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Abstract 

The idea of a simple linear boundary between continental and oceanic crust at extended 

continental margins is widely recognised to be an oversimplification. Despite this, such 

boundaries continue to be mapped because of their perceived utility in palinspastic and 

plate kinematic reconstructions. To examine whether this perception is justified, we review 

the data and models on which basis continent ocean boundaries are interpreted, and map a 

set of such interpretations worldwide from more than 150 publications. The maps show that 

the location of the continent ocean boundary is rarely consistently estimated within the 

~10—100 km observational uncertainty that might be expected of the geophysical data 

used for doing so, that this is the case regardless of whether the transition zone behind the 

boundary is classified as magma rich or magma poor, and that the geographical separation 

of estimates exceeds the width of single-study continent ocean transition zones. The 

average of global maximum separations across sets of three or more estimates is large (167 

km) and mostly a consequence of interpretations published over the last decade. We 

interpret this to indicate an extra component of uncertainty that is related to authors’ 

understanding of the range of features that are interpretable at extended continental 

margins. We go on to discuss the implications of this uncertainty for palinspastic and plate 

kinematic modelling using examples from the literature and from the South Atlantic ocean. 

We conclude that a precise continent ocean boundary concept with locational uncertainty 

defined from the ensembles is of limited value for palinspastic reconstructions because the 

reconstruction process tends to bunch the ensemble within a region that is (i) of similar 

width to the observational uncertainties associated with continent ocean boundary 

estimates, (ii) narrower than the regions of uncertainty about rotated features implied by 

the propagation of uncertainties from plate rotation parameters, and (iii) coincident, within 

all the above uncertainties, with the more-easily mapped continental shelf gravity anomaly. 

Secondly, we conclude that estimated continent ocean boundaries are of limited use in 

developing or testing plate kinematic reconstructions because (i) reconstructions built using 

them as markers do not, within uncertainty limits defined from the ensembles, differ 

greatly from those using more-easily determined bathymetric or gravity anomaly contours, 

and (ii) because it is impossible to segment and date them with useful precision to use as 

markers of the edges of rigid oceanic lithosphere outside of the constraints of a pre-existing 

plate kinematic model.  
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Introduction 
The continent ocean boundary (here COB, but also widely abbreviated to OCB in the 

literature) is a well-known concept in global tectonics. It is recognised to distinguish 

distinctive continental and oceanic crustal types (e.g. Wegener, 1915; Holmes, 1931; 1944). 

Before plate tectonics, little detailed attention was paid to the processes that might have 

led to the formation of COBs (e.g. Drake and Kosminskaya, 1969). Later, it became evident 

that COBs might form as a result of processes associated with relative plate motions that 

are divergent, convergent or conservative. Particular attention has been devoted to the 

continental margins that are generated in plate divergence, because they contain a record 

of relative plate motions and because they are the sites of thick accumulations of sediments 

and hydrocarbon reserves. Margins of this kind are generated by extension and rupture of 

continental crust and the subsequent eruption of igneous rocks next to and/or over the 

extended region.  

 

Despite the recognition of processes involved in extended margin formation, the COB 

concept remains a matter of observing the contrast in crustal type, from continental to 

oceanic, across such a margin. With this binary classification, the COB can be portrayed on 

maps as a line generated from observations in geophysical data. Its uncertainty might 

therefore conceivably be related to the resolution of geophysical data it is observed in. 

Those data, however, regularly reveal the presence of features that might plausibly be 

assigned to either continental or oceanic crustal type (e.g. Ball et al., 2013). Reflecting this, 

some maps portray a finite-width continent ocean transition zone (here COTZ, but in the 

literature alternatively abbreviated as COT or OCT), instead of a linear COB. The COTZ can 

thus be considered as a cartographic manifestation of another kind of uncertainty, that is, in 

crustal structure and composition. This uncertainty depends not on the resolution, but the 

interpretation, of geophysical data at extended continental margins. To illustrate the 

importance of this, Whitmarsh and Miles (1995) listed three possible interpretations of the 

COTZ. The first is as heavily intruded continental crust buried by extrusive material, 

implying a COB at its distal extreme (Boillot and Froitzheim, 2001; Blaich et al., 2011; Lundin 

and Doré, 2011). The second interpretation, of a mixture of exposed upper mantle and 
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volcanic products of ultraslow seafloor spreading, implies a COB at its proximal extreme 

(e.g. Roots et al., 1979; Mjelde et al., 1997; Scott, 2000). The third interpretation considers 

the COTZ to consist of continental crustal blocks surrounded by upper mantle material that 

has been exposed during mechanical removal of the crust by faulting. A unique linear COB is 

impossible to define in this context.  

 

Here we review the observational basis for mapping COB and COTZ features in time and 

space, considering the related component of uncertainty in their dating and locations. We 

go on to present a compendium of COB and COTZ interpretations for various extended 

continental margins worldwide. We use the compendium to estimate the interpretational 

component in locational uncertainty for the COBs, and compare it to the extents of mapped 

COTZs. Finally, we briefly discuss the importance of these uncertainties in the context of 

tasks that COB estimates are commonly set to. 

 

Definition and demarcation of the COTZ and COB 

Demarcation of the COB is based on geophysical observation and interpretation. To focus 

this task, many authors make a first order classification of COTZs on the basis of melt 

supply. At some COTZs, seismic data can be interpreted as showing the upper mantle to be 

exposed at the seabed or directly overlain by sediments (Reston, 1996). Referring to the 

often absent or stunted igneous crust above the mantle, these transitions are often referred 

to as magma poor. Understanding of this margin type is based on geophysical and drill core 

data from the conjugate margins of Iberia and Newfoundland, and studies of presumed 

analogues in the Alps (e.g. Boillot et al., 1987; Whitmarsh et al., 1996; Manatschal and 

Nievergelt, 1997; Tucholke et al., 2004; Sutra et al., 2013). Based on this work, the basement 

at these margins is dominated by mantle lithologies, from whose geochemically 

determined continental or oceanic affinities the COB can be interpreted. The result is not 

unambiguous (e.g. Seifert et al., 1997). In contrast, at so-called magma rich transitions, a 

largely seismically isotropic crust of up to 20 km thickness can be present in the COTZ. This 

isotropy makes it possible to interpret the crust at such margins as igneous but, again, such 

interpretation cannot be considered unchallengeable.  
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Although the melt-supply classification scheme is widely used, its application too is a 

matter of interpretation, as conflicting studies illustrate for the southern Australian and 

South Atlantic Santos Basin margins (e.g. Ball et al., 2013; Blaich et al., 2011; Fromm et al., 

2015; Klingelhöfer et al., 2014). Consequently, both magma rich and magma poor COTZs 

have been interpreted as the equivalents of oceanic crust generated under unusual melting 

conditions (Williams et al., 2011; Scott, 2000; Gillard et al., 2015) or as the products of 

extreme volcanic or mechanical alteration of continental crust and mantle occurring prior to 

the onset of seafloor spreading (Eldholm and Grue, 1994; Lundin & Doré, 2011; 

Nirrengarten et al., 2014). By different interpretation of the same observations, therefore, a 

COB at any extended margin could plausibly be mapped anywhere between the oceanic 

and continental extremes of its COTZ.  

 

COB and COTZ in seismic reflection data 

Depending on the experiment set up, goals, and acquisition conditions, reflection seismic 

data might image down as deep as the acoustic basement or through the whole crust. 

Based on seafloor mapping, drilling, and ophiolite studies, the oceanic crust is considered to 

consist of melt products intruded as massive bodies, dykes, and sills, and extruded as pillow 

lavas, hyaloclastites, and blocky flows from fissures and central volcanoes (Moores and 

Vine, 1971; Small, 1998). As this arrangement is strongly three-dimensional and the melt 

products are largely of invariable composition, one way of interpreting the presence or 

absence of oceanic crust is thus to map reflections from the top surface of acoustically-

transparent basement. The surface should be uneven and a source of numerous 

diffractions, consistent with a covering of basalt lava flows. In locations near continental 

margins, such a reflector is likely to be overlain by nearly flat parallel reflections from deep 

ocean sediment layers. This kind of seismic stratigraphy is consistent with the presence of 

oceanic crust but may not be diagnostic of it; mature volcanic rift zones may also host large 

lakes or ocean bights where similar relationships can develop on continental crust. An 

alternative or complementary interpretation in the acoustic basement is of normal faults, 

which are taken to indicate the extension of pre-existing, and therefore continental, crust as 

a mechanism to compensate for plate divergence. However, it is understood that normal 

faulting is a prominent process in the formation or alteration of oceanic crust too (e.g. 

White et al., 1990).  
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In surveys where greater depth has been imaged, prominent flat or gently dipping surfaces 

several kilometres beneath basement are widely interpreted to indicate the base of oceanic 

crust. This kind of interpretation is also made with reference to ophiolite analogues in which 

strong acoustic contrasts are attributable to the cumulate textures formed near the bases of 

massive gabbroic bodies, which in turn are interpreted to represent the floors of magma 

chambers from which the oceanic crust forms. The COB has been placed at the landward 

limits of these reflectors or at vertical steps in them (e.g. Stagg et al., 2004; Leitchenkov et 

al., 2014). Without high-resolution velocity models these interpretations are not unique 

because the crust or the upper mantle may also display reflections. Based on such 

observations, Rosendahl et al. (1992) suggest alternative interpretations in terms of the 

brittle-ductile transition and/or presence of melt products at various depths and distances 

within a complex COTZ. Similarly, studies targeting magmatic processes at active mid-

ocean ridges have shown that the distribution of lower- and base-crustal reflectivity within 

the oceanic crust is patchy and, where present, its topography can be complex (Muller et al., 

1999; Singh et al., 2006a,b; Canales et al., 2009). The latter is a foreseeable consequence of 

the observed 0-8 km global variability in the thickness of unequivocal oceanic crust and of 

the interpreted 0-30 km variability in the crustal thicknesses of what may also be igneous 

crust in COTZs and oceanic large igneous provinces (Laske et al., 2013; Mjelde et al., 1997; 

White et al., 2001; Dick et al., 2003).  

 

Assuming despite this that the observational criteria of faulted acoustic basement, rough 

unfaulted acoustic basement and bright deep reflectors do reliably indicate the presence of 

continental and oceanic crust, it is useful to notice that the distances along profile over 

which they each appear do not usually coincide. This can be taken advantage of to suggest 

an observational uncertainty for COBs determined from seismic reflection data. In Figure 1, 

a basement reflector that is offset by normal faults, suggesting it may be interpreted as 

continental crust, is separated by around 70 km from a deep reflector interpreted as the 

base of the oceanic crust. The COB could lie somewhere along this distance. In the same 

survey data set, Stagg et al. (2004) showed offsets of ~40 km (their figure 5) and ~100 km 

(their figure 9) for COBs defined with interpretations of normal faulting and base-of-crust, 

and one of 20 km based on rough basement and base-of-crust interpretations (their figure 
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10). With these examples, a mean picking uncertainty of around 50 km within a range of 10-

100 km seems appropriate for COBs determined from seismic reflection data alone. 

 

Seismic reflection data in magma rich COTZs exhibit prominent packages of seaward 

dipping reflectors (SDRs; e.g. Figure 2). Most authors relate SDRs to the presence of thick 

sequences of basalt that effused subaerially and subsequently weathered to generate 

strong acoustic impedance contrasts with the bases of their overlying flows. The 

eponymous dip is attributed to basalt effusion over extended continental margins and/or 

the neighbouring ocean whilst the young oceanic crust is undergoing rapid subsidence 

(Gladczenko et al., 1997; Planke and Eldholm, 1994). With this interpretation it might be 

thought suitable to use SDRs for temporal definition of the presence of oceanic crust 

between a diverging plate pair, although the presence of multiple SDR wedges at some 

margins (e.g. Planke et al., 2000) challenges the intuitive attraction of doing so. With the 

same caveat, the interpretation also implies that SDR sequences can be used to demark the 

COB. The mapped widths of SDR packages vary in the range 50-150 km, which can be taken 

as a maximum value for the observational error in COB estimates made with specific 

reference to them. 

 

COB and COTZ in seismic refraction data 

Seismic refraction data can be obtained from individual sonobuoys as point estimates for 

columns sampling layers of variable thicknesses and velocities, or with greater accuracy 

from lines or arrays of ocean bottom seismometers (Figure 3). These data can be used to 

constrain the COB on the basis of an expectation that the seismic velocity of the igneous 

oceanic crust below its pillow lava layer is relatively constant at >5.8—6.0 kms-1, and that its 

usual thickness does not vary greatly beyond 7-8 km (e.g. Christensen and Mooney, 1995). 

The horizontal resolution of refraction data made with closely spaced ocean bottom 

equipment is sufficient to show that these velocity conditions might come to be met over a 

zone of ~40-100 km width (e.g. Voss et al., 2007). The uncertainty of sonobuoy based COBs, 

however, more strongly depends on the geographical spacing of sonobuoys, which is 

irregular but usually large (>50 km). 
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Landwards of the relatively simple oceanic crust, magma rich COTZs exhibit more 

variability in their seismic velocities. Overall, their seismic velocity profile is intermediate 

between those for unequivocally continental and oceanic crust (e.g. Altenbernd et al. 2014). 

Often, seismically very fast bodies are imaged at the base of the crust. The fast velocities 

are attributed either to the presence of ultramafic cumulate rocks formed by excess melt 

production during breakup, or of eclogite formed by reburial of previously exhumed and 

hydrated upper mantle (Lundin and Doré, 2011). These contrasting interpretations can be 

taken to imply different COB locations at the inner or outer edge of the COTZ. In contrast, 

magma poor COTZs may show areas of fast upper mantle velocities interspersed among 

islands of somewhat slower velocity. This is usually interpreted with reference to obducted 

field analogues in terms of the detachment and separation of blocks of hyperextended 

lower continental crust along nearly horizontal shear zones (e.g. Manatschal, 2004).  

 

COB and COTZ in magnetic data 

Hemant and Maus (2005) showed that the vertically integrated susceptibilities of oceanic 

and continental crust are in most places quite similar, such that COBs should not be 

expected to raise diagnostic magnetic anomalies at long wavelengths. This is not the case 

for the upper crust, however, so that at shorter wavelengths magnetic data might be 

expected to show a magnetic anomaly related to the transition from continental to oceanic 

crust. Such anomalies indeed appear at some sheared continental margins. Before drilling 

led to a better appreciation of the reasons for the acoustic impedance contrasts that give 

rise to SDRs at extended margins, some of the magnetic anomalies associated with SDRs 

were also attributed to a crustal susceptibility contrast edge effect at extended continental 

margins (Rabinowitz and LaBrecque, 1979). Since then, it has become clear that edge effect 

anomalies are not ubiquitous features of extended continental margin segments. This can 

be understood as a consequence of the presence of intrusive rocks in the upper continental 

crust of COTZs, which makes it difficult to distinguish magnetically from the igneous 

oceanic crust (e.g. Gernigon et al., 2015).  

 

Magnetic polarity reversal isochrons can be used to map areas of unequivocal oceanic crust 

reliably because there are no continental processes that consistently lead to close mimicry 

of the distinctive great circle-shaped polarity edge effect anomalies that form over oceanic 
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crust during stable seafloor spreading. Where reversal intervals are wide, for example if they 

formed during long periods of stable geomagnetic polarity like the Cretaceous Normal 

Polarity Superchron, then the lack of edge effects makes the magnetic anomaly signature 

of the oceanic crust less distinctive. In other circumstances, for example in oceanic crust 

formed at sediment-covered spreading centres (Levi and Riddihough, 1986) or at ultra slow 

spreading rates (Jokat and Schmidt-Aursch, 2006), or at short lengths of mid-ocean ridge 

crest, these anomalies may be less reliable diagnostically.  

 

Into COTZs, the magnetic anomaly field over SDR bodies can show similarities to those 

raised by the basalt layer in oceanic crust. This permits interpretation of the anomalies as 

signals of entirely igneous crust in magma rich COTZs, albeit not unequivocally. The linear 

magnetic anomalies related to SDR sequences such as those in the South Atlantic may 

approach or exceed 100 km in width. If they exhibit polarity reversals, then the reversals 

have low-angle limbs, because of the tapering source geometry. Figure 4 compares a set of 

such records to oceanic magnetic reversal anomalies. The absolute picking error in the 

magnetic anomaly related to a SDR wedge will be greater than that associated with picking 

a reversal anomaly isochron whose source is a magnetization vector contrast that is closer 

to vertical. From forward consideration of source body geometry, navigational error, and 

misfits in plate kinematic models, typical uncertainties assumed or calculated for oceanic 

reversal isochron anomalies are in the region of 3-10 km (Kirkwood et al., 1999; Eagles, 

2004).  Picking the equivalent part of a SDR-related anomaly, on the other hand, may be 

prone to an error of 20-50 km.  

 

COB and COTZ in gravity data 

Tectonic extension and processes related to it give rise to broad gravity anomaly patterns at 

continental margins (Watts and Fairhead, 1999). These patterns are dominated by the 

effect of the strong and shallow density contrast between rocks and sea water at the 

continental shelf edge, but also respond to density contrasts related to the three 

dimensional distributions of sediments, of oceanic and continental crust, of the shallow 

mantle beneath thinned continental crust, of underplated gabbro, and of exposed or 

shallow subcropping mantle rocks at magma poor margins. Watts and Fairhead (1999) 

showed that either the free air gravity high (e.g. at the Baltimore Canyon margin) or its 
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seaward low (e.g. at the Congo margin) can be related to the COB, as the anomaly varies in 

relation to the margin’s strength and flexural response to the sedimentary and underplating 

loads (Figure 5). Continental edge gravity anomalies are therefore unlikely to consistently 

show the precise location of the COB, but can be used to interpret the locations of a variety 

of features that have been related to it in various ways. 

 

Despite this, some studies apply specific interpretations of gravity anomalies at continental 

extended margins regionally or globally. Rabinowitz and LaBrecque (1977) interpreted 

isostatic residual gravity anomaly highs in terms of scarps of oldest oceanic crust that are 

supported out of isostatic equilibrium by neighbouring more buoyant continental crust. The 

features they observed have since been noted to coincide with SDR sequences, which as we 

have seen are taken by some authors as COB indicators (e.g. Franke et al., 2006; Pawlowski, 

2008).  Lawver et al. (1998) and Macdonald et al. (2003), on the other hand, took the inner 

high of the continental margin-related free air gravity anomaly as a global proxy for the 

outermost limit of unequivocally continental crust. Acknowledging this is unlikely to be 

accurate at prograded margins, they maintained that it is admissible elsewhere in instances 

where the COB undergoes rotation as part of a plate reconstruction, because the 

uncertainty in the interpretation is usually smaller than the statistical uncertainty in the 

locations of features rotated in plate kinematic model rotations.  

 

The products of transform faulting are readily interpretable from gravity data over the 

oceans (e.g. Sandwell and Smith, 2009; Sandwell et al., 2014). This process produces 

distinctive strike-slip fault zones that are active for a finite period whose duration depends 

on the plate divergence rate and length of the transform fault. This process leaves linear 

trough- and step-like traces in oceanic plate interiors called fracture zones that align in 

parallel sets along co-polar small circle trends. Transfer faults are tectonically similar 

features that may appear in continental extensional zones and have been suggested, 

locally, to continue as active offsets on divergent oceanic plate boundaries (Lister et al., 

1986). The great majority of oceanic fracture zones, however, appear not to offset COTZs or 

to continue into them. In continental interiors, pre-existing rheological contrasts complicate 

the development of transform plate boundaries so that their traces anastamose via multiple 

strike-slip, reverse and normal fault segments to generate complex landforms. Fracture 
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zones reliably define regions of oceanic crustal development, and can be used to generate a 

conservative estimate of the landward edge of oceanic crust. Parts of Torsvik et al.’s (2009) 

COB estimates, from isostatic residual gravity anomaly textures in the South Atlantic, 

appear to make use of this observation. Fracture zones, however, as linear features with 

finite spacing, can only provide only a punctuated minimum estimate of the extent of 

oceanic crust. 

 

The picking error of gravity based COB estimates is illustrated in Figure 5. In total, 

continental margin gravity anomalies may exceed 150 km in length and have multiple 

components. The most conservative value for the possible uncertainty in COBs picked from 

gravity anomalies might therefore be taken as 150 km, but this does not allow for the fact 

that the anomaly’s individual components can be interpreted in terms of COBs. The picking 

error in any of these components (e.g. the seaward trough) is probably closer to 50 km. In 

comparison, the picking error for a fracture zone, such as commonly used in quantitative 

plate kinematic reconstructions, is around 5-10 km in the trough of a total anomaly that is 

typically 25-40 km wide (Müller et al., 1991).  

 

COB as a plate kinematic prediction 

Blaich et al. (2010) presented a COB location for part of the Atlantic margin of South 

America on the basis of rotating the geophysically-defined COB from its African conjugate. 

Making this kind of determination requires the choice of a set of Euler rotation parameters 

for the instant of continental breakup, an assumption that the geophysically-defined COB is 

an isochron, and an assumption that it is the conjugate of the feature being predicted. 

These assumptions contribute to the interpretational component of COB location 

uncertainty. The observational component of this uncertainty is a product of the 

propagation of the observational error or uncertainty in the location of the conjugate 

feature through the error in the Euler rotation, if it has been possible to calculate one. 

Experience suggests that the increase in uncertainty like this is unlikely to be less than 

around 20 km and, depending on the plate kinematic model geometry, may be several 

times that figure.  

 

Why no process-based interpretation of the COB and COTZ? 
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In the above review, we have given no process-related definition of the COB. Such a 

definition does not exist, to our knowledge, in the literature. Similarly, we have given no 

unique process-related definition of the COTZ. The descriptions of the observations used to 

determine these features show that this is because the processes by which the oceanic crust 

forms and is altered in order to accommodate plate divergence (volcanism and normal 

faulting) also come to affect and eventually dominate the evolution and construction of the 

upper crust in continental extensional zones.  

 

The Afar depression at the northernmost end of the East African rift zone and 

southernmost end of the Red Sea illustrates this. East of the footwalls of the main bounding 

rift faults, the depression is broad, low lying, and flat. The crustal thickness change across 

these faults implies a minimum stretching factor of about two (Tiberi et al., 2005), whereas 

plate kinematic modelling of the depression’s formation suggests a factor of more than 

three (Eagles et al., 2002). These values straddle the range over which crustal extension is 

thought to give way to the generation of oceanic crust. The hanging walls of the faults are 

themselves strongly faulted by a dense network of normal faults that give rise to 

topography reminiscent of the abyssal hills of the deep oceans. A thick carpet of basalts and 

volcaniclastic rocks erupted at fissures and central volcanoes dominates the hanging wall 

stratigraphy. Wolfenden et al. (2005) suggested that these basalts are analogous to those 

that give rise to SDR sequences in mature COTZs. At deeper levels underlying the Afar 

depression, sills and dykes are generated in pulses known from periodic seismic crises 

(Rowland et al., 2007). In the upper mantle, tomographic studies reveal an area of partial 

melting (Bastow et al., 2005) that has delivered melt to significantly augment the crustal 

thickness (Hammond et al., 2011). Magnetic transects across the depression reveal paired 

magnetic anomalies that resemble the Brunhes-Matuyama transition flanking active mid-

ocean ridges (Bridges et al., 2012).  

 

Despite these similarities in process and product between its central region and a typical 

area of oceanic crust, it is not routinely concluded that oceanic crust underlies the Afar 

depression. Instead, studies point to the outcrop of extended lower continental crustal 

rocks around its margins, for example at the Ali Sabieh high, and note that the thickness 

and velocity profile of the crust do not resemble those of standard oceanic crust (e.g. 
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Hammond et al., 2011). Consequently, the crust in the depression is usually interpreted in 

terms of an actively forming COTZ, with multiple sites of volcanic addition to the margins of 

thinned and intruded continental crustal blocks lying beneath the depression’s volcanic 

carpet. The crustal affinity of the Afar Depression is, put differently, unknown over a scale 

longer than the width of a typical oceanic divergent plate boundary. The same can be 

concluded of COTZs at extended continental margins. Defining COTZ extents, therefore, is 

a task that is likely to be affected by similar observational and interpretational challenges as 

defining the COB.  

 

Age of the COB 

COBs and COTZs cannot be dated directly without samples of volcanic rocks from them. 

This cannot be routinely achieved because of the deep-water setting and thick sedimentary 

cover of most extended continental margins. Because of this, COBs or lengths of them are 

only assumed to be isochrons to which proxy ages are attributed. As with the task of 

mapping the COB, the choice of proxy requires adherence to a model of continental 

breakup during plate divergence. In some studies, the development of the COTZ is related 

to excess volcanism that is promoted by the presence of warm or fertile mantle rocks 

beneath the divergent plate boundary. This excess volcanism may also affect the 

continental interior neighbouring the COTZ where it leaves large igneous provinces as 

accessible and dateable products. With this relationship in mind, the COB in such locations 

can be assigned the same age as its supposed equivalents on land (e.g. Torsvik et al., 2009). 

This kind of relationship has been proposed to date COBs in margins of the South, Central 

and North Atlantic, the NW Indian Ocean, west of Australia and southeast of Africa. Judging 

from dating of their products on land, the duration of the most voluminous periods of 

excess volcanism events rarely exceeds 5 Myr (e.g. Peate, 1997). This duration might serve 

as an estimate of the uncertainty of ages assigned to COTZs or COBs under the assumption 

that they are products of excess volcanism.   

 

The timing of divergence of plates of oceanic lithosphere is recorded by linear magnetic 

anomalies. These anomalies are raised by contrasting remanent magnetization polarities in 

isochronous strips of basaltic crust formed by the action of mid-ocean ridges in a 

periodically reversing geomagnetic field. The anomalies are assigned ages by interpolation 
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between radiometric control points in magnetostratigraphic sequences. Uncertainties in 

these ages range between a few tens of thousands of years in Neogene rocks and <5 Myr in 

Mesozoic rocks (Gradstein et al., 2012). An age can be assigned to the COB by extrapolating 

from the age of the nearest of these isochrons, taking into account the distance between 

the two and the known rate of seafloor spreading after formation of the isochron. The 

distance for this extrapolation can be measured along a line drawn perpendicular to the 

oldest spreading anomaly or to the COB. Alternatively, it can be calculated using the plate 

divergence vector determined from a plate kinematic model. The calculation error 

associated with this process is proportional to the distance between the isochron and the 

COB estimate, and the confidence in any age estimate derived from it might be related to 

the variability in seafloor spreading rates in the earliest stages of ocean development. There 

is little reason to assume that the earliest rates were fixed or equal to later spreading rates, 

so it is not surprising that age estimates based on this technique do not always agree with 

ages determined from large igneous provinces. At the conjugate margins of southern Africa 

and Antarctica, COB ages estimated in these two ways differ by 16 Myr (Eagles and König, 

2008). In many locations, including some bordered by large igneous provinces such as the 

Weddell Sea or South Atlantic ocean, multiple anomalies interpreted as magnetic reversal 

isochron sequences terminate obliquely at COB estimates such that the COB must be 

interpreted as a diachronous boundary (e.g. Rabinowitz and LaBrecque, 1979; Jokat et al., 

2003). In such instances, any age applied to a COB estimate will be accurate at a single point 

only. In summary, in nearly all cases, sub-Myr precision in COB age assignment by 

consideration of magnetic isochrons cannot be justified. 

 

In much tectonostratigraphic literature, the development of COBs is related to the 

development of regional stratigraphic discontinuities, often referred to as breakup 

unconformities (Falvey, 1974). As originally conceived, the breakup unconformity was 

thought to form at, and so pinpoint, a geological instant of strain localisation, continental 

rupture, failure, and wholesale subsidence of the continental margin coinciding with first 

emplacement of igneous crust between the diverging plates. In this view, rapid subsidence 

and the cessation of fault block rotations in the accommodation of plate divergence lead to 

the production of a prominent unconformity separating discontinuous fault-bounded strata 

below from continuous strata above. Dating of the breakup unconformity with these 
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assumptions thus implies dating of the COB, as both are products of the same process-

event. By definition, unconformities are not directly dateable, but the sediments abutting 

them, where drilled, can be dated with the accuracies similar to those for 

chronostratigraphic timescales. This accuracy varies greatly depending on the accessibility 

of sections with good biostratigraphic frameworks and independently dateable strata to 

calibrate and interpolate them. Just 50% of Mesozoic stage boundaries are currently dated 

with a numerical estimate of precision, and these currently lie in the range 0.06—1.4 Myr 

(Gradstein et al., 2012). As breakup unconformities should not be expected to coincide with 

stage boundaries, however, the durations of Mesozoic stages (in the range 0.89—18.5 Myr) 

may serve as a more conservative estimate. Beyond this, regional unconformities are 

demonstrably not isochronous.  On a regional scale, the underlying or overlying strata can 

be expected to have been deposited diachronously during margin progradation on 

timescales of the order of 105 years (Burgess and Hovius, 1997) or to be omitted in hiatuses 

of multi-million year duration (Kyrkjebø et al., 2004). What is more, at some margins the 

stratigraphic distribution of normal faulting or other indicators of crustal extension may 

leave it unclear which of a number of surfaces should be regarded as a margin’s breakup 

unconformity (e.g. Del Ben and Mallardi, 2004; Ball et al., 2013), or indeed whether any such 

unconformity exists (Bosworth and Burke, 2005). Taking all this into consideration, 

although the uncertainty in unconformity-based COB dating may be as small as a hundred 

thousand years in exceptional cases, in most others it is likely to approach or exceed 5 Myr.  

 

Locational uncertainties of COBs from interpretation ensembles 

Above, we showed that demarcation of the COB is a task of observation and interpretation 

that is undertaken in and across various data sets. For the kinds of data sets reviewed here, 

the observable-related errors and uncertainties are mostly in the range 10-100 km, 

averaging around 50 km. If these factors dominate the uncertainty in mapping COBs, then 

we would expect any set of independent determinations of COB locations to cluster into a 

~50 km wide group at any given margin. If however the uncertainty related to interpreting 

the COB within those data sets dominates, then we would expect groups of COB locations 

to distribute more loosely about a greater mean value. The larger this value comes to be, 

the less meaning we can expect to attach to the COB concept and its testimony. We 

describe these issues in the following, by mapping sets of features that have been labelled 
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as COBs, or whose definition is similar to that of COBs (e.g. Heine et al’s (2013) ‘Landward 

Limit of Oceanic Crust’ or the seaward limits of published COTZs) for various extended 

margins globally. In some of the maps, we also compare the range of COB estimates to 

interpreted COTZ extents from the literature. We expect that if COTZs are conservatively 

estimated using the various data types reviewed above, then their widths might reasonably 

be expected to resemble or exceed the widths of the corresponding ensembles of COBs. If, 

on the other hand, COTZs are also subject to large interpretation bias, then we might 

expect published COTZs to be narrower than the COB ensembles.  

 

Gulf of Mexico 

The long time series (30 years) of COB estimates in the Gulf of Mexico, made using 

numerous independent data sets, is a consequence of political and economic stability and 

the region’s status as a focus of hydrocarbon exploration and production. COB estimates 

have been made on the basis of all the main data sources described above, by numerous 

researchers and groups. Bird et al. (2005) presented eight COB interpretations alongside 

their own estimate. The ensemble we present in Figure 6 consists of all of those 

interpretations along with a number of others (Buffler and Sawyer, 1985; Ross and Scotese, 

1988; Winker and Buffler, 1988; Sawyer et al., 1991; Salvador, 1991; Buffler and Thomas, 

1994; Hall and Najmuddin, 1994; Marton and Buffler, 1994; Pindell, 1994; Schouten and 

Klitgord, 1994; Bird et al., 2005; Bouysse et al., 2009; Seton et al., 2012; Hudec et al., 2013; 

Christeson et al., 2014; Sandwell et al., 2014). In the areas of closest agreement, the COBs 

cluster over a distance of 70 km. The extreme interpretations of COB location are separated 

from one another by nearly 400 km. From 33 equally-spaced measurements along lines 

drawn for the shortest distance across those parts of the ensemble with more than three 

members, the mean of the maximum separations of COB estimates is 153 km and their 

standard deviation is 86 km (Table 1). Offsets between pairs of estimates are not constant, 

suggesting there is no overwhelming tendency for differing data sets to highlight different 

features within the COTZ for interpretation as the COB. For example, Bird et al.’s (2005) 

COB is located most proximally in the western part of the gulf, but it transects the ensemble 

to become the second-most distal estimate in the east.  

 

Indian Ocean margins of Antarctica 
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The history of plate boundary development in the Indian Ocean is complex and has left 

much of its abyssal plain unsuitable for the direct plate reconstruction techniques that unite 

conjugate magnetic anomaly pairs (e.g. Hellinger, 1981). In addition, the availability and 

quality of magnetic isochron data are in many parts poor, and great lengths of the extended 

continental margins parted during the Cretaceous Normal Superchron to leave no linear 

magnetic reversal isochrons near them to unite. Consequently, interpretations and 

treatments of the ocean’s COBs as conjugate isochrons have played a particularly important 

role in paleogeographic and plate kinematic reconstructions of the Indian Ocean in general, 

and the divergence of Antarctica from India and Australia in particular (e.g. Veevers, 2009; 

Williams et al., 2011; Gibbons et al., 2013).   

 

Figure 7 shows a set of seventeen COB interpretations and one COTZ interpretation for the 

Indian Ocean margins of Antarctica made by interpreting magnetic, gravity, seismic 

reflection and refraction data (Powell et al., 1988; Royer and Sandwell, 1989; Eittreim, 1994; 

Ishihara et al., 1999; Gaina et al 2003; 2007; Stagg et al 2004; Leitchenkov et al 2009; 2014; 

Close et al., 2009; Direen et al., 2011; Seton et al., 2012; Ball et al 2013; Nogi et al 2013; 

Bouysse et al., 2009; Gohl, 2008; Gillard et al., 2015). Gillard et al. (2015) interpreted linear 

features they titled ‘continental crust termination’ and ‘first steady state magmatic oceanic 

crust’ that, in spite of their consideration of the intervening region as area created (not 

altered) during plate divergence, we would expect other interpreters to treat as proximal 

and distal COB estimates. In places where three or more estimates are mapped, the closest 

agreement between them is ~50 km for a short length of the continental margin off Terre 

Adélie. This segment is widely portrayed in plate kinematic studies as a sheared margin. 

Away from this segment, the largest separations are in the range 400-500 km, off Lützow-

Holm and Prydz bays. Overall, the mean interpretational uncertainty defined by the 

maximum spacing in parts of the ensemble with three or more members, measured on 14 

separate lines, is 206 km and the standard deviation is 93 km (Table 1). Similar to this, Ball 

et al. (2013) estimated COTZ widths in the range 110-310 km using profiles over five 

segments of the conjugate margins of Antarctica and southern Australia. They suggested 

that the COTZ formed diachronously over a period of 66 Myr. Direen et al. (2011), on the 

other hand, mapped a COTZ that is consistently narrower than the COB ensemble (Figure 

7). 
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Leitchenkov et al’s (2014) COB, interpreted from multiple data sets, and Seton et al’s (2012) 

COB, whose data basis is not stated, are notable in this ensemble because they each 

represent the most distal COB estimate in some locations and the most proximal in others. 

As in the Gulf of Mexico, this transection suggests that the various techniques and data sets 

being used to generate COB estimates do not systematically sample different process-

related features that form at different times or distances from the continental interior 

during the development of an extended continental margin.  

 

Australia 

Figure 8 shows an ensemble of more than twenty COB estimates for the extended 

continental margins of Australia (Veevers et al. 1985; Veevers, 1987; Powell, 1988; Stagg 

and Willcox, 1992; Exon et al., 1996; Fullerton et al., 1989; Royer and Sandwell, 1989; Royer 

and Rollet, 1997; Gaina et al., 1998; Brown e al., 2003; Norvick, 2004; Heine and Müller, 

2005; Müller et al., 2005; Norvick et al., 2008; Bouysse et al., 2009; Direen et al., 2011; 

Williams et al., 2011; Seton et al., 2012; Ball et al., 2013, Hall et al., 2013; Gillard et al., 2015). 

Gravity-based interpretations are all made on satellite-derived data of the kind presented 

by Sandwell and Smith (2009) or Sandwell et al. (2014). Interpretations of these data 

dominate for the NW shelf, and as might be expected they agree well with one another. On 

the NW shelf, the ensemble’s mean width on 16 profiles is 86 km, and its standard deviation 

is 110 km (Table 1), largely owing to differing interpretations of the crustal type at the 

Wallaby plateau.  

 

There are larger disagreements between interpretations based on gravity data and other 

data sets, of which there is a greater variety on the south Australian margin. Notably, here, 

there is no significant seismic refraction data set. The largest uncertainty based on this part 

of the ensemble is in the region of 250 km, south of the Naturaliste Plateau. The mean of 

estimate separations in parts of the ensemble with more than three members on the 

southern margin, from 18 profiles, is 187 km, and the standard deviation is 80 km (Table 1). 

In addition, on this margin there is one mapped COTZ interpretation, from Direen et al. 

(2011). Like its Antarctic conjugate, this interpretation is of a COTZ that is narrower (range 

15—120 km) than the COB ensemble (range 30—300 km). Ball et al.’s (2013) alternative 
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interpretation, although not presented in map form, suggested a slightly wider range of 

COTZ width, which is nevertheless still considerably narrower than the ensemble.  

 

South China Sea 

Like the Gulf of Mexico, the South China Sea is a small ocean whose margins have been 

extensively explored by the hydrocarbon industry. In contrast, much of the exploration in 

the South China Sea has been completed over the last decade. Because of this vintage, the 

data quality might be expected to be high and the COB locations consequently in closer 

agreement with one another. Figure 9 shows this region’s ensemble of fifteen COB 

locations and two COTZs (Briais et al., 1993; Nissen et al 1995; Hsu et al., 2004; Wang et al., 

2006; Hu et al., 2009; Bouysse et al., 2009; Deng et al., 2012; Li et al., 2012; Seton et al., 

2012; Zhu et al., 2012; Barckhausen et al., 2014; Chen et al., 2014; Hwang and Chang, 2014; 

Pichot et al., 2014; Bai et al., 2015; Cameselle et al., 2015; Li et al., 2015). The mean 

ensemble width, measured on thirty profiles, is 118 km and their standard deviation is 92 

km (Table 1). These statistics might be interpreted, as suggested above, in terms of recent 

high-quality data that promote a self-consistent set of COB interpretations. However, it is 

perhaps more revealing that most of the margin is delineated by just three or four COB 

estimates, and that the maximum separation of estimates (317 km) is located where all 

fourteen estimates coincide in the area SW of Taiwan. The widths of the published COTZs 

and the ensemble in this part of the margin significantly exceed the width of the COB 

ensemble elsewhere, suggesting much of the ensemble may not be a conservative 

representation of COB uncertainty. Overall, therefore, these observations support the idea 

that COB uncertainty is dominated by interpreter choices, rather than navigation or data 

resolution. 

 

Northern Indian Ocean 

Figure 10 shows an ensemble of more than twenty estimates of the location of the COBs 

around Pakistan, India, Sri Lanka and Bangladesh (Naini and Talwani, 1982; Powell et al., 

1988; Rao et al., 1997; Malod, 1997; Todal and Eldholm, 1998; Calvès et al., 2008; Sreejith et 

al., 2008; Subrahmanyam et al., 2008; Bouysse et al., 2009; Krishna et al., 2009; Veevers, 

2009; Bastia et al., 2010; Corfield et al., 2010; Sinha et al., 2010; Calvès et al., 2011; Arora, 

2012; Seton et al., 2012; Gibbons et al., 2013; Rao and Radhakrishna, 2014; Minshull et al., 
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2015; Ramana et al., 2015). In addition, at the eastern continental margin of India we show 

Nemčok et al’s (2013) outline of a 20—100 km wide area in which they interpret lower 

continental crustal slivers and isolated blocks of upper crustal rocks to lie beneath and 

between ribbons of exhumed mantle lithosphere and volcanic and sedimentary complexes. 

Although they termed this area ‘proto-oceanic crust’, the criteria for its interpretation are 

the same as those for a COTZ.  

 

The COB ensemble on the western margin of India is consistently very large (mean and 

standard deviation of 475 km and 90 km; Table 1). The maximum width is nearly 670 km. 

This stems from disagreement about the type of crust under the Laxmi Basin, which lies 

between the Laxmi Microcontinent and the continental margin around Mumbai 

(Bhattacharya et al., 1994; Miles et al., 1998). This situation arises from the margin’s 

participation in at least two phases of rifting since Cretaceous times, and its modification by 

excess volcanism related to the passage of the Deccan-Réunion plume along its underside 

in Cretaceous and Paleogene times (Collier et al., 2008; Duncan & Hargraves, 1990). On the 

eastern side of the subcontinent, the mean ensemble uncertainty is smaller, at 184 km, and 

with a standard deviation of 79 km, measured on 16 equally-spaced profiles (Table 1). Here, 

the COB estimate of Krishna et al. (2009) transects the ensemble, being second most distal 

in the NE, and second most proximal in the south. Nemčok et al.’s (2013) COTZ or ‘proto-

oceanic crust’ for this margin is somewhat narrower than the ensemble width, at close to 

100 km, and largely enclosed by it.  

 

North Atlantic 

The ensemble of North Atlantic COB and COTZ location estimates in Figure 11 consists of 

more than forty members (Dunbar and Sawyer, 1985; Boillot and Winterer, 1988; Todd et 

al., 1988; Roest and Srivastava, 1989; Eldholm, 1991; Faleide et al., 1991; Vorren et al., 1991; 

Pinheiro et al., 1992; Skogseid et al., 1992; Keen and Dehler, 1993; Escher and Pulvertaft, 

1995; Whittaker et al., 1997; Breivik et al., 1999; Scott, 2000; Srivastava et al., 2000; 

Holbrook, 2001; Mosar et al., 2002; Tsikalas et al., 2002; Thinon et al., 2003; Kimbell et al., 

2005; Lundin and Doré, 2005; Naylor and Shannon, 2005; Engen et al., 2006; Maillard et al., 

2006; Skaarup et al., 2006; Tucholke et al., 2007; Voss and Jokat, 2007; Engen et al., 2008; 

Mjelde et al., 2008; Bouysse et al., 2009; Gaina et al., 2009; Voss et al., 2009; Peron-Pinvidic 
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and Manatschal, 2010; Libak et al., 2012; Oakey et al, 2012; Peron-Pinvidic et al., 2012; 

Seton et al., 2012; Suckro et al., 2012; Hosseinpour et al., 2013; Gernigon et al., 2015; 

Tasrianto and Escalona, 2015). Like those for the Australian-Antarctic margins, this 

ensemble includes significant lengths of sheared margin segments, bordering Fram Strait, 

in which COB locational uncertainty is smaller than 100 km. Away from this, the East 

Greenland and Newfoundland COB estimates spread over a mean width of 136 km. The 

population’s standard deviation is 94 km (Table 1). The COBs that have been estimated for 

the conjugates to these margins, off northern and western Europe, show a mean ensemble 

width of 135 km, and standard deviation of 120 km (Table 1). In Davis Strait and the 

Labrador Sea, the mean and standard deviations of the COB ensemble’s width are 149 km 

and 84 km. Considering all of the margins together, the largest COB uncertainties are 

characteristic of the most-frequently estimated COB segments, as was the case in the 

South China Sea.  

 

Figure 11 also shows a number of separate COTZs, four of which overlap on part of the 

eastern margin of Greenland. Escher and Pulvertaft’s (1995) COTZ is around 30 km wide off 

east Greenland where it overlaps with the proximal portion of the 150 km wide COTZ of 

Peron-Pinvidic and Manatschal (2010). This second COTZ estimate is one of a set that is 

consistently very wide (e.g. up to 300 km off the British Isles). It is difficult to compare these 

estimates to the ensemble meaningfully, however, because Peron-Pinvidic and 

Manatschal’s (2010) definition of the COTZ includes what they refer to as thinned yet 

undoubtedly continental crust. As off western India, the widest sections of these COTZs 

include features that have alternatively been interpreted as microcontinents. Excepting 

Peron-Pinvidic and Manatschal’s (2010) COTZs, the COTZ interpretations tend to be 

narrower than the COB ensemble (for example off NE Greenland or the southern margin of 

the Labrador Sea). Off SE Greenland, not only are two of the COTZ interpretations 

narrower than the COB ensemble, they also map partly or completely outside of it, and 

exclusively of one another. Alongside the observation that the COB ensembles routinely 

exceed the published COTZ estimates in width, this illustrates starkly that COTZs are as 

much subject to interpretational biases as COBs are.  

 

South Atlantic 
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Gaina et al. (2013) reviewed published estimates of profile-based COTZ widths for the 

African margin of the South Atlantic, concluding that individual COTZs on different parts of 

the margin vary in width over a range of 100-150 km. Our ensemble of 23 South Atlantic 

COBs is shown in Figure 12 (Rabinowitz and LaBrecque, 1979; Raillard, 1990; Nürnberg and 

Müller, 1991; Chang et al., 1992; Light et al., 1993; Gladczenko et al., 1997; Lawver et al., 

1998; Cainelli and Mohriak, 1999; Karner and Driscoll, 1999; Bauer et al., 2000; Macdonald 

et al., 2003; König and Jokat, 2006; Blaich et al., 2008; Torsvik et al., 2009; ; Pawlowski, 

2009; Bouysse et al., 2009; Anka, 2010; Labails et al., 2010; Peyve, 2010; Seton et al., 2012; 

Gaina et al., 2013; Heine et al., 2013; Wildman et al., 2015). Although this is the largest of 

the regions shown, and has the longest publication history for COB estimates, the relatively 

small ensemble reflects the long-standing frontier status of the continental margins of 

Africa and South America in the exploration industry. Of the margin segments shown, the 

ensemble-based uncertainties for the COBs are smallest in the equatorial (sheared) 

segment of the west African margin, at about 60-80 km, and largest in the Santos and 

Campos basins off Brazil.  

 

Excluding the sheared equatorial segments, the ensemble mean width is 167 km on the 

west African margin, with a standard deviation of 62 km (Table 1; measured on 21 equally 

spaced profiles across parts of the margin with at least three COB estimates). On its South 

American conjugate, the mean width of the ensemble is 217 km and the standard deviation 

is 194 km (23 profiles; Table 1). The difference between the two ensembles is largely 

attributable to the extraordinary variety of COB estimates for the Santos Basin segment of 

the South American margin, whose locations according to different authors disagree in 

places by more than 800 km. The estimates transect one another strongly. At the southern 

limits of the South Atlantic, the COB estimate of Nürnberg and Müller (1991) is the most 

distal of the ensembles on both continental margins, whilst it is one of the most proximal 

COB estimates in the northern part of the South Atlantic. In part at least, this is likely to 

reflect the plate kinematic focus of Nürnberg and Müller’s study. South Atlantic opening 

was markedly asynchronous, occurring around 40 Myr earlier in the south than in the north 

(Eagles, 2007; Pérez-Díaz and Eagles, 2014). Reconstructing the continents under these 

constraints, whilst trying to avoid deforming them internally by large amounts, requires an 

interpretation of more distal COBs in the south than in the north.  
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Discussion 

The ensembles consistently show a mean uncertainty (globally, 167 km) that eclipses the 

expected observational uncertainty for COB identification criteria, as well as a broad 

standard deviation (globally, 120 km) in estimated COB locations (Table 1). Figure 13 

demonstrates that the uniformly large uncertainty in COB location estimates is not a 

consequence of the challenge of consistently interpreting COBs from data of varying 

vintages and qualities. Sixty per cent of the COB estimates in our ensembles were published 

over the last decade, whereas eighty per cent of the ‘extreme’ widths of the ensembles are 

products of the publication of pairs of new COB estimates during that period. Table 1 also 

shows that the globally large uncertainty is not a result of large differences in the ease of 

COB estimation at either magma rich or magma poor margins, as mapped by Boillot and 

Coulon (1998). Neither of the uncertainties in estimated COB locations for these magma-

availability ensembles significantly differs from the large global mean value, although it 

should be noted the statistics for magma rich margins are affected by the broad range of 

opinions regarding the location of the COB west of India. Nonetheless, even if this particular 

margin were disregarded, the mean COB locational uncertainty for magma rich margins 

would still be significantly greater than the expected observational uncertainty, at 134 km. 

The 41 km difference between this value and that for magma poor margins may not be 

significant, as it lies within the range of observational uncertainties given earlier. For this 

reason, together with the quite arbitrary decision to disregard the western Indian ensemble 

in the first place, we consider it would be inappropriate to interpret the uncertainties of COB 

locations at magma rich and magma poor margins in terms of process.   

 

What is clear though is that the uncertainties of COB location estimates are large and 

independent of data quality, geographic location, or melt availability at extended margins 

worldwide. These figures and observations belie any sense that the uncertainty in COB 

locations might be chiefly observational in origin. COB location is instead clearly dominated 

by interpreter choice. The widths of our COB ensembles also consistently exceed those of 

single-study COTZ estimates at both magma-rich and magma-poor margins. We conclude 

on this basis that published COTZ widths are also strongly influenced by interpreter choice. 

This should come as little surprise when we recall, as outlined in previous sections, that the 
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classification of COTZs on the basis of melt availability implies changes of emphasis in 

interpretations of magmatic and fault-related features, but that both classes of features can 

just as well be expected to result from the creation of oceanic crust.  Given their basis in 

work by a global community of interpreters using what we would expect to be the full range 

of currently-plausible interpretations of breakup processes, it should be appropriate to use 

our COB ensembles as a conservative global set of COTZ estimates. Next, we discuss the 

consequences of our conclusions for two of the tasks that COBs have previously been 

routinely used in.  

 

Consequences of COB locational uncertainty for palinspastic reconstructions 

One of the main tasks that COBs are used in is palinspastic reconstruction. The task involves 

restoring the innermost edge of the oceanic crust towards the continental margin by 

undoing the spatial effects of processes involved in COTZ formation. Some studies refer to 

the COB, when used for this purp0se, as LaLOC or LOC ((Landward) Limit of Oceanic Crust; 

Heine et al., 2013; Christeson et al., 2014). Its modelled pre-stretching equivalent has been 

referred to as the restored COB; Williams et al., 2011). As for the COB, mapping or 

modelling LaLOC or restored COB depends on interpretations and assumptions that 

balance multiple geophysical observations with predictions or expectations coming from 

models of continental divergence and failure. The effects of all these assumptions and 

interpretations on the reliability and accuracy of palinspastic restorations are not clearly 

understood. As outlined above, after assuming the accuracy of restored COBs to be poor, 

some studies have suggested that an alternative, and equally valid, alternative to 

palinspastic modelling is to assume the existence of some observable proxy for the restored 

COB (Lawver et al., 1998; Macdonald et al., 2003). Macdonald et al. (2003) identify one such 

proxy at the shelf-edge related free-air gravity anomaly, and they refer to it as the Pre-

Breakup Ocean Continent Boundary. They note that this proxy is not reliable at margin 

segments where the shelf has undergone long-distance progradation, such as beneath the 

Niger Delta. As discussed above, the observational uncertainty in this gravity anomaly is in 

the region of 100—150 km. 

 

The aim of palinspastic modelling is to undo the changes in shape of mapped features that 

have occurred as a consequence of crustal extension. After some take into account the 
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effects of igneous crustal addition, all palinspastic modelling procedures assume that 

present-day crustal thickness variability is a consequence of the crustal extension that 

occurs in plate divergence. In its simplest form, this may involve determining the cross 

sectional area of extended continental crust imaged by a seismic profile and balancing this 

with the area in a shorter profile with crust of some assumed pre-extensional thickness (e.g. 

Heine et al., 2013). Working similarly, but in three dimensions, a set of plate rotation 

parameters can be assumed as known in order to define profiles along which to exactly 

balance the crustal thickness sampled from a grid (e.g. Dunbar and Sawyer, 1989). 

Alternatively, the process may involve searching for a set of plate kinematic rotations that 

achieve the closest to uniform pre-stretching crustal thickness in a grid (e.g. Grobys et al., 

2008). Heine et al. (2013) balanced a set of crustal scale seismic profiles across the South 

Atlantic margins using an ensemble of COB estimates with a smaller uncertainty (20—135 

km) than that in Figure 12. Using crustal thickness grids and gravity-based models of crustal 

thickness and igneous addition, Williams et al. (2011), Hosseinpour et al. (2013) and Bai et al. 

(2015) presented palinspastic reconstructions using multiple COB estimates at the 

conjugate margins in the Labrador Sea and SE Indian oceans, again with somewhat smaller 

uncertainty than our ensembles imply. All of these studies showed that the choice of post-

stretching COB location had only a modest influence on its palinspastically-restored 

equivalent. This is because any differences between COB location estimates will be reduced 

by the COTZ’s lengthening factor in the corresponding restored COB separations. As 

lengthening factors on extended continental margins are expected to approach and exceed 

4, this effect is great enough that the uncertainty implied by restoration of an ensemble of 

COBs like any of those in Table 1 would be something like the observational component of 

uncertainty in any of the ensemble’s members (~10—100 km), or somewhat less than the 

statistical uncertainty of points rotating about the stage poles that are taken to describe 

rift-stage plate divergence in plate kinematic reconstructions (Figure 14). What is more, 

within this range of uncertainty, the restored COBs tend to cluster at the continental slope 

gravity anomalies at extended margins (Figure 13; Heine et al., 2013; Hosseinpour et al., 

2013; Williams et al., 2011). This supports Lawver et al.’s (1998) and Macdonald et al.’s 

(2003) assertions that the slope anomalies, or indeed the continental slope itself, are 

serviceable proxies for the extent of continental crust prior to stretching. With this in mind, 

future work on adding to COB ensembles with current interpretation tools and methods 
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would be unlikely to improve the quality of palinspastic models at extended continental 

margins. Instead, the continental slope gravity anomaly can serve as an adequate and 

model-independent alternative to restored COBs. 

 

Consequences of COB locational uncertainty for plate kinematic modelling 

The insignificance of the COB in terms of process, the insensitivity of palinspastic 

reconstructions to interpretational variety in the range of COB estimates, the widespread 

coincidence of restored COB locations with the continental slope gravity anomaly, and the 

significant uncertainty in COB dating (~5 Myr for point estimates on linear COBs) compared 

to the suggested durations of COTZ formation (~10 Myr; Whitmarsh et al., 2001) brings into 

question the need for precise COB estimates of the kinds presented in our ensembles. 

However, precise COBs are sometimes made to play a role in tectonic and paleogeographic 

reconstructions that is rather more sensitive to their location and uncertainty than 

palinspastic modelling is. That role is in the determination of Euler rotations by which a pair 

of plates can be estimated to have moved relative to one another over a period of time. 

Recent studies by Moulin et al. (2009), Blaich et al. (2008), Torsvik et al. (2009), Williams et 

al. (2011), Ball et al. (2013), Gaina et al. (2013), and Gibbons et al. (2013), all state that they 

use COB markers to determine or test rotation parameters for plate reconstructions, by 

searching for rotations that unite them. Some do this by choosing a pair of preferred COB 

estimates for modelling as conjugates to generate rotations for the time of seafloor 

spreading onset. Others search for rotations to fit single or multiple palinspastically 

restored COB estimates in order to reconstruct for the time prior to continental extension. 

All assume that the COBs chosen for modelling are precisely locatable conjugates, and that 

they are precisely dateable isochrons. 

 

We have seen that neither of these assumptions seems to be valid. The fact that many of 

the COBs in the ensembles transect the others suggests that strike is not an attribute of 

COBs that is easily or consistently estimated. Unfortunately, strike is the parameter of 

reconstruction figures to which the process of estimating plate rotations is most sensitive. 

This makes rotation schemes built using single pairs of COBs prone to large errors, and thus 

great uncertainty. Just as seriously, as we have seen, the age of the COB is in many places 

not attributable at much better than 5 Myr resolution. As an illustration of the ambiguity 
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these problems can lead to, Figure 15 shows some of the consequences of using COB 

estimates for generating and testing plate kinematic reconstructions. In it, the ensemble of 

South American margin COBs is rotated towards its African counterpart using three 

separate rotation schemes. The ensembles have not been palinspastically reconstructed, 

and so the reconstructions depict the South Atlantic margins at the onset of seafloor 

spreading.  

 

The first scheme uses a single rotation that we have sought to fit the ensembles together 

for visual satisfaction, assuming their entire lengths represent conjugate isochrons. A large 

area of overlap centres on the Santos and Campos basins, where we have seen the COB 

estimates to diverge most widely of any extended continental margin segment in the world. 

The reconstruction rotation is about a pole at 31.3°W, 43.8°N. This pole is just 60 km distant 

from the pole determined for full reconstruction of the South Atlantic by Bullard et al 

(1965), using the 200 fathom (~400 m) submarine contour as a proxy for the sundered edges 

of the South American and African continents. This reinforces the conclusion that there is 

little to be gained from investing more effort in new interpretations of COB locations over 

simply adopting the continental slope or related gravity anomaly in areas where long-

distance shelf progradation can be ruled out. 

 

The second reconstruction in Figure 15 uses the South Atlantic pre-opening rotations of 

Torsvik et al. (2009), which are based on fitting those authors’ own estimated COBs 

together, along with an allowance for intracontinental and extensional margin deformation 

during the opening of the South Atlantic that the authors adopted from earlier plate 

kinematic work by Nürnberg and Müller (1991). Practically, this means that Torsvik and his 

co-authors did not explicitly treat their entire COBs as isochrons. Instead, they divided their 

COBs into three segments with implied ages of ~150 Ma, 129 Ma, and 112 Ma, from south to 

north. As in the rigid case, the plate kinematic model causes the COB estimate ensembles 

to overlap significantly more in the Santos Basin than elsewhere, where the COB ensembles 

overlap by amounts that, visually at least, are similar to their starting widths. 

 

The third reconstruction uses rotations generated on the basis of seafloor spreading data 

alone, without leading constraints from COB shapes, by Pérez-Díaz and Eagles (2014), 
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although those authors did use short segments of shelf edge gravity anomalies as a kind of 

buffer to constrain maximum angles for some of their rotations. In this reconstruction, the 

COB ensembles have been broken into seven short conceptually-isochronous segments 

that enable the kinematic model to optimize their fit by rotating them for seven separate 

ages. The segmentation of the COB ensembles in Figure 15 resembles that in the 

reconstructions of Eagles (2007), which were based on consideration of the coarse-

resolution ages of breakup unconformities and breakup-related volcanism. Like the others, 

this reconstruction features a large overlap in the Santos Basin segment but is otherwise 

visually acceptable.  

 

The misfit values calculated for the three reconstructions in Figure 15 are all quite similar, 

although no numerical attempt has been made to minimize them. From the values shown, 

it should come as no surprise that the smallest misfit was achieved using the greatest 

flexibility in COB segmentation and age. Recalling, however, that there are no explicit 

constraints on COB age and that the proxy ages applied to them are likely to be both 

imprecise and inaccurate, it is clear that there is little we know with confidence about the 

COB ensembles that might lead us to prefer any of the three models as a starting point for 

minimizing the misfit. Instead, we conclude that once the uncertainty in its interpretation 

and location is taken into consideration, there can be little confidence in the COB’s 

suitability as a tool for testing plate kinematic hypotheses by the generation of rotations or 

reconstructions from fitting them.  

 

Summary 

There is no unique diagnostic process by which COBs are known to form, and therefore no 

sharp definition of the COB that might be used to map it. Locating COBs is a matter of 

observation in geophysical data, which involves errors on the order of 10—100 km, and of 

interpretation of the observations in the light of models or concepts of continental breakup 

processes. Ensembles of COB estimates show that this interpretational step introduces an 

additional component of error that increases the total uncertainty in any given COB location 

estimate by up to a few hundred kilometres. COB ages are not directly determined, but may 

be assigned with up-to multi-million year uncertainty on the basis of considerations of proxy 

features at continental margins.  
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When making palinspastic reconstructions of COB ensembles at extended continental 

margins, the large overall uncertainty in the post-stretching location of the COB reduces to 

a value close to or less than that uncertainty’s lesser, observational, component. The choice 

of COB is thus not of great significance to the palinspastic reconstruction process. The 

results of using estimated COBs for plate kinematic modelling are strongly dependent on 

their segmentation and assignment to conjugate pairs, dating, and their estimated strike. 

None of these qualities is tightly constrainable within the uncertainties discussed here, and 

using COB estimates for plate kinematic modelling can therefore lead to very much larger 

differences between models than appear between models built using more tightly-

constrainable and easily-interpretable features. Whilst a carefully-chosen plate kinematic 

model may therefore provide a useful context in which to conduct continental breakup 

studies, such a choice cannot be made on the basis of a plate kinematic model built using 

COB locations as geometric markers.  
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Figures 

Figure 1. Interpretation, after Stagg et al. (2004), of a COB from seismic reflection data at 

the Antarctic margin of the Indian Ocean. Seismic data from the SCAR seismic data library 

system (http://www.scar-sdls.org).  
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Figure 2. Interpretation of seaward dipping reflectors in seismic reflection data from the 

Namibian continental margin. Seismic data courtesy of CGG (formerly CGGVeritas) and the 

Virtual Seismic Atlas (http://www.seismicatlas.org).  
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Figure 3. Top: a refraction profile based on OBS data from the extended margin east of 

Greenland, redrawn and simplified from Voss et al. (2007). In profiles like this, definitive 

oceanic crust may be taken to be represented by a layer with consistent properties of 

thickness around 7 km and velocities 6.6—6.8 kms-1, overlying either a base-of-crust 

reflection (e.g. as at 300-400 km) or a faster layer interpreted as mantle material (e.g. as at 

100-200 km). Bottom: Refraction data used in a network of sonobuoy velocity profiles for 

Leitchenkov et al’s (2014) COB interpretation in the Indian Ocean sector of Antarctica. The 

velocities shown are for the first sub-basement layer, in which velocities of 5.8—6.2 kms-1 

were taken as diagnostic of oceanic crust (purple disks) and velocities of 4.4—5.6 kms-1 

were taken to diagnose continental crust (orange disks). The green envelope suggests the 

kind of uncertainty in COB location that might be expected from interpolating a COB within 

such a data set (n.b. Leitchenkov et al. (2014) also used seismic reflection and potential field 

data to locate their COB (green line)).  
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Figure 4. Picking uncertainty (pink) in magnetic anomaly profiles (all from the NGDC’s 

online archive: https://www.ngdc.noaa.gov/mgg/geodas/trackline.html). Left: In N-S 

oriented profiles over normal oceanic crust formed at slow spreading rates in profiles south 

of Australia at ~30°S, the steep limb of a magnetic reversal anomaly might be picked with 

an uncertainty of 5-10 km. Right: in spite of the E-W orientation of profiles at a similar 

latitude off the Namibian continental margin, which for identical sources would produce 

simpler anomaly waveforms than at the Australian margin, a COB that might be interpreted 

at the feather edge of basalts in the margin’s SDR sequence is consistently more difficult to 

pinpoint from the magnetic anomaly, with uncertainty in the region of 20-50 km.  
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Figure 5. Top: Modification of an extended continental margin and neighbouring oceanic 

crust (green) by sedimentation (yellow) or magmatic underplating (violet) and 

accompanying flexure for an elastic thickness of 20 km. Depending on these few processes, 

the COB (dashed line) might be interpreted from a seaward free-air gravity low, the 

landward gradient behind it, or the landward gradient behind the gravity high associated 

with the shelf break. Adapted from figures in Watts and Fairhead (1999). Bottom: 

Comparison of picking uncertainties (pink) for a COB in gravity anomalies from an extended 

continental margin (A-A´; ~150 km) and of a fracture zone trough in gravity anomalies (B-

B´; ~5-10 km). Gravity grid data from Sandwell et al. (2014).  
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Figure 6. Ensemble of COB estimates at the extended margins of the Gulf of Mexico. 

Background images in this figure and Figures 7—12 show gridded free-air gravity anomalies 

of Sandwell et al. (2014). COB estimate sources are 1: Sawyer et al. (1991); 2: Marton and 

Buffler (1994); 3: Pindell (1994); 4: Schouten and Klitgord (1994); 5: Bird et al. (2005); 5b: 

envelope of previous estimates from Bird et al. (2005); 6: Bouysse et al. (2009); 7: Seton et 

al. (2012); 8: Hudec et al. (2013); 9: Christeson et al. (2014); 10: Sandwell et al. (2014).  
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Figure 7. Ensemble of COB estimates at the extended margins of Antarctica bordering the 

Indian Ocean. Key to colours as for Figure 5. COB estimate sources are 1: Powell et al. 

(1988); 2: Royer and Sandwell (1989); 3: Eittreim (1994); 4: Ishihara et al. (1999); 5: Gaina et 

al. (2003); 6: Stagg et al. (2004); 7: Gaina et al. (2007); 8: Gohl et al. (2008); 9: Bouysse et al. 

(2009); 10: Close et al. (2009); 11: Leitchenkov et al. (2009); 12: Direen et al. (2011); 13: 

Seton et al. (2012); 14: Ball et al. (2013); 15: Nogi et al. (2013); 16: Leitchenkov et al. (2014); 

17: Gillard et al. (2015). 
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Figure 8. Ensemble of COB estimates at the extended margins of Australia. Key to colours 

as for Figure 5. COB estimate sources are 1: Veevers et al. (1985); 2: Veevers et al. (1987); 3: 

Powell et al. (1988); 4: Fullerton et al. (1989); 5: Royer and Sandwell (1989); Stagg and 

Wilcox (1992); 7: Exon et al. (1996); 8: Royer and Rollet (1997); 9: Gaina et al. (1998); 10: 

Brown et al. (2003); 11: Norvick (2004); 12: Heine and Müller (2005); 13: Müller et al. (2005); 

14: Norvick et al. (2008); 15: Bouysse et al. (2009); 16: Direen et al. (2011); 17: Williams et al. 

(2011); 18: Seton et al. (2012); 19: Ball et al. (2013); 20: Hall et al. (2013); 21: Gillard et al. 

(2015). 
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Figure 9. Ensemble of COB estimates at the extended margins bordering the South China 

Sea. Key to colours as for Figure 5. COB estimate sources are 1:Briais et al. (1993); 2: Nissen 

et al. (1995); 3: Hsu et al. (2004); 4: Wang et al. (2006); 5: Bouysse et al. (2009); 6: Hu et al. 

(2009); 7: Deng et al. (2012); 8: Li et al. (2012); 9: Seton et al. (2012); 10: Zhu et al. (2012); 11. 

Barckhausen et al. (2014); 12: Chen et al. (2014); 13: Hwang and Chang (2014); 14: Pichot et 

al. (2014); 15: Bai et al., 2015; 16: Cameselle et al. (2015); 17: Li et al. (2015).  
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Figure 10. Ensemble of COB estimates at the extended continental margins bordering the 

Northern Indian Ocean. Key to colours as for Figure 5. COB estimate sources are 1: Naini 

and Talwani (1982); 2: Powell et al. (1988); 3: Rao et al. (1997); 4: Malod et al. (1997); 5: 

Todal and Eldholm (1998); 6: Calvès et al. (2008); 7: Sreejith et al. (2008); 8: Subrahmanyam 

et al. (2008); 9: Bouysse et al. (2009); 10: Krishna et al. (2009); 11: Veevers (2009); 12: Bastia 

et al. (2010); 13: Corfield et al. (2010); 14: Sinha et al. (2010); 15: Calvès et al. (2011); 16: 

Arora et al. (2012); 17: Seton et al. (2012); 18: Gibbons et al. (2013); 19: Nemčok et al. (2013); 

20: Rao and Radhakrishna (2014); 21: Minshull et al. (2015); 22: Ramana et al. (2015). 
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Figure 11. Ensemble of COB estimates at the extended margins bordering the North 

Atlantic. Key to colours as for Figure 5. COB estimate sources are 1: Dunbar and Sawyer 

(1985); 2: Boillot and Winterer (1988); 3: Roest and Srivastava (1989); 4: Todd et al. (1988); 5: 

Faleide et al. (1991); 6: Vorren et al. (1991); 7: Skogseid et al. (1992); 8: Keen and Dehler 

(1993); 9: Escher and Pulvertaft (1995); 10: Whittaker et al. (1997); 11: Eldholm (1998); 12: 

Breivik et al. (1999); 13: Scott (2000); 14: Srivastava et al. (2000); 15: Holbrook (2001); 16: 

Mosar et al. (2002); 17: Tsikalis et al. (2002); 18: Thinon et al. (2003); 19: Kimbell et al. 

(2005); 20: Lundin and Doré (2005); 21: Naylor and Shannon (2005); 22: Engen et al. (2006); 

23: Skaarup et al. (2006); 24: Olesen et al. (2007); 25: Tucholke et al. (2007); 26: Voss and 

Jokat (2007); 27: Engen (2008); 28: Mjelde et al. (2008); 29: Bouysse et al. (2009); 30: Gaina 

et al. (2009); 31: Voss et al. (2009); 32: Peron-Pinvidic and Manatschal (2010); 33: Libak et al. 

(2012); 34: Peron-Pinvidic (2012); 35: Seton et al. (2012); 36: Suckro et al. (2012); 37: Oakey 

et al., (2013); 38: Hosseinpour et al. (2013); 39: Gernigon et al. (2015); 40: Tasrianto and 

Escalona (2015). 
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Figure 12. Ensemble of COB estimates at the extended margins bordering the South 

Atlantic. Key to colours as for Figure 5. COB estimate sources are 1: Rabinowitz and 

LaBrecque (1979); 2: Austin and Uchupi (1982); 3: Raillard (1990); 4: Nürnberg and Müller 

(1991); 5: Chang (1992); 6: Light et al. (1993); 7: Gladczenko et al. (1997); 8: Lawver et al. 

(1998); 9: Cainelli and Mohriak (1999); 10: Karner and Driscoll (1999); 11: Bauer et al. (2000); 

12: Macdonald et al. (2003); 13: König and Jokat (2006); 14: Blaich et al. (2008); 15: 

Pawlowski (2008); 16: Bouysse et al. (2009); 17: Torsvik et al. (2009); 18: Anka (2010); 19: 

Labails et al. (2010); 20: Peyve (2010); 21: Seton et al. (2012); 22: Gaina et al. (2013); 23: 

Heine et al. (2013); 24: Wildman et al., 2015.  
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Figure 13. Publication chronology for COB estimates in our ensembles. COB estimates are 

classified by location and year of publication. Coloured bars at the bottom of the plot 

indicate the publication period over which the maximum width of the ensemble at each 

margin (Table 1) was achieved.  
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Figure 14. Implausible precision in the results of palinspastic modelling. Palinspastic 

restorations of extreme estimates of the COB location from the ensemble in the Cape 

Basin, off South Africa (black dashed lines) give an estimate of the region in which the ‘pre-

stretching COB’ may have lain (blue envelope). Modelling uses crustal stretching factors 

determined using a pre-stretching crustal thickness of 35 km and the CRUST1.0 data set 

(http://igppweb.ucsd.edu/~gabi/rem.html), with no allowance for igneous addition to the 

COTZ. The zone of extended continental crust is assumed to lie between the COB and an 

inland limit at the red dashed line. Plate divergence is assumed to have occurred by partial 

rotation about the FIT-M5no stage pole of Pérez-Díaz and Eagles (2014). Pink ellipses show 

that 95% uncertainty regions for the location of three points rotated into the restored 

region by a full rotation about that pole exceed the range of restored COB locations. 

Uncertainties of partial rotations about this pole, if they could be calculated, would be larger 

still, and thus larger than the width of the restored ensemble. Background shows the shelf-

related free-air gravity anomaly (Sandwell et al., 2014), to which the restored COB 

ensemble is a close match.  
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Figure 15. Use of COB ensembles (dark blue on African plate, pale blue on South American 

plate after rotation to Africa) in plate kinematic modelling. Heavy dashed lines indicate 

breaks in the South American ensemble used to fit the COBs interpreted as multiple 

isochronous segments. Misfit refers to the total area enclosed by COBs in the 

reconstructions. Assuming equal likelihood of any of the COB estimates being correct 

within the uncertainties discussed in the text, the kinematic scenarios shown must be 

regarded as three equally plausible bases for making end-rift stage reconstructions of the 

South Atlantic.  
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Table 1. Summary of COB estimate ensemble statistics 
 

 
Margin/Ensemble 

# COB or 
COTZ 

estimates 

# ensemble 
width 

measurements 

Mean width 
(km) 

Standard 
deviation of 
widths (km) 

Maximum 
width (km) 

India (west) 14 7 475 90 668 

South Atlantic (west) 11 23 217 194 816 

Antarctica (Indian 
ocean sector) 

17 19 206 93 366 

Australia (south) 11 18 187 80 265 

India (east) 8 16 184 79 429 

Magma rich1,2 76 50 182 153 668 

Magma poor1,3 80 81 175 87 386 

South Atlantic (east) 13 21 179 68 293 

Gulf of Mexico 16 33 153 86 382 

Labrador Sea & Davis 
Strait 

14 30 149 84 386 

North Atlantic (east) 14 30 148 125 398 

North Atlantic (west) 15 25 136 94 356 

S. China Sea 17 29 118 92 317 

Australia (west) 9 15 86 110 476 

Global 159 266 167 120 816 
1measurements only on those margin segments classified by Boillot and Coulon (1998) that 
are also characterized by ensembles in this study. 
2Labrador Sea & Davis Strait, Newfoundland, Iberia, Bay of Biscay, southern Ireland and 
southwestern UK, Pelotas, Congo, southern Australia and Wilkes Land, Antarctica. 
3Greenland, north Ireland to Norway, Argentine and Cape basins, west of India, NW 
Australia. 


