayed as permil differences relative to the standard V-SMOW. 

If the internal 1σ error is greater than the general ±0.8 ‰ for δD and ±0.1 ‰ for δ18O the 

measurement is repeated.  

For quality controls and linear corrections, six bottles per unit are filled with four different 

standards. The selection of the standards depends on the expected isotopic composition of the 

samples. For water samples from Siberia, the laboratory standards NGT, KARA, SEZ and 

HDW2 are used and also were chosen for this study. 

3.2. Field work 

In order to determine the spatial and temporal variability of a snow cover on Samoylov Island 

and its isotopic modification in the spring season through sublimation, evaporation, 

redistribution by wind, melting processes, perculation, snowfall etc. over twenty snow profiles 

were sampled. For each sample site, local site-specific characteristics for predominance of 

processes influencing the snow cover like exposition, roughness or underlying vegetation were 

described. The sample sites were selected according to their different geomorphologic 

characteristics, i.e. is the site a valley fill, is the sample taken on a polygon wall or in a polygon 

center, and exposition, i.e. is the sample taken at an N- or an S-facing slope, on top of an 

interpolygonal pond or vegetation cover. 

Depth profiles along horizontal transects were sampled in different polygons and in a separate 

snow field to identify differences in thickness, structure and isotopic composition of the snow 

cover in the different parts of the polygons and the snowfield and its variations in the depth and 
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over time. All snow profiles were differentiated into layers of different characteristics (i.e. 

hardness, grain size and form, sediment content etc.) and sampled. If possible, samples were 

taken with a density shovel to get a discrete volume of snow to determine snow-to-sediment 

ratios. Ice crusts observed in different layers were described and sampled with a spatula to get 

distinct informations of their influence as boundary layers and to determine processes during 

their formation.  

To examine if the different seasons and snow fall events are recognizable and to characterize 

the seasonal evolution of the snow cover and its isotopic composition and a possible annual 

cycle, a 1.90 m depth profile (SP13) was sampled on the 23rd of April in a snow field underlain 

by sandy ground. It was located at 11 m a.s.l. near the research base in the wind shadow of a 

water pipe, so anthropogenic influences on the profile can not be ruled out. Nevertheless, this 

sample site was chosen because it provides a thick snow cover, maybe preserving information 

within its isotopic composition to identify different snow fall events for the complete season 

and an annual cycle. The whole profile was sampled in parts of 3 cm taken with a density shovel 

to additionally gain information about the density of the snow and to determine snow-to-

sediment ratios. 

To observe the spatial variability of the snow cover in sample sites with different characteristics, 

in two adjacent polygons and in a little distance third snow profiles on the walls and in the 

centers were sampled as the transects SP7, SP8 and SP21. The polygons were chosen because 

they were well developed and polygon walls and centers clearly recognizable. Furthermore, 

they were near the research station, making a frequent sampling easier. 

The profile SP7 is situated in a low-center polygon type at 12m a.s.l on the first terrace of 

Samoylov Island, underlain by vegetation and slightly exposed to the north. The ca. 14 m long 

Fig. 3-3 Changes in the snow cover over time 
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profile was sampled on the 19th of April from the polygon center over the polygon wall to the 

next center. 

Two days later, on the 21st of April, the profile SP8 was sampled in a polygon 20 m to the north 

of SP7. It was sampled from polygon wall over the center to the next wall. The center was 

underlain with pond ice and two active frost cracks were observed at the first meter of the profile 

in the eastern wall of the polygon. These were sampled separately on the 22nd of April. The 

11.5m long snow profile SP27 was sampled on the 25th of April in a low center polygon at the 

northern edge of Samoylov Island. Is was sampled from polygon center over the wall to the 

next center. Both centers were underlain by pond ice. 

To observe changes in the snow cover over time (Fig. 3-3), especially in its isotopic 

composition and to identify which isotope signal is preserved in the climate archive “ice 

wedge”, the different parts of ice wedge polygon SP8 were resampled one meter to the south 

as SP47 on the 30th of April. Also the observed frost cracks were resampled. After sampling the 

profile SP47, a rain event occurred on the 2nd of May. After that event, the snow cover of the 

observed polygon was fully wet and water was standing in the pond. The thickness of the snow 

cover was reduced and further frost cracks became visible. To estimate the influence of the rain 

event, SP8 was sampled again as SP58 on the 3rd of May. As shown above, the meltwater of 

snow and, to a smaller extent, the developed depth hoar penetrating the frost cracks are 

considered the main source for the growth of ice wedges. In order to identify the influence of 

the isotopic composition of snow, ice, depth hoar and water filling the cracks on the isotopic 

composition of the wedge ice, samples categorized as frost-crack water (FCW), frost-crack ice 

(FCI), frost-crack depth hoar (FCD), frost-crack snow (FCS) and frost-crack crystals (FCC) 

were taken out of the now visible troughs above frost cracks. 

Additionally bulk snow samples were taken with a liner with a diameter of 59.5 mm within the 

different sites to further estimate the spatial variability of the isotopic composition of the snow 

cover and the bulk density in the different landscape units, i.e. the river terraces or on top of the 

Ice Complex. The aim was to provide data for the comparison with other sites within the Lena 

Delta, and gain a more comprehensive picture of spatial snow variability in different 

landscapes. 
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3.3. Laboratory work 

In the laboratory, the still frozen snow samples were melted and filled into 30 ml PE-bottles. If 

a discrete volume of the samples had been taken with a density shovel, the melted snow was 

first weighed and then filtered through cellulose acetate filters (CAF) to be able to determine 

the snow-to-sediment ratio in the layer. 

Depending if the sediment were completely settled and a clear liquid was to be found above, 

the samples were bottled with a pipette before filtering the leftovers in order to safe time. If the 

samples were murky, they were filtered immediately with a filtration unit. Because the filtration 

units had to be fully dried out after every sample to avoid contamination, this method was more 

time-consuming due to drying times of the units. 

After drying the CAF with the sediments, they were weighed. To determine the 

snow-to-sediment ratio, the weight of the plastic bag and the CAF had to be subtracted from 

the initial weight well as the organic components like leafs or grass, but the results are not part 

of this study. 

The isotopic composition of the samples was measured with a Finnigan MAT Delta-S mass 

spectrometer as described in section 3.1.4. 
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4. Results 

4.1. Annual snow profile 

The profile SP13 is the snow profile with the greatest thickness and is considered separately as 

it was located in a luvward area behind a water pipe and not in an ice-wedge polygon as the 

other snow profiles. The δ18O-values at the bottom and at the top are close to each other (bottom: 

-22.0‰ top: -21.5‰) while in the profile five zones of different isotopic composition can be 

subdivided (Fig. 4-1). 

Zone I (0-50 cm) displays highly variable δ18O values with a mean of -24.5‰ and a maximum 

at 30 cm (-15.8‰) and a relatively high bottom δ18O value (-22.0‰). Minima are observed at 

15 cm (-28.7‰) and at 42 cm (-31.1‰). 

Zone II (50-85 cm) display relatively constant δ18O values with a mean of -28.7‰, while at 51 

cm a smaller maximum (-28.0‰) and at 84 cm a minimum (-29.0‰) can be observed. 

Fig. 4-1 Depth profile of the sampled snow cover SP13 A - scheme of the snow profile with different 

layers, B -  δ18O depth profile subdivided into isotope zones (I to V) 

A B 
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Zone III (85-90 cm) display a shift between the minimum of zone II and the maximum of zone 

IV at 90 cm (-24.0‰) with a value being similar to the mean of these two points (-26.5‰). 

Zone IV (90-153 cm) again display relatively constant δ18O values with a mean of -25.2‰. A 

small maximum is observed at 90 cm and a minimum at 96 cm (-25.8‰). 

Zone V (153-180 cm) again display highly variable δ18O values with a mean of -31.7 ‰. A 

minimum at 162 cm (-38.4‰) is observed while the δ18O values increase to the top to a 

maximum at 180 cm (-21.5‰). 

4.2. Spatial comparison of different snow sample sites 

In order to understand the spatial variability of the isotopic composition of snow, sample sites 

with different characteristics were compared. The sites were sampled between the 19th and the 

25th of April and hence considered as comparable. Within the time the samples were taken, 

snow heights in the sampled polygon centers were in general greater than on the polygon walls 

(Fig. 4-2). While in the polygon centers snow heights ranged between 15 and 40 cm, on the 

walls only a range between 8 and 15 cm was observed.  

SP7, sampled at the 19th of April show a δ18O range from -34.0‰ to -19.8‰. SP8, sampled on 

the 21st of April, show a slightly greater range from -36.1‰ to -19.1 ‰. The largest range from 

-33.3‰ to -16.1 ‰ is found in SP21, sampled on the 25th of April. 

A 

B 

C 

Fig. 4-2 Snow heights of the sampled ice-wedge polygons at the sampling date   A - SP7: 

19.04.13, B - SP21: 25.04.13, C - SP8: 21.04.13; SP47: 30.04.13;SP58: 02.05.13 



Stable isotope dynamics in a seasonally changing snow cover at Samoylov Island, Northern Siberia 

26 
 

The snow profiles SP7 and SP8, taken in adjacent polygons within a short time interval, show 

similar mean δ18O values (SP7:-28.7‰, SP8: -28.5‰) while the mean δ18O value of SP21 is 

slightly higher (-26.5‰). 

The δD-δ18O-diagrams draw a similar picture. All samples plot near the GMWL with SP7 and 

SP8 having both a slope around 8 and SP21 having a slightly lower slope of 7.4 (Fig. 4-3). 

In the co-isotope diagram for SP21 (Fig. 4-3-C), two samples plot lower under the GMWL than 

the others (red ellipse). These are the samples LD13-SP21-4-7 (δ18O value: -16.1‰) and LD13-

SP21-10-6 (δ18O value: -16.8‰) both being depth hoar samples taken on the bottom of the 

snow cover at the centers. With these two samples left out, SP21 would have a slope of 8.44 

and an intercept of +26.03 in the δD-δ18O-diagram. 

The δ18O values on the polygon walls range from -27.6‰ at SP21 to -24.0‰ at SP8 (see  

Tab. 4-1) showing an overall mean δ18O value of -26.0‰ for all polygon wall snow samples. 

In the polygon centers, the δ18O values range from -36.1‰ (SP8) to -16.1‰ (SP21). The mean 

δ18O value for all snow samples in the polygon centers is lower than that for the polygon walls 

with -33.6‰.  

The d-excess of the snow at the polygon walls range from 8.1‰ to 26.9‰ with a mean d-excess 

of 15.7‰ and at the centers from -13.2‰ to 28.9‰ with a mean value of 12.9‰ (compare  

Tab. 4-1, note that for the spatial comparison SP47 and SP58 are not considered as they were 

sampled later to show the temporal evolution of SP8). 

A B 

C 

Fig. 4-3 δD-δ18O-diagrams for different sampled polygons A - SP7, B - SP8, C - SP21 
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Changes in isotopic composition of the snow cover in the centers of the sampled polygons show 

similar depth profiles for SP7 and SP8 while the curve of SP21 is again slightly different. 

In Fig. 4-4, representative depth profiles for the polygon centers are shown. For further plots 

and more details see App. 1. 

The displayed profiles all show a general increase of δ18O values from top to bottom resulting 

in maximum δ18O values at the bottom. With increasing height in the profile, a trend towards 

more negative δ18O values is observed while in the values in the upper most part trend again 

towards more positive values after the minimum was reached at 30 cm in SP7-5 and SP8-4 and 

at 20 cm in SP21-4. The general trend shown in Fig. 4-4 of with maximum δ18O values at the 

bottom is found in all depth profiles sampled in the polygon centers, ranging around a mean of 

-23.1‰ and -21.9‰ for adjacent SP7 and SP8, respectively, whereas SP21 displays slightly 

heavier δ18O values around a mean of -19.5‰. In all parts of the polygon centers with thinner 

snow cover, only parts of the δ18O curves are preserved while still always showing a secondary 

maximum in the upper half leading to values between the minimum and maximum at the top 

like shown for SP21-4 in Fig. 4-4 C. 

On the polygon walls (Fig. 4-5), the mean δ18O values range from -27.6‰ to -24.0‰ with SP21 

showing the lowest mean values and SP8 the highest while SP7 lies with -26.3‰ in between. 

A B C 

Fig. 4-4 δ18O depth profiles for representative sites in the polygon centers of the sampled polygons A – SP7 at 5 

m, B – SP8 at 4m, C – SP21 at 4 m 

A B C 

Fig. 4-5 δ18O depth profiles for representative sites in the polygon walls of the sampled polygons A – SP7 at 9 

m, B – SP8 at 19m, C – SP21 at 5 m 
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Taking a look at the depth profiles it can be seen that the curves show slightly different courses 

with generally slightly decreasing δ18O values from bottom to top while some also show a 

secondary maximum like SP21 at 5 m (Fig. 4-5 C). Nevertheless, as in the polygon centers, the 

maximum δ18O values at all polygons walls are found at the bottom, ranging from -27.6‰ in 

SP21 over -22.4‰ in SP7 to -19.1‰ in SP8. 

 

Tab. 4-1 Minimum, maximum and mean values for δ18O and d-excess values and slopes and intercepts in δD-

δ18O diagrams for the sampled snow profiles 

Snow 

profile 

N Geomorphological unit d18O 

(‰) 

min. 

d18O 

(‰) 

mean 

d18O 

(‰) 

max. 

d (‰)min. d (‰) 

mean 

d (‰) 

max. 

slope Intercept 

(‰) 

SP7 37 all samples -34.04 -28.71 -19.78 7.3 14.9 28.9 8.1 17.5 

 23 Center west -32.18 -28.55 -19.78 7.3 14.4 28.9   

 6 Wall -29.07 -26.28 -23.93 10.5 14.7 23.1   

 8 Center east -33.34 -27.18 -16.77 9.5 16.5 25.5   

SP21 31 all samples -33.34 -26.53 -16.05 -13.2 12.5 25.1 7.4 -3.2 

 14 Center east -32.81 -26.39 -16.05 -5.1 10.9 18.5   

 10 Wall -27.58 -27.58 -27.58 9.2 17.7 25.1   

 7 Center west -33.34 -27.18 -16.77 -13.2 8.2 15.8   

SP8 45 all samples -36.13 -28.49 -19.14 -1.8 16.0 26.9   

 17 Wall east -32.55 -26.12 -22.36 8.1 16.7 26.9   

 24 Center -36.13 -30.92 -19.14 -1.8 14.7 21.4   

 4 Wall west -25.21 -23.97 -22.89 18.6 20.9 22.4   

SP47 47 all samples -36.01 -27.09 -13.70 -18.2 15.8 26.8 7.7 8.5 

 10 Wall east -22.62 -20.26 -19.38 11.8 17.7 21.5   

 32 Center -36.01 -29.28 -13.70 -18.2 14.7 25.3   

 5 Wall west -31.34 -26.70 -20.40 14.0 19.0 26.8   

SP58 29 all samples -23.28 -21.03 -20.02 7.6 14.3 25.8 8.0 14.5 

 5 Wall east -33.44 -25.77 -20.02 14.2 15.8 16.5   

 24 Center -35.35 -29.37 -22.22 7.6 14.0 25.8   

  Wall west n.d. n.d. n.d. n.d. n.d. n.d.   
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4.3. Temporal comparisons 

To assess the temporal evolution of a snow cover on Samoylov Island, the different parts 

(center/wall) of one polygon (SP8) were resampled twice: first at the 30th of April (as SP47) 

and again after a rain event on the 2nd of May (as SP58). Between the 21st and the 30th of April, 

the whole snow cover (SP47) increased in thickness due to snowfall and snow drift, while on 

May 2nd, the snow heights were greatly decreased (SP58) in all parts after the rain event, and 

completely disappeared in some parts (Fig. 4-2 C). The rain event had a δ18O value of -19.6‰. 

The mean δ18O value in SP8 of –28.5‰ increased towards SP47 with -27.1‰ and slightly 

decreased towards SP58 with -27.9‰. The same pattern is visible in the maximum δ18O values, 

whereas for the minimum δ18O values a constant increase can be observed. While SP8 ranged 

from δ18O values of -36.1‰ to -19.1‰, SP47 varied from -36.0‰ to -13.7‰ and SP58 from -

35.4‰ to -20.0‰. At the polygon walls, two different trends are observed. While at the eastern 

polygon wall the mean δ18O values follow the general trend, first increasing towards SP47 and 

then slightly decreasing towards SP58, at the western wall an decrease towards SP47 is 

observed. The same trend is observed in the polygon centers the mean δ18O values first decrease 

towards SP47 and then increase again slightly in SP58 ( 

Tab. 4-1).  

The snow depth profiles of the different parts of the polygon center (at 4, 8 and 18 m), show 

that the isotope curves in the polygon center only slightly change their pattern with time.  

At 4 m of the profile (Fig. 4-6 C) the isotope record of SP47 is the upper part is similar to that 

of SP8 but is in the lower 15 cm shifted towards more positive δ18O values resulting in a less 

negative δ18O value of -13.7‰ at the bottom as compared to SP8 (-19.1‰). The isotope profile 

of SP58 also follows the course of SP8 and SP47, but is at 25 cm height shifted to slightly more 

positive δ18O values. SP58 displays a lower δ18O value than SP8 and SP47 of -22.2‰ at the 

bottom. At 8m (Fig. 4-6 D), the δ18O profile of SP47 is again similar to that of SP8 showing 

similar δ18O values of around -22.6‰ at the bottom. SP47 has with δ18O = -36.1‰ a more 

negative minimum than SP8 with δ18O = -34.1‰. As before, the δ18O values of SP58 display 

with -26.8‰ the most negative bottom values, while the isotope curve shows a similar pattern 

than that of SP47 despite the lesser snow depth. At 18m (Fig. 4-6 E) the δ18O curve of SP47 is, 

again, similar to that of SP8, showing both an excursion towards more negative values observed 

at all polygon center profiles, with a less negative minimum of -34‰ for SP47 than for SP8 

(-36‰), whereas the SP47 bottom δ18O value (-25.7‰) is more negative than that of SP8 

(-24.4‰). 
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B 

E 

F D 

Fig. 4-6 Comparison of δ18O depth profiles at different parts of the sampled polygon A – Wall (1 m), B – Wall 

(2 m), C – Center  (4 m), D – Center (8 m), E – Center (18 m), F – Wall (19/20 m) 

A 

C 
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Despite lesser snow depth, the curve of SP58 is similar to that of SP47 with slightly more 

negative bottom δ18O value of -26.6‰. In the polygon center, only at 4m the general trend 

reflected in the mean δ18O values is observed, while at 8m and 18m the δ18O values of SP58 

are more negative than those of SP47 and SP8. In all snow profiles, ice crusts were additionally 

identified as they might act as boundaries i.e. for meltwater or diffusion. Ice crusts generally 

show δ18O values ranging from -33.2‰ to -24.3‰ with a mean of -28.7‰. 

At the polygon wall, a completely different picture can be drawn due to the lesser snow depth. 

For the last sampling (SP58) only one δ18O value for the eastern and none for the western wall 

could be measured. In order to get additional information for polygonal walls, the profile 19m 

of SP8 has been compared to that at 20m of SP47. 

At 1m (Fig. 4-6 A), the isotope curve of SP8 shows a sharp excursion towards more negative 

δ18O values at 7 cm with a minimum δ18O value of -30.9‰, whereas top and bottom δ18O values 

are similar yielding around -25‰. In contrast, the δ18O values of SP47 are more constant and 

more positive with a maximum of -19.6‰. The δ18O value at the top is -21.5‰ and at the 

bottom a minimum of -22.6‰ is observed. The only δ18O value for SP58 yields -20.0‰. 

At 2m (Fig. 4-6 B), the isotope record is smoother, with SP8 only showing a small minimum 

and SP47 nearly constant values around -20‰ which are also seen at the bottom and are more 

positive than the bottom value of SP8 with -22.4‰. The δ18O value of SP58 is with -20.4‰ 

slightly more negative than SP47 but also remarkably more positive than the bottom value of 

SP8. 

On the western wall (Fig. 4-6 E), at 19/20m a different picture is shown: while the depth profile 

of SP8 displays δ18O values from -24.3‰ at the top to -22.9‰ at the bottom, it shows in general 

more positive values than SP47 with a maximum δ18O value of -20.4‰ at the top while having 

lower values of -25.2‰ at the bottom and a minimum of -31.3‰. 

In a δD-δ18O diagram, the samples of SP47 and SP58 plot close to the GMWL with slopes of 

7.73 and 8.00, and an intercepts of +8.4‰ and +14.5‰, respectively (Fig. 4-7). 

Fig. 4-7 δD-δ18O-diagramms for the resampled profiles A – SP47, B – SP58 

A B 
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The ice samples (FCI) taken out of the frost cracks after the rain event show a range in δ18O 

values from –25.4‰ to -20.3‰ with a mean of -23.7‰, being more positive than the ice 

sample taken out of a frost crack at 1 m in SP8, which has a δ18O value of -27.3‰. In a δD-

δ18O diagram FCI samples plot with a slope of 8.34 and an intercept of + 22.3‰ (Fig. 4-8). The 

FCS samples range between values of -29.19‰ and -24.8‰ with a mean of -24.8‰, plotting 

on the GMWL with a slope of 7.13 (Fig. 4-8) and an intercept of – 9.36‰ (Fig. 4-8) being again 

more positive than the snow sample taken on 1m in SP8 with -32.6‰. 

The FCD samples range from -26.4‰ to -22.9‰ in δ18O with a mean value of -24.3‰ and they 

plot on the GMWL with a relatively low slope of 5.97 and an intercept of – 31.7‰ (Fig. 4-8). 

The depth hoar sample taken at 1m in SP8 lies in the same range with δ18O = -23.2‰, whereas 

the ice crystal sample (FCC) shows a δ18O value of -26.8‰.  

  

Fig. 4-8 δD-δ18O-diagram for the FC samples (FCW frost crack water, FCS frost crack 

snow, FCD frost crack depth hoar, FCI frost crack ice, FCC frost crack crystal 
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5. Discussion 

5.1. Isotopic changes in a seasonal snow cover 

To characterize seasonal changes and an annual cycle of a snow cover on Samoylov Island, a 

depth profile (SP13) was sampled on 23rd April 2013. The snow-height sensor showed a first 

signal on 3rd October 2012 (App. 3), and hence, this is assumed as the start of the snow-fall 

season. As introduced above, stable oxygen isotopes are indicative for temperature changes:  

strong peaks towards heavier (+; lighter = -) isotope compositions in the snow pack are  

therefore assumed to represent warm (cold) pulses, respectively. Phases with stable δ18O  

values over several dm are assumed to be indicative for mixing events most likely due to  

wind drift and cannot be explained by smoothing due to diffusion or percolation (Ambach et 

al., 1972; Johnsen et al., 2000). It is difficult to clearly define an annual cycle in the isotope 

profile, because the clear identification and dating of the observed signals is problematic. The 

first challenge is the identification of snow fall events. Because the precipitation measurements 

at Samoylov Island exclude snow, snow fall events were estimated from height changes 

measured by a snow height gauge (Fig. 5-1 C), including both snow fall events and snow height 

changes due to wind drift. To estimate the ratio of precipitation to wind drift, wind speed 

measurements have been considered (Fig. 5-1 D), expecting that increases in snow height 

during high wind speeds are more likely a result of wind drift than of precipitation. The second 

challenge is the estimation of concrete reasons for decreases in snow heights, i.e. whether they 

are a result of sublimation/ evaporation or, again, wind drift. To estimate their extent of 

influence again the measurements of wind speeds and snow-height changes were considered, 

expecting that during low wind speeds decreases in snow height are more likely a result of 

sublimation or evaporation. The third challenge is that the snow height gauge only measures at 

one point and the conditions at the sample sites might have been different as snow height varies 

with geomorphological position (see Fig. 4-2).  

Furthermore, it is obvious that not all temperature pulses (Fig. 5-1 B) are preserved since 

warmer air masses generally carry a greater amount of precipitation, as mentioned above, while 

at lower temperatures no snow fall might have taken place and so snow from warmer periods 

might be overrepresented while colder periods might not be preserved. The use of precipitation 

data from other weather stations such as i.e. Tiksi, located 120 km to the south east of Samoylov 

Island, was not possible, because we realized that several precipitation events that took place at 

Samoylov Island were not registered in Tiksi. 

Nevertheless, in the zones I, III and V likely a climate signal can be identified.  
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Fig. 5-1 Correlation of weather data from Samoylov Island with the depth profile SP13 and markers for key events A 

– isotope depth profile with isotope zones, B – daily mean temperature ( T), C – daily snow height changes (S), D – 

daily mean wind speed (W) (source: Samoylov Island weather station) 
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The observations made for zone I (bottom part) in the δ18O depth profile suggest, that after the 

beginning of snow fall in autumn a cold period took place followed by a warm pulse, displaying 

the highest δ18O values in the profile, and a second cold pulse in early winter. Possible time 

points for the warm pulse are (1) around 7 Nov (T1), with a prior cold pulse around 5 Nov (T2) 

and a subsequent cold pulse around 14 Nov (T3), (2) around 27 Nov (T4), with a prior cold 

pulse around 23 Nov (T5) and a subsequent cold pulse around 4 Dec (T6), and (3) around 13 

and 17 Dec (T7), with a prior cold pulse around 4 Dec (T6) and a subsequent cold pulse around 

20 Dec (T8).  

Although in this period the warmest temperatures were observed, the first possibility can be 

excluded because measured increases in snow height at the snow height gauge were always 

accompanied by strong wind events, leading to the expectation that no snow fall took place 

during this period and therefore no snow was deposited.  

It can be assumed that the zone I represents the second possibility, the time between 23 Nov 

and 4 Dec, as between the 24 Nov and the 2 Dec (S1) increases in snow heights during lower 

wind speeds are observed, only interrupted by two strong wind events on 29 and 30 Nov (W1), 

leading to the assumption that snow fall took place and snow was deposited during this period. 

During the third possible period, also increases in snow heights were observed but were 

accompanied by strong wind events between the 13 and 17 Dec and further on till the 24 Dec 

(W2), leading to the assumption that in the δ18O profile a due to wind drift homogenized part 

for this period should be displayed. Furthermore, increasing snow height during lesser wind 

speeds between 4 and 13 (W3) Dec may resulted in a warming signal following the second cold 

pulse in the δ18O profile, further strengthen the assumption that zone I represents the warm 

phase around the 27 Nov and the cold phases around 23 Nov and 4 Dec. 

Zone V at the top of the snow profile shows another cold pulse, displaying the lowest δ18O 

values in the profile and therefore representing the lowest temperatures, followed by another 

warm pulse. Two possible time spans could be reflected in the cold pulse. First, the time 

between 2 Feb and 20 Feb (T9) and second, the time between 6 Mar and 11 Mar (T10). In the 

time between 2 Feb and 20 Feb (S2) mostly a decrease in snow heights at the snow height gauge 

is observed, accompanied by relatively low wind speeds (W4) leading to the assumption that 

only little or nothing of this period is preserved in the profile. On the other hand, between the 6 

and the 11 Mar (S3) increases in snow height accompanied by relatively low wind speeds (W5) 

are observed, leading to the conclusion that in this period snow fall took place and that it is 

represented in the cold pulse observed in zone V. Out of this observation, it can be assumed 

that zone V represents the time between around 2 Mar and the sampling date (23 Apr). 
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Zones II and IV display nearly constant isotope composition interrupted by zone III. Both zones 

of constant δ18O (zone II ca. -30‰, zone IV ca. -26‰) are most likely the result of two strong 

snow drift events and should ideally correlate with longer periods of higher wind speeds, 

homogenizing the δ18O signal preserved in snow. Because zone IV shows less negative δ18O 

values than zone II, it can be expected that the temperatures during or prior to the assumed snow 

drift event(s) were generally higher than the temperatures during or prior to the event displayed 

in zone II. During autumn and winter, several strong wind events occurred, while the events 

taken place between 4 Dec and 25 Dec (W2, W3) seem to be the ones responsible for the δ18O 

curve in zone II, because up from 25 Dec to 28 Dec (T11) a period with a great increase in 

temperature as well as increasing snow heights (S4) during relatively low wind speeds (W6) 

are observed, possible represented in zone III. Another possible period representing zone III 

and showing a temperature increase could have been the time between 15 and 18 Jan (T12). 

Because in this period strong winds (W7) are observed, this period is rather represented in the 

homogenized zone IV.  

Because of the observations made, zone IV may be related with strong wind events which took 

place between the 28 Dec and the 02 Mar. Contrary to the hypothesis that the temperatures in 

zone IV were higher than in zone II, in this period the lowest temperatures of around -40°C 

were observed (T10, T13) and can be expected to be the most negative δ18O values within the 

profile. Nevertheless, zone IV displays more positive δ18O values than zone II, which might be 

a result of a lack of precipitation during the cold periods as mentioned above for the period of 

02 to 19 Feb (S2) and is also observed for the period between 7 Jan to 15 Jan (S5) and for the 

1 Jan (S6). The reason for this lack of precipitation most likely lies in the estimation that colder 

air masses may carry lesser moisture available for the formation of snow fall. Furthermore, 

before and after the cold periods, relatively high temperatures were observed, maybe smoothing 

out remnants of the cold periods during mixing due to the wind drift. 

5.2. Spatial comparisons of the snow cover at different sample sites 

A general observation is that the snow height at a sample site depends on its location and on 

the sample date. Furthermore, it was obvious that the snow cover at the walls of the considered 

ice-wedge polygons was always thinner than in their centers, which is consistent with 

observations made by Boike et al. (2013). The depth profiles sampled in the snow cover at the 

different units of an ice-wedge polygon show similar curves for δ18O values. At the boundary 

pond ice-snow or soil-snow, generally a heavier δ18O is observed, which points to interaction 

between a phase of heavier (below) to lighter isotope composition (snow), while the resulting 
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isotope signal is derived from summer precipitation relatively enriched in heavier isotopes, 

preserved in soil and in pond water (Friedman et al., 1964, 1991). 

Isotope measurements of pond ice at Samoylov Island show δ18O values of -24.8‰ at the top, 

values between 12‰ and 15.1‰ at its middle and bottom part. The mean δ18O values of the 

bottom of the snow cover range from -21.3‰ (SP21), -23.2‰ (SP8), to -23.3‰ (SP7), 

reinforcing this assumption. This is further supported by Meyer et al. 2002, who saw ion and 

isotope changes at boundary layers between ground ice and active layer ice. 

These exchange processes likely took place before the active layer and pond water were fully 

frozen, as Cooper et al. (1993) suggested that between the snow and fully frozen water little to 

no moisture exchange takes place. 

The observations suggest that the processes predominant during the alteration of the snow cover 

are similar despite different underlying surfaces. All δ18O values curves of the snow cover in 

the polygon centers show a similar course like that for zone V in SP13. This suggests that 

mainly snow from early spring is preserved on top of the ice-wedge polygons. 

5.3. Temporal evolution of the snow cover 

When interpreting the changes in the snow cover and its isotopic composition with time it is 

necessary to take into account the local weather conditions, i.e. the development of temperature, 

precipitation events and wind speed and directions. For the meteorological data, see App. 3. 

The influence of wind drift events, sublimation/evaporation and precipitation on snow height 

changes were estimated (as described above in section 5.1 for SP13), dealing with the same 

challenges.  

The snow height measurements show an increase of the snow cover between the 21st of April 

and the 30th of April at the snow height gauge, which may be a result of snow fall events as 

until the 1st of May only little wind speeds were observed.  

The increase in snow height is also reflected between SP8 and SP47 at the eastern polygon wall 

and the western part of the profile. At 4m and 8m the snow thickness is rather similar between 

the 21st and 30th of April (Fig. 4-2 C). Possible reasons for this observation are losses in 

thickness due to a local higher sublimation rate or snow drifting through wind. The reduction 

due to wind drift seems to be more likely, and is supported by the fact that the mean wind 

direction between the sampling dates was east, which is in line with the observed distribution. 

Contrary to this hypothesis, the snow heights at the eastern wall increased between the sampling 

dates which may be due to i.e. vegetation acting as natural barrier. 
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Furthermore, as mentioned above, in this interval only small mean wind speeds were observed, 

making a redistribution due to wind drift unlikely. On the other hand, sublimation would cause 

an enrichment in heavy isotopes resulting in more positive δ18O values in the upper layers. 

However, at 4m in the profile no such changes were observed in the upper part and at the 8m 

even more negative δ18O values for SP47 than for SP8 were found. One more positive δ18O 

value for SP47 at the surface of the snow cover at 8m is most likely a result of fresh snow as 

the towards the 30th of April increasing temperatures should be reflected in more positive δ18O 

values in precipitation. The same is observed at 18m where the snow height increased between 

the sampling of SP8 and SP47, displaying a strong increase in δ18O values in the upper 10cm 

of the profile as it was also observed for SP13 in section 5.1. 

At the polygon centers, the lower 20cm of the profiles are shifted towards more positive δ18O 

values, displaying an enrichment of heavier isotopes due to sublimation processes at the snow 

grain surfaces during the metamorphism of the snow cover and the depth hoar formation in the 

deeper layers as described in section 3.1.3.  

At 8m (Fig. 4-6 D) the middle part from 5cm to 15cm shows more negative δ18O values for 

SP47 than for SP8. These differences in 8m are likely the result of shifted sample site. 

At the eastern polygon wall the δ18O values of the snow cover at SP47 evolved towards more 

positive values compared to SP8 and at the western wall towards more negative values while 

the initial curves of SP8 are similar in course, value range and snow height at 2m and 19m (Fig. 

4-6 B,F). The δ18O curve of SP8 at 1m (Fig. 4-6 A) shows a similar course like the one sampled 

nine days later (SP47) at the eastern wall at 20m (Fig. 4-6 F). This observation might be a result 

of the distance of one meter between the sampling points, suggesting that different sites were 

sampled (at 19 and 20m) and a temporal comparison is difficult.  

The shift towards more positive δ18O values at the top of the snow cover in the polygon centers 

may display a mixture of (1) enrichment of heavier isotopes due to sublimation and (2) 

increasing δ18O values in freshly-deposited snow due to increasing temperatures. 

It was expected that the rain event, which took place on 2nd of April would have a great impact 

on the isotope composition as it fully saturated the snow cover with water and reduced the snow 

heights. At the eastern wall, the remaining snow cover showed δ18O values of around -20‰, 

being similar than that of the rain with -19‰. Accordingly, the δ18O values did not change 

significantly towards the sampling after the rain event (SP58).  

In the polygon centers, the similarity of the δ18O curves with time (from SP8 to SP47 and SP58) 

is striking. However, there are some smaller differences: while the upper part of snow cover, 

when preserved after the reduction of the snow height like at 4 m and 18 m (Fig. 4-6 C, E), 



Bachelor Thesis  Erik Böhm 

39 
 

shows more positive values than in SP47 and the lower halfs are equal or more negative. At all 

sample sites, the bottom values of SP58 are more negative than that of SP47. The snow height 

at 4m and 18m (Fig. 4-2) is less reduced after the rain event what might be connected to their 

position at the foot of the polygon walls and not in the polygon center where the water running 

off the polygon walls is collected. 

Because of the observation that the values of SP58 are not shifted extremely towards more 

positive δ18O values of about -19‰ measured in the rain water it is assumed, that the percolation 

of the rain water has no significant influence on the isotope signal. This has also been suggested 

by Ambach et al. (1972) and Moser and Stichler (1974). The lighter δ18O values observed at 

the bottom of the polygon centers are most likely connected to the collection of initial runoff 

snow-melt water from the polygon walls in the depression, which is enriched in the lighter 

isotopes compared to the remaining snow (Cooper et al., 1993). The accumulation of lighter 

isotopes at the bottom of the snow cover in the polygon centers seems plausible as the runoff 

takes place at the underground surface and under the snow cover. 

The ice sample taken out of a frost crack (at 1m during the sampling of SP8; 21st April) show a 

more negative δ18O value (-27.3‰) than the mean value of the frost-crack-ice (FCI) samples 

(-23.7‰) taken on 3rd of May. The same was observed for the snow sample (-32.6‰) taken at 

1m on the 21st of April and the frost-crack-snow (FCS) samples (-26.2‰) taken on 3rd of May. 

The depth hoar sample taken at 1m in SP8 (-23.2‰) in contrary is in the range of the frost-

crack-depth-hoar (FCD) sample δ18O values taken on 3rd of May (-26.4‰ to -23.0‰). The 

increase in δ18O values in the FCI and FCS samples might be a result of isotopically heavier 

precipitation due to the observed rising temperatures but are rather the product of fractionation 

processes during the snow metamorphism. The depth hoar may have the same range of δ18O 

values because the FCD samples are remnants of depth hoar formed under the snow cover 

during an earlier period. 

5.4. Correlation with recent ice wedges at Samoylov Island 

As described above, formation of ice wedges is dependent on meltwater penetrating open frost 

cracks and producing new annual veins. Therefore, it is expected that the isotope signal stored 

in the ice wedges is derived from snow melt water filling the cracks. Because of this, δ18O 

values observed in the ice wedges need to be compared to the ones observed in the fillings of 

the cracks and at the bottom of the snow cover at the polygon walls. The δ18O values at the 

bottom are expected to provide the preserved isotope signal as the percolation of melt water 

from the upper snow layers and precipitation should have no significant influence on the signal 
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as shown above and suggested by Ambach et al. (1972) and also observed in this study as 

described above. According Kleine (2014), the isotope signals preserved in ice wedges range 

between average δ18O values of -22.9‰ and -22.3 ‰ for the time period between 2002/3 and 

2009/10, while showing great ranges within the years, varying between -25‰ and -20‰ in 

δ18O.The bottoms samples of SP58 display δ18O values between -26‰ and -20‰ thus, a 

variation, which is comparable to that observed by Kleine (2014). The depth-hoar samples 

(FCD) with a range between δ18O values of -26.4‰ and -22.9‰ and a mean of -24.3‰ also fit 

well into this range. The same is observed for the ice samples FCI with a range 

between -25.4‰ and -20.3‰ and a mean of -23.7‰. The snow samples show a more negative 

range with values between -29.2‰ and -24.8‰ with a mean value of -26.2‰ being at the lower 

end of the observed range for ice wedges. The same is observed for the sampled ice crystal FCC 

with a δ18O value of -26.8‰ being situated at the lower end of the range observed by Kleine 

(2014). As mentioned above in section 2.2.2, Michel (1982) and Kleine (2014) showed that the 

freezing of the penetrating water is fast enough to prevent it from fractionation processes during 

the freezing and therefore its isotope composition should be preserved in the formed ice. The 

water samples FCW taken out of the frost crack after the rain event show with δ18O values 

between -27.3‰ and -22.2‰ a slightly more negative range than that observed in the ice 

wedges.   

Kleine (2014) also showed that there are two penetration periods for the frost cracks being 

responsible for the great ranges over the year. The first period is in December, when frost cracks 

open (Kleine, 2014) and snow might fall into the cracks and depth hoar may develop (French, 

2007).  A second period in April/May, when the snow melt starts (Boike et al., 2013) and the 

frost cracks are filled with snow melt. As the sampling took place in April/May, only the second, 

but expected to be the more relevant, filling of the cracks was sampled, and the influence of the 

primary filling can not be estimated. The data suggest, that the isotope signal preserved in the 

annual veins of the ice wedge is mainly derived from snow of the bottom of the snow cover and 

depth hoar and ice developing in the troughs of the frost cracks. The snow (FCS) and water 

(FCW) samples may undergo further alteration due to evaporation, leading to an enrichment in 

heavier isotopes, before refreezing in the open frost cracks. As shown in section 5.2., snow 

samples at the bottom of the snow cover are influenced by moisture exchange with the 

underlying soil before the underground were fully frozen, while at the polygon walls this 

influence seems to be overwritten by the alteration processes due to lesser snow heights.  
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6. Conclusions 

The data show, that the snow cover thickness at Samoylov Island during the snow period is 

highly variable. It was observed, that the thickness of the snow cover in the centers of the ice-

wedge polygons was greater than on their walls, which is consistent with observations by Boike 

et al. (2013). The spatial variability of the snow cover is mainly dependent on the location of 

the sample site, i.e. exposition to wind or location on different geomorphologic, while being 

smaller as the temporal snow height variability. 

It was difficult to characterize an annual cycle within the snow cover because strong winter 

winds caused a homogenization of the δ18O profile in over 50% of the snow cover. Furthermore 

the differentiation of the processes leading to changes in snow cover height and altering the 

isotopic composition of the snow is challenging. Nevertheless, it was possible to identify a 

climate signal for late-autumn, mid-winter and early spring in the isotope composition. The 

signal for early spring at the top of the annual snow profile, showing a cold and a warm phase, 

was also noticeable in snow profile at the ice-wedge polygons. 

The snow at the bottom of the snow cover shows an influence of moisture exchange with 

underground, as suggested by Friedman et al. (1991). 

It has been shown that the snow cover and its isotopic composition undergo changes over time 

due to sublimation, evaporation and wind drift processes, while percolating rain water highly 

reduced the thickness of the snow cover but had no significant influence on its isotopic 

composition as suggested by Ambach et al. (1972). Nevertheless, it was observed that initial-

runoff-snow-melt water has an influence on the isotopic composition of the snow at the bottom 

of depressions. Furthermore it was observed, that thinner snow packs are stronger influenced 

by alteration processes than thicker snow packs. 

The observations suggest, that the isotope signal preserved in the annual veins of ice wedges 

best corresponds to that of snow of the bottom of the snow cover, depth hoar and ice from snow 

melt developing in the troughs above frost cracks. Therefore, the ice veins forming ice wedges 

should rather reflect the isotope signal of early spring temperatures where snow undergoes 

strong metamorphic changes and is influenced by moisture of precipitation of the previous 

summer stored in the active layer and in ponds in the ice-wedge polygon centers. 
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7. Outlook 

To better understand the made observations and better distinguish the processes predominant 

during the alteration of the snow cover, precipitation measurements including snow fall would 

be necessary, as the estimation of snow fall events out of the correlation of wind speeds and a 

local measuring snow height gauge are problematic.  

Furthermore, more samples should be taken at the polygon walls in order to better understand 

the temporal evolution and to estimate if there are differences to other sample sites. 
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App. 1 Considered samples with isotope data 

Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

31 LD13-SP-7-1-1 19.04.2013 SP 0 3 -28.17 0.05 -215.72 0.22 9.65 

32 LD13-SP-7-1-2 19.04.2013 SP 3 6 -25.64 0.05 -191.18 0.23 13.95 

33 LD13-SP-7-1-3 19.04.2013 SP 6 9 -25.52 0.08 -184.91 0.17 19.28 

34 LD13-SP-7-1-4 19.04.2013 SP 9 16 -21.34 0.06 -157.19 0.37 13.53 

35 LD13-SP-7-2 19.04.2013 SP 0 26 -27.86 0.06 -211.22 0.21 11.62 

36 LD13-SP-7-3-1 19.04.2013 SP 0 3 -30.52 0.04 -234.15 0.18 9.98 

37 LD13-SP-7-3-2 19.04.2013 SP 3 6 -32.04 0.04 -243.28 0.23 13.01 

38 LD13-SP-7-3-3 19.04.2013 SP 6 9 -31.08 0.05 -234.73 0.32 13.88 

39 LD13-SP-7-3-4 19.04.2013 SP 9 12 -30.89 0.04 -232.82 0.34 14.31 

40 LD13-SP-7-3-5 19.04.2013 SP 12 15 -30.75 0.05 -229.78 0.14 16.19 

41 LD13-SP-7-3-6 19.04.2013 SP 15 18 -29.13 0.03 -204.19 0.24 28.85 

42 LD13-SP-7-3-7 19.04.2013 SP 18 27 -19.78 0.06 -150.95 0.34 7.31 

43 LD13-SP-7-4 19.04.2013 SP 0 32 -28.36 0.03 -215.70 0.20 11.14 

44 LD13-SP-7-5-1 19.04.2013 SP 0 3 -31.30 0.04 -240.01 0.22 10.42 

45 LD13-SP-7-5-2 19.04.2013 SP 3 6 -32.18 0.06 -244.90 0.26 12.52 

46 LD13-SP-7-5-3 19.04.2013 SP 6 9 -31.81 0.04 -240.98 0.27 13.50 

47 LD13-SP-7-5-4 19.04.2013 SP 9 12 -30.62 0.04 -230.11 0.30 14.87 

48 LD13-SP-7-5-5 19.04.2013 SP 12 15 -29.44 0.01 -223.45 0.29 12.08 

49 LD13-SP-7-5-6 19.04.2013 SP 15 18 -28.33 0.04 -213.75 0.22 12.90 

50 LD13-SP-7-5-7 19.04.2013 SP 18 21 -29.71 0.04 -222.67 0.24 14.98 

51 LD13-SP-7-5-8 19.04.2013 SP 21 24 -29.59 0.07 -210.62 0.37 26.08 

52 LD13-SP-7-5-9 19.04.2013 SP 24 36 -22.62 0.02 -163.32 0.25 17.64 

53 LD13-SP-7-6 19.04.2013 SP 0 19.5 -29.89 0.03 -226.53 0.15 12.57 

54 LD13-SP-7-7-1 19.04.2013 SP 0 3 -25.25 0.06 -191.45 0.28 10.54 

55 LD13-SP-7-7-2 19.04.2013 SP 3 10 -22.42 0.02 -164.91 0.28 14.43 

56 LD13-SP-7-9-1 19.04.2013 SP 0 3 -31.00 0.04 -237.37 0.24 10.62 

57 LD13-SP-7-9-2 19.04.2013 SP 3 6 -28.94 0.02 -216.24 0.26 15.25 

58 LD13-SP-7-9-3 19.04.2013 SP 6 12 -25.42 0.03 -180.28 0.27 23.05 

59 LD13-SP-7-10 19.04.2013 SP 0 11 or 17 -29.33 0.04 -220.5 0.3 14.1 

60 LD13-SP-7-11-1 19.04.2013 SP 0 3 -30.19 0.04 -232.08 0.26 9.47 

61 LD13-SP-7-11-2 19.04.2013 SP 3 6 -33.09 0.02 -251.93 0.19 12.82 

62 LD13-SP-7-11-3 19.04.2013 SP 6 9 -34.04 0.05 -252.35 0.23 20.00 

63 LD13-SP-7-11-4 19.04.2013 SP 9 18 -26.80 0.04 -188.86 0.17 25.54 

64 LD13-SP-7-12 19.04.2013 SP 0 22 -32.19 0.05 -245.7 0.3 11.8 

65 LD13-SP-7-13-1 19.04.2013 SP 0 3 -31.85 0.06 -242.00 0.21 12.78 

66 LD13-SP-7-13-2 19.04.2013 SP 3 6 -30.13 0.03 -223.06 0.29 17.95 

67 LD13-SP-7-13-3 19.04.2013 SP 6 18 -24.98 0.04 -178.45 0.33 21.38 

118 LD13-SP-8-1-1 21.04.2013 SP 0 1 -24.93 0.02 -191.3 0.3 8.1 

119 LD13-SP-8-1-2 21.04.2013 SP 1 2 -28.40 0.04 -217.1 0.2 10.1 

120 LD13-SP-8-1-3 21.04.2013 SP 2 3 -30.83 0.03 -235.7 0.3 10.9 

121 LD13-SP-8-1-4 21.04.2013 SP 3 4 -28.78 0.04 -215.2 0.2 15.0 
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Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

122 LD13-SP-8-1-5 21.04.2013 SP 4 5 -26.25 0.03 -190.4 0.3 19.6 

123 LD13-SP-8-1-6 21.04.2013 SP 5 7.5 -25.88 0.02 -180.1 0.4 26.9 

124 LD13-SP-8-1-7 21.04.2013 SP 7.5 10 -25.01 0.05 -176.2 0.3 23.9 

125 LD13-SP-8-1-8 21.04.2013 SP 4.5 5 -28.31 0.03 -208.6 0.4 17.8 

126 LD13-SP-8-2-1 21.04.2013 SP 0 1 -24.19 0.03 -183.5 0.2 9.8 

127 LD13-SP-8-2-2 21.04.2013 SP 1 3 -24.55 0.03 -177.4 0.3 19.0 

128 LD13-SP-8-2-3 21.04.2013 SP 3 5 -23.32 0.03 -166.8 0.3 19.8 

129 LD13-SP-8-2-4 21.04.2013 SP 5 7 -23.25 0.03 -166.7 0.2 19.1 

130 LD13-SP-8-2-5 21.04.2013 SP 7 9 -22.36 0.03 -162.6 0.3 16.2 

131 LD13-SP-8-2-6 21.04.2013 SP 2.5 3 -25.04 0.04 -184.7 0.3 15.6 

132 LD13-SP-8-4-1 21.04.2013 SP 0 3 -30.78 0.03 -234.8 0.3 11.4 

133 LD13-SP-8-4-2 21.04.2013 SP 3 6 -32.57 0.05 -249.0 0.2 11.0 

134 LD13-SP-8-4-3 21.04.2013 SP 6 9 -34.47 0.03 -263.3 0.2 12.6 

135 LD13-SP-8-4-4 21.04.2013 SP 9 12 -34.74 0.03 -263.4 0.2 14.9 

136 LD13-SP-8-4-5 21.04.2013 SP 12 15 -34.33 0.04 -258.6 0.2 16.6 

137 LD13-SP-8-4-6 21.04.2013 SP 15 18 -33.03 0.04 -247.5 0.2 16.5 

138 LD13-SP-8-4-7 21.04.2013 SP 18 21 -29.02 0.03 -215.3 0.2 17.1 

139 LD13-SP-8-4-8 21.04.2013 SP 21 24 -28.90 0.05 -212.3 0.4 19.2 

140 LD13-SP-8-4-9 21.04.2013 SP 24 29 -28.40 0.03 -206.1 0.2 21.2 

141 LD13-SP-8-4-10 21.04.2013 SP 29 41.5 -19.14 0.03 -144.0 0.1 9.2 

142 LD13-SP-8-8-1 21.04.2013 SP 0 3 -30.74 0.02 -232.8 0.3 12.9 

143 LD13-SP-8-8-2 21.04.2013 SP 3 6 -34.07 0.06 -258.3 0.2 14.2 

144 LD13-SP-8-8-3 21.04.2013 SP 6 9 -31.31 0.05 -233.5 0.3 17.0 

145 LD13-SP-8-8-4 21.04.2013 SP 9 12 -29.28 0.04 -216.1 0.2 18.2 

146 LD13-SP-8-8-5 21.04.2013 SP 12 15 -28.93 0.04 -210.0 0.3 21.4 

147 LD13-SP-8-8-6 21.04.2013 SP 15 18 -27.29 0.05 -199.9 0.2 18.4 

148 LD13-SP-8-8-7 21.04.2013 SP 18 21 -22.30 0.02 -180.2 0.4 -1.8 

155 LD13-SP-8-19-1 22.04.2013 SP 0 1 -25.21 0.05 -183.1 0.2 18.6 

156 LD13-SP-8-19-2 22.04.2013 SP 1 3 -24.30 0.04 -173.5 0.4 20.9 

157 LD13-SP-8-19-3 22.04.2013 SP 3 5 -23.49 0.03 -166.2 0.2 21.8 

158 LD13-SP-8-19-4 22.04.2013 SP 5 9 -22.89 0.03 -161.1 0.2 22.4 

159 LD13-SP-8-18-1 22.04.2013 SP 0 3 -33.74 0.06 -263.4 0.2 6.5 

160 LD13-SP-8-18-2 22.04.2013 SP 3 6 -35.29 0.04 -270.5 0.2 11.8 

161 LD13-SP-8-18-3 22.04.2013 SP 6 9 -36.13 0.03 -275.5 0.3 13.5 

162 LD13-SP-8-18-4 22.04.2013 SP 9 12 -35.68 0.02 -269.9 0.2 15.5 

163 LD13-SP-8-18-5 22.04.2013 SP 12 15 -33.96 0.04 -254.1 0.2 17.6 

164 LD13-SP-8-18-6 22.04.2013 SP 15 18 -33.61 0.03 -247.9 0.3 21.0 

165 LD13-SP-8-18-7 22.04.2013 SP 18 31.5 -24.35 0.03 -178.9 0.3 15.9 

166 LD13-SP-8-1-9 22.04.2013 SP 0 6 -32.55 0.04 -248.0 0.2 12.4 

167 LD13-SP-8-1-10 22.04.2013 SP 6 9.5 -27.31 0.03 -199.5 0.3 19.0 

168 LD13-SP-8-1-11 22.04.2013 SP 9.5 24 -23.15 0.03 -164.8 0.2 20.5 

180 LD13-SP-13-1 23.04.2013 SP 0 1 -21.45 0.03 -155.9 0.2 15.7 

181 LD13-SP-13-2 23.04.2013 SP 1 4 -26.51 0.01 -200.8 0.3 11.2 

182 LD13-SP-13-3 23.04.2013 SP 4 7 -33.45 0.03 -260.4 0.3 7.2 
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Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

183 LD13-SP-13-4 23.04.2013 SP 7 10 -37.52 0.04 -288.1 0.2 12.0 

184 LD13-SP-13-5 23.04.2013 SP 10 13 -37.61 0.03 -288.5 0.2 12.4 

185 LD13-SP-13-6 23.04.2013 SP 13 16 -38.19 0.03 -293.0 0.3 12.5 

186 LD13-SP-13-7 23.04.2013 SP 16 19 -38.43 0.03 -294.4 0.3 13.1 

187 LD13-SP-13-8 23.04.2013 SP 19 22 -31.96 0.03 -233.6 0.3 22.1 

188 LD13-SP-13-9 23.04.2013 SP 22 25 -26.58 0.02 -196.6 0.3 16.0 

189 LD13-SP-13-10 23.04.2013 SP 25 28 -25.29 0.01 -191.1 0.2 11.2 

190 LD13-SP-13-11 23.04.2013 SP 28 31 -25.70 0.02 -193.9 0.3 11.7 

191 LD13-SP-13-12 23.04.2013 SP 31 34 -25.52 0.03 -193.4 0.2 10.7 

192 LD13-SP-13-13 23.04.2013 SP 34 37 -25.37 0.03 -192.1 0.4 10.9 

193 LD13-SP-13-14 23.04.2013 SP 37 40 -25.24 0.02 -190.6 0.3 11.4 

194 LD13-SP-13-15 23.04.2013 SP 40 43 -25.16 0.03 -190.8 0.2 10.5 

195 LD13-SP-13-16 23.04.2013 SP 43 46 -25.00 0.03 -190.0 0.3 9.9 

196 LD13-SP-13-17 23.04.2013 SP 46 49 -25.06 0.02 -190.4 0.3 10.2 

197 LD13-SP-13-18 23.04.2013 SP 49 52 -25.20 0.02 -190.7 0.3 10.9 

198 LD13-SP-13-19 23.04.2013 SP 52 55 -25.21 0.03 -190.7 0.4 11.0 

199 LD13-SP-13-20 23.04.2013 SP 55 58 -25.15 0.02 -190.2 0.3 10.9 

200 LD13-SP-13-21 23.04.2013 SP 58 61 -25.01 0.03 -188.9 0.5 11.1 

201 LD13-SP-13-22 23.04.2013 SP 61 64 -25.00 0.07 -189.9 3.2 10.1 

202 LD13-SP-13-23 23.04.2013 SP 64 67 -25.16 0.03 -189.2 0.3 12.0 

203 LD13-SP-13-24 23.04.2013 SP 67 70 -25.30 0.04 -189.3 0.2 13.0 

204 LD13-SP-13-25 23.04.2013 SP 70 73 -25.18 0.03 -191.0 0.3 10.4 

205 LD13-SP-13-26 23.04.2013 SP 73 76 -25.10 0.04 -191.2 0.3 9.6 

206 LD13-SP-13-27 23.04.2013 SP 76 79 -25.44 0.02 -192.2 0.4 11.2 

207 LD13-SP-13-28 23.04.2013 SP 79 82 -25.70 0.01 -193.1 0.3 12.5 

208 LD13-SP-13-29 23.04.2013 SP 82 85 -25.77 0.02 -194.8 0.2 11.4 

209 LD13-SP-13-30 23.04.2013 SP 85 88 -25.05 0.07 -186.9 0.2 13.5 

210 LD13-SP-13-31 23.04.2013 SP 88 91 -23.95 0.02 -177.8 0.3 13.8 

211 LD13-SP-13-32 23.04.2013 SP 91 94 -26.45 0.02 -192.1 0.2 19.5 

212 LD13-SP-13-33 23.04.2013 SP 94 97 -29.03 0.02 -215.8 0.3 16.4 

213 LD13-SP-13-34 23.04.2013 SP 97 100 -28.73 0.05 -211.1 0.4 18.7 

214 LD13-SP-13-35 23.04.2013 SP 100 103 -28.78 0.03 -215.2 0.3 15.1 

215 LD13-SP-13-36 23.04.2013 SP 103 106 -28.80 0.02 -215.1 0.3 15.3 

216 LD13-SP-13-37 23.04.2013 SP 106 109 -28.47 0.04 -212.3 0.3 15.4 

217 LD13-SP-13-38 23.04.2013 SP 109 112 -28.22 0.04 -211.1 0.3 14.7 

218 LD13-SP-13-39 23.04.2013 SP 112 115 -28.42 0.02 -210.6 0.3 16.7 

219 LD13-SP-13-40 23.04.2013 SP 115 118 -28.71 0.05 -214.1 0.3 15.6 

220 LD13-SP-13-41 23.04.2013 SP 118 121 -28.79 0.03 -214.7 0.2 15.6 

221 LD13-SP-13-42 23.04.2013 SP 121 124 -28.98 0.03 -216.9 0.2 14.9 

222 LD13-SP-13-43 23.04.2013 SP 124 127 -28.93 0.04 -214.7 0.2 16.8 

223 LD13-SP-13-44 23.04.2013 SP 127 130 -27.95 0.02 -207.7 0.3 15.8 

224 LD13-SP-13-45 23.04.2013 SP 130 133 -28.29 0.05 -207.7 0.4 18.6 

225 LD13-SP-13-46 23.04.2013 SP 133 136 -30.25 0.03 -225.9 0.3 16.1 

226 LD13-SP-13-47 23.04.2013 SP 136 139 -31.08 0.03 -231.7 0.1 16.9 



 

XIII 
 

Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

227 LD13-SP-13-48 23.04.2013 SP 139 142 -27.72 0.02 -204.6 0.3 17.2 

228 LD13-SP-13-49 23.04.2013 SP 142 145 -22.91 0.03 -165.3 0.4 18.0 

229 LD13-SP-13-50 23.04.2013 SP 145 148 -18.84 0.04 -136.3 0.4 14.4 

230 LD13-SP-13-51 23.04.2013 SP 148 151 -15.81 0.02 -112.1 0.3 14.4 

231 LD13-SP-13-52 23.04.2013 SP 151 154 -15.72 0.02 -113.6 0.4 12.2 

232 LD13-SP-13-53 23.04.2013 SP 154 157 -17.93 0.03 -133.7 0.2 9.9 

233 LD13-SP-13-54 23.04.2013 SP 157 160 -21.72 0.03 -164.3 0.1 9.5 

234 LD13-SP-13-55 23.04.2013 SP 160 163 -26.41 0.04 -202.0 0.3 9.1 

235 LD13-SP-13-56 23.04.2013 SP 163 166 -28.73 0.04 -219.3 0.2 10.5 

236 LD13-SP-13-57 23.04.2013 SP 166 169 -28.63 0.05 -213.4 0.3 15.6 

237 LD13-SP-13-58 23.04.2013 SP 169 172 -26.95 0.05 -197.9 0.2 17.6 

238 LD13-SP-13-59 23.04.2013 SP 172 175 -25.34 0.01 -187.7 0.3 14.5 

239 LD13-SP-13-60 23.04.2013 SP 175 178 -23.87 0.02 -180.6 0.4 9.8 

240 LD13-SP-13-61 23.04.2013 SP 178 181 -22.00 0.04 -165.3 0.2 18.5 

250 LD13-SP-21-2-1 25.04.2013 SP 0 3 -27.33 0.02 -212.42 0.21 6.21 

251 LD13-SP-21-2-2 25.04.2013 SP 3 6 -32.32 0.03 -242.78 0.45 15.75 

252 LD13-SP-21-2-3 25.04.2013 SP 6 8 -32.81 0.03 -249.61 0.30 12.89 

253 LD13-SP-21-2-4 25.04.2013 SP 8 11 -32.07 0.04 -244.17 0.25 12.38 

254 LD13-SP-21-2-5 25.04.2013 SP 11 15 -25.62 0.04 -195.04 0.14 9.92 

255 LD13-SP-21-2-6 25.04.2013 SP 0 15 -29.70 0.04 -226.1 0.2 11.5 

256 LD13-SP-21-4-1 25.04.2013 SP 0 1 -20.72 0.04 -147.33 0.37 18.47 

257 LD13-SP-21-4-2 25.04.2013 SP 1 4 -28.71 0.02 -221.23 0.11 8.49 

258 LD13-SP-21-4-3 25.04.2013 SP 4 7 -28.30 0.03 -213.31 0.19 13.07 

259 LD13-SP-21-4-4 25.04.2013 SP 7 10 -24.88 0.05 -184.96 0.13 14.12 

260 LD13-SP-21-4-5 25.04.2013 SP 10 13 -23.80 0.02 -177.21 0.25 13.22 

261 LD13-SP-21-4-6 25.04.2013 SP 13 16 -22.17 0.03 -165.30 0.32 12.06 

262 LD13-SP-21-4-7 25.04.2013 SP 16 23 -16.05 0.05 -133.53 0.14 -5.10 

263 LD13-SP-21-4-8 25.04.2013 SP 0 23 -24.90 0.05 -189.4 0.4 9.8 

264 LD13-SP-21-5-1 25.04.2013 SP 0 2 -25.12 0.03 -191.71 0.13 9.24 

265 LD13-SP-21-5-2 25.04.2013 SP 2 5 -27.47 0.05 -204.13 0.32 15.66 

266 LD13-SP-21-5-3 25.04.2013 SP 5 9 -25.33 0.04 -178.17 0.54 24.50 

267 LD13-SP-21-5-4 25.04.2013 SP 9 13 -23.93 0.07 -166.35 0.33 25.10 

268 LD13-SP-21-5-5 25.04.2013 SP 0 13 -25.33 0.03 -182.6 0.5 20.0 

269 LD13-SP-21-7-1 25.04.2013 SP 0 3 -27.27 0.03 -208.00 0.38 10.14 

270 LD13-SP-21-7-2 25.04.2013 SP 3 6 -29.07 0.06 -217.31 0.28 15.23 

271 LD13-SP-21-7-3 25.04.2013 SP 6 11 -27.45 0.04 -200.80 0.18 18.82 

272 LD13-SP-21-7-4 25.04.2013 SP 11 18 -24.23 0.03 -171.48 0.38 22.37 

273 LD13-SP-21-7-5 25.04.2013 SP 0 18 -27.58 0.03 -205.1 0.3 15.6 

274 LD13-SP-21-10-1 25.04.2013 SP 0 1 -22.55 0.04 -166.22 0.24 14.16 

275 LD13-SP-21-10-2 25.04.2013 SP 1 4 -30.52 0.06 -234.38 0.22 9.81 

276 LD13-SP-21-10-3 25.04.2013 SP 4 7 -33.34 0.04 -256.33 0.27 10.37 

277 LD13-SP-21-10-4 25.04.2013 SP 7 10 -32.81 0.03 -246.67 0.23 15.83 

278 LD13-SP-21-10-5 25.04.2013 SP 10 14 -25.52 0.05 -188.71 0.23 15.48 

279 LD13-SP-21-10-6 25.04.2013 SP 14 18 -16.77 0.05 -147.29 0.35 -13.16 
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Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

280 LD13-SP-21-10-7 25.04.2013 SP 0 18 -28.74 0.05 -225.3 0.2 4.7 

416 LD13-BH-6-1 29.04.2013 LI 0 6 -24.82 0.03 -191.63 0.21 6.97 

417 LD13-BH-6-2 29.04.2013 LI 6 13 -12.23 0.04 -104.14 0.20 -6.31 

418 LD13-BH-6-3 29.04.2013 LI 13 19 -12.00 0.05 -102.07 0.31 -6.06 

419 LD13-BH-6-4 29.04.2013 LI 19 25 -12.20 0.04 -103.62 0.22 -6.03 

420 LD13-BH-6-5 29.04.2013 LI 25 31 -12.19 0.05 -103.60 0.31 -6.09 

421 LD13-BH-6-6 29.04.2013 LI 31 38 -12.47 0.04 -105.49 0.31 -5.72 

422 LD13-BH-6-7 29.04.2013 LI 38 46 -12.85 0.03 -107.86 0.29 -5.06 

423 LD13-BH-6-8 29.04.2013 LI 46 52 -13.28 0.03 -110.72 0.30 -4.44 

424 LD13-BH-6-9 29.04.2013 LI 52 58 -14.06 0.05 -115.65 0.26 -3.19 

425 LD13-BH-6-10 29.04.2013 LI 58 64 -14.72 0.05 -120.25 0.30 -2.46 

426 LD13-BH-6-11 29.04.2013 LI 64 70 -15.13 0.03 -123.04 0.28 -1.98 

427 LD13-SP-47-1-1 30.04.2013 SP 0 1 -21.52 0.04 -157.88 0.24 14.30 

428 LD13-SP-47-1-2 30.04.2013 SP 1 2.5 -20.37 0.03 -144.85 0.35 18.14 

429 LD13-SP-47-1-3 30.04.2013 SP 2.5 5.5 -19.58 0.05 -138.01 0.31 18.61 

430 LD13-SP-47-1-4 30.04.2013 SP 5.5 8 -20.04 0.04 -138.84 0.18 21.48 

431 LD13-SP-47-1-5 30.04.2013 SP 8 12 -22.62 0.05 -162.47 0.20 18.52 

432 LD13-SP-47-2-1 30.04.2013 SP 0 1 -19.93 0.04 -147.57 0.34 11.85 

433 LD13-SP-47-2-2 30.04.2013 SP 1 2 -19.38 0.06 -140.12 0.32 14.89 

434 LD13-SP-47-2-3 30.04.2013 SP 2 5 -19.57 0.05 -137.80 0.26 18.79 

435 LD13-SP-47-2-4 30.04.2013 SP 5 9 -19.82 0.04 -137.37 0.41 21.15 

436 LD13-SP-47-2-5 30.04.2013 SP 9 14 -19.75 0.03 -138.36 0.24 19.66 

437 LD13-SP-47-4-1 30.04.2013 SP 0 3 -30.33 0.02 -231.40 0.25 11.22 

438 LD13-SP-47-4-2 30.04.2013 SP 3 6 -30.62 0.05 -231.23 0.13 13.73 

439 LD13-SP-47-4-3 30.04.2013 SP 6 9 -35.08 0.07 -265.94 0.23 14.69 

440 LD13-SP-47-4-4 30.04.2013 SP 9 12 -35.04 0.03 -264.19 0.27 16.14 

441 LD13-SP-47-4-5 30.04.2013 SP 12 15 -34.51 0.04 -258.06 0.22 18.01 

442 LD13-SP-47-4-6 30.04.2013 SP 15 18 -33.28 0.03 -247.62 0.23 18.63 

443 LD13-SP-47-4-7 30.04.2013 SP 18 21 -29.33 0.03 -216.95 0.20 17.68 

444 LD13-SP-47-4-8 30.04.2013 SP 21 24 -28.72 0.01 -209.23 0.35 20.54 

445 LD13-SP-47-4-9 30.04.2013 SP 24 27 -27.57 0.04 -198.99 0.13 21.59 

446 LD13-SP-47-4-10 30.04.2013 SP 27 30 -26.76 0.04 -198.02 0.49 16.06 

447 LD13-SP-47-4-11 30.04.2013 SP 30 35 -22.90 0.04 -174.54 0.15 8.64 

448 LD13-SP-47-4-12 30.04.2013 SP 35 43 -13.70 0.03 -127.71 0.27 -18.15 

449 LD13-SP-47-4-13 30.04.2013 SP 38 39 -31.58 0.02 -237.71 0.22 14.91 

450 LD13-SP-47-4-14 30.04.2013 SP 20 22 -28.61 0.03 -210.69 0.21 18.17 

451 LD13-SP-47-8-1 30.04.2013 SP 0 4.5 -26.30 0.03 -196.21 0.40 14.23 

452 LD13-SP-47-8-2 30.04.2013 SP 4.5 7.5 -33.90 0.05 -256.18 0.20 15.02 

453 LD13-SP-47-8-3 30.04.2013 SP 7.5 10.5 -36.01 0.01 -270.93 0.18 17.15 

454 LD13-SP-47-8-4 30.04.2013 SP 10.5 13.5 -35.92 0.03 -269.24 0.28 18.16 

455 LD13-SP-47-8-5 30.04.2013 SP 13.5 16.5 -32.76 0.03 -244.06 0.24 18.01 

456 LD13-SP-47-8-6 30.04.2013 SP 16.5 19.5 -28.49 0.02 -214.41 0.15 13.53 

457 LD13-SP-47-8-7 30.04.2013 SP 19.5 23.5 -22.64 0.03 -183.83 0.31 -2.46 

458 LD13-SP-47-8-8 30.04.2013 SP 16.5 17.5 -30.10 0.05 -226.84 0.17 13.94 



 

XV 
 

Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

459 LD13-SP-47-18-1 30.04.2013 SP 0 3.5 -20.47 0.02 -144.90 0.14 18.85 

460 LD13-SP-47-18-2 30.04.2013 SP 3.5 7 -19.92 0.04 -140.30 0.23 19.08 

461 LD13-SP-47-18-3 30.04.2013 SP 7 10.5 -22.90 0.03 -167.81 0.22 15.37 

462 LD13-SP-47-18-4 30.04.2013 SP 10.5 14 -34.16 0.02 -262.81 0.15 10.45 

463 LD13-SP-47-18-5 30.04.2013 SP 14 17.5 -33.18 0.04 -251.03 0.26 14.39 

464 LD13-SP-47-18-6 30.04.2013 SP 17.5 21 -34.22 0.03 -256.53 0.19 17.24 

465 LD13-SP-47-18-7 30.04.2013 SP 21 25 -34.00 0.03 -252.57 0.14 19.41 

466 LD13-SP-47-18-8 30.04.2013 SP 25 30 -27.87 0.03 -197.55 0.27 25.30 

467 LD13-SP-47-18-9 30.04.2013 SP 30 40 -25.66 0.05 -189.80 0.13 14.99 

468 LD13-SP-47-18-10 30.04.2013 SP 17 19 -30.52 0.02 -228.58 0.26 15.59 

469 LD13-SP-47-20-1 30.04.2013 SP 0 3 -20.40 0.03 -148.09 0.26 15.13 

470 LD13-SP-47-20-2 30.04.2013 SP 3 5 -27.93 0.03 -209.47 0.13 14.00 

471 LD13-SP-47-20-3 30.04.2013 SP 5 7.5 -31.34 0.01 -234.60 0.40 16.14 

472 LD13-SP-47-20-4 30.04.2013 SP 7.5 9.5 -28.65 0.05 -206.04 0.25 23.02 

473 LD13-SP-47-20-5 30.04.2013 SP 9.5 15.5 -25.18 0.03 -174.34 0.31 26.75 

517 LD13-SP-58-1-1 03.05.2013 SP 0 6.5 -20.02 0.05 -143.62 0.32 16.52 

518 LD13-SP-58-1-2 03.05.2013 SP   -21.07 0.06 -152.07 0.25 16.48 

519 LD13-SP-58-2-1 03.05.2013 SP 0 5 -20.40 0.05 -147.85 0.25 15.34 

520 LD13-SP-58-2-2 03.05.2013 SP   -20.38 0.06 -146.78 0.20 16.30 

521 LD13-SP-58-3 02.05.2013 SP 0 15 -23.28 0.03 -172.1 0.4 14.2 

522 LD13-SP-58-4-1 03.05.2013 SP 28 31 -33.44 0.03 -252.82 0.22 14.68 

523 LD13-SP-58-4-2 03.05.2013 SP 25 28 -29.30 0.05 -221.05 0.33 13.33 

524 LD13-SP-58-4-3 03.05.2013 SP 21 25 -28.72 0.03 -217.00 0.31 12.80 

525 LD13-SP-58-4-4 03.05.2013 SP 17 21 -27.03 0.03 -204.98 0.24 11.24 

526 LD13-SP-58-4-5 03.05.2013 SP 13 17 -30.11 0.02 -221.70 0.18 19.18 

527 LD13-SP-58-4-6 03.05.2013 SP 0 13 -22.22 0.07 -163.29 0.24 14.50 

528 LD13-SP-58-4-7 03.05.2013 SP bottom  -24.54 0.04 -188.75 0.37 7.58 

529 LD13-SP-58-4-8 03.05.2013 SP 31 32 -31.03 0.05 -237.73 0.27 10.48 

530 LD13-SP-58-4-9 02.05.2013 SP 0 35 -29.22 0.03 -219.7 0.3 14.1 

531 LD13-SP-58-8-1 03.05.2013 SP 7 10 -33.13 0.04 -253.30 0.28 11.74 

532 LD13-SP-58-8-2 03.05.2013 SP 4 7 -33.46 0.06 -255.77 0.34 11.91 

533 LD13-SP-58-8-3 03.05.2013 SP 1 4 -29.48 0.04 -223.53 0.32 12.29 

534 LD13-SP-58-8-4 03.05.2013 SP -2 1 -26.83 0.03 -202.78 0.20 11.83 

535 LD13-SP-58-8-5 03.05.2013 SP   -29.07 0.04 -216.72 0.17 15.86 

536 LD13-SP-58-10 02.05.2013 SP 0 18 -28.36 0.02 -215.0 0.3 11.8 

537 LD13-SP-58-18-1 03.05.2013 SP 28 29 -27.11 0.03 -203.8 0.2 13.1 

538 LD13-SP-58-18-2 03.05.2013 SP 25 28 -29.93 0.02 -222.80 0.21 16.62 

539 LD13-SP-58-18-3 03.05.2013 SP 22 25 -33.50 0.02 -251.70 0.47 16.32 

540 LD13-SP-58-18-4 03.05.2013 SP 19 22 -34.91 0.03 -262.94 0.17 16.36 

541 LD13-SP-58-18-5 03.05.2013 SP 16 19 -35.35 0.02 -267.15 0.16 15.63 

542 LD13-SP-58-18-6 03.05.2013 SP 13 16 -30.70 0.03 -227.57 0.42 18.01 

543 LD13-SP-58-18-7 03.05.2013 SP 9 13 -26.65 0.02 -187.40 0.24 25.80 

544 LD13-SP-58-18-8 03.05.2013 SP 0 9 -26.60 0.03 -201.14 0.15 11.63 

545 LD13-SP-58-18-9 03.05.2013 SP -2 0 -24.32 0.13 -184.61 0.36 9.95 



 

XVI 
 

Nr. Sample date type depth min 
(cm) 

depth max 
(cm) 

d18O (‰) 
vs. SMOW 

1 s δD (‰) 
vs. SMOW 

1 s d excess 

546 LD13-FCW-1 03.05.2013 FCW   -25.69 0.02 -191.8 0.4 13.8 

547 LD13-FCW-2 04.05.2013 FCW   -26.49 0.03 -193.7 0.5 18.2 

548 LD13-FCW-3 04.05.2013 FCW   -26.07 0.02 -194.3 0.3 14.3 

549 LD13-FCW-4 04.05.2013 FCW   -24.49 0.03 -180.3 0.2 15.6 

550 LD13-FCW-5 04.05.2013 FCW   -24.64 0.02 -181.0 0.3 16.1 

551 LD13-FCW-6 04.05.2013 FCW   -24.42 0.03 -181.0 0.3 14.4 

552 LD13-FCW-7 04.05.2013 FCW   -23.92 0.00 -177.4 0.4 14.0 

553 LD13-FCW-8 04.05.2013 FCW   -24.35 0.02 -180.5 0.3 14.3 

554 LD13-FCW-9 04.05.2013 FCW   -24.66 0.03 -183.6 0.3 13.7 

555 LD13-FCW-10 04.05.2013 FCW   -22.21 0.03 -162.6 0.4 15.0 

556 LD13-FCW-11 04.05.2013 FCW   -22.29 0.02 -165.4 0.4 12.9 

557 LD13-FCW-12 04.05.2013 FCW   -26.04 0.03 -192.7 0.4 15.6 

558 LD13-FCW-13 04.05.2013 FCW   -27.27 0.01 -201.8 0.2 16.4 

559 LD13-FCW-14 04.05.2013 FCW   -25.44 0.03 -183.7 0.4 19.8 

560 LD13-FCS-1 04.05.2013 FCS   -25.52 0.01 -192.6 0.5 11.6 

561 LD13-FCS-2 04.05.2013 FCS   -25.63 0.04 -193.9 0.4 11.2 

562 LD13-FCS-3 04.05.2013 FCS   -26.83 0.01 -204.9 0.2 9.7 

563 LD13-FCS-4 04.05.2013 FCS   -27.13 0.02 -206.7 0.4 10.3 

564 LD13-FCS-5 04.05.2013 FCS   -25.76 0.02 -191.2 0.4 14.8 

565 LD13-FCS-6 04.05.2013 FCS   -25.69 0.01 -191.6 0.4 14.0 

566 LD13-FCS-7 04.05.2013 FCS   -29.19 0.02 -213.7 0.2 19.8 

567 LD13-FCD-1 04.05.2013 FCD   -24.02 0.05 -174.20 0.40 18.00 

568 LD13-FCD-2 04.05.2013 FCD   -25.15 0.04 -178.90 0.20 22.30 

569 LD13-FCD-3 04.05.2013 FCD   -23.38 0.05 -172.10 0.20 15.00 

570 LD13-FCD-4 04.05.2013 FCD   -24.97 0.04 -179.80 0.20 20.00 

571 LD13-FCD-5 04.05.2013 FCD   -22.97 0.05 -164.40 0.30 19.40 

572 LD13-FCD-6 04.05.2013 FCD   -23.90 0.01 -178.80 0.20 12.50 

573 LD13-FCD-7 04.05.2013 FCD   -26.43 0.03 -190.00 0.40 21.40 

574 LD13-FCD-8 04.05.2013 FCD   -23.59 0.02 -174.20 0.20 14.50 

575 LD13-FCC-1 04.05.2013 FCC   -26.76 0.03 -205.8 0.4 8.3 

576 LD13-FCI-1 04.05.2013 FCI   -25.38 0.03 -189.2 0.4 13.8 

577 LD13-FCI-2 04.05.2013 FCI   -24.21 0.04 -180.3 0.3 13.4 

578 LD13-FCI-3 04.05.2013 FCI   -23.62 0.05 -174.9 0.1 14.1 

580 LD13-FCI-5 05.05.2013 FCI   -20.27 0.04 -146.7 0.3 15.4 

582 LD13-FCI-7 05.05.2013 FCI   -25.01 0.06 -186.3 0.2 13.8 

583 LD13-FCS-8 05.05.2013 FCS   -24.81 0.02 -185.3 0.4 13.1 

604 LD13-FCW-15 06.05.2013 FCW   -25.17 0.03 -186.7 0.3 14.6 

605 LD13-FCW-16 06.05.2013 FCW   -24.31 0.02 -180.4 0.1 14.1 

606 LD13-FCW-17 06.05.2013 FCW   -23.72 0.03 -177.3 0.3 12.5 

607 LD13-FCW-18 06.05.2013 FCW   -23.81 0.00 -176.9 0.3 13.6 

608 LD13-FCW-19 06.05.2013 FCW   -25.23 0.02 -186.0 0.4 15.8 

609 LD13-FCS-9 06.05.2013 FCS   -24.79 0.02 -183.1 0.2 15.2 

610 LD13-FCD-9 06.05.2013 FCD   -23.92 0.04 -175.50 0.30 15.90 

 



 

XVII 
 

App. 2 δ18O depth profiles for different sample sites at different ice-wedge polygons 

Snow profile LD13-SP7 

 

Snow profile LD13-SP8 

  



 

XVIII 
 

Snow profile LD13-SP21 

App. 3 Weather data from Samoylov Island for 2012 and 2013 (Source: Samoylov Island weather Station) 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

01.01.2012 -20.55 -23.17 -18.35 4.25 197 0.00 0.071 

02.01.2012 -24.78 -28.18 -21.36 3.42 215 0.00 0.082 

03.01.2012 -27.30 -32.13 -23.95 3.92 188 0.00 0.084 

04.01.2012 -30.13 -32.21 -27.30 4.83 153 0.00 0.076 

05.01.2012 -33.27 -36.33 -27.18 1.90 331 0.00 0.066 

06.01.2012 -37.12 -38.65 -35.54 1.07 265 0.00 0.065 

07.01.2012 -35.56 -36.64 -34.57 1.51 174 0.00 0.060 

08.01.2012 -35.70 -36.44 -34.88 2.07 173 0.00 0.056 

09.01.2012 -32.57 -34.77 -31.56 6.67 169 0.00 0.061 

10.01.2012 -30.61 -32.14 -28.46 8.50 175 0.00 0.090 

11.01.2012 -31.65 -33.52 -30.56 4.80 211 0.00 0.097 

12.01.2012 -34.90 -35.75 -33.34 2.59 212 0.00 0.094 

13.01.2012 -37.38 -39.59 -35.58 1.93 148 0.00 0.091 

14.01.2012 -37.96 -39.71 -35.69 2.16 354 0.00 0.092 

15.01.2012 -36.88 -37.58 -35.38 1.14 307 0.00 0.090 

16.01.2012 -32.20 -37.58 -27.68 1.80 108 0.00 0.094 

17.01.2012 -33.54 -36.62 -30.72 2.45 309 0.00 0.093 

18.01.2012 -22.74 -30.29 -18.56 4.72 351 0.00 0.102 

19.01.2012 -29.05 -30.55 -24.59 10.06 193 0.00 0.097 

20.01.2012 -27.76 -29.55 -26.36 7.69 193 0.00 0.098 

21.01.2012 -30.92 -31.61 -29.71 6.59 165 0.00 0.097 

22.01.2012 -28.68 -31.46 -27.18 4.59 177 0.00 0.099 

23.01.2012 -29.70 -31.25 -27.38 6.26 191 0.00 0.098 

24.01.2012 -33.07 -35.62 -29.86 3.13 163 0.00 0.095 



 

XIX 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

25.01.2012 -34.92 -36.17 -33.99 1.45 189 0.00 0.096 

26.01.2012 -35.72 -36.63 -34.13 1.75 158 0.00 0.094 

27.01.2012 -35.71 -36.86 -34.65 1.71 156 0.00 0.092 

28.01.2012 -32.04 -36.97 -26.79 1.77 178 0.00 0.096 

29.01.2012 -27.22 -32.23 -21.83 3.42 230 0.00 0.101 

30.01.2012 -17.85 -22.22 -15.46 9.19 262 0.00 0.104 

31.01.2012 -14.82 -17.66 -13.58 7.04 232 0.00 0.117 

01.02.2012 -13.69 -14.83 -12.34 6.84 263 0.00 0.126 

02.02.2012 -18.22 -26.07 -14.60 5.29 252 0.00 0.102 

03.02.2012 -26.19 -31.53 -21.60 3.00 77 0.00 0.096 

04.02.2012 -25.86 -30.92 -23.01 3.50 283 0.00 0.098 

05.02.2012 -21.32 -27.20 -16.47 4.97 186 0.00 0.119 

06.02.2012 -22.61 -27.62 -18.58 5.82 185 0.00 0.115 

07.02.2012 -33.99 -39.68 -28.36 3.09 35 0.00 0.092 

08.02.2012 -33.50 -39.72 -28.16 4.55 300 0.00 0.093 

09.02.2012 -22.97 -27.45 -20.75 7.24 284 0.00 0.103 

10.02.2012 -23.88 -25.21 -22.48 7.05 230 0.00 0.101 

11.02.2012 -24.73 -26.35 -22.97 8.38 186 0.00 0.100 

12.02.2012 -24.56 -26.86 -23.36 7.16 178 0.00 0.100 

13.02.2012 -25.17 -27.01 -23.35 5.16 180 0.00 0.101 

14.02.2012 -25.99 -27.59 -24.49 6.16 175 0.00 0.100 

15.02.2012 -16.71 -25.63 -13.83 7.76 243 0.00 0.109 

16.02.2012 -18.93 -25.21 -14.76 5.19 279 0.00 0.103 

17.02.2012 -24.25 -25.97 -21.74 3.66 273 0.00 0.099 

18.02.2012 -28.16 -33.14 -25.20 2.88 265 0.00 0.096 

19.02.2012 -32.40 -33.73 -30.41 3.26 160 0.00 0.095 

20.02.2012 -33.94 -35.01 -32.53 4.42 147 0.00 0.094 

21.02.2012 -35.27 -37.06 -33.14 2.03 106 0.00 0.093 

22.02.2012 -34.30 -36.11 -31.25 1.61 86 0.00 0.094 

23.02.2012 -33.36 -35.36 -31.60 1.50 90 0.00 0.096 

24.02.2012 -33.62 -36.09 -30.40 3.19 92 0.00 0.095 

25.02.2012 -38.05 -39.73 -34.99 2.28 125 0.00 0.091 

26.02.2012 -38.38 -39.66 -37.11 3.01 138 0.00 0.092 

27.02.2012 -38.98 -39.73 -37.03 0.69 86 0.00 0.089 

28.02.2012 -39.22 -39.73 -38.13 0.42 76 0.00 0.089 

29.02.2012 -39.05 -39.73 -38.29 0.22 69 0.00 0.089 

01.03.2012 -36.77 -39.36 -35.06 0.19 79 0.00 0.092 

02.03.2012 -35.27 -37.93 -31.39 0.31 74 0.00 0.091 

03.03.2012 -35.85 -37.57 -33.80 2.66 146 0.00 0.091 

04.03.2012 -37.14 -38.89 -34.70 1.00 93 0.00 0.088 

05.03.2012 -36.63 -38.73 -34.25 3.35 179 0.00 0.089 

06.03.2012 -27.76 -33.96 -25.20 6.35 178 0.00 0.102 

07.03.2012 -21.73 -25.93 -18.57 8.89 225 0.00 0.104 



 

XX 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

08.03.2012 -19.33 -22.63 -17.24 7.16 292 0.00 0.103 

09.03.2012 -29.24 -33.46 -23.47 7.07 332 0.00 0.095 

10.03.2012 -33.53 -37.40 -28.85 3.36 6 0.00 0.094 

11.03.2012 -33.33 -39.23 -28.16 2.75 332 0.00 0.095 

12.03.2012 -37.70 -39.39 -34.32 0.76 35 0.00 0.090 

13.03.2012 -38.37 -39.73 -34.52 0.74 322 0.00 0.089 

14.03.2012 -38.66 -39.73 -34.24 0.38 198 0.00 0.087 

15.03.2012 -38.39 -39.73 -33.70 NaN NaN 0.00 0.087 

16.03.2012 -33.16 -38.99 -30.13 7.41 165 0.00 0.098 

17.03.2012 -30.66 -33.67 -27.24 4.11 158 0.00 0.097 

18.03.2012 -28.77 -33.05 -25.85 4.89 165 0.00 0.099 

19.03.2012 -23.10 -25.56 -21.43 6.77 160 0.00 0.103 

20.03.2012 -22.10 -29.37 -16.64 3.28 102 0.00 0.101 

21.03.2012 -29.40 -33.75 -22.94 2.04 35 0.00 0.093 

22.03.2012 -29.42 -32.92 -25.04 3.43 335 0.00 0.097 

23.03.2012 -29.51 -35.82 -24.17 1.94 11 0.00 0.100 

24.03.2012 -29.17 -33.86 -26.53 3.68 166 0.00 0.102 

25.03.2012 -27.16 -31.86 -23.24 3.21 93 0.00 0.122 

26.03.2012 -28.98 -31.48 -27.29 3.60 78 0.00 0.124 

27.03.2012 -27.60 -29.59 -25.09 4.52 70 0.00 0.122 

28.03.2012 -29.30 -35.43 -24.69 3.51 30 0.00 0.114 

29.03.2012 -30.53 -33.86 -25.63 1.72 232 0.00 0.112 

30.03.2012 -26.50 -31.95 -24.01 2.73 139 0.00 0.116 

31.03.2012 -23.98 -28.57 -19.77 3.17 144 0.00 0.116 

01.04.2012 -19.79 -25.84 -15.59 1.72 96 0.00 0.119 

02.04.2012 -21.10 -28.08 -14.91 3.79 66 0.00 0.112 

03.04.2012 -23.94 -27.13 -21.14 2.88 59 0.00 0.110 

04.04.2012 -19.89 -24.37 -14.23 4.45 124 0.00 0.105 

05.04.2012 -17.96 -23.57 -12.50 4.42 147 0.00 0.104 

06.04.2012 -19.48 -24.33 -14.16 2.66 140 0.00 0.100 

07.04.2012 -18.43 -21.26 -14.16 3.33 92 0.00 0.102 

08.04.2012 -21.01 -25.43 -17.63 3.99 55 0.00 0.101 

09.04.2012 -21.26 -26.05 -15.93 2.16 310 0.00 0.103 

10.04.2012 -25.50 -30.19 -19.48 1.32 318 0.00 0.097 

11.04.2012 -25.86 -29.34 -22.83 1.28 262 0.00 0.089 

12.04.2012 -20.78 -24.79 -12.96 1.93 47 0.00 0.097 

13.04.2012 -20.06 -23.41 -16.85 3.67 321 0.00 0.121 

14.04.2012 -18.80 -24.63 -14.17 2.41 209 0.00 0.164 

15.04.2012 -18.04 -23.95 -10.67 2.38 62 0.00 0.163 

16.04.2012 -18.25 -21.37 -15.52 2.75 339 0.00 0.159 

17.04.2012 -15.20 -20.56 -9.79 5.73 323 0.00 0.157 

18.04.2012 -18.55 -21.38 -16.11 4.91 269 0.00 0.104 

19.04.2012 -20.60 -27.14 -15.80 2.87 224 0.00 0.098 



 

XXI 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

20.04.2012 -19.36 -24.27 -14.64 1.86 104 0.00 0.100 

21.04.2012 -15.40 -18.35 -13.19 5.58 82 0.00 0.108 

22.04.2012 -12.90 -15.42 -11.10 5.46 99 0.00 0.131 

23.04.2012 -16.13 -21.13 -11.04 3.69 103 0.00 0.165 

24.04.2012 -14.20 -15.72 -12.72 5.37 96 0.00 0.165 

25.04.2012 -16.13 -19.37 -14.01 5.55 74 0.00 0.155 

26.04.2012 -15.24 -17.13 -14.58 4.57 67 0.00 0.157 

27.04.2012 -14.54 -17.67 -12.21 3.16 33 0.00 0.152 

28.04.2012 -17.88 -23.09 -14.31 3.31 22 0.00 0.162 

29.04.2012 -21.49 -28.76 -15.42 2.58 7 0.00 0.159 

30.04.2012 -21.80 -27.78 -17.68 2.63 23 0.00 0.152 

01.05.2012 -20.86 -24.51 -18.82 3.69 62 0.00 0.152 

02.05.2012 -20.42 -25.41 -16.92 3.52 70 0.00 0.152 

03.05.2012 -18.13 -22.74 -14.40 3.47 111 0.00 0.153 

04.05.2012 -4.62 -13.58 -0.75 6.04 163 0.00 0.170 

05.05.2012 1.85 -1.08 3.09 7.85 181 0.00 0.161 

06.05.2012 3.98 2.36 5.71 5.83 201 0.00 0.114 

07.05.2012 2.34 -2.48 4.87 4.14 218 0.00 0.044 

08.05.2012 -4.92 -7.38 -2.93 4.14 317 0.00 0.035 

09.05.2012 -7.28 -8.23 -5.62 5.02 26 0.00 0.038 

10.05.2012 -6.48 -7.29 -5.99 5.65 81 0.00 0.055 

11.05.2012 -7.33 -10.41 -5.41 5.21 54 0.00 0.053 

12.05.2012 -7.46 -10.69 -5.03 2.69 95 0.00 0.050 

13.05.2012 -3.26 -4.92 -1.20 6.70 123 0.00 0.056 

14.05.2012 -4.12 -8.03 -0.50 8.50 111 0.00 0.051 

15.05.2012 -5.21 -6.69 -3.92 11.13 86 0.00 0.058 

16.05.2012 -5.67 -6.82 -4.72 6.16 5 0.00 0.066 

17.05.2012 -6.12 -7.41 -5.07 4.46 272 0.00 0.066 

18.05.2012 -4.92 -5.62 -4.23 2.21 92 0.00 0.065 

19.05.2012 -5.47 -8.26 -1.69 2.90 185 0.00 0.072 

20.05.2012 -4.17 -8.76 0.94 1.44 271 0.00 0.076 

21.05.2012 -4.73 -6.47 -3.18 3.69 168 0.00 0.077 

22.05.2012 -0.78 -3.99 0.63 4.30 152 0.00 0.086 

23.05.2012 1.73 0.02 3.32 2.22 133 0.00 0.060 

24.05.2012 3.69 1.51 5.60 2.92 124 0.00 0.064 

25.05.2012 5.87 3.13 9.33 5.21 154 0.00 0.058 

26.05.2012 6.03 1.95 11.08 5.64 194 0.00 0.042 

27.05.2012 3.41 1.33 5.78 3.38 186 0.00 0.025 

28.05.2012 3.94 -0.30 7.88 3.75 207 0.00 0.014 

29.05.2012 4.71 0.91 6.56 5.57 241 0.00 0.006 

30.05.2012 7.87 3.10 11.54 3.17 195 0.00 -0.004 

31.05.2012 8.26 1.17 15.81 4.34 279 0.00 -0.013 

01.06.2012 3.33 0.17 4.85 6.54 288 0.00 -0.012 



 

XXII 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

02.06.2012 0.50 -0.44 1.55 8.70 311 0.00 -0.009 

03.06.2012 1.14 -0.08 2.02 5.00 327 0.00 -0.009 

04.06.2012 2.61 1.13 4.31 3.58 58 0.00 -0.012 

05.06.2012 1.40 -0.72 3.46 6.13 65 0.00 -0.011 

06.06.2012 1.25 0.47 2.56 4.23 327 0.00 -0.010 

07.06.2012 5.30 2.82 7.07 4.91 171 0.00 -0.012 

08.06.2012 5.34 2.68 7.32 5.07 227 0.00 -0.009 

09.06.2012 8.13 5.00 9.92 3.88 85 0.00 -0.009 

10.06.2012 12.10 9.69 15.84 3.12 129 0.00 -0.007 

11.06.2012 12.93 9.27 17.68 3.26 55 0.00 -0.009 

12.06.2012 11.24 8.87 14.22 4.83 71 0.00 -0.009 

13.06.2012 15.98 12.11 19.98 2.74 110 0.00 -0.012 

14.06.2012 18.46 14.07 21.81 2.00 86 0.00 -0.014 

15.06.2012 9.62 2.45 24.42 4.91 39 0.00 -0.011 

16.06.2012 5.69 3.38 8.67 3.99 106 0.00 -0.010 

17.06.2012 8.52 5.12 10.94 1.71 104 0.00 -0.007 

18.06.2012 6.83 2.40 13.40 5.10 341 0.00 -0.006 

19.06.2012 3.34 1.80 4.88 5.18 3 0.00 -0.004 

20.06.2012 4.05 1.63 6.50 4.88 332 0.00 -0.005 

21.06.2012 3.91 1.95 6.04 3.97 331 0.00 -0.006 

22.06.2012 7.35 3.71 11.56 2.00 319 0.00 -0.012 

23.06.2012 15.60 12.30 18.42 3.56 241 0.00 -0.009 

24.06.2012 14.41 7.70 20.12 5.87 253 0.00 -0.003 

25.06.2012 8.24 6.51 10.48 4.67 279 0.00 -0.004 

26.06.2012 11.56 8.36 14.81 3.53 139 0.00 0.001 

27.06.2012 7.59 2.88 15.88 5.15 358 0.00 -0.005 

28.06.2012 4.49 2.78 7.20 4.24 16 0.00 -0.002 

29.06.2012 9.38 3.71 14.52 4.90 275 0.00 -0.004 

30.06.2012 3.01 1.65 4.45 6.72 314 0.00 -0.005 

01.07.2012 13.39 3.43 17.83 2.82 220 0.00 0.000 

02.07.2012 7.32 4.32 14.31 6.26 300 0.00 -0.002 

03.07.2012 5.02 2.94 7.30 3.79 359 0.00 -0.002 

04.07.2012 6.31 4.47 7.85 3.64 46 0.00 -0.002 

05.07.2012 4.67 2.69 6.39 4.89 340 0.00 -0.003 

06.07.2012 4.13 2.92 5.32 3.65 300 0.00 -0.005 

07.07.2012 9.41 4.79 16.03 2.74 164 0.00 -0.006 

08.07.2012 15.24 12.30 17.12 6.34 165 0.00 0.005 

09.07.2012 14.90 11.72 18.93 4.28 223 0.00 0.000 

10.07.2012 16.33 13.11 19.96 2.74 4 0.00 -0.004 

11.07.2012 17.91 15.72 22.27 5.10 158 0.00 -0.002 

12.07.2012 12.46 10.26 15.16 4.01 259 0.00 0.000 

13.07.2012 16.54 13.28 19.98 4.48 199 0.00 -0.002 

14.07.2012 11.25 4.58 16.38 5.73 241 0.00 -0.002 



 

XXIII 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

15.07.2012 7.56 5.41 10.14 5.52 274 0.00 -0.001 

16.07.2012 10.63 -31.36 13.83 3.39 268 0.00 -0.001 

17.07.2012 17.55 13.66 21.08 3.83 220 0.00 -0.002 

18.07.2012 13.58 5.02 23.68 5.13 243 0.00 -0.005 

19.07.2012 9.17 5.82 10.96 3.22 NaN 0.00 -0.007 

20.07.2012 10.39 8.28 13.42 4.09 NaN 0.00 -0.005 

21.07.2012 7.96 3.25 14.38 4.57 NaN 0.00 -0.006 

22.07.2012 8.60 3.92 13.14 3.02 NaN 0.00 -0.005 

23.07.2012 15.72 10.98 21.22 4.44 NaN 0.00 -0.001 

24.07.2012 13.86 11.38 16.31 2.77 NaN 0.00 -0.008 

25.07.2012 15.87 13.13 19.10 3.58 NaN 0.00 -0.006 

26.07.2012 11.75 6.12 24.87 6.03 NaN 0.00 -0.011 

27.07.2012 7.90 6.86 9.19 3.20 NaN 0.00 -0.006 

28.07.2012 14.65 8.16 17.77 5.42 NaN 0.00 -0.003 

29.07.2012 14.94 10.59 20.84 4.00 NaN 0.00 -0.005 

30.07.2012 12.63 9.44 16.26 4.50 NaN 0.00 -0.008 

31.07.2012 8.83 7.89 9.87 4.94 NaN 0.00 -0.012 

01.08.2012 13.35 10.37 16.18 3.92 NaN 0.00 -0.009 

02.08.2012 9.97 7.84 12.04 3.77 NaN 0.00 -0.009 

03.08.2012 10.77 4.97 16.42 3.84 NaN 0.00 -0.007 

04.08.2012 4.70 4.30 5.39 5.10 NaN 0.00 -0.010 

05.08.2012 7.39 5.66 8.93 4.60 NaN 0.00 -0.006 

06.08.2012 10.46 8.56 11.89 2.50 NaN 0.00 -0.009 

07.08.2012 12.94 8.65 15.99 2.15 NaN 0.00 -0.010 

08.08.2012 16.57 11.53 21.75 3.14 NaN 0.00 -0.007 

09.08.2012 16.54 11.06 22.26 2.58 NaN 0.00 -0.004 

10.08.2012 17.89 14.64 21.94 3.66 NaN 0.00 -0.006 

11.08.2012 15.05 9.48 23.02 4.00 NaN 0.00 -0.006 

12.08.2012 9.01 8.07 10.40 4.16 NaN 0.00 -0.009 

13.08.2012 9.61 5.03 12.42 2.46 NaN 0.00 -0.012 

14.08.2012 10.57 7.57 13.53 3.17 NaN 0.00 -0.011 

15.08.2012 9.30 8.07 10.60 5.67 NaN 0.00 -0.007 

16.08.2012 9.70 8.61 11.05 5.73 NaN 0.00 -0.009 

17.08.2012 9.56 8.98 10.46 6.24 NaN 0.00 -0.013 

18.08.2012 9.62 8.94 10.95 5.34 NaN 0.00 -0.015 

19.08.2012 9.86 8.57 11.42 4.32 NaN 0.00 -0.018 

20.08.2012 9.04 7.78 11.02 3.21 NaN 0.00 -0.007 

21.08.2012 6.59 5.76 8.06 5.75 NaN 0.00 -0.009 

22.08.2012 5.42 4.71 6.71 6.32 NaN 0.00 -0.015 

23.08.2012 5.31 3.04 6.66 2.85 NaN 0.00 -0.011 

24.08.2012 7.31 5.52 8.44 1.07 NaN 0.00 -0.011 

25.08.2012 8.46 6.64 10.04 1.72 NaN 0.00 -0.012 

26.08.2012 7.69 5.13 9.79 2.67 NaN 0.00 -0.011 



 

XXIV 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

27.08.2012 6.93 5.49 8.61 2.99 NaN 0.00 -0.007 

28.08.2012 6.56 5.68 7.51 3.55 NaN 0.00 -0.010 

29.08.2012 4.96 3.61 6.77 4.86 NaN 0.00 -0.014 

30.08.2012 4.94 4.02 5.91 4.42 NaN 0.00 -0.011 

31.08.2012 4.34 2.23 6.84 4.00 25 0.00 -0.013 

01.09.2012 3.80 1.93 6.31 2.58 316 0.00 -0.009 

02.09.2012 4.87 2.89 6.71 2.38 248 0.00 -0.008 

03.09.2012 6.20 2.29 9.72 1.96 159 0.00 -0.011 

04.09.2012 6.66 4.96 9.20 4.73 303 0.00 -0.010 

05.09.2012 5.17 2.89 8.53 3.50 358 0.00 -0.010 

06.09.2012 5.06 2.94 7.07 1.63 178 0.00 -0.009 

07.09.2012 5.35 3.26 8.60 2.42 102 0.00 -0.013 

08.09.2012 4.19 3.31 4.91 3.38 101 0.00 -0.007 

09.09.2012 4.47 3.19 5.57 5.43 113 0.00 -0.009 

10.09.2012 4.23 3.13 5.27 7.37 123 0.00 -0.007 

11.09.2012 4.52 2.47 6.78 7.58 120 0.00 -0.006 

12.09.2012 3.02 1.24 5.22 8.39 99 0.00 -0.006 

13.09.2012 1.54 0.55 2.50 7.63 98 0.00 -0.005 

14.09.2012 2.07 0.69 3.49 6.72 94 0.00 -0.007 

15.09.2012 2.05 -0.32 4.75 4.25 66 0.00 -0.006 

16.09.2012 1.78 -0.71 4.15 3.13 92 0.00 -0.009 

17.09.2012 1.92 -0.19 4.49 2.79 48 0.00 -0.010 

18.09.2012 1.49 0.05 3.21 4.16 96 0.00 -0.010 

19.09.2012 0.84 -1.47 3.46 4.06 99 0.00 -0.013 

20.09.2012 0.60 -3.16 4.22 3.08 139 0.00 -0.013 

21.09.2012 3.82 -0.60 5.16 3.77 259 0.00 -0.007 

22.09.2012 5.36 3.70 6.85 5.34 269 0.00 -0.013 

23.09.2012 5.78 2.89 7.21 3.57 239 0.00 -0.014 

24.09.2012 5.65 2.62 7.75 3.22 214 0.00 -0.006 

25.09.2012 3.37 0.61 6.79 2.19 129 0.00 -0.010 

26.09.2012 4.35 2.28 5.36 2.14 128 0.00 -0.012 

27.09.2012 4.83 2.90 6.52 1.46 29 0.00 -0.021 

28.09.2012 2.69 0.67 4.44 2.95 217 0.00 -0.023 

29.09.2012 -0.24 -1.84 1.41 3.79 281 0.00 -0.016 

30.09.2012 0.54 -1.27 1.65 5.61 182 0.00 -0.013 

01.10.2012 -0.10 -0.79 0.62 2.64 320 0.00 -0.016 

02.10.2012 -0.04 -1.37 1.40 4.70 325 0.00 -0.011 

03.10.2012 -3.69 -5.59 -0.94 5.48 280 0.00 0.005 

04.10.2012 -6.02 -8.12 -4.66 3.27 257 0.00 0.021 

05.10.2012 -5.58 -7.37 -4.37 3.84 230 0.00 0.017 

06.10.2012 -3.98 -5.80 -2.44 4.10 234 0.00 NaN 

07.10.2012 -5.97 -7.96 -3.72 4.88 190 0.00 0.016 

08.10.2012 -7.88 -9.78 -4.52 4.03 177 0.00 0.000 



 

XXV 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

09.10.2012 -5.56 -7.61 -4.62 4.57 198 0.00 NaN 

10.10.2012 -6.26 -10.91 -4.01 1.87 187 0.00 NaN 

11.10.2012 -5.61 -8.51 -2.75 1.49 169 0.00 NaN 

12.10.2012 -2.82 -4.42 -1.57 3.16 8 0.00 NaN 

13.10.2012 -6.88 -7.96 -4.16 6.82 256 0.00 0.049 

14.10.2012 -9.55 -11.61 -7.52 5.41 229 0.00 0.054 

15.10.2012 -8.18 -9.79 -7.44 3.01 247 0.00 0.055 

16.10.2012 -11.55 -13.30 -9.57 1.97 251 0.00 0.051 

17.10.2012 -10.84 -12.27 -9.89 4.22 270 0.00 0.052 

18.10.2012 -9.89 -11.70 -8.66 4.65 268 0.00 0.057 

19.10.2012 -11.06 -15.81 -7.65 5.43 256 0.00 0.063 

20.10.2012 -16.11 -17.31 -14.96 3.31 237 0.00 0.065 

21.10.2012 -18.34 -20.97 -14.59 1.61 226 0.00 0.058 

22.10.2012 -16.78 -20.56 -14.12 1.06 294 0.00 0.062 

23.10.2012 -17.34 -21.52 -12.57 1.34 17 0.00 0.074 

24.10.2012 -17.86 -21.65 -13.34 3.79 81 0.00 0.077 

25.10.2012 -16.01 -19.66 -13.49 2.52 74 0.00 0.082 

26.10.2012 -14.63 -16.23 -12.09 1.70 18 0.00 NaN 

27.10.2012 -11.64 -13.01 -9.81 1.52 331 0.00 0.091 

28.10.2012 -19.79 -24.99 -12.59 1.15 79 0.00 0.090 

29.10.2012 -22.03 -25.63 -18.31 3.01 154 0.00 0.091 

30.10.2012 -17.74 -18.86 -16.97 7.36 175 0.00 0.087 

31.10.2012 -13.61 -17.71 -10.99 2.60 127 0.00 0.084 

01.11.2012 -9.20 -12.95 -1.72 3.73 167 0.00 0.083 

02.11.2012 -9.06 -12.71 -7.26 6.43 188 0.00 0.080 

03.11.2012 -16.39 -18.73 -12.91 6.43 198 0.00 0.079 

04.11.2012 -19.61 -20.90 -18.37 2.55 231 0.00 0.088 

05.11.2012 -20.27 -21.19 -18.66 5.59 235 0.00 0.096 

06.11.2012 -16.60 -19.56 -11.49 6.26 203 0.00 0.084 

07.11.2012 -6.63 -11.19 -2.82 8.66 259 0.00 0.091 

08.11.2012 -11.58 -12.67 -10.39 8.78 256 0.00 0.091 

09.11.2012 -13.43 -16.99 -10.01 3.85 255 0.00 0.094 

10.11.2012 -19.07 -20.16 -16.83 1.89 160 0.00 0.092 

11.11.2012 -19.76 -21.07 -18.32 2.23 161 0.00 0.091 

12.11.2012 -22.26 -23.96 -20.61 1.56 159 0.00 0.087 

13.11.2012 -24.15 -24.66 -23.44 2.32 177 0.00 0.085 

14.11.2012 -24.83 -25.86 -24.07 1.60 187 0.00 0.085 

15.11.2012 -24.78 -25.82 -23.79 1.20 234 0.00 0.081 

16.11.2012 -21.37 -23.81 -18.35 5.42 253 0.00 0.080 

17.11.2012 -22.32 -23.55 -21.08 6.83 217 0.00 0.088 

18.11.2012 -23.21 -25.41 -22.25 5.82 184 0.00 0.089 

19.11.2012 -25.10 -26.14 -23.61 5.88 168 0.00 0.089 

20.11.2012 -27.19 -29.86 -25.59 1.45 173 0.00 0.086 



 

XXVI 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

21.11.2012 -24.07 -29.15 -21.66 2.05 282 0.00 0.086 

22.11.2012 -26.09 -28.85 -21.68 4.60 194 0.00 0.090 

23.11.2012 -29.83 -31.19 -28.77 3.92 161 0.00 0.087 

24.11.2012 -26.80 -31.15 -24.22 2.45 235 0.00 0.089 

25.11.2012 -25.62 -28.22 -24.55 2.00 195 0.00 0.090 

26.11.2012 -17.48 -24.34 -11.29 3.46 354 0.00 0.086 

27.11.2012 -12.24 -13.29 -11.28 4.05 25 0.00 0.097 

28.11.2012 -19.48 -24.02 -12.42 3.53 89 0.00 0.114 

29.11.2012 -20.47 -26.95 -9.81 6.58 207 0.00 0.114 

30.11.2012 -28.92 -30.64 -26.62 7.32 186 0.00 0.103 

01.12.2012 -31.61 -33.75 -29.20 2.91 184 0.00 0.085 

02.12.2012 -29.37 -32.41 -28.13 3.48 240 0.00 0.090 

03.12.2012 -31.85 -33.35 -30.72 5.30 168 0.00 0.088 

04.12.2012 -33.90 -36.87 -30.16 2.01 158 0.00 0.083 

05.12.2012 -34.06 -35.99 -32.46 1.25 263 0.00 0.083 

06.12.2012 -33.05 -35.16 -30.66 2.53 319 0.00 0.084 

07.12.2012 -29.40 -30.53 -28.02 1.78 290 0.00 0.087 

08.12.2012 -28.79 -30.68 -27.08 3.07 191 0.00 0.087 

09.12.2012 -28.58 -31.13 -26.86 3.46 251 0.00 0.094 

10.12.2012 -29.98 -32.16 -27.83 2.14 236 0.00 0.097 

11.12.2012 -26.22 -30.05 -24.53 3.23 223 0.00 0.101 

12.12.2012 -28.48 -31.65 -25.02 3.53 167 0.00 0.099 

13.12.2012 -16.68 -30.63 -6.47 7.58 256 0.00 0.108 

14.12.2012 -16.83 -21.25 -9.06 4.05 211 0.00 0.091 

15.12.2012 -26.05 -32.56 -15.25 6.18 29 0.00 0.097 

16.12.2012 -24.86 -30.97 -19.15 7.31 243 0.00 0.106 

17.12.2012 -17.02 -19.99 -13.44 9.41 211 0.00 0.093 

18.12.2012 -26.09 -31.88 -19.29 6.38 297 0.00 0.088 

19.12.2012 -33.43 -35.67 -30.23 3.72 261 0.00 0.092 

20.12.2012 -36.03 -37.24 -35.02 6.38 175 0.00 0.092 

21.12.2012 -33.86 -35.51 -32.30 7.72 154 0.00 0.087 

22.12.2012 -31.42 -36.27 -26.34 6.67 322 0.00 0.089 

23.12.2012 -29.36 -31.80 -25.94 8.86 263 0.00 0.091 

24.12.2012 -33.70 -35.10 -29.64 10.41 166 0.00 0.089 

25.12.2012 -32.79 -35.10 -28.30 2.11 129 0.00 0.089 

26.12.2012 -31.38 -32.91 -30.51 1.46 170 0.00 0.089 

27.12.2012 -32.06 -32.99 -30.80 1.52 10 0.00 0.089 

28.12.2012 -26.09 -31.46 -22.14 2.34 121 0.00 0.095 

29.12.2012 -27.43 -29.29 -23.81 2.24 147 0.00 0.093 

30.12.2012 -29.54 -30.62 -26.61 NaN NaN 0.00 0.092 

31.12.2012 -30.72 -34.62 -27.42 NaN NaN 0.00 0.088 

01.01.2013 -35.16 -36.68 -33.04 0.00 NaN 0.00 0.084 

02.01.2013 -35.03 -37.58 -32.85 0.00 NaN 0.00 0.081 



 

XXVII 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

03.01.2013 -31.84 -34.11 -28.68 0.00 NaN 0.00 0.083 

04.01.2013 -30.29 -33.16 -26.96 0.00 NaN 0.00 0.084 

05.01.2013 -28.57 -30.83 -27.13 0.00 NaN 0.00 0.084 

06.01.2013 -29.30 -31.54 -26.39 0.00 NaN 0.00 0.088 

07.01.2013 -34.88 -36.23 -31.02 7.38 163 0.00 0.084 

08.01.2013 -36.03 -36.60 -35.32 6.73 164 0.00 0.086 

09.01.2013 -37.84 -38.96 -36.23 4.09 166 0.00 0.085 

10.01.2013 -39.27 -39.62 -38.74 5.30 170 0.00 0.085 

11.01.2013 -37.15 -38.80 -35.51 7.68 164 0.00 0.085 

12.01.2013 -38.36 -39.36 -36.21 5.33 156 0.00 0.084 

13.01.2013 -39.24 -39.59 -38.75 4.44 156 0.00 0.084 

14.01.2013 -38.82 -39.56 -37.89 4.62 153 0.00 0.086 

15.01.2013 -38.40 -39.30 -37.70 3.54 166 0.00 0.086 

16.01.2013 -36.83 -39.25 -34.20 4.01 174 0.00 0.086 

17.01.2013 -30.10 -36.57 -22.55 9.07 159 0.00 0.094 

18.01.2013 -24.70 -28.16 -22.39 5.86 164 0.00 0.098 

19.01.2013 -29.86 -33.26 -23.38 1.92 158 0.00 0.092 

20.01.2013 -34.11 -35.64 -31.86 1.54 334 0.00 0.089 

21.01.2013 -32.07 -35.77 -30.10 3.79 47 0.00 0.089 

22.01.2013 -29.12 -32.64 -26.35 5.59 80 0.00 0.094 

23.01.2013 -27.65 -33.62 -22.73 1.89 44 0.00 0.092 

24.01.2013 -34.81 -37.15 -33.15 1.56 18 0.00 0.089 

25.01.2013 -35.07 -37.55 -33.48 3.77 179 0.00 0.089 

26.01.2013 -31.01 -33.84 -28.56 7.00 175 0.00 0.091 

27.01.2013 -29.09 -30.69 -27.49 7.90 166 0.00 0.094 

28.01.2013 -34.48 -37.15 -31.24 1.84 120 0.00 0.090 

29.01.2013 -34.01 -36.19 -32.06 2.18 146 1.00 0.091 

30.01.2013 -33.23 -37.46 -27.11 2.75 179 0.00 0.092 

31.01.2013 -32.94 -36.58 -30.07 3.58 152 0.00 0.092 

01.02.2013 -36.10 -38.57 -33.34 1.79 8 0.00 0.087 

02.02.2013 -39.16 -39.73 -38.11 0.55 160 0.00 0.084 

03.02.2013 -39.70 -39.73 -39.22 1.77 171 0.00 0.084 

04.02.2013 -39.73 -39.73 -39.73 1.79 161 0.00 0.082 

05.02.2013 -39.69 -39.73 -39.46 2.74 162 0.00 0.086 

06.02.2013 -39.71 -39.73 -39.44 1.81 157 0.00 0.087 

07.02.2013 -36.80 -39.15 -35.87 4.02 165 0.00 0.092 

08.02.2013 -38.08 -39.63 -36.42 4.39 165 0.00 0.087 

09.02.2013 -39.67 -39.73 -39.30 1.65 158 0.00 0.086 

10.02.2013 -39.73 -39.73 -39.73 1.71 171 0.00 0.084 

11.02.2013 -39.73 -39.73 -39.73 0.14 175 0.00 0.084 

12.02.2013 -39.73 -39.73 -39.73 1.03 141 0.00 0.086 

13.02.2013 -39.73 -39.73 -39.73 2.08 143 0.00 0.085 

14.02.2013 -39.73 -39.73 -39.73 1.45 140 0.00 0.083 



 

XXVIII 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

15.02.2013 -39.73 -39.73 -39.73 1.24 326 0.00 0.082 

16.02.2013 -39.73 -39.73 -39.73 0.57 139 0.00 0.083 

17.02.2013 -39.62 -39.73 -38.80 1.64 157 0.00 0.088 

18.02.2013 -38.84 -39.73 -37.66 4.60 172 0.00 0.090 

19.02.2013 -39.70 -39.73 -39.28 1.34 65 0.00 0.086 

20.02.2013 -39.73 -39.73 -39.73 1.04 243 0.00 0.086 

21.02.2013 -36.09 -39.73 -32.91 4.80 171 0.00 0.095 

22.02.2013 -33.68 -34.58 -32.25 6.85 163 0.00 0.096 

23.02.2013 -26.18 -32.92 -23.23 9.71 182 0.00 0.101 

24.02.2013 -22.79 -24.59 -20.97 5.30 189 0.00 0.101 

25.02.2013 -27.26 -30.84 -24.10 0.37 21 0.00 0.098 

26.02.2013 -28.31 -30.36 -26.51 2.26 100 0.00 0.100 

27.02.2013 -29.05 -36.10 -23.95 2.48 192 0.00 0.100 

28.02.2013 -32.45 -36.38 -29.32 3.46 175 0.00 0.101 

01.03.2013 -23.69 -28.81 -22.08 3.84 203 0.00 0.109 

02.03.2013 -18.66 -22.22 -16.85 6.93 183 0.00 0.107 

03.03.2013 -26.45 -33.95 -19.37 1.53 304 0.00 0.102 

04.03.2013 -33.33 -37.27 -28.29 0.68 22 0.00 0.102 

05.03.2013 -35.78 -39.33 -32.54 1.54 93 0.00 0.101 

06.03.2013 -38.84 -39.73 -36.71 1.41 298 0.00 0.096 

07.03.2013 -39.15 -39.73 -37.29 1.47 157 0.00 0.097 

08.03.2013 -38.44 -39.73 -36.18 0.06 164 0.00 0.099 

09.03.2013 -39.15 -39.73 -37.85 0.00 NaN 0.00 0.096 

10.03.2013 -38.75 -39.73 -35.27 0.00 NaN 0.00 0.096 

11.03.2013 -38.40 -39.73 -34.34 0.00 NaN 0.00 0.098 

12.03.2013 -31.86 -38.97 -28.79 1.38 297 0.00 0.104 

13.03.2013 -29.40 -32.68 -27.37 3.45 268 0.00 0.101 

14.03.2013 -32.72 -35.84 -28.23 0.86 204 0.00 0.096 

15.03.2013 -35.48 -39.51 -31.16 1.50 99 0.00 0.111 

16.03.2013 -29.23 -36.48 -21.28 5.20 354 0.00 0.106 

17.03.2013 -21.75 -26.51 -19.51 3.41 37 0.00 0.103 

18.03.2013 -26.76 -31.62 -24.14 2.64 52 0.00 0.100 

19.03.2013 -32.00 -36.83 -27.57 2.44 79 0.00 0.100 

20.03.2013 -32.61 -36.60 -29.27 2.65 65 0.00 0.104 

21.03.2013 -24.48 -28.63 -21.46 5.89 82 0.00 0.105 

22.03.2013 -23.45 -26.47 -21.30 4.89 75 0.00 0.101 

23.03.2013 -24.15 -27.59 -21.60 5.70 89 0.00 0.100 

24.03.2013 -28.06 -33.41 -24.22 2.81 103 0.00 0.095 

25.03.2013 -29.12 -31.49 -26.09 1.63 152 0.00 0.096 

26.03.2013 -29.45 -32.42 -24.78 2.13 321 0.00 0.095 

27.03.2013 -30.37 -33.16 -26.18 2.25 305 0.00 0.094 

28.03.2013 -30.83 -33.77 -27.08 1.78 302 0.00 0.093 

29.03.2013 -28.11 -31.54 -24.56 3.31 320 0.00 0.096 



 

XXIX 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

30.03.2013 -28.56 -31.73 -25.71 4.01 334 0.00 0.095 

31.03.2013 -30.72 -35.16 -26.26 2.59 344 0.00 0.093 

01.04.2013 -24.64 -30.57 -21.79 5.12 15 0.00 0.108 

02.04.2013 -23.60 -30.94 -19.57 3.85 50 0.00 0.111 

03.04.2013 -29.78 -34.86 -24.30 2.66 106 0.00 0.107 

04.04.2013 -25.04 -28.45 -20.57 4.08 160 0.00 0.115 

05.04.2013 -17.11 -20.94 -13.55 6.04 166 0.00 0.121 

06.04.2013 -15.19 -21.51 -9.81 4.13 151 0.00 0.116 

07.04.2013 -21.28 -27.87 -13.68 1.86 29 0.00 0.108 

08.04.2013 -20.50 -25.36 -14.50 2.48 139 0.00 0.114 

09.04.2013 -9.51 -15.26 -4.31 7.66 219 0.00 0.127 

10.04.2013 -15.43 -17.84 -13.85 6.31 226 0.00 0.118 

11.04.2013 -7.46 -14.80 -4.25 8.91 167 0.00 0.127 

12.04.2013 -9.32 -15.36 -0.86 5.84 302 0.00 0.111 

13.04.2013 -13.98 -17.27 -9.85 4.69 278 0.00 0.105 

14.04.2013 -17.66 -23.48 -13.68 1.86 308 0.00 0.111 

15.04.2013 -16.86 -21.55 -12.57 2.69 356 0.00 0.104 

16.04.2013 -19.29 -22.95 -15.08 2.87 167 0.00 0.102 

17.04.2013 -12.37 -18.59 -9.40 3.46 158 0.00 0.113 

18.04.2013 -5.47 -9.16 -1.60 4.74 194 0.00 0.119 

19.04.2013 -7.85 -15.26 -2.32 1.85 242 0.00 0.108 

20.04.2013 -6.27 -13.01 -0.36 3.39 155 0.00 0.111 

21.04.2013 -6.99 -11.99 -0.76 2.61 37 1.00 0.110 

22.04.2013 -10.05 -15.64 -6.12 5.59 348 0.00 0.105 

23.04.2013 -17.39 -23.16 -13.66 5.53 337 0.00 0.116 

24.04.2013 -18.61 -20.97 -16.18 2.91 341 0.00 0.121 

25.04.2013 -16.49 -20.02 -13.16 3.15 44 0.00 0.123 

26.04.2013 -15.99 -21.24 -11.45 2.58 114 0.00 0.123 

27.04.2013 -10.35 -15.99 -7.55 3.06 87 0.00 0.128 

28.04.2013 -7.34 -10.87 -4.25 3.34 108 0.00 0.129 

29.04.2013 -5.37 -11.82 1.10 2.17 73 0.00 0.126 

30.04.2013 -3.91 -8.09 -0.88 2.64 104 0.00 0.124 

01.05.2013 2.19 -0.33 3.55 5.68 150 0.00 0.100 

02.05.2013 1.81 -1.52 4.23 6.63 207 20.00 0.018 

03.05.2013 -3.93 -5.55 -1.27 4.69 263 0.00 0.018 

04.05.2013 -1.72 -5.91 1.54 2.06 210 4.00 -0.011 

05.05.2013 -1.62 -5.14 1.02 2.29 277 0.00 -0.019 

06.05.2013 -2.42 -5.83 0.24 2.22 67 0.00 -0.023 

07.05.2013 -4.17 -5.74 -1.94 4.91 82 0.00 -0.025 

08.05.2013 -3.70 -5.25 -1.87 5.35 94 0.00 -0.021 

09.05.2013 -4.56 -6.53 -3.20 6.27 86 0.00 -0.021 

10.05.2013 -5.80 -6.57 -4.86 5.86 64 0.00 -0.016 

11.05.2013 -4.01 -5.86 -2.21 4.90 125 0.00 -0.014 



 

XXX 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

12.05.2013 1.09 -2.90 3.02 5.57 150 0.00 -0.016 

13.05.2013 4.65 1.72 7.17 3.06 135 0.00 -0.017 

14.05.2013 3.04 -2.30 10.73 4.02 319 0.00 -0.024 

15.05.2013 -4.20 -8.56 -1.39 7.59 85 0.00 -0.031 

16.05.2013 -8.91 -11.61 -6.05 9.18 100 0.00 -0.028 

17.05.2013 -6.54 -9.28 -4.16 5.62 77 0.00 -0.026 

18.05.2013 -7.31 -9.67 -3.80 4.92 58 0.00 -0.026 

19.05.2013 -8.36 -9.50 -7.47 4.07 47 0.00 -0.030 

20.05.2013 -6.41 -7.54 -5.31 3.05 2 0.00 -0.025 

21.05.2013 -4.52 -6.50 -2.69 2.95 181 0.00 -0.025 

22.05.2013 -0.80 -2.48 1.15 2.92 35 0.00 -0.022 

23.05.2013 2.30 -1.45 8.41 3.26 303 0.00 -0.020 

24.05.2013 -2.55 -5.82 0.67 3.63 1 0.00 -0.027 

25.05.2013 -4.02 -5.24 -2.28 4.49 297 0.00 -0.024 

26.05.2013 1.87 -3.94 7.18 4.08 223 0.00 -0.017 

27.05.2013 5.90 1.09 10.34 2.45 304 0.00 -0.020 

28.05.2013 4.30 1.43 6.89 2.25 103 0.00 -0.023 

29.05.2013 7.00 1.68 12.78 3.28 138 4.00 -0.021 

30.05.2013 3.18 -0.72 10.46 3.52 34 0.00 -0.026 

31.05.2013 0.19 -1.05 1.73 4.41 56 0.00 -0.030 

01.06.2013 -0.94 -1.95 0.02 4.60 56 1.00 -0.029 

02.06.2013 -1.63 -3.54 0.37 5.71 84 0.00 -0.023 

03.06.2013 -2.64 -3.58 -1.70 6.13 83 0.00 -0.021 

04.06.2013 -2.51 -3.76 -0.94 5.92 70 0.00 -0.020 

05.06.2013 -3.26 -4.12 -2.56 6.05 87 0.00 -0.022 

06.06.2013 -1.49 -2.59 -0.68 4.50 79 0.00 -0.027 

07.06.2013 2.13 -0.78 5.06 2.51 228 9.00 -0.021 

08.06.2013 3.08 2.12 3.79 4.99 272 1.00 -0.018 

09.06.2013 1.43 -1.80 5.89 5.83 276 4.00 -0.018 

10.06.2013 1.38 -1.07 2.82 4.16 263 0.00 -0.017 

11.06.2013 5.78 2.78 8.76 3.72 127 0.00 -0.020 

12.06.2013 5.23 -0.84 14.29 3.98 266 0.00 -0.021 

13.06.2013 7.92 1.51 15.16 3.41 165 55.00 -0.017 

14.06.2013 17.80 12.05 23.66 3.71 200 1.00 -0.014 

15.06.2013 12.58 9.65 15.78 3.72 69 1.00 -0.019 

16.06.2013 9.07 1.43 23.03 5.63 346 10.00 -0.022 

17.06.2013 3.52 1.55 6.04 3.10 88 1.00 -0.019 

18.06.2013 8.20 0.54 17.36 5.42 300 0.00 -0.018 

19.06.2013 5.81 2.86 8.61 2.93 272 0.00 -0.017 

20.06.2013 9.39 5.91 11.52 5.37 155 41.00 -0.015 

21.06.2013 5.90 2.07 9.06 5.02 1 0.00 -0.017 

22.06.2013 5.61 1.47 9.98 6.24 84 0.00 -0.019 

23.06.2013 1.68 1.28 2.06 8.39 82 1.00 -0.019 



 

XXXI 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

24.06.2013 1.97 1.19 2.79 7.39 64 4.00 -0.019 

25.06.2013 3.95 2.25 8.37 5.16 113 7.00 -0.018 

26.06.2013 8.73 5.25 11.42 3.78 239 6.00 -0.013 

27.06.2013 7.53 5.55 9.80 4.10 251 2.00 -0.012 

28.06.2013 4.94 2.66 8.54 4.95 328 0.00 -0.017 

29.06.2013 6.23 4.83 8.10 6.05 86 0.00 -0.016 

30.06.2013 7.54 5.55 10.51 4.72 73 0.00 -0.019 

01.07.2013 6.02 3.28 7.89 5.11 11 2.00 NaN 

02.07.2013 3.65 0.68 6.91 5.29 328 29.00 -0.022 

03.07.2013 6.00 0.81 9.81 4.27 267 7.00 -0.008 

04.07.2013 8.16 3.61 13.26 4.47 273 9.00 -0.014 

05.07.2013 4.56 2.74 6.15 4.03 312 6.00 -0.019 

06.07.2013 4.52 1.54 7.12 4.66 323 0.00 -0.016 

07.07.2013 4.09 3.15 5.14 5.43 352 19.00 -0.018 

08.07.2013 4.42 3.59 7.16 4.97 323 208.00 -0.015 

09.07.2013 10.47 6.70 13.18 3.63 190 0.00 -0.014 

10.07.2013 12.38 8.12 16.84 3.44 100 0.00 -0.015 

11.07.2013 8.96 7.96 11.03 4.83 341 110.00 -0.018 

12.07.2013 12.29 10.05 14.77 3.22 26 0.00 -0.016 

13.07.2013 13.15 8.70 17.88 3.81 121 0.00 -0.016 

14.07.2013 12.05 7.23 16.37 3.64 122 0.00 -0.016 

15.07.2013 9.53 6.85 12.88 3.88 98 0.00 -0.018 

16.07.2013 12.31 8.10 15.95 3.72 91 0.00 -0.020 

17.07.2013 11.82 8.41 15.04 4.29 86 0.00 -0.016 

18.07.2013 12.68 9.94 15.53 3.64 68 0.00 -0.017 

19.07.2013 9.92 5.63 16.26 3.19 344 0.00 -0.019 

20.07.2013 6.98 3.82 11.78 3.91 356 0.00 -0.019 

21.07.2013 4.41 3.20 5.74 6.26 313 3.00 -0.016 

22.07.2013 4.97 2.49 8.04 3.87 313 3.00 -0.014 

23.07.2013 11.02 4.20 14.33 1.86 198 0.00 -0.018 

24.07.2013 16.51 12.08 20.60 2.54 188 0.00 -0.016 

25.07.2013 14.98 7.67 22.52 4.27 59 19.00 -0.015 

26.07.2013 6.11 4.46 7.81 4.44 68 4.00 -0.018 

27.07.2013 8.17 6.45 9.81 4.13 112 0.00 -0.023 

28.07.2013 11.90 8.86 14.92 2.12 84 0.00 -0.022 

29.07.2013 8.57 5.95 11.87 4.55 69 0.00 -0.024 

30.07.2013 6.41 4.47 9.57 5.40 82 24.00 -0.017 

31.07.2013 6.76 5.63 8.50 3.41 40 0.00 -0.015 

01.08.2013 5.99 2.15 9.53 3.48 95 0.00 -0.020 

02.08.2013 7.26 3.69 10.76 3.05 101 0.00 -0.023 

03.08.2013 7.83 6.00 9.77 2.73 65 0.00 -0.016 

04.08.2013 9.07 6.20 13.13 3.60 294 1.00 -0.023 

05.08.2013 9.57 7.61 12.23 3.50 253 0.00 -0.016 



 

XXXII 
 

Date Temp_Avg (2 m) Temp_Min (2 m) Temp_Max (2 m) Wind speed (mean) Wind dir (mean) Rain_Tot Snow height 

 Deg C Deg C Deg C m/s m/s Counts m 

06.08.2013 10.27 2.99 19.07 4.88 286 2.00 -0.012 

07.08.2013 6.76 4.44 8.87 2.67 353 0.00 -0.016 

08.08.2013 8.34 5.86 11.17 3.13 124 0.00 -0.025 

09.08.2013 12.61 7.28 16.28 1.98 218 0.00 -0.019 

10.08.2013 16.63 11.08 21.89 2.14 160 0.00 -0.019 

11.08.2013 15.84 12.49 20.19 1.67 80 0.00 -0.020 

12.08.2013 14.96 10.95 18.40 1.76 239 0.00 -0.015 

13.08.2013 8.08 5.31 12.78 5.95 341 10.00 NaN 

14.08.2013 5.28 4.66 6.03 5.14 358 10.00 NaN 

15.08.2013 6.69 5.68 7.85 2.37 6 0.00 NaN 

16.08.2013 7.60 5.93 9.22 2.39 320 0.00 -0.021 

17.08.2013 6.89 6.20 7.66 2.09 335 28.00 NaN 

18.08.2013 6.94 5.20 8.33 3.31 332 160.00 NaN 

19.08.2013 6.62 5.05 7.88 3.91 64 26.00 NaN 

20.08.2013 5.07 3.80 6.43 5.33 68 4.00 NaN 

21.08.2013 4.08 3.47 4.90 4.61 73 0.00 -0.023 

22.08.2013 4.65 3.91 5.50 4.29 104 0.00 NaN 
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