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ABSTRACT

The porosity of sea ice is a fundamental physical parameter
that governs the mechanical strength of sea ice and the mobility
of gases and nutrients for biological processes and biogeochem-
ical cycles in the sea ice layer. However, little is known about the
spatial distribution of the sea ice porosity and its variability be-
tween different sea ice types; an efficient and nondestructive
method to measure this property is currently missing. Sea ice
porosity is linked to the bulk electrical conductivity of sea
ice, a parameter routinely used to discriminate between sea
ice and seawater by electromagnetic (EM) induction sensors.
Here, we have evaluated the prospect of porosity retrieval of

sea ice by means of bulk conductivity estimates using 1D multi-
frequency EM inversion schemes. We have focused on two in-
version algorithms, a smoothness-constrained inversion and a
Marquardt-Levenberg inversion, which we modified for the
nonlinear signal bias caused by a passive bucking coil operated
in such a highly conductive environment. Using synthetic mod-
eling studies, 1D inversion algorithms and multiple frequencies,
we found that we can resolve the sea ice conductivity within
�0.01 S∕m. Using standard assumptions for the conduc-
tivity-porosity relation of sea ice, we were able to estimate
porosity with an uncertainty of �1.2%, which enables efficient
and nondestructive surveys of the internal state of the sea ice
cover.

INTRODUCTION

Along with the shrinking sea ice extent (Stroeve et al., 2012; Com-

iso and Hall, 2014), Arctic sea ice is thinning (Lindsay and Zhang,

2005; Haas et al., 2008; Kwok et al., 2009) and becoming younger

(Maslanik et al., 2011). The change toward a younger sea ice cover

leads to changes in the average internal structure. For example, first-

year sea ice shows higher absorption rates of shortwave radiation than

does older sea ice, leading to a stronger internal warming and melting

(Perovich et al., 2011; Nicolaus et al., 2012). This in turn results in an
increase of the connectivity of pores and brine channels, which gov-
erns the exchange of gases (Gosink et al., 1976) and nutrients
(Krembs et al., 2011) and the mechanical strength (Kovacs, 1996).
Here, we develop and present a methodology to improve the use
of electromagnetic (EM) induction sounding instruments to retrieve
information related to the internal structure of different sea ice types,
based on the measurements of bulk electrical sea ice conductivity,
hereinafter referred to as conductivity.
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The conductivity and porosity of a sea ice layer are generally
linked (Archie, 1942). Pores of young sea ice are usually filled with
highly saline brine left from the formation process, whereas in
older, multiyear sea ice, this brine is usually replaced by freshwater
due to meltwater flushing (Eicken et al., 2002; Vancoppenolle et al.,
2007) or gravity drainage (Niedrauer and Martin, 1979; Notz and
Worster, 2008). This also means that older, multiyear sea ice is elec-
trically more resistive, whereas young, porous sea ice still has a high
conductivity due to brine inclusions. Summer sea ice often shows
macroscale pores because brine channels are widened and con-
nected by melt processes. These pores then contain a mix of melt-
water and brine, which change the geochemistry of sea ice and the
availability of nutrients for biological processes (Thomas and Die-
ckmann, 2009; Vancoppenolle et al., 2010). Mapping sea ice layer
porosity by proxy measurements of sea ice conductivity would
therefore enable improved process studies of sea ice mass balance
and especially complex biogeochemical cycles through the atmos-
phere/sea ice/ocean interfaces. Information on the spatial variability,
large-scale gradients, and the annual cycle of internal sea ice proper-
ties is only sparsely available (e.g., Golden et al., 2007; Pringle et al.,
2009). Current methods to obtain information on sea ice porosity
are based on manual coring, whereas the high spatial variability in
the sea ice cover calls for a rapid and nondestructive method.
The conductivity of sea ice, and in particular its large contrast

with that of the ocean, is routinely used for sea ice thickness
retrieval by frequency-domain EM induction sounders, which usu-
ally use a single frequency in a range from 4 to 10 kHz. This method
is deployed from helicopters (Kovacs and Holladay, 1990; Haas
et al., 2009), aircraft (Haas et al., 2010), ship-mounted booms
(Haas, 1998; Reid et al., 2003), or directly on the sea ice surface
for high-resolution case studies (Eicken et al., 2001; Haas, 2004;
Druckenmiller et al., 2009; Weissling et al., 2011). The retrieval
algorithm assumes that sea ice and snow can be described as a sin-
gle, flat 1D layer, which is usually the case for level sea ice, and that
the effect of sea ice and snow conductivity on the EM response is
negligible compared with the contribution from the underlying sea-
water. The EM response can be approximated with an exponential
relation to the distance of the sea ice/seawater interface of either the
in-phase or quadrature (out-of-phase) component, parameterized
from calibration measurements or 1D forward models. The inverse
of the exponential function then directly relates the EM response to
the total thickness (snow and sea ice) for the given height of the
sensor above the surface (Kovacs and Morey, 1991). We refer to
this method as empirical exponential (EMPEX) according to Pfaf-
fling et al. (2007). This approach has proven to be a robust meth-
odology for empirical sea ice thickness retrieval, but it inherently
has to neglect any changes of the sea ice conductivity.
The assumption of a perfectly resistive, single layer of sea ice and

snow is justified in most cases because the influence of the sea ice
conductivity of dry, cold, level sea ice with typical thicknesses of 1–
2 m is small in the traditionally used frequency range (Pfaffling and
Reid, 2009). However, there are cases in which the sea ice conduc-
tivity is desired for sea ice type classification and even becomes a
dominant factor, e.g., for summer melt conditions or the so-called
subice platelet layer. The latter is a layer of loose ice crystals (ice
platelets) with a bulk conductivity between those of sea ice and
ocean water (Rack et al., 2013; Hunkeler et al., 2015), and it
may be located underneath coastal sea ice in Antarctica. Ice platelets
originate from supercooled water in cavities below ice shelves and

are a main contributor to the local sea ice mass balance. A mapping
of this special sea ice type is still a challenge due to the scarcity of
available data (Hoppmann et al., 2015; Langhorne et al., 2015). In
addition, the sea ice thickness can vary on instrument subfootprint
scales, and not all sea ice structures can be sufficiently described by
a 1D geometry approximation within the footprint. The traditional
1D assumption leads to thickness biases for deformed sea ice, partly
due to the geometric effect of subfootprint-scale thickness variabil-
ity (Kovacs et al., 1995; Reid et al., 2003; Pfaffhuber et al., 2012)
and partly due to the intrusion of saline seawater into the sea ice
layer (Reid et al., 2006).
Operational needs for in situ high-resolution sea ice surveys require

a small sensor package that can be towed by a person on foot or by
snowmobile. It is a particular characteristic of such surveys that mea-
surements are taken in a highly conductive environment given that the
sensor is usually a few meters above seawater. The conductivities of
sea ice layers we aim to resolve (0.01 − 0.2 S∕m) can be 1–2 orders
of magnitude smaller than the conductivity of the ocean (e.g.,
2.7 S∕m). Distances between the sensor and the saline ocean water
can easily become smaller than the dimensions of the sensor itself.
Previous EM sea ice studies have accounted for sea ice conductivities,
such as Pfaffling and Reid (2009), who reveal that the lower fre-
quency (3.68 kHz) of an airborne device is mostly sensitive to sea
ice thickness, whereas higher frequencies (112 kHz) are needed to
resolve sea ice conductivity. However, the difference in conductivity
between first-year sea ice (0.05 S∕m) and multiyear sea ice
(<0.01 S∕m) could not be resolved for sea ice thinner than 2 m.
In contrast, Holladay et al. (1998) use airborne EM induction sound-
ing to distinguish between first- and multiyear sea ice using 30 and
90 kHz. Reid et al. (2003) conclude that it is necessary for sea ice
thickness retrieval to account for conductive sea ice.
Empirical analytic approaches for processing single-frequency

EM data are insufficient to resolve thickness and conductivity of
even a single layer. Therefore, we assess the prospect of using
1D inversion algorithms on multifrequency EM data, in which
(1) conductivity within fixed layers and (2) conductivity and thick-
ness of sea ice layers are adapted to minimize the difference be-
tween the signal response and forward models. Previously,
Hunkeler et al. (2015) perform case studies with a ground-based
device (GEM-2, Geophex Ltd.) at frequencies of 63.03 and
93.09 kHz and a coil spacing of 1.66 m, being able to resolve
sea ice conductivities in agreement with estimates from sea ice
cores. The assessment of sea ice conductivity in this study is based
on the same small-coil instrument in which small coil refers to the
transmitter (Tx) and receiver (Rx) coils that have small diameters
compared with the distance between them. Hence, the magnetic
field generated by the transmitter is represented by a magnetic di-
pole, and the measurements at the Rx are considered to be point
measurements of the magnetic field (Farquharson, 2000). Process-
ing routines of data from such small-coil instruments in highly con-
ductive environments cannot be based on existing algorithms
because of a nonlinear signal bias introduced by the passive bucking
coil (Bx) of the instrument. This coil is used to null the primary field
at the receiver location and effectively acts as a second receiver. In
low-conductivity environments, the contribution of this second
receiver can safely be approximated by a linear factor and the cor-
rection is often integrated in the sensor calibration. However, the
contribution of the Bx significantly depends on the subsurface con-
ductivity itself (Fitterman, 1998) and needs to be taken into account
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in the forward model and inversion scheme in highly conductive
regimes.
In this study, we applied two modified geophysical inversion al-

gorithms that specifically include the Bx. We used synthetic data
and specific instrumental noise characteristics to run inversions
for different thickness and conductivity scenarios as a proof of con-
cept for the application to actual field data. We analyzed the sensi-
tivity of the inversion results and their success in resolving sea ice
thickness and conductivity simultaneously. Finally, the porosity and
its uncertainty is estimated from conductivity retrievals.

METHODS

We first describe principles behind multifrequency measurements
and passive EM bucking, then review two inversion algorithms with
the implemented Bx correction for a small-coil EM instrument.

Multifrequency measurements with small-coil systems

The quasi-static near-field zone (Spies and Frischknecht, 1991) is
defined by the transmitter-receiver distance xRx being much smaller
than the quasi-static plane-wave skin depth δ, which is defined as
follows:

δ ¼
ffiffiffiffiffiffiffiffiffi
2

ωμσ

s
; (1)

where ω is the angular frequency (ω ¼ 2πf), μ is the magnetic per-
meability of free space (μ ¼ 4π10−7 H∕m), and σ is the conduc-
tivity. In the near-field zone using the same transmitter-receiver
geometry, measurements at multiple frequencies do not add infor-
mation over a single-frequency measurement unless the conduc-
tivity shows a frequency dependence. To increase the sounding
depth, the transmitter-receiver distance has to be increased or the
coil orientation has to be changed. The quasi-static transition zone
corresponds to measurements with xRx ∼ δ. Compared with mea-
surements in the near-field zone, the sounding depth increases addi-
tionally with decreasing frequency (Spies and Frischknecht, 1991).
This results in additional information being retrieved using different
frequencies.
The lower frequencies considered in our study, i.e., f1 ¼ 1.53

and f2 ¼ 5.31 kHz, represent measurements in the near-field zone.
For instance, for measurements at frequency f1, the skin depths in
seawater (conductivity of 2.7 S∕m) and sea ice of 0.2 S∕m are δ ¼
7.8 and δ ¼ 28.8 m, respectively. Both skin depths are signifi-
cantly larger than the transmitter-receiver separation of 1.66 m.
However, measurements at higher frequencies; i.e., f3 ¼ 18.33,
f4 ¼ 63.03, and f5 ¼ 93.09 kHz are effectively in the transition
zone. For frequency f5, δ ¼ 1.0 and δ ¼ 3.6 m for seawater and
sea ice with a conductivity of 0.2 S∕m, respectively. This suggests
that in highly conductive sea ice environments, EM soundings by
varying frequency are feasible even at transmitter-receiver separa-
tions as small as 1.66 m. Moreover, in our case of a moderately
conductive layer being underlain by a highly conductive layer, res-
olution of layer parameters is generally much better than in the op-
posite case of a highly conductive layer being underlain by a
moderately conductive layer (Spies and Frischknecht, 1991).

Passive EM bucking

Current EM induction instruments operate at single to multiple
discrete frequencies. A typical EM instrument consists of three coils
(Figure 1): Tx, Bx, and Rx. The Tx generates a primary magnetic
field inducing a secondary magnetic field in a conductive subsur-
face. The signal strength of this secondary field depends, among
other things, on the distance from the instrument to a body and
its conductivity. During a survey, the Rx records the superposition
of the primary and secondary magnetic fields minus the buck-
ing field.
The purpose of a Bx is to null the primary field at the receiver,

which also avoids receiver saturation, and increases the dynamic
range of the instrument (Won et al., 2003). It is connected in series
and in opposite polarity to the Rx and technically acts as a second
receiver. In free space, the Bx measures the same absolute primary
field signal as does the Rx when the following relation according to
Won et al. (2003) is valid:

ARxnRx
x3Rx

¼ ABxnBx
x3Bx

; (2)

where xBx is the distance between Tx and Bx, xRx is the distance
between Tx and Rx, and A and n are the area and number of turns of
the respective coil. Typically, xBx and xRx are on the order of 1–4 m,
e.g., one particular commercial realization has xBx ¼ 1.035 m and
xRx ¼ 1.66 m and accommodates simultaneous operation at 0.3–
96 kHz. The Bx, which is assumed to be linearly sensitive to
the conductive subsurface, compensates internally for the primary
field at the receiver location. However, in the seawater environment,
the response of the Bx to the secondary field is nonlinear, leading to
an overcorrection of the receiver signal depending on the conduc-
tivity structure of the subsurface (Fitterman, 1998). Hunkeler et al.
(2015) account for this so-called bucking bias by modifying the for-
ward modeled data according to

d ¼ dRx − dBx ¼ ðIRx þ iQRxÞ − ðIBx þ iQBxÞ; (3)

RxTx

xRx = 1.660 m
xBx = 1.035 m

b)
Bx

Sea ice

Seawater

a)

Frequencies:
1.53, 5.31,
18.33, 63.03,
93.09 kHz

tsyn   = 0-10 m,
σsyn = 0.01-0.2 S/m

Sea ice

Seawater

infinite,
2.7 S/m

Figure 1. Diagrammatic sketch of multifrequency EM device on
level sea ice. (a) Two exemplary stations with different sea ice thick-
nesses. Synthetic data were calculated by assuming level sea ice
thicknesses tsyn from 0 to 10 m in increments of 0.1 m and conduc-
tivities σsyn of 0.01, 0.05, 0.10, 0.15, and 0.20 S∕m. (b) Internal coil
configuration and frequencies used for calculation of synthetic data,
xRx and xBx are the distances from the Tx to the Rx and Bx, respec-
tively. The Bx is used to null the primary field at the receiver lo-
cation. Algorithms needed to be modified for a nonlinear bucking
bias arising from measurements in highly conductive regimes.
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where d is the signal response at the Rx (dRx) and Bx (dBx) loca-
tions. These signals can also be expressed as a complex number
with real (in-phase I) and imaginary parts (quadrature Q), in which
I and Q are dimensionless and measured in parts per million (ppm).
An alternative representation of the signal is by its amplitude A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
and phase φ ¼ arctanðQ∕IÞ. Hunkeler et al. (2015)

achieve a satisfying agreement between field data and corrected for-
ward modeled data by applying coefficients obtained from calibra-
tion experiments. In this study, we build on these findings to
implement the Bx into two different inversion algorithms.

Inverse modeling

The aim of an inversion algorithm is to find a plausible model of
the subsurface (usually the simplest), which adequately fits the ob-
served data within the data uncertainty (Farquharson et al., 2003).
The process consists of two components: forward modeling and in-
version. Forward modeling generates the data of a specific model,
whereas inversion automatically changes the model to reduce the
misfit between the measured and forward-modeled data (Menke,
1989). We tested two inversion algorithms to resolve synthetic
data of homogeneous sea ice for different thicknesses and conduc-
tivities. Forward modeling and inversion calculations were per-
formed in 1D. We stitched the 1D inversion results of individual
stations, which results in a 2D impression. With the first algorithm
(EM1DFM, Farquharson [2000] and Farquharson et al. [2003]), we
only inverted for the conductivity within fixed layers of 0.1-m thick-
ness using vertical smoothing between layers. Hence, we call this
inversion algorithm smoothness-constrained inversion. Because a
vertical conductivity smoothing is not ideal in the case of a sharp
sea ice/seawater interface, we applied a second algorithm, the Mar-
quardt-Levenberg inversion (Jupp and Vozoff, 1975; Lines and
Treitel, 1984). With only two distinct (instead of many individual)
layers and with sea ice thickness as an additional free parameter, this
scheme may better reflect reality. In our study, we used the Mar-
quardt-Levenberg inversion algorithm from EM inversion with least
intricate algorithms (EMILIA, Kalscheuer et al. [2010, 2012] and
Grab [2012]).

Smoothness-constrained inversion (EM1DFM)

The inversion problem is ill posed and nonlinear. Therefore, we
derived at each iteration n a linearized approximation by searching
for a change in the conductivity model that minimizes the cost
function

Φn ¼ ϕn
d þ βnϕn

m; (4)

where ϕd is the data misfit, β is the trade-off parameter, and ϕm is
the model-structure component (Farquharson et al., 2003). The data
misfit ϕd is calculated according to Farquharson et al. (2003) by the
l2 norm

ϕn
d ¼ kWdðdn − dsynÞk2; (5)

where dsyn is the synthetic EM data. The quantities dn are the for-
ward-modeled data for the model mn of the nth iteration, where dn

is defined as the nonlinear forward operator F½mn�. By accounting
for the bucking bias, dsyn and dn need to be modified according to
equation 3. The quantityWd is a diagonal weighting matrix. For the

Bx quantification (experiment 1; see below),Wd includes the recip-
rocal value of 1% of the synthetic data. For the synthetic modeling
studies (experiments 2–4; see below), Wd includes the reciprocal
standard deviations of the data, which were calculated from
30 min of free-air recordings of noise at each frequency for in-phase
and quadrature components (Hunkeler et al., 2015).
The model-structure component in equation 4 is defined by

ϕn
m ¼ αskWsmnk2 þ αzkWzmnk2; (6)

where m is the model vector of the logarithms of the layer conduc-
tivities and αs (¼ 0.05) and αz (¼ 1) are scaling coefficients. The
diagonal matrix Ws contains elements that are equal to the square
roots of the individual layer thicknesses (¼ 0.1 m). The matrix Wz

is a first-order finite-difference operator. The rows are scaled by the
reciprocals of the square roots of half the distance between the cen-
ters of two layers (Farquharson et al., 2003). The left term in equa-
tion 6 quantifies the deviation from a reference model of 1 S∕m,
whereas the right term indicates the roughness of the model. Since
αs is significantly smaller than αz, the right term dominates the
model-structure component.
The trade-off parameter β (equation 4) determines the balance

between the data misfit and the model-structure component and
is responsible for fitting the observed data closely, whereas the con-
structed model should be as simple as possible (Farquharson et al.,
2003). The noise is well known. Therefore, we adjusted β with a
univariate search until the misfit ϕd matched a predefined target
misfit in every iteration n. This is the maximum of the number of
the calculated responses Nd ¼ 10 (in-phase and quadrature for the
five frequencies), or equal to 0.5ϕn−1

d , to allow only small changes
in model structure at each iteration (discrepancy principle, Far-
quharson, 2000). In case the target misfit cannot be reached, the
inversion algorithm searches for the smallest misfit.
The new model mn is calculated from the previous model

mn−1 by

mn ¼ mn−1 þ υδmn; (7)

where δm is the model update step and υ is the step length, which is
halved when the cost function (equation 4) does not immediately
decrease. To find the model update step δm, equation 4 is differ-
entiated with respect to δm, set equal to zero, and solved by a
least-squares approach for δm (Paige and Saunders, 1982; Far-
quharson et al., 2003). By doing so, the forward-modeled data
dn in equation 5 are approximated in the derivation of the inversion
algorithm by

dn ≈ dn−1 þ Jn−1δmn; (8)

where J is the Jacobian matrix of sensitivities (Farquharson and
Oldenburg, 1996). The J consists of the partial derivatives of the
data with respect to the model parameters (logarithms of conduc-
tivities σ) for the jth layer and ith station:

Jnij ¼
∂dRx;i
∂ log σnj

−
∂dBx;i
∂ log σnj

; (9)

where d is the signal response at the Rx (dRx) and Bx (dBx) loca-
tions. These sensitivities quantify how the forward-modeled data
are affected by changing the conductivity of each layer (Farquhar-

WA48 Hunkeler et al.

D
ow

nl
oa

de
d 

11
/2

0/
15

 to
 1

34
.1

.1
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



son and Oldenburg, 1993). The second term in equation 9 is not
required if the Bx modification is to be ignored.
To evaluate the compatibility of the new model mn with the field

data, the full forward response dn ¼ F½mn� is then used to calculate
ϕd (not the approximation in equation 8). The convergence of the
inversion algorithm is determined using two convergence criteria
according to Gill et al. (1981) and Farquharson (2000).
To assess how well synthetic data for a constructed model fit the

measured data, we calculated the root-mean square (rms) error, such
that

rms error ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd
ϕd

s
: (10)

An inversion with rms error close to one is considered reliable with-
out fitting too much to noise (Kalscheuer et al., 2013).

Marquardt-Levenberg inversion (EMILIA)

The Marquardt-Levenberg algorithm of EMILIA was recently
modified to account for the Bx bias by the implementation of equa-
tions 3 and 9 (Kaufmann, 2014). The cost function Φ is similar to
equation 4. The quantity ϕd is defined in a similar manner to equa-
tion 5 (more below). The quantity β governs the magnitude of the
damping and specifies the confidence in the previous model (damp-
ing factor). The quantity ϕm is now defined as

ϕn
m ¼ kðmn −mn−1Þk2 (11)

for the nth iteration. Since differences between the new model mn

and the previous model mn−1 are penalized, the inversion result is
influenced by the starting model. The starting model is the first as-
sumed subsurface model with the defined thicknesses and conduc-
tivities of sea ice and underlying seawater, which is adapted during
the inversion process. To improve sea ice thickness results from the
Marquardt-Levenberg inversion, we weighted the data misfit ϕdw

according to Kalscheuer et al. (2013):

ϕn
dw ¼

XNs

i¼1

����Wd; iðdni − dsyn; iÞ
w2
i

����
2

; (12)

where Ns is the number of stations, and the weight factors wi are
obtained from normalized synthetic data of one frequency and one
component and are kept constant over the course of the iterations.
Small values of wi were assigned to stations of thick sea ice to in-
crease their weights. The misfit ϕdw is normalized by the sum of the
squared weight factors w2 to achieve the intended total weighted
rms error (rms errorw ) of 1, where

rms error w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PNs
i¼1

Nd; i

w2
i

ϕdw

vuut ; (13)

and Nd; i is the number of calculated responses of station i. For
rms error > 1, a line search is performed for β and the model is
adapted accordingly. To assess the data fit of a particular station,
the sums in equations 12 and 13 are limited to that station.

Most-squares inversion

We applied a model error and resolution analysis to some of our
two-layer Marquardt-Levenberg inversions. This method is based
on the truncated singular value decomposition (TSVD) of the sen-
sitivity matrix (Kalscheuer and Pedersen, 2007). Because the effec-
tive number of model parameters is two (conductivity σ and
thickness t of sea ice), the truncation level of the TSVD is set to
two in the analyses of these models. Due to the very limited number
of model parameters, both layer parameters are perfectly resolved.
Hence, in assessing how well the layer parameters are constrained,
only the model parameter uncertainties need to be further con-
sidered.
To partly account for the nonlinearity of the inversion problem, we

computed error estimates for the final inversion models using most-
squares inversion (Jackson, 1976; Meju and Hutton, 1992; Meju,
1994). A most-squares inversion is an iterative method that, starting
from the least-squares inversion results, determines bounding model
values that represent the variability of the model parameters. The goal
is to assess the stability of model parameters (Meju and Hutton, 1992).
Owing to the logarithmic transformation of model parameters during
inversion, the most-squares errors, 1∕f−MSQ and fþMSQ, correspond to

parameter ranges σ∕f−MSQ; : : : ; f
þ
MSQ · σ and t∕f−MSQ; : : : ; f

þ
MSQ · t

of layer conductivities and thicknesses, respectively. Hence, a model
parameter is well constrained with most-squares errors close to one.

Synthetic data

To test the inversion algorithms, we used synthetic data sets for the
in-phase and quadrature components, calculated by a 1D forward
model using the implementation of Anderson (1979). We calculated
two different types of synthetic data sets: (1) neglecting (dsyn ¼ dRx)
and (2) accounting (dsyn ¼ dRx − dBx) for the Bx correction accord-
ing to equation 3. One data set includes 101 stations, in which the sea
ice was increased from 0 to 10 m from one station to the next in
increments of 0.1 m. These true thicknesses are hereinafter referred
to as tsyn. Two exemplary stations are illustrated in Figure 1a, in
which a snow layer was neglected. We used typical conductivities
σsyn of different sea ice types between 0.01 and 0.2 S∕m (Hunkeler
et al., 2015) and a homogeneous half-space conductivity of 2.7 S∕m,
representing seawater. In-phase and quadrature responses were cal-
culated at frequencies of 1.53, 5.31, 18.33, 63.03, and 93.09 kHz,
a setup also used during surveys on sea ice (Hunkeler et al.,
2015). For this proof-of-concept of the Bx implementation, we
did not account for any noise of the instrument (experiment 1). To
simulate realistic data, we added Gaussian noise (corresponding to
one standard deviation) to the in-phase and quadrature components
based on the free-air response for the respective frequencies (experi-
ments 2–4). The assumed standard deviations between 125 and
204 ppm were calculated by Hunkeler et al. (2015), in which higher
frequencies showed higher instrumental noise. The synthetic data
from the implementation of Anderson (1979) were compared with
the data forward modeled by the inversion algorithms considered
here. The data sets computed by all three programs differed only
by a few ppm, which is well within the noise level of the instrument.

RESULTS

We applied the two inversion algorithms to synthetic data calcu-
lated for stations with variable sea ice thickness and conductivity.
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We first identify the impact of the Bx on the performance of the
EM1DFM inversion (experiment 1). We then investigate whether
multilayered, Marquardt-Levenberg inversions are able to reliably
reproduce tsyn and σsyn (experiments 2–4).

Experiment 1: Influence of bucking coil

We used two synthetic data sets, with and without bucking bias,
and two versions of EM1DFM, ignoring and considering the buck-
ing bias. We tested the following three scenarios: (1) bucking bias
neither in the data nor considered in EM1DFM, (2) bucking bias in
the data but not considered in EM1DFM, and (3) bucking bias in the
data and considered in EM1DFM. For all calculations, we used
σsyn ¼ 0.1 S∕m, a seawater conductivity of 2.7 S∕m, and tsyn of
0–10 m. For the starting model, we assigned to all stations 1-m-
thick sea ice with conductivities of 0.05 and 2.7 S∕m to the under-
lying seawater. We allowed a maximum of 40 iterations and set the
uncertainties in Wd to 1% of the synthetic data.
For the first scenario, the rms error (equation 10) was close to

one for most inversions, whereas a rms error > 2 was found for
only three stations (Figure 2a). Although the level of agreement
between inversion results and the synthetic data was generally
good, an accurate determination of sea ice thickness from these
stations was difficult because conductivities varied little between
vertically adjacent layers, resulting in a smooth conductivity tran-
sition between sea ice and seawater. This transition zone from sea
ice to seawater conductivities was small for thinner sea ice
(tsyn < 4 m, white steps in Figure 2a), but widened toward thicker
sea ice (3 m for tsyn ¼ 10 m). Apart from this variable transi-
tion zone, σsyn of 0.1 S∕m (yellow in Figure 2a) and seawater
conductivity of 2.7 S∕m (blue in Figure 2a) were reasonably
reproduced.
We used for the second scenario the same setup as for the first

scenario, and we included the bucking bias in the synthetic data
(equation 3; Figure 2b), but not in the inversion algorithm. The al-
gorithm completely failed to reproduce the data for tsyn < 0.5 m, in
which high rms errors indicated that the target misfit was often not
achieved. For tsyn between 0.5 and 1 m, the algorithm added an
additional conductive layer close to the surface. Between 0.5 and
10 m, the transition zone was approximately 1 m too deep compared
with tsyn. The σsyn ¼ 0.1 S∕m was only rarely reproduced with sea
ice conductivity in individual fixed layers being either too high (ap-
proximately 0.3 S∕m, red in Figure 2b) or too low (close to 0 S∕m,
white in Figure 2b). For tsyn > 5 m, the algorithm added a conduc-
tive layer in the middle of the too-resistive sea ice.
For the third scenario, we used the modified synthetic data from

the second scenario together with the modified EM1DFM inversion
algorithm (equations 3 and 9). The results (Figure 2c) showed a
substantial improvement over the second scenario (Figure 2b), in
which the rms error and the resolved sea ice thickness and conduc-
tivity were comparable with those from the first scenario. For
tsyn < 0.5 m, conductivities similar to the underlying seawater indi-
cate that σsyn could not be resolved.
For all further experiments, we included the Bx in the synthetic

data and inversions.

Experiment 2: Smoothness-constrained inversion

In a second experiment, we used synthetic data with added Gaus-
sian noise and σsyn ¼ 0.01, 0.05, 0.1, and 0.2 S∕m. For each σsyn,

1

3

5

rm
s 

er
ro

r

1

3

5

rm
s 

er
ro

r

1

3

5

rm
s 

er
ro

r

Conductivity (S/m)

a)

b)

c)

Station

no bucking coil

bucking coil in synthetic data

bucking coil in synthetic data 
and inversion algorithm

tsyn

σsyn = 0.1 S/m

σsyn = 0.1 S/m

σsyn = 0.1 S/m

T
hi

ck
ne

ss
 (

m
)

T
hi

ck
ne

ss
 (

m
)

T
hi

ck
ne

ss
 (

m
)

Figure 2. Influence of the bucking bias on sea ice thickness and
conductivity retrieval (experiment 1). Each station represents a
smoothness-constrained 1D inversion result (EM1DFM). The Bx
modification was applied to (a) neither synthetic data nor inversion
(scenario s1), (b) only synthetic data (scenario s2), and (c) synthetic
data and inversion (scenario s3). The colored regions show the re-
sulting conductivities, from which we infer the sea ice thickness.
The σsyn of 0.1 S∕m, seawater conductivity of 2.7 S∕m and tsyn
(white steps) were reproduced best for scenarios s1 and s3. Below
each scenario, the rms error is shown for all stations. The target
misfit was reached when the rms error ¼ 1.
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we calculated the EM response for thicknesses tsyn of 0–10 m. The
starting model for each station contained 3 m of 0.05 S∕m (sea ice)
and an underlying homogeneous half-space of 2.7 S∕m (seawater).
The uncertainty was set to one standard deviation of the noise, and a
maximum of 40 iterations was allowed. At all stations, the algo-
rithm stopped before 40 iterations, either because convergence to
the target misfit or a minimum was reached, or no suitable model
update step was found.
The results of the four scenarios generally showed a good agree-

ment with the synthetic data (Figure 3). The number of stations for
which the target misfit could not be achieved were 3, 19, 31, and
29 for σsyn of 0.01, 0.05, 0.1, and 0.2 S∕m, respectively. For all
inversions, the first two stations with tsyn of 0 and 0.1 m showed
high rms errors (> 2). However, for stations with rms error < 2, sea
ice thickness was reasonably resolved for all four scenarios, but
the transition zone between sea ice and seawater conductivity be-
came broader for higher σsyn. At station 30 with 3-m-thick
sea ice, for example, the zone was for σsyn ¼ 0.01 S∕m only
0.5 m (Figure 3a), whereas for σsyn ¼ 0.2 S∕m, it was 1 m wide
(Figure 3d). The resulting sea ice conductivity was also more uni-

form for low σsyn (Figure 3a) compared with the patchy con-
ductivity results from higher σsyn (Figure 3d). However, the
sea ice conductivities were clearly distinguishable for the individ-
ual scenarios and can be resolved well within 0.05 S∕m using
EM1DFM.
For each of the four scenarios, we obtained after the last iteration

10 Jacobian matrices of sensitivities (equation 9) from the five
frequencies and both components (in-phase and quadrature). Each
Jacobian matrix includes entries at every station in each layer for the
respective scenario. To provide a quantified reliability estimate, we
normalized all entries of the Jacobian matrices by the respective
forward modeled data d obtained after the last iteration. From
the calculated normalized Jacobian matrices, we selected for each
layer the maximum of the 10 entries. Here, we show for each sce-
nario the resulting 0.5%, 1%, and 2% contour lines, along with the
four resulting reliability areas (shaded areas in Figure 3). Small val-
ues of normalized Jacobian matrices indicate that a change in the
conductivity barely affects the forward modeled data (Farquharson
and Oldenburg, 1993); hence, we trust regions with high sensitiv-
ities most.
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a) c)

b) d)

t syn

Figure 3. Results of smoothness-constrained inversions (EM1DFM, experiment 2). Each station represents a 1D inversion result. The colored
regions show the resulting conductivities, from which we infer the sea ice thickness. The σsyn of panels (a) 0.01, (b) 0.05, (c) 0.1, and
(d) 0.2 S∕m and seawater conductivity of 2.7 S∕m were reproduced for all scenarios. Because of vertical smoothing, sea ice thickness
can be approximated within a transition zone, which becomes broader for higher tsyn (white steps) and σsyn. Four reliability areas from nor-
malized Jacobian matrices are indicated with contour areas below 0.5%, between 0.5% and 1%, between 1% and 2%, and greater than 2%,
which is considered to be a high sensitivity. Stations with high rms error (>2) were covered by a gray bar to highlight the reliable inversion
results. The highest rms errors were obtained for σsyn ¼ 0.2 S∕m.
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Experiment 3: Marquardt-Levenberg inversion and
most-squares inversion

We inverted the same synthetic data used in the second experi-
ment (including Gaussian noise) by the Marquardt-Levenberg algo-
rithm. The data uncertainty was again set to the standard deviation
of the noise, and we used a starting model for each station of
0.05 S∕m for the upper 3 m (sea ice) and 2.7 S∕m for the homo-
geneous half-space below (seawater). The latter was fixed during
this inversion because seawater conductivity is usually known
and can be determined with tight bounds by sampling through bore-

holes. In the eastern Weddell Sea, for example, the seawater con-
ductivity ranged from 2.686 to 2.718 S∕m over a time period of
roughly three months (Hunkeler et al., 2015) and is usually assumed
to be constant during a survey. Tests showed that the Marquardt-
Levenberg inversion performed considerably worse when allowing
for a free seawater conductivity. Therefore, only sea ice thickness t
and sea ice conductivity σ were allowed to vary during a maximum
of 300 iterations.
After the maximum of iterations was reached, t was for

tsyn < 5 m well resolved for all four scenarios (Figure 4). The
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Figure 4. Results of sea ice thickness t and conductivity σ from Marquardt-Levenberg inversions (experiment 3). Each station represents a 1D
inversion result. The colored regions show the resulting conductivities σ, from which we directly obtain the sea ice thickness t. The σsyn of
panels (a) 0.01, (b) 0.05, (c) 0.1, and (d) 0.2 S∕m was reproduced for all four scenarios. The tsyn (white steps) was better reproduced for panels
(a-c) compared with panel (d). Below each scenario, the rms error is shown for individual stations, in which the rms error increases in all
scenarios with higher tsyn, which causes smaller signal responses.
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rms error was generally higher for thicker sea ice compared with
thinner sea ice in all scenarios. Most stations with a high rms error
were found for σsyn ¼ 0.2 S∕m, whereas the inversion of approx-
imately half of the stations yielded a rms error > 1 (Figure 4d).
The lowest rms error and accurately reproduced t (for tsyn < 7 m)
were found for the inversions with σsyn ¼ 0.05 S∕m, which is also
the conductivity defined in the starting model (Figure 4b).
To quantify these findings, we compared the inversion results

(and results with σsyn ¼ 0.15 S∕m) to tsyn (Figure 5a, scenarios
s1–s5). The best resolved sea ice thickness t was found, as stated
before, for σsyn ¼ 0.05 S∕m (s2). However, t was generally reason-
ably reproduced for tsyn < 5 m in all scenarios.
For comparison to resulting sea ice thickness t, we calculated

thicknesses with the EMPEX approach. For the latter, we used
the 5310 Hz in-phase forward responses, added Gaussian noise,
and fitted a single-exponential curve through the data (in-phase re-
sponse versus sea ice thickness). This curve fit represents the ex-
ponential function that is normally calculated from calibration
measurements in the field. We used the in-phase component be-
cause it is more sensitive to deeper structures, and it is, in contrast
to the quadrature component, monotonically decreasing with thick-
ness. The noise of the data was larger than the changes of the ex-
ponential function for thick sea ice with low signal responses.
Hence, large sea ice thicknesses were poorly constrained. Because
the exponential function was not approaching zero, a corresponding
sea ice thickness could not always be found for low signal responses
and sea ice > 8 m (Figure 5b).
In general, sea ice thickness t was underestimated with the Mar-

quardt-Levenberg inversion, but overestimated with the calculated
exponential function. With both methods, reliable results were
found for sea ice < 5 m. For thicker sea ice, the Marquardt-Leven-
berg inversion depended on σsyn, on the starting model and the
weighting of the data (more below). The sea ice thickness determi-
nation by the exponential approach did not depend on sea ice con-
ductivity because we calculated the exponential fit from the
respective in-phase components.
The sea ice conductivity σ, however, could be resolved for sce-

narios s1–s5 (Figure 5a). Figure 5c shows distributions of σ, in
which individual histograms are clearly separated. For the scenario
with the best resolved sea ice thickness t (s2), the narrowest con-
ductivity distribution was found (0.05 S∕m in Figure 5c). For sce-
narios s1–s5, the interquartile ranges of σ were within 0.01 S∕m
(Figure 5d).
In Table 1, we present the estimated model errors from most-

squares inversion of the Marquardt-Levenberg inversion models
for stations 11 and 31 (tsyn of 1 and 3 m) for σsyn ¼ 0.05, 0.1,
and 0.2 S∕m (see Figures 4 and 5a). Although the sea ice
thicknesses t for station 11 were tightly constrained with 1∕f−MSQ ¼
0.99 and fþMSQ ¼ 1.01 for all three cases, the sea ice conductivities
σ showed more variability with 1∕f−MSQ and fþMSQ varying from
0.92 to 0.99 and from 1.02 to 1.20, respectively. Similar results were
found for thicker sea ice (station 31) with 1∕f−MSQ between 0.97 and
0.99 and fþMSQ between 1.01 and 1.02 for t. The σ showed again
more variability with 1∕f−MSQ between 0.95 and 0.97 and fþMSQ be-
tween 1.01 and 1.09. These results were expected because the thick-
ness of a resistive layer is typically better constrained than its
conductivity from inductive EM methods (e.g., Pfaffling and Reid,
2009). Similarly, the increase in error with increasing thickness is
consistent. The σ is better constrained for higher σsyn, whereas the

most-squares errors of σ are larger for thinner sea ice. Generally, all
errors are very low and all parameters are well constrained because
only two model parameters are considered.

Experiment 4: Marquardt-Levenberg inversion

To quantify the effect of a priori information, we inverted syn-
thetic data (σsyn ¼ 0.1 S∕m and tsyn ¼ 0 − 10 m) with different
starting models and data weighting.
In a first step, the data set was inverted in a similar manner to

experiments 2 and 3. We varied the starting model (Figure 6a) used
for each station 3-m-thick sea ice, σsyn ¼ 0.05 (s1), 0.1 (s2), and
0.2 S∕m (s3) and a homogeneous half-space of 2.7 S∕m. The start-
ing model did not have a strong influence on sea ice thickness t. The
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Figure 5. Validation of sea ice thickness t and conductivity σ from
(a) Marquardt-Levenberg inversions (experiment 3), and (b)
classical single-frequency processing (EMPEX) using the in-phase
5310 Hz component. In panels (a and b), t is compared with tsyn of
0–10 m. The Marquardt-Levenberg inversions in panel (a) under-
estimated t at stations of thick sea ice (tsyn > 5 m) for all scenarios
with σsyn of 0.01 (s1), 0.05 (s2), 0.10 (s3), 0.15 (s4), and
0.20 ðs5Þ S∕m. The σsyn is compared to σ obtained from the scenar-
ios s1–s5, illustrated with histograms in panel (c) and box plots in
panel (d). Excluding the outliers, σ can be resolved within
�0.01 S∕m, independent from t.
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tsyn < 6 m was reliably reproduced from all conductivities in the
starting models (Figure 6a). But even after 300 iterations, the
rms error did not reach one (scenarios s1–s3 in Table 2 with rms
errors of 1.74–1.87).
In a second step, we used the same starting model as in scenarios

s1–s3, but weighted the data misfit according to equation 12. We
calculated the weight factors w by using the normalized synthetic
data of 5310 Hz in-phase component with added Gaussian noise.
Thus, the weight factor w decreased exponentially with increasing
station number. Sea ice thickness t (for tsyn > 6 m) was better re-
solved compared with the results without weighting (Figure 6b),
which was also supported by the reduced rms errors of 0.99–
1.16 (scenarios s4–s6 in Table 2). For the starting models with
sea ice conductivities of 0.05 and 0.1 S∕m, convergence was
reached after 104 and 58 iterations, respectively, which was faster
than for the other scenarios.
In a third step, we did not weight the data, but we used the sea ice

thickness results from the 0.1 S∕m exponential fit from Figure 5b in
the starting model. In the cases for which it was not possible during
EMPEX processing to find for low in-phase values a corresponding
sea ice thickness, we used the thickness from the previous station.
This is still apparent in the results, in which layered structures are
recognizable for sea ice > 9 m (Figure 6c). But t again improved
for tsyn > 6 m compared with the case in Figure 6a. The rms errors
of 1.04–1.10 for scenarios s7–s9 were smaller than for scenarios s1–
s3 (Table 2). Sea ice thicknesses t from scenarios s7 to s9 were sim-
ilar and therefore did not depend much on sea ice conductivities of
the starting model (Figure 6c).
In general, t was reasonably resolved by the Marquardt-Levenberg

algorithm for tsyn < 6 m, regardless of weights and starting model.
With weight factors and results from single-frequency thickness es-
timates, t improved for tsyn > 6 m. Although it was not always pos-
sible to resolve t up to 10 m, the sea ice conductivities σ were
resolved within �0.01 S∕m for all scenarios (Figure 6d). Outliers
of σ rather contained a too-low than a too-high conductivity value.

Porosity estimation

We reformulated Archie’s law (Archie, 1942) to calculate the sea
ice porosity ϕ

ϕ ¼
�
σ

σb

� 1
m

; (14)

Table 1. Error estimates for sea ice conductivities σ and thicknesses t of the two-layer Marquardt-Levenberg models for stations
11 and 31 in Figures 4 and 5a. Error estimates 1∕f−MSQ and f�MSQ were computed using most-squares inversions involving
truncated singular value decomposition with a truncation level p � 2, the effective number of model parameters. A model
parameter is well-constrained with most-squares errors close to one.

Parameter

σsyn ¼ 0.05 S∕m σsyn ¼ 0.1 S∕m σsyn ¼ 0.2 S∕m

1∕f−MSQ fþMSQ 1∕f−MSQ fþMSQ 1∕f−MSQ fþMSQ

Station 11

σ 0.95 1.20 0.92 1.03 0.99 1.02

t 0.99 1.01 0.99 1.01 0.99 1.01

Station 31

σ 0.97 1.09 0.95 1.02 0.96 1.01

t 0.99 1.02 0.98 1.01 0.97 1.01
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Figure 6. Influence of starting model and data weighting on sea ice
thickness t and conductivity σ from Marquardt-Levenberg inver-
sions (experiment 4). In comparison with the experiments before,
we used here one σsyn of 0.1 S∕m, but several starting models that
refer to scenarios s1–s9. In panels (a-c), t is compared with tsyn of
0–10 m. In panel (a), the standard starting model was used with 3-
m-thick sea ice, but variable conductivities of 0.05 (s1), 0.1 (s2),
0.2 ðs3Þ S∕m, and an underlying fixed homogeneous half-space
of 2.7 S∕m. In panel (b), the same starting model was used as
in panel (a), but the data were weighted (s4, s5, and s6). In panel
(c), sea ice thickness results from EMPEX processing (0.1 S∕m in
Figure 5b) and sea ice conductivities of 0.05 (s7), 0.1 (s8),
0.2 ðs9Þ S∕m were used for the starting model. The t improved with
data weighting and a modified starting model obtained from EM-
PEX thicknesses. In panel (d), σsyn of 0.1 S∕m is compared with the
resulting sea ice conductivities σ from the individual scenarios, in
which σ was recovered for each scenario within �0.01 S∕m.
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where σ is the bulk electrical conductivity, σb is the brine conduc-
tivity, andm is an empirical cementation factor. Our previous results
showed that the uncertainty of σ is 0.01 S∕m.
The cementation factor m depends on the connectivity of the

pores and the pore shapes, which are related to the structure of
sea ice and the c-axis orientation of individual crystals (Reid et al.,
2006). The mobility of ions and the permeability are therefore
closely linked to this parameter. With respect to sea ice, the liter-
ature suggestsm between 1.55 and 2.2 (Thyssen et al., 1974; Morey
et al., 1984). Haas et al. (1997) and Worby et al. (1999) use a ce-
mentation factor of 1.75 for their calculations. Reid et al. (2006) use
values of 1.75 and 2.2, stating that the horizontal conductivity of the
sea ice is overestimated with a value of 1.75. Because this parameter
is not better constrained for sea ice, and also depends on sea ice
types and seasonality, we used a value of 1.75.
With temperature measurements of nine first-year sea ice cores

from the winter Weddell Sea (Hunkeler et al., 2015), we calculated a
mean brine conductivity of 4.69� 0.91 S∕m according to Stogryn
and Desargant (1985). At the same locations, Hunkeler et al. (2015)
obtain from EM measurements at 63.03 and 93.09 kHz an average
bulk conductivity of 0.06 S∕m from seven experiments above thin
sea ice (< 1 m). Assuming now σb ¼ 4.69� 0.91 S∕m, m ¼ 1.75,
and σ ¼ 0.06� 0.01 S∕m, we obtain a porosity of ϕ ¼ 8.3� 1.2%

using Gaussian law of error propagation. From the nine sea ice
cores, we calculated according to Cox and Weeks (1983) and Lep-
päranta and Manninen (1988) average brine volumes (porosities) of
ϕ ¼ 9.5� 5.0%. A reasonable sea ice porosity can be estimated
from bulk conductivity obtained by EM, according to the agreement
between porosities calculated from conductivities and direct mea-
surements in sea ice cores.

DISCUSSION

We have shown that 1D inversions of EM data from passively
bucked small coil systems must include the nonlinear contribution
of the Bx when working close to a highly conductive environment.
In our case of sea ice thickness and conductivity retrieval, the neg-
ligence of this contribution would lead to wrong results for sea ice
thinner than 2 m (Figure 2b), which is typical of level sea ice thick-
ness in the Arctic and Antarctic landfast sea ice. We calculated syn-
thetic data based on a typical commercial instrument used in sea ice
research (Figure 1). The implementation of the bucking bias, how-
ever, will need to be made for all frequency-domain EM sensors that
use passive bucking in highly conductive environments (Fitterman,
1998). With the effect included, we were able to resolve conduc-

tivity and ultimately porosity with uncertainty values that motivate
further studies and use of 1D inversions for field data. This and ear-
lier case studies have shown that, especially, a high-frequency range
is required for the retrieval of sea ice conductivity.
Our aim was to jointly resolve sea ice thickness t and conduc-

tivity σ for a single layer with a thickness range of tsyn of
0–10 m and conductivities σsyn of 0.01 − 0.2 S∕m. We have tested
two inversion methods, a smoothness-constrained (EM1DFM) and
a Marquardt-Levenberg (EMILIA) inversion. In each scenario, we
inverted synthetic data with constant conductivity σsyn and the full
range of physically feasible sea ice thicknesses tsyn, in which the
upper range includes extreme cases, such as decadal sea ice. During
each iteration, one single β (trade-off parameter [EM1DFM] or
damping factor [EMILIA]) was used for all stations simultaneously.
The alternative would be separate inversions of all stations with
individual β. This approach may lead to a faster convergence with
fewer iterations. However, we chose the single β approach under the
assumption that individual stations are not independent to reduce
the potential for a wrong minimum of individual inversions.
EM1DFM inverts for the conductivity of multiple fixed layers;

therefore, the resolution of thickness depends on how the vertical
conductivity gradient is evaluated (Figure 3). The conductivity tran-
sition between sea ice and seawater becomes broader for thicker sea
ice, and it also depends on σsyn, thus subsequently increasing the
uncertainty of the thickness estimate. The Marquardt-Levenberg al-
gorithm instead uses layer thickness and layer conductivity as free
parameters, therefore removing the need for retrieving layer inter-
faces from conductivity gradients (Figure 4). Although the descrip-
tion of sea ice as a layer of defined thickness with a conductivity
discontinuity at the ice-water interface is a more realistic description
of undeformed sea ice, internal structures such as from sea ice de-
formation or complex layering potentially can be better described
by EM1DFM. However, the uncertainty of the interface location
will be increased by the process of vertical conductivity smoothing
by EM1DFM. The choice of the inversion scheme therefore de-
pends on the user and the specific application.
The best sea ice thickness results from the Marquardt-Levenberg

inversions were found using data weights or tuning the starting
model using single-frequency processing results (Figure 6). Higher
weights for the weaker signals of thicker sea ice do increase the
convergence rate and precision (Table 2). For real field data, we
need to be careful when weighting low signal responses because
signal noise and instrument attitude errors may have an increased
effect. In any case, with both inversion methods, tsyn < 5 m were
reasonably resolved. The conductivities of the starting model

Table 2. Number of iterations and total rms error of scenarios from Figure 6. The starting model contained sea ice
conductivities σstart of 0.05, 0.1, or 0.2 S∕m. Scenarios s1–s3: starting model with 3 m thick sea ice and underlying homogeneous
half-space of 2.7 S∕m for all stations. Scenarios s4–s6: same starting model as for scenarios s1–s3, but weighted synthetic data.
Scenarios s7–s9: starting model with sea ice thicknesses from single-frequency EMPEX processing.

σstart

Scenarios s1–s3 Scenarios s4–s6 Scenarios s7–s9

Rms error Iterations Rms error Iterations Rms error Iterations

0.05 S∕m 1.74 300 0.99 104 1.04 300

0.1 S∕m 1.87 300 0.99 58 1.04 300

0.2 S∕m 1.80 300 1.16 300 1.10 300
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seemed to have little effect on the inversion results (tsyn < 5 m). The
constant 3-m-thick starting probably favored the better retrieval of
thin sea ice.
Although the sea ice thickness is better constrained than the sea

ice conductivity based on the most-squares inversion (Table 1), the
conductivity is determined by the Marquardt-Levenberg inversion
with the five used frequencies within �0.01 S∕m no matter how
well the thickness was resolved, independent of the starting model,
the weight factors, and σsyn (Figures 5d and 6d). Likewise, sea ice
conductivities can be reasonably well resolved for most of the fixed
layers of EM1DFM inversions, provided that the rms error < 2

(Figure 3).
We have simplified sea ice as one homogeneous layer of pre-

scribed thicknesses and conductivities, not accounting for any
anisotropy due to higher conductivities in vertical brine channels
(Reid et al., 2006). In nature, the simplification of level sea ice most
likely applies to thermodynamically grown sea ice, which grows to
a maximum of 2.5 m (Thomas and Dieckmann, 2009) or to the Ant-
arctic subice platelet layer with multiple layers of different conduc-
tivities (Hunkeler et al., 2015). The sea ice/ocean interface or the
interface between sea ice and the platelet layer is characterized
by discontinuities in the vertical conductivity structure and by
far smaller variability in the horizontal direction. To resolve such
structures, we will put effort into improving laterally constrained
inversion schemes (Auken et al., 2005). But even such pseudo-
2D inversions cannot account for sea ice deformation features, in
which conductivities and subice topographies vary additionally
on a subfootprint scale. To account for complex topographies of
deformed sea ice, we need to include the bucking bias in a full
2D inversion, in which forward-modeling responses and sensitiv-
ities are calculated in 2D.
The conversion of conductivity into porosity requires the knowl-

edge of two parameters in Archie’s law: (1) the cementation factor
and (2) the brine conductivity. First, we assume a cementation factor
that is based on the results from previous sea ice field experiments.
Second, we used brine conductivities found in Antarctic winter sea
ice cores.
For sea ice throughout the freezing season, this parameter is of

second-order significance because it is not assumed to vary much.
In summer, the brine contains a mixture of saline brine and fresh-
water due to the surface and internal melting, yielding a higher
porosity than winter or spring sea ice (Vancoppenolle et al., 2007;
Tison et al., 2008). In such cases, we can still make assumptions
about the brine conductivity, but because we deal with higher un-
certainties, the effect of porosity and brine conductivity on the bulk
sea ice conductivity might not be fully separated in summer cases.
However, the uncertainty range of the sea ice conductivity in this

idealized case is promising for retrieving porosity from actual field
data. The improvement of 1D sea ice inversions presented in this
study therefore has the potential to improve biogeochemical sea
ice studies (e.g., Arrigo et al., 1997) and estimations of sea ice den-
sity for satellite altimetry retrieval of sea ice thickness (Ricker et al.,
2014) by large-scale mapping of sea ice porosity.

CONCLUSION

Sea ice conductivity is a proxy parameter that can be used to de-
rive porosity, albeit systematic measurements on scales larger than
point measurements have been rare mostly due to a lack of suitable
methodology. With the nondestructive method of multifrequency

EM sounding, this study aims to lay the foundation for an efficient
joint retrieval of sea ice thickness and porosity. We varied param-
eters of a synthetic data set (thickness and conductivity) to assess
the sensitivity of different parameter combinations in two geophysi-
cal inversion algorithms. Furthermore, we tested the influence of the
starting model and data weighting. We calculated the synthetic data
for a small-coil system with frequencies relevant for sea ice research
in the range of 1–100 kHz. The existing inversion algorithms were
modified for a nonlinear correction of signal bias that is caused by
passive bucking of the primary EM field close to highly conductive
environments. Only with the integration of this sensor-specific cor-
rection were we able to determine sea ice conductivity with a res-
olution of 0.01 S∕m with 1D inversion methods. This resolution is
sufficient to initiate field trials to estimate sea ice porosity of differ-
ent sea ice types, the thickness and porosity in multiyear cases,
flooded snow layers, or subice platelet layers near Antarctic ice
shelves. The detailed knowledge of porosity facilitates biogeochem-
ical studies of sea ice and sea ice densities estimated from porosities
yield freeboard validations of satellite measurements. Although our
approach improves sea ice surveying with EM induction sounding
methods, it suffers the same limitations caused by the use of 1D
forward models for essentially 3D targets with a significant subfoot-
print-scale variability. Because real-world sea ice surveys are
mostly conducted along transects, we suggest modifying 2D inver-
sions methods to resolve thickness and internal conductivity
changes at subfootprint scales. Such a method would enable further
studies of sea ice deformation, relevant for the improved estimation
of sea ice volume.

ACKNOWLEDGMENTS

Computing resources were provided by SNIC through the Up-
psala Multidisciplinary Center for Advanced Computational Sci-
ence (UPPMAX, Uppsala, Sweden) under project snic2014-1-
243 and by Eidgenössische Technische Hochschule (ETH) Zurich,
Switzerland. J. Hermansson at UPPMAX and H. Horstmayer at
ETH are acknowledged for assistance concerning technical and im-
plementational aspects in making the code run. This work was
partly funded by the POLMAR graduate school and the Alfred-
Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresfor-
schung. We are very grateful to the reviewers whose comments
and suggestions improved the clarity of the manuscript.

REFERENCES

Anderson, W. L., 1979, Numerical integration of related Hankel transforms
of orders 0 and 1 by adaptive digital filtering: Geophysics, 44, 1287–
1305, doi: 10.1190/1.1441007.

Archie, G. E., 1942, The electrical resistivity log as an aid in determining
some reservoir characteristics: Transactions of the AIME, 146, 54–62,
doi: 10.2118/942054-G.

Arrigo, K. R., D. L. Worthen, M. P. Lizotte, P. Dixon, and G. Dieckmann,
1997, Primary production in Antarctic sea ice: Science, 276, 394–397,
doi: 10.1126/science.276.5311.394.

Auken, E., A. V. Christiansen, B. H. Jacobsen, N. Foged, and K. I. Sørensen,
2005, Piecewise 1D laterally constrained inversion of resistivity data:
Geophysical Prospecting, 53, 497–506, doi: 10.1111/j.1365-2478.2005
.00486.x.

Comiso, J. C., and D. K. Hall, 2014, Climate trends in the Arctic as observed
from space: Wiley Interdisciplinary Reviews: Climate Change, 5, 389–
409, doi: 10.1002/wcc.277.

Cox, G. F. N., and W. F. Weeks, 1983, Equations for determining the gas and
brine volumes in sea ice samples: Journal of Glaciology, 29, 306–316.

WA56 Hunkeler et al.

D
ow

nl
oa

de
d 

11
/2

0/
15

 to
 1

34
.1

.1
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.1441007
http://dx.doi.org/10.1190/1.1441007
http://dx.doi.org/10.1190/1.1441007
http://dx.doi.org/10.2118/942054-G
http://dx.doi.org/10.2118/942054-G
http://dx.doi.org/10.1126/science.276.5311.394
http://dx.doi.org/10.1126/science.276.5311.394
http://dx.doi.org/10.1126/science.276.5311.394
http://dx.doi.org/10.1126/science.276.5311.394
http://dx.doi.org/10.1126/science.276.5311.394
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1111/j.1365-2478.2005.00486.x
http://dx.doi.org/10.1002/wcc.277
http://dx.doi.org/10.1002/wcc.277
http://dx.doi.org/10.1002/wcc.277


Druckenmiller, M. L., H. Eicken, M. A. Johnson, D. J. Pringle, and C. C.
Williams, 2009, Toward an integrated coastal sea-ice observatory: System
components and a case study at Barrow, Alaska: Cold Regions Science
and Technology, 56, 61–72, doi: 10.1016/j.coldregions.2008.12.003.

Eicken, H., H. R. Krouse, D. Kadko, and D. K. Perovich, 2002, Tracer stud-
ies of pathways and rates of meltwater transport through Arctic summer
sea ice: Journal of Geophysical Research: Oceans, 107, SHE 22-1–SHE
22-20, doi: 10.1029/2000JC000583.

Eicken, H., W. Tucker, and D. Perovich, 2001, Indirect measurements of
the mass balance of summer Arctic sea ice with an electromagnetic in-
duction technique: Annals of Glaciology, 33, 194–200, doi: 10.3189/
172756401781818356.

Farquharson, C., 2000, Background for Program EM1DFM: University of
British Columbia.

Farquharson, C., and D. Oldenburg, 1993, Inversion of time-domain electro-
magnetic data for a horizontally layered Earth: Geophysical Journal
International, 114, 433–442, doi: 10.1111/j.1365-246X.1993.tb06977.x.

Farquharson, C., and D. Oldenburg, 1996, Approximate sensitivities for the
electromagnetic inverse problem: Geophysical Journal International, 126,
235–252, doi: 10.1111/j.1365-246X.1996.tb05282.x.

Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, 2003, Simultaneous
1D inversion of loop-loop electromagnetic data for magnetic susceptibil-
ity and electrical conductivity: Geophysics, 68, 1857–1869, doi: 10.1190/
1.1635038.

Fitterman, D. V., 1998, Sources of calibration errors in helicopter EM data:
Exploration Geophysics, 29, 65–70, doi: 10.1071/EG998065.

Gill, P. E., W. Murray, and M. H. Wright, 1981, Practical optimization: Aca-
demic Press.

Golden, K., H. Eicken, A. Heaton, J. Miner, D. Pringle, and J. Zhu, 2007,
Thermal evolution of permeability and microstructure in sea ice: Geo-
physical Research Letters, 34, L16501, doi: 10.1029/2007GL030447.

Gosink, T. A., J. G. Pearson, and J. J. Kelley, 1976, Gas movement through
sea ice: Nature, 263, 41–42, doi: 10.1038/263041a0.

Grab, M., 2012, Forward and inverse modelling of frequency-domain
electromagnetic data from small coils: Master’s thesis, IDEA League,
ETH Zurich.

Haas, C., 1998, Evaluation of ship-based electromagnetic-inductive thick-
ness measurements of summer sea-ice in the Bellingshausen and Amund-
sen Seas, Antarctica: Cold Regions Science and Technology, 27, 1–16,
doi: 10.1016/S0165-232X(97)00019-0.

Haas, C., 2004, Late-summer sea ice thickness variability in the Arctic
Transpolar Drift 19912001 derived from ground-based electromagnetic
sounding: Geophysical Research Letters, 31, L09402, doi: 10.1029/
2003GL019394.

Haas, C., S. Gerland, H. Eicken, and H. Miller, 1997, Comparison of sea-ice
thickness measurements under summer and winter conditions in the Arc-
tic using a small electromagnetic induction device: Geophysics, 62, 749–
757, doi: 10.1190/1.1444184.

Haas, C., S. Hendricks, H. Eicken, and A. Herber, 2010, Synoptic airborne
thickness surveys reveal state of Arctic sea ice cover: Geophysical Re-
search Letters, 37, L09501, doi: 10.1029/2010GL042652.

Haas, C., J. Lobach, S. Hendricks, L. Rabenstein, and A. Pfaffling, 2009,
Helicopter-borne measurements of sea ice thickness, using a small and
lightweight, digital EM system: Journal of Applied Geophysics, 67,
234–241, doi: 10.1016/j.jappgeo.2008.05.005.

Haas, C., A. Pfaffling, S. Hendricks, L. Rabenstein, J. Etienne, and I. Rigor,
2008, Reduced ice thickness in Arctic Transpolar Drift favors rapid ice
retreat: Geophysical Research Letters, 35, L17501, doi: 10.1029/
2008GL034457.

Holladay, J. S., R. Z. Moucha, and S. J. Prinsenberg, 1998, Airborne electro-
magnetic sea ice sounding measurements during SIMMS’95: Canadian
Contractor Report of Hydrography and Ocean Sciences 50.

Hoppmann, M., M. Nicolaus, S. Paul, P. A. Hunkeler, G. Heinemann, S.
Willmes, R. Timmermann, O. Boebel, T. Schmidt, M. Kiihnel, G.
Konig-Langlo, and R. Gerdes, 2015, Ice platelets below Weddell Sea
landfast sea ice: Annals of Glaciology, 56, 175–190, doi: 10.3189/
2015AoG69A678.

Hunkeler, P. A., S. Hendricks, M. Hoppmann, S. Paul, and R. Gerdes, 2015,
Towards an estimation of sub sea-ice platelet-layer volume with multi-fre-
quency electromagnetic induction sounding: Annals of Glaciology, 56,
137–146, doi: 10.3189/2015AoG69A705.

Jackson, D. D., 1976, Most squares inversion: Journal of Geophysical Re-
search, 81, 1027–1030, doi: 10.1029/JB081i005p01027.

Jupp, D., and K. Vozoff, 1975, Stable iterative methods for the inversion of
geophysical data: Geophysical Journal International, 42, 957–976, doi: 10
.1111/j.1365-246X.1975.tb06461.x.

Kalscheuer, T., M. Bastani, S. Donohue, L. Persson, A. Pfaffhuber, F. Reiser,
and Z. Ren, 2013, Delineation of a quick clay zone at Smørgrav, Norway,
with electromagnetic methods under geotechnical constraints: Journal of
Applied Geophysics, 92, 121–136, doi: 10.1016/j.jappgeo.2013.02.006.

Kalscheuer, T., J. Hübert, A. Kuvshinov, T. Lochbiihler, and L. B. Pedersen,
2012, A hybrid regularization scheme for the inversion of magnetotelluric

data from natural and controlled sources to layer and distortion
parameters: Geophysics, 77, no. 4, E301–E315, doi: 10.1190/geo2012-
0018.1.

Kalscheuer, T., M. D. l. Á. G. Juanatey, N. Meqbel, and L. B. Pedersen,
2010, Non-linear model error and resolution properties from two-dimen-
sional single and joint inversions of direct current resistivity and radio-
magnetotelluric data: Geophysical Journal International, 182, 1174–
1188, doi: 10.1111/j.1365-246X.2010.04686.x.

Kalscheuer, T., and L. B. Pedersen, 2007, A non-linear truncated SVD vari-
ance and resolution analysis of two-dimensional magnetotelluric models:
Geophysical Journal International, 169, 435–447, doi: 10.1111/j.1365-
246X.2006.03320.x.

Kaufmann, M., 2014, Pseudo 2D inversion of multi-frequency coil-coil
FDEM data: Master’s thesis, IDEA League, ETH Zurich.

Kovacs, A., 1996, Sea ice: Part II. Estimating the full-scale tensile, flexural,
and compressive strength of first-year ice, Technical report, Defense Tech-
nical Information Center Document.

Kovacs, A., and J. S. Holladay, 1990, Sea-ice thickness measurement using a
small airborne electromagnetic sounding system: Geophysics, 55, 1327–
1337, doi: 10.1190/1.1442780.

Kovacs, A., J. S. Holladay, and C. J. Bergeron Jr., 1995, The footprint/alti-
tude ratio for helicopter electromagnetic sounding of sea-ice thickness:
Comparison of theoretical and field estimates: Geophysics, 60, 374–
380, doi: 10.1190/1.1443773.

Kovacs, A., and R. M. Morey, 1991, Sounding sea ice thickness using a
portable electromagnetic induction instrument: Geophysics, 56, 1992–
1998, doi: 10.1190/1.1443011.

Krembs, C., H. Eicken, and J. W. Deming, 2011, Exopolymer alteration of
physical properties of sea ice and implications for ice habitability and bio-
geochemistry in a warmer Arctic: Proceedings of the National Academy
of Sciences, 108, 3653–3658, doi: 10.1073/pnas.1100701108.

Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D.
Yi, 2009, Thinning and volume loss of the Arctic Ocean sea ice cover:
2003–2008: Journal of Geophysical Research, 114, C07005, doi: 10
.1029/2009JC005312.

Langhorne, P. J., K. Hughes, A. J. Gough, I. J. Smith, M. Williams, N. Rob-
inson, C. Stevens, W. Rack, D. Price, G. Leonard, A. Mahoney, C. Haas,
and T. Haskell, 2015, Observed platelet ice distributions in antarctic sea
ice: An index for ocean— Ice shelf heat flux: Geophysical Research Let-
ters. 42, 5442–5451, doi: 10.1002/2015GL064508.

Leppäranta, M., and T. Manninen, 1988, The brine and gas content of sea ice
with attention to low salinities and high temperatures, Finnish Institute of
Marine Research, internal report, 1988–2.

Lindsay, R., and J. Zhang, 2005, The thinning of Arctic sea ice, 1988-2003:
Have we passed a tipping point?: Journal of Climate, 18, 4879–4894, doi:
10.1175/JCLI3587.1.

Lines, L., and S. Treitel, 1984, Tutorial: A review of least-squares inversion
and its application to geophysical problems: Geophysical Prospecting, 32,
159–186, doi: 10.1111/j.1365-2478.1984.tb00726.x.

Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011, Distribution and
trends in Arctic sea ice age through spring 2011: Geophysical Research
Letters, 38, L13502, doi: 10.1029/2011GL047735.

Meju, M., and V. Hutton, 1992, Iterative most-squares inversion: Applica-
tion to magnetotelluric data: Geophysical Journal International, 108, 758–
766, doi: 10.1111/j.1365-246X.1992.tb03467.x.

Meju, M. A., 1994, Biased estimation: A simple framework for inversion
and uncertainty analysis with prior information: Geophysical Journal
International, 119, 521–528, doi: 10.1111/j.1365-246X.1994.tb00139.x.

Menke, W., 1989, Geophysical data analysis: Discrete inverse theory: Aca-
demic Press, International Geophysics Series 45.

Morey, R. M., A. Kovacs, and G. F. Cox, 1984, Electromagnetic properties
of sea ice: Cold Regions Science and Technology, 9, 53–75, doi: 10.1016/
0165-232X(84)90048-X.

Nicolaus, M., C. Katlein, J. Maslanik, and S. Hendricks, 2012, Changes in
Arctic sea ice result in increasing light transmittance and absorption: Geo-
physical Research Letters, 39, L24501, doi: 10.1029/2012GL053738.

Niedrauer, T. M., and S. Martin, 1979, An experimental study of brine drain-
age and convection in young sea ice: Journal of Geophysical Research:
Oceans, 84, 1176–1186, doi: 10.1029/JC084iC03p01176.

Notz, D., and M. G. Worster, 2008, In situ measurements of the evolution of
young sea ice: Journal of Geophysical Research: Oceans, 113, C03001,
doi: 10.1029/2007JC004333.

Paige, C. C., and M. A. Saunders, 1982, LSQR: An algorithm for sparse
linear equations and sparse least squares: ACM Transactions on Math-
ematical Software (TOMS), 8, 43–71, doi: 10.1145/355984.355989.

Perovich, D., K. Jones, B. Light, H. Eicken, T. Markus, J. Stroeve, and R.
Lindsay, 2011, Solar partitioning in a changing Arctic sea-ice cover: An-
nals of Glaciology, 52, 192–196, doi: 10.3189/172756411795931543.

Pfaffhuber, A. A., S. Hendricks, and Y. A. Kvistedal, 2012, Progressing from
1D to 2D and 3D near-surface airborne electromagnetic mapping with a
multisensor, airborne sea-ice explorer: Geophysics, 77, no. 4, WB109–
WB117, doi: 10.1190/geo2011-0375.1.

Multifrequency EM sea ice inversions WA57

D
ow

nl
oa

de
d 

11
/2

0/
15

 to
 1

34
.1

.1
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1016/j.coldregions.2008.12.003
http://dx.doi.org/10.1029/2000JC000583
http://dx.doi.org/10.1029/2000JC000583
http://dx.doi.org/10.3189/172756401781818356
http://dx.doi.org/10.3189/172756401781818356
http://dx.doi.org/10.3189/172756401781818356
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb06977.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05282.x
http://dx.doi.org/10.1190/1.1635038
http://dx.doi.org/10.1190/1.1635038
http://dx.doi.org/10.1190/1.1635038
http://dx.doi.org/10.1190/1.1635038
http://dx.doi.org/10.1071/EG998065
http://dx.doi.org/10.1071/EG998065
http://dx.doi.org/10.1029/2007GL030447
http://dx.doi.org/10.1029/2007GL030447
http://dx.doi.org/10.1038/263041a0
http://dx.doi.org/10.1038/263041a0
http://dx.doi.org/10.1016/S0165-232X(97)00019-0
http://dx.doi.org/10.1016/S0165-232X(97)00019-0
http://dx.doi.org/10.1029/2003GL019394
http://dx.doi.org/10.1029/2003GL019394
http://dx.doi.org/10.1029/2003GL019394
http://dx.doi.org/10.1190/1.1444184
http://dx.doi.org/10.1190/1.1444184
http://dx.doi.org/10.1190/1.1444184
http://dx.doi.org/10.1029/2010GL042652
http://dx.doi.org/10.1029/2010GL042652
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1016/j.jappgeo.2008.05.005
http://dx.doi.org/10.1029/2008GL034457
http://dx.doi.org/10.1029/2008GL034457
http://dx.doi.org/10.1029/2008GL034457
http://dx.doi.org/10.3189/2015AoG69A678
http://dx.doi.org/10.3189/2015AoG69A678
http://dx.doi.org/10.3189/2015AoG69A678
http://dx.doi.org/10.3189/2015AoG69A705
http://dx.doi.org/10.3189/2015AoG69A705
http://dx.doi.org/10.1029/JB081i005p01027
http://dx.doi.org/10.1029/JB081i005p01027
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb06461.x
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1016/j.jappgeo.2013.02.006
http://dx.doi.org/10.1190/geo2012-0018.1
http://dx.doi.org/10.1190/geo2012-0018.1
http://dx.doi.org/10.1190/geo2012-0018.1
http://dx.doi.org/10.1190/geo2012-0018.1
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04686.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03320.x
http://dx.doi.org/10.1190/1.1442780
http://dx.doi.org/10.1190/1.1442780
http://dx.doi.org/10.1190/1.1442780
http://dx.doi.org/10.1190/1.1443773
http://dx.doi.org/10.1190/1.1443773
http://dx.doi.org/10.1190/1.1443773
http://dx.doi.org/10.1190/1.1443011
http://dx.doi.org/10.1190/1.1443011
http://dx.doi.org/10.1190/1.1443011
http://dx.doi.org/10.1073/pnas.1100701108
http://dx.doi.org/10.1073/pnas.1100701108
http://dx.doi.org/10.1073/pnas.1100701108
http://dx.doi.org/10.1029/2009JC005312
http://dx.doi.org/10.1029/2009JC005312
http://dx.doi.org/10.1002/2015GL064508
http://dx.doi.org/10.1002/2015GL064508
http://dx.doi.org/10.1175/JCLI3587.1
http://dx.doi.org/10.1175/JCLI3587.1
http://dx.doi.org/10.1175/JCLI3587.1
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1111/j.1365-2478.1984.tb00726.x
http://dx.doi.org/10.1029/2011GL047735
http://dx.doi.org/10.1029/2011GL047735
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03467.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb00139.x
http://dx.doi.org/10.1016/0165-232X(84)90048-X
http://dx.doi.org/10.1016/0165-232X(84)90048-X
http://dx.doi.org/10.1016/0165-232X(84)90048-X
http://dx.doi.org/10.1029/2012GL053738
http://dx.doi.org/10.1029/2012GL053738
http://dx.doi.org/10.1029/JC084iC03p01176
http://dx.doi.org/10.1029/JC084iC03p01176
http://dx.doi.org/10.1029/2007JC004333
http://dx.doi.org/10.1029/2007JC004333
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.3189/172756411795931543
http://dx.doi.org/10.3189/172756411795931543
http://dx.doi.org/10.1190/geo2011-0375.1
http://dx.doi.org/10.1190/geo2011-0375.1
http://dx.doi.org/10.1190/geo2011-0375.1


Pfaffling, A., C. Haas, and J. E. Reid, 2007, A direct helicopter EM sea ice
thickness inversion, assessed with synthetic and field data: Geophysics,
72, no. 4, F127–F137, doi: 10.1190/1.2732551.

Pfaffling, A., and J. E. Reid, 2009, Sea ice as an evaluation target for HEM
modelling and inversion: Journal of Applied Geophysics, 67, 242–249,
doi: 10.1016/j.jappgeo.2008.05.010.

Pringle, D., J. Miner, H. Eicken, and K. Golden, 2009, Pore space perco-
lation in sea ice single crystals: Journal of Geophysical Research: Oceans,
114, C12017, doi: 10.1029/2008JC005145.

Rack, W., C. Haas, and P. J. Langhorne, 2013, Airborne thickness and free-
board measurements over the McMurdo Ice Shelf, Antarctica, and impli-
cations for ice density: Journal of Geophysical Research: Oceans, 118,
5899–5907, doi: 10.1002/2013JC009084.

Reid, J. E., A. Pfaffling, A. P. Worby, and J. R. Bishop, 2006,
In situ measurements of the direct-current conductivity of Antarctic
sea ice: Implications for airborne electromagnetic sounding of sea-
ice thickness: Annals of Glaciology, 44, 217–223, doi: 10.3189/
172756406781811772.

Reid, J. E., A. P. Worby, J. Vrbancich, and A. I. S. Munro, 2003, Shipborne
electromagnetic measurements of Antarctic sea-ice thickness: Geophys-
ics, 68, 1537–1546, doi: 10.1190/1.1620627.

Ricker, R., S. Hendricks, V. Helm, H. Skourup, and M. Davidson, 2014,
Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on ra-
dar-waveform interpretation: The Cryosphere, 8, 1607–1622, doi: 10
.5194/tc-8-1607-2014.

Spies, B. R., and F. C. Frischknecht, 1991, Electromagnetic sounding, inM.
N. Nabighian, ed., Electromagnetic methods in applied geophysics: Vol-
ume 2, application, Parts A and B: SEG Investigations in Geophysics No.
3, 285–425.

Stogryn, A., and G. Desargant, 1985, The dielectric properties of brine in sea
ice at microwave frequencies: IEEE Transactions on Antennas and Propa-
gation, 33, 523–532, doi: 10.1109/TAP.1985.1143610.

Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P.
Barrett, 2012, The Arctics rapidly shrinking sea ice cover: A research syn-
thesis: Climatic Change, 110, 1005–1027, doi: 10.1007/s10584-011-
0101-1.

Thomas, D. N., and G. S. Dieckmann, 2009, Sea ice: John Wiley & Sons.
Thyssen, F., H. Kohnen, M. Cowan, and G. Timco, 1974, DC resistivity

measurements on the sea ice near pond inlet, NWT (Baffin Island): Polar-
forschung, 44, 117–126.

Tison, J.-L., A. Worby, B. Delille, F. Brabant, S. Papadimitriou, D. Thomas,
J. De Jong, D. Lannuzel, and C. Haas, 2008, Temporal evolution of
decaying summer first-year sea ice in the Western Weddell Sea, Antarc-
tica: Deep Sea Research Part II Topical Studies in Oceanography, 55,
975–987, doi: 10.1016/j.dsr2.2007.12.021.

Vancoppenolle, M., C. M. Bitz, and T. Fichefet, 2007, Summer landfast sea
ice desalination at Point Barrow, Alaska: Modeling and observations:
Journal of Geophysical Research: Oceans, 112, C04022, doi: 10.1029/
2006JC003493.

Vancoppenolle, M., H. Goosse, A. De Montety, T. Fichefet, B. Tremblay,
and J.-L. Tison, 2010, Modeling brine and nutrient dynamics in Antarctic
sea ice: The case of dissolved silica: Journal of Geophysical Research:
Oceans, 115, C02005, doi: 10.1029/2009JC005369.

Weissling, B., M. Lewis, and S. Ackley, 2011, Sea-ice thickness and mass at
ice station Belgica, Bellingshausen Sea, Antarctica: Deep Sea Research
Part II: Topical Studies in Oceanography, 58, 1112–1124, doi: 10.1016/j
.dsr2.2010.10.032.

Won, I. J., A. Oren, and F. Funak, 2003, GEM-2A: A programmable broad-
band helicopter-towed electromagnetic sensor: Geophysics, 68, 1888–
1895, doi: 10.1190/1.1635041.

Worby, A., P. Griffin, V. Lytle, and R. Massom, 1999, On the use of electro-
magnetic induction sounding to determine winter and spring sea ice thick-
ness in the Antarctic: Cold Regions Science and Technology, 29, 49–58,
doi: 10.1016/S0165-232X(99)00003-8.

WA58 Hunkeler et al.

D
ow

nl
oa

de
d 

11
/2

0/
15

 to
 1

34
.1

.1
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.2732551
http://dx.doi.org/10.1190/1.2732551
http://dx.doi.org/10.1190/1.2732551
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1016/j.jappgeo.2008.05.010
http://dx.doi.org/10.1029/2008JC005145
http://dx.doi.org/10.1029/2008JC005145
http://dx.doi.org/10.1002/2013JC009084
http://dx.doi.org/10.1002/2013JC009084
http://dx.doi.org/10.3189/172756406781811772
http://dx.doi.org/10.3189/172756406781811772
http://dx.doi.org/10.3189/172756406781811772
http://dx.doi.org/10.1190/1.1620627
http://dx.doi.org/10.1190/1.1620627
http://dx.doi.org/10.1190/1.1620627
http://dx.doi.org/10.5194/tc-8-1607-2014
http://dx.doi.org/10.5194/tc-8-1607-2014
http://dx.doi.org/10.1109/TAP.1985.1143610
http://dx.doi.org/10.1109/TAP.1985.1143610
http://dx.doi.org/10.1109/TAP.1985.1143610
http://dx.doi.org/10.1109/TAP.1985.1143610
http://dx.doi.org/10.1007/s10584-011-0101-1
http://dx.doi.org/10.1007/s10584-011-0101-1
http://dx.doi.org/10.1007/s10584-011-0101-1
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1016/j.dsr2.2007.12.021
http://dx.doi.org/10.1029/2006JC003493
http://dx.doi.org/10.1029/2006JC003493
http://dx.doi.org/10.1029/2006JC003493
http://dx.doi.org/10.1029/2009JC005369
http://dx.doi.org/10.1029/2009JC005369
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1016/j.dsr2.2010.10.032
http://dx.doi.org/10.1190/1.1635041
http://dx.doi.org/10.1190/1.1635041
http://dx.doi.org/10.1190/1.1635041
http://dx.doi.org/10.1016/S0165-232X(99)00003-8
http://dx.doi.org/10.1016/S0165-232X(99)00003-8

