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We examined long-term variability in the abundance of German Bight soft bottom macro-zoobenthos together
with major environmental factors (sea surface temperature, winter NAO index, salinity, phosphate, nitrate and
silicate) using one of the most comprehensive ecological long-term data sets in the North Sea (1981–2011).
Two techniques, Min/Max Autocorrelation Factor Analysis (MAFA) and Dynamic Factor Analysis (DFA) were
used to identify underlying common trends in themacrofaunal time series and the relationships between this se-
ries and environmental variables. These methods are particularly suitable for relatively short (N15–25 years),
non-stationarymultivariate data series. BothMAFA andDFA identify a common trend inGermanBightmacrofau-
nal abundance i.e. a slight decrease (1981–mid-1990s) followed by a sharp trough in the late 1990s. Subsequent-
ly, scores increased again towards 2011. Our analysis indicates that winter temperature and North Atlantic
Oscillation were the predominant environmental drivers of temporal variation in German Bight macrofaunal
abundance. The techniques applied here are suitable tools to describe temporal fluctuations in complex and
noisy multiple time series data and can detect distinct shifts and trends within such time series.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Benthic macrofauna plays an important role in the structure and
functioning of marine ecosystems (Brey, 2012; Oug et al., 2012). Benthic
species are consumed by fish, birds and mammals, thereby providing
food for higher trophic levels (Iken et al., 2010).Macrobenthos is also im-
portant in nutrient and organicmatter cycling andprovides an important
link between the benthic and pelagic compartment of marine ecosys-
tems (Grall and Chauvaud, 2002; Hill et al., 2011). These functions as
well as the relatively stationary habit of many benthic organisms make
them sensitive bio-indicators of environmental change (Tomiyama
et al., 2008). Benthic communities may fluctuate over time because of
characteristics of the species' life cycles and/or in response to environ-
mental variability (Convey, 1996; Sibly and Calow, 1989). In this context,
assessing temporal patterns of benthic community development and
their underlying drivers is critical for understanding the ecology of di-
verse marine ecosystems (Robinson and Sandgren, 1983; Zajac et al.,
2013). In fact, understanding patterns of change in benthic fauna through
elmholtz Centre for Polar and
en, Germany.
hojaei).
themonitoring of communities (e.g., community structure and composi-
tion, species richness) might allow for separating effects of climate vari-
ability and anthropogenic disturbance on diversity and the functioning of
the marine benthic ecosystem (Munari, 2011).

There are a number of multivariate analysis techniques (e.g. redun-
dancy analysis and canonical correspondence analysis) available to an-
alyze interactions between different variables in time. Here, we prefer
Min/Max Autocorrelation Factor Analysis (MAFA) and Dynamic Factor
Analysis (DFA), since these two approaches allow estimation of com-
mon patterns and interactions in various time series and also inspection
on the effect of explanatory time-dependent parameters (Ritter and
Muñoz-Carpena, 2006; Zuur et al., 2007). MAFA and DFA are particular-
ly suitable for relatively short (N15–25 years), non-stationary multivar-
iate time series data.MAFA takes the temporal autocorrelation structure
into account and extracts significant common trends from the data
(Zuur et al., 2007). It also quantifies the canonical correlation between
temporal trends and macrofaunal abundance time series (Nye et al.,
2010). DFA is used to identify underlying common trends amongmulti-
variate time series while taking the effects of explanatory variables into
account (Kuo and Lin, 2010; Zuur and Pierce, 2004). Here, we focus on a
30 year (1981–2011) time series of benthicmacrofaunal abundance and
environmental variables in the German Bight. The specific objectives of
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our study were (i) to analyze this data set for common temporal pat-
terns and (ii) to identify the environmental factors affecting these tem-
poral patterns.
2. Material and methods

2.1. Response variables

The database of this study consists of macro-zoobenthos samples
collected at four stations in the German Bight in spring (i.e. prior to
the main seasonal recruitment period) 1981 to 2011 (Fig. 1). The sta-
tions represent the typical bottom communities in this region, i.e. the
Nucula nitidosa-, Tellina fabula- and Amphiura filiformis-associations
(Salzwedel et al., 1985; Schröder, 2003). Samples were collected using
0.1 m2 Van Veen grabs, sieved over 0.5 mmmesh and fixed in 4% buff-
ered formalin. Macro-zoobenthic organisms were identified to species
level as far as possible, counted and weighed (wet weight). The data
used in this study are total taxa abundance per square meter and per
sampling date and station. A total of 152 taxa were encountered during
the entire sampling series. In order to identify those taxa which were
most representative for the overall trend in community composition,
data of all four stations were pooled and a Biota-Environment Stepwise
Analysis (BVSTEP) (Clarke and Warwick, 1998) was applied to the 31
sampling dates × 152 taxa abundance matrix.

BVSTEP involves a stepwise ‘forward selection and backward elimi-
nation’ algorithm allowed determination of the small subset of species
whose similarity matrix best matched that of the full data at ρ N 0.95
level of Spearman's rank correlation (Clarke and Gorley, 2006). This
small subset of variables encapsulated most of the explanatory power
of the original data and thus, was most representative for the overall
trend in community composition. Abundance data were fourth-root
transformed prior to analysis to reduce the influence of very abundant
taxa on the relationship between samples (Clarke and Warwick,
1998). This analysis was performed using the PRIMER v6 (Plymouth
Routines in Multivariate Ecological Research) (Clarke and Gorley,
2006).
Fig. 1. Location of the four long-term monitoring stations f
2.2. Explanatory variables

Several environmental parameters were tested for their effects
on the long-term trends of macrofaunal abundance: mean sea
surface temperature (SST) during winter (Dec.–Mar.; SSTw) and
summer of the preceding year (Jul.–Sep.; SSTs), mean salinity and
dissolved inorganic nutrient concentrations (phosphate, nitrate
and silicate) were derived from the Helgoland Roads long-term
data set (Wiltshire et al., 2010); daily measurements at station
“Kabeltonne” (54°11′3″ N, 7°54′0″ E) between the two Helgoland
islands since 1962. The North Atlantic Oscillation annual (NAOI)
and winter indices (NAOWI) (Dec.–Mar) were obtained from Climate
Analysis Section, NCAR, Boulder, USA (http://www.cgd.ucar.edu/cas/
jhurrell/indices.html). The variables were lagged up to two years in
order to explore possible indirect or delayed effects of environmental
pressures on benthic macrofauna.
2.3. Data exploration

Each macrofaunal and environmental parameter time series was
standardized to mean = 0 and standard deviation = 1 to simplify
the interpretation of the estimated regression parameters (Zuur
et al., 2007). We applied variance inflation factor (VIF) analysis to
identify and to eliminate the variables that are collinear (Zuur
et al., 2007) as multi-collinearity may introduce bias into the analysis
(Zuur et al., 2007). VIF is a scaled version of the multiple correlation
coefficients between variable δ and the rest of the independent variables
expressed as:

VIFδ ¼ 1= 1−R2
δ

� �
ð1Þ

where R2
δ is themultiple correlation coefficient (Graybill and Iyer, 1994).

A threshold VIF of 5 was set as the maximum, meaning that a value N5
indicates potential multi-collinearity (Ritter and Muñoz-Carpena, 2006).
or macro-zoobenthos in the German Bight, North Sea.
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Table 1
Representative taxa, explained 95% of themultivariate ordination
pattern in the complete data matrix. Codes indicate the 11 taxa
selected for time series analysis.

Taxon Code

Abra spp. ABR
Amphiuridae AMP
Bathyporeia spp. BAT
Callianassa spp. CAL
Capitellidae –
Cylichna cylindracea –
Diastylis spp. –
Echinocardium cordatum ECC
Glycera spp. –
Lanice conchilega –
Lumbrineris spp. –
Magelona spp. –
Nucula spp. NUC
Ophiura spp. OPH
Owenia fusiformis –
Pectinaria spp. –
Perioculodes longimanus –
Pholoe baltica –
Poecilochaetus serpens –
Scoloplos armiger –
Spio filicornis SPF
Spiophanes bombyx SPB
Spisula spp. SPI
Sthenelais spp. –
Thyasira flexuosa THF
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2.4. Min/max autocorrelation factor analysis (MAFA)

MAFA is a type of principal component analysis (PCA) for short time
series, first developed to separate signals from noise in multivariate im-
agery observation (Switzer and Green, 1984). Later, MAFAwas adapted
to analyze and extract patterns from multiple time series (Shapiro and
Switzer, 1989; Woillez et al., 2009). MAFA decomposes the set of initial
variables into a series of axes (the MAFs), in which autocorrelation
(with time lag 1) decreases from the first to the last axis (Woillez
et al., 2009). The underlying assumption is that a trend is associated
with high autocorrelation with time lag 1 (Ligas et al., 2010). Therefore,
the first MAFA axis represents the trend or extracts the part that is the
most continuous in time (Woillez et al., 2009). Canonical correlation be-
tween macrofaunal time series and MAFA axes was applied to identify
significant relationships between the variables and the trends (Zuur
et al., 2007).

2.5. Dynamic factor analysis (DFA)

DFA is a multivariate time-series analysis technique to estimate
common trends, to study the interactions between response variables
and to determine the effects of explanatory variables in a time series
data set (Zuur and Pierce, 2004; Zuur et al., 2003a). The underlying
DFA model is given by (Zuur and Pierce, 2004):

N time series ¼ constantþ linear combination of Mcommon trends
þ explanatory variablesþ noise ð2Þ

DFA describes a set of N observed time series and aims to keep M as
small as possible while still producing an optimal model fit (Kisekka
et al., 2013). Including explanatory variables partly reduces unexplained
variability in the observed time series (Kisekka et al., 2013; Zuur et al.,
2003b).

Eq. (2) translates into Eq. (3) (Kisekka et al., 2013; Kuo et al., 2011;
Ritter and Muñoz-Carpena, 2006; Zuur and Pierce, 2004; Zuur et al.,
2007):

ZBn tð Þ ¼ Cn þ∑M
m¼1γm;nαm tð Þ þ∑K

k¼1βk;nek tð Þ þ εn tð Þ ð3Þ

with αm(t) being defined as:

αm tð Þ ¼ αm t−1ð Þ þ ρm tð Þ ð4Þ

where ZBn(t) is the value of the nth time series (i.e. the abundance of
11 taxa) at time t (with 1 ≤ n ≤ N). Cn is a constant level parameter as
in linear regression model which increases or decreases the linear
combination of common trends (Kuo and Lin, 2010). If the time series
are standardized, the constant parameters are 0 (Zuur and Pierce,
2004).

∑M
m¼1 γm;nαmðtÞ is a linear combination of common trends, in

which αm(t) is the mth unknown common trend (with 1 ≤ m ≤ M) at
time t and γm,n is the factor loading that indicates the importance of
each of the common trends to each response variable (Kisekka et al.,
2013; Kuo et al., 2011). Factor loading (A cut-off point of 0.15) was ap-
plied to test which common trends are related to the macrofaunal time
series (Ligas et al., 2010). ek(t) is a vector containing explanatory vari-
ables, and βk,n stands for the regression coefficient for the explanatory
variables which indicates the relative importance of the explanatory
variables to each time series (Zuur and Pierce, 2004).Whether the envi-
ronmental variables are significantly related to taxa abundance was
assessed by using the magnitude of the βk,n coefficients and their asso-
ciated t-value (t-values larger than 2 in absolute value indicate a strong
significant correlation); εn(t) and ρm(t) are assumed to be independent
and homogeneous for each time series. We tested several DFA models
by choosing different combinations of numbers of common trends, ex-
planatory variables at lag = 0, 1 and 2, and symmetric non-diagonal
or diagonal covariance matrix. A higher number of common trends
will introduce unexplained information that cannot be interpreted eas-
ily in the DFA model. Therefore, DFA should be handled with a model
that produces a reasonable fit with the smallest number of common
trends (Zuur et al., 2003b). The goodness-of-fit of the model can be
assessed by visual inspection, the Nash–Sutcliffe coefficient of efficiency
(NSE) (Nash and Sutcliffe, 1970) and the Akaike's Information Criterion
(AIC; (Akaike, 1974). NSE provides an estimate of how well the time
series of each taxon is represented by the best fitting DFA model,
while the AIC is a statistical criterion for model selection with the best
model having the lowest AIC (Zuur et al., 2007). Data exploration and
analysis were carried out using the software package Brodgar 2.7.2
(http://www. brodgar.com).

3. Results

The BVSTEP procedure identified a subset of 25 taxa (Table 1), that
explained 95% of the multivariate ordination pattern in the complete
data matrix (BVSTEP, Spearman's ρ N 0.950 with 0.1% significance
level). However, we detected high multi-collinearity between the 25
taxa and, hence, reduced the response variable data set to 11 taxa
which we considered to be the best trade-off between minimum
cross-correlation and maximum explanatory power (Table 1). The
time series of these eleven taxa were summed up to the macrofaunal
time series used for further analysis.Multiple co-linearity between envi-
ronmental variables led to the exclusion of SSTs (lag = 1,2), SSTw
(lag = 1,2), salinity (lag1, 2), nitrate (lag = 2) and NAOI (lag = 0, 1
and 2) from subsequent analysis. Cross correlation of the remaining
environmental variables was ≤0.31.

3.1. Temporal development

The standardized macrofaunal abundance series are characterized
by interannualfluctuations (Fig. 2). However, a similar variation pattern
for different taxa can be detected as indicated by the smoothing curves.
An overall increasing trend in abundance was apparent for Abra spp.,

http://brodgar.com


Fig. 2. Standardized benthic macrofaunal abundance time-series in the German Bight. The
open circles and lines denote the observed abundance and overall smoothed curve,
respectively (see Table 1 for species codes).
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Echinocardium cordatum, Nucula spp. and Callianassa spp. Ophiura spp.
and Thyasira flexuosa displayed a decrease in abundance within the
first half of the series, followed by an increase towards the end. Spisula
spp. and Bathyporeia spp. displayed the opposite response with an
increase in abundance during the first half of the series and a decrease
thereafter. The trend for the Amphiuridae showed a dip in mid-1990s
and a high peak around 2001. Spiophanes bombyx increased in abun-
dance until 1990 and slightly decreased thereafter. The abundance of
Spio filicornis slightly decreased untilmid-1990s and remained relatively
constant until the end of the series.

Similar to the abundance time series, all selected environmental
variables exhibited wide fluctuations (Fig. 3 and Appendix A). There
Fig. 3. Standardized time series of environ
was an overall increasing trend in SSTw, SSTs and salinity, while nitrate,
phosphate and silicate showed an overall decreasing trend (except
for 1981–1987). There was no overall temporal trend in NAOI and
NAOWI and both variables fluctuated irregularly throughout the entire
time series.

3.2. MAFA

Themain trend (MAFA axis) thatwas derived from the 11macrofau-
nal time series is shown in Fig. 4.a (autocorrelation of 0.85 at p b 0.005).
The MAFA axis showed a slight decrease in abundance until the mid-
1990s followed by a sharp trough in the late 1990s. Canonical correla-
tions between MAFA axis and taxa (Fig. 4.b) indicate that three taxa
(Callianassa spp., S. filicornis, and T. flexuosa) correlated significantly
positively (p b 0.05) with the axis, whereas Spisula spp. correlated
negatively (p b 0.05).

3.3. DFA

Among the various DFA models tested, the model consisting of one
common trend, some environmental variables (SSTw, SSTs, NAOWI,
NO3, PO4, SiO2) and a symmetric non-diagonal matrix fitted the data
best (Table 2). The inclusion of time lagged explanatory variables in
the DFA model reduced the AIC of DFM and improved the description
of the temporal development of benthic abundance in the German
Bight. The common trend shows two distinct declines from 1981
to 1985 and 1993 to 1999. Each decline is followed by an increase
(Fig. 5.a). Factor loadings illustrate the relationbetween common trends
and time series (Fig. 5.b). The common trend was positively (factor
loading valueswere higher than the selected cut-off level of 0.10) corre-
lated with Callianassa spp., Ophiura spp., S. filicornis and T. flexuosa and
negatively correlated with Abra spp., Amphiuridae, Bathyporeia spp.
and Spisula spp. The regression coefficients for the explanatory variables
(Table 3) indicate that ten taxa had a significant relationship with the
environmental variables (t N 2). The t-values indicate that SSTwwas sig-
nificantly related to the largest number of abundance series: Abra spp.,
Amphiuridae, Callianassa spp., E. cordatum, S. filicornis, Spisula spp. and
T. flexuosa, whereas nitrate was significantly related to only one taxon
(T. flexuosa). The model performed well (NSE N 0.50) for most of the
mental variables used in DFA model.



Fig. 4. (a) Themain trend identified byMAFA in the abundance of 11 taxa in the German Bight. (b) Canonical correlations between taxa andMAFA axis for themain trend inmacrofaunal
abundance in the German Bight. Significance level for correlation = 0.36.
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taxa abundance time series (except for Bathyporeia spp.), indicating that
most time series fitted well in the estimated model.

4. Discussion

Biological time series produce valuable datasets that can identify
ecological patterns and how they link to climate variability and to
anthropogenic stressors (PISCO, 2009). Accordingly, time series have
been used for management and policy applications, for example, in
the context of eutrophication (Rachor and Schröder, 2003), impacts of
offshore wind energy facilities (Lindeboom et al., 2011) and manage-
ment of endangered species (Beissinger andWestphal, 1998). Our anal-
ysis revealed substantial variation in macrozoobenthos community
composition in the German Bight at decadal and sub-decadal scales.
The optimal DFA model indicated that SSTw and NAOWI (lag = 1)
play a distinct role in controlling the temporal variation of the benthic
macrofaunal assemblages. Our discussion addresses (i):Which environ-
mental variables drive the development of benthic communities in the
North Sea? (ii) Which taxa contribute most to the temporal develop-
ment of macrofaunal communities?

4.1. Common trends

Both MAFA and DFA techniques generally identified similar major
temporal development of the benthos during the time series. A slight
decrease in total macrofaunal abundance until the mid-1990s was
followed by a sharp drop in the late 1990s (Figs. 4 and 5). Subsequently,
Table 2
Selection of dynamic factor models (DFMs) with one and two common trends. The
optimal DFA model based on Akaike's information criterion (AIC) is in bold.

Akaike's information criterion (AIC)

Model Symmetric
non-diagonal

Diagonal matrix

Explanatory variables 1 2 1 2

None 982.97 998.92 998.98 1002.71
SSTw, SSTs, Salinity, NAOWI, NO3, PO4,SiO2 971.14 976.31 1022.43 1024.91
SSTw, SSTs, NAOWI, NO3, SiO2, PO4 964.27 970.11 1015.13 1009.01
NAOWI(L = 1, 2), NO3 (L = 1), PO4

(L = 1, 2), SiO2 (L = 1, 2)
942.13 944.82 987.47 976.63

SSTw, SSTs, NAOWI (L = 0–2), NO3

(L = 0, 1), PO4 (L = 0–2), SiO2 (L = 0–2)
866.03 872.91 970.67 989.67

NAOWI (L = 0–2) 995.42 995.03 1008.01 1007.45
SSTw, SSTs 958.16 960.45 981.93 983.14
the trend increased until the end of the time series in 2011. In combina-
tion the two analytical procedures were able to reveal the dominant
temporal trends in the benthic macrofauna of the German Bight. In
the 1980s southern North Sea benthos was strongly shaped by low
SST (e.g., 1984–1987) resulting in reduced abundances of warm-
temperate species (e.g. S. filicornis) and elevated abundances of cold-
temperate species (e.g. Spisula spp.) (Kröncke et al., 1998; Wieking
and Kröncke, 2003). A sharp drop in benthos abundances in the late
1990s coincided with the exceptionally cold winter in 1995/1996
(Schröder, 2003), the most notable event in the hydro-climate of the
German Bight at that time (Reiss et al., 2006). A similar overall decreas-
ing trend and a big drop in the Wadden Sea (southern North Sea) ben-
thic macrofaunal abundance have been reported for the periods 1983–
1988 and mid-1990s, respectively (Dippner and Kröncke, 2003). Our
findings correspond to the observations of Neumann et al. (2009),
who report an increase in epifaunal abundance and species diversity
in the southern North Sea between 2003 and 2008.

4.2. Relative contribution of explanatory variables

DFAmodel regression coefficients indicated that SSTwwas the dom-
inant environmental factor determining the temporal dynamics of
the benthic macrofauna (Table 3). This result indicates that similar to
other studies (Beukema, 1992; Wadden Sea, Dippner and Ikauniece,
2001; Eastern Baltic Sea, Kröncke et al., 1998; German Bight and
Rumohr, 1986; Western Baltic Sea) the inter-annual variability in
macrozoobenthos abundance during spring in the German Bight is
influenced by the climate variability during the preceding winter. The
importance of temperature in structuring themarine benthicmacrofau-
na has repeatedly been reported in previous studies (Neumann and
Kröncke, 2011; Neumann et al., 2009; Zuur et al., 2003b). Fluctuations
in temperature can be expected to affect benthic organisms both
directly and indirectly (Brodersen et al., 2011). Temperature directly
influences key reproductive processes, such as gametogenesis and
spawning, with crucial effects on recruitment (Occhipinti-Ambrogi,
2007). Indirect effects on organisms include alteration of trophic
interactions, population dynamics, and competition (Brodersen et al.,
2011). Extreme changes in temperature (e.g. severe winters) in the
North Sea, may dramatically affect benthic species through direct mor-
tality. This could translate into decreasing species richness, abundance
and biomass (Neumann et al., 2009; Reiss et al., 2006; Schröder, 2003;
Wieking and Kröncke, 2003). A variety of taxa were found to respond
to temperature in terms of abundance fluctuations (i.e. Abra spp.,
Amphiuridae, Callianassa spp., E. cordatum, S. filicornis, Spisula spp.
and T. flexuosa, see Table 3), and various previous studies have



Fig. 5. (a) Common trend and (b) corresponding associated factor loading for macrofaunal time series obtained by means of DFA containing one common trend and several explanatory
variables based on a symmetric non-diagonal matrix (see Table 1 for species codes).
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demonstrated the temperature sensitivity of these species (Carpenter
et al., 1997; Dekker and Beukema, 1999; Reiss et al., 2006). For instance,
the bivalves Abra spp. displayed significant changes in abundance relat-
ed to mild (high abundance) and severe (low abundance) winters
(Birchenough and Bremner, 2010). The conspicuous implications of ex-
treme temperature events probably explain why the continuous in-
crease in SST in the North Sea over the past five decades (Wiltshire
et al., 2008) has not resulted in an equally continuous change in
macrozoobenthos abundance but causes fluctuations at a decadal and
sub-decadal temporal scale. The sensitivity to temperature variations
differs within and among species. Species vary ontogenetically in their
susceptibility to habitat stress (Harley et al., 2006). Planktonic larvae
are principally susceptible to thermal effects and young benthic stages
are often more sensitive to environmental stress than adults (Harley
et al., 2006; Pechenik et al., 1996). The specific temporal fluctuations
in species abundances in response to environmental variations result in
the observed overallfluctuation inmacrozoobenthos community compo-
sition. Accordingly, the prediction of the future state of macrozoobenthos
communities in the German Bight is rather complex, and requires knowl-
edge of the probability of occurrence of certain climate anomalies in the
near and longer term future, and of the effects of this variability on func-
tion and interactions of different species and on food webs (Livingston
et al., 2005).

In addition to temperature, some lagged and un-lagged environ-
mental factors also affected temporal variability (Table 3). Note that
considering time lag effects in the dynamic factor model, the AIC of
DFMs was improved distinctly, as shown in the Table 2. Apparently,
some environmental factors cause immediate responses of benthic pop-
ulations (mostly through mortality) while other factors affect specific
Table 3
Factor loadings (γm,n) corresponding to the common trend and regression coefficients for the ex
statistically significant (t N 2). Species codes are given in Table 1.

Time series γ1,n Regression coefficients

βSSTw βSSTs βNAOWI βNAOWI-L1 β NAOWI-L2 βNitrate

ABR −0.11 0.59 0.04 0.01 0.37 0.34 −0.10
AMP −0.16 0.62 −0.47 0.04 −0.09 −0.20 0.00
BAT −0.01 0.40 0.34 −0.22 0.00 0.31 0.31
CAL 0.11 0.36 0.37 −0.04 0.55 −0.04 0.38
ECC 0.09 0.54 0.39 −0.28 −0.44 −0.12 0.50
NUC 0.07 0.27 −0.09 0.32 0.38 0.28 −0.10
OPH 0.16 −0.11 0.22 −0.14 −0.70 0.21 0.31
SPF 0.12 0.53 −0.11 −0.02 0.25 0.38 0.17
SPB 0.01 −0.09 0.32 −0.02 −0.03 0.49 0.03
SPI −0.18 −0.54 0.12 0.18 −0.16 0.12 0.25
THF 0.01 −0.42 −0.07 0.65 0.18 0.04 −0.13
life history traits (e.g. reproduction and development) thereby inducing
a lagging population response (Gröger and Rumohr, 2006). Interactions
between species (e.g., certain trophic levels) may also produce time
lags. This can be either prey or predator organisms or competition
(Gröger and Rumohr, 2006). This is presumably not the case for
macrozoobenthos of the German Bight since the biological interactions
such as competition for space and food are of minor importance for
variation at the community levels.

NAOWI (lag = 1) is the secondmost important factor after temper-
ature. Time lags in the response of benthic communities to climatic var-
iability associated with NAO are widespread in marine environments
(Ottersen et al., 2001). The effects of climate variability on marine or-
ganisms involve three principal categories: direct effects, indirect
effects and integrated effects under consideration of lagged and un-
lagged response (Dippner, 2006). The direct effects of NAO are mecha-
nisms that involve an un-lagged direct ecological response to the envi-
ronmental circumstances synchronized with the NAO, (e.g., the effect
of the NAO on the abundance ofmarine polychaetes via thewinter tem-
perature effects on a predatory-prey interaction; Beukema et al., 2000).
Indirect effects either include several biological or physical mediators
between NAO and the ecological trait and/or have no direct impact on
the biology of the population (e.g., indirect effects of NAO on the abun-
dance of macrofaunal community through pelagic primary production;
Tunberg and Nelson, 1998; Kröncke et al., 1998). Integrated effects
involve simple ecological responses that occur during and after a NAO
extreme (Dippner, 2006). This is the case when a community has to
be repeatedly affected by a particular environmental situation before
the ecological change can be perceived or when the environmental
phenomenon affecting the population is itselfmodulated over a number
planatory variables. The bold characters represent the environmental variableswhichwere

βNitrate-L1 βPhosphate βPhosphate-L1 βPhosphate-L2 βSilicate βSilicate-L1 βSilicate-L2

−0.40 0.09 −0.40 0.21 −0.06 0.13 −0.10
−0.22 −0.05 0.13 −0.11 −0.25 −0.50 0.18
−0.46 0.11 0.25 0.06 0.09 0.37 0.09
−0.50 0.05 −0.06 0.01 −0.02 0.24 −0.30

0.12 −0.07 0.20 −0.40 −0.40 0.07 0.24
0.25 −0.40 −0.57 −0.13 0.18 0.06 −0.39

−0.09 −0.12 0.52 −0.16 −0.25 0.49 0.10
0.31 −0.04 −0.21 0.13 −0.07 0.17 −0.20

−0.20 −0.14 0.02 0.27 0.64 −0.29 −0.50
−0.16 −0.28 0.39 −0.32 0.23 0.33 −0.35
−0.43 −0.40 −0.14 0.38 −0.06 0.39 −0.57
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of years (e.g., reduction of the volume of Norwegian Sea Deep Water
(NSDW) and its effect of the abundance of C. finmarchicus in the North
Sea; Ottersen et al., 2001; Visbeck et al., 2003).

NAO has long been considered as a very good predictor in forecast-
ing benthic time series (Kröncke, 2011). However, after the regime
shift in 2000/2001 the correlation between NAO and macrofauna bio-
mass and abundance diminished, perhaps reflecting the disappearance
of autocorrelation and thus predictability (Dippner et al., 2010; Junker
et al., 2012; Kröncke et al., 2013). Presumably, this may be the reason
that the DFM exhibited the highest AIC when we consider NAOWI as
the only explanatory variable. Apparently, adding other explanatory
variables to the model improves overall model fit. After 2000, the time
series of the NAO behaved in a chaotic manner (Dippner et al., 2014).
During this period, when the southern North Sea was mainly forced
by SST anomalies and meridional winds, the total biomass and abun-
dance as well as the abundance of dominant taxonomic groups (except
for crustacean) increased distinctly (Dippner et al., 2014; Kröncke et al.,
2013).

The optimal DFA model indicates that dissolved inorganic nutri-
ents play a significant role in the long-term dynamics of the benthic
macrofauna. Increased nutrient concentration in marine waters in-
creases surface primary production and hence the food supply to
macrofauna populations (Josefson, 1990). Therefore, it appears to
be one of the most fundamental variables that determine structure,
abundance and biomass of marine benthic systems (Pearson and
Rosenberg, 1978).

The lagged abundance responses of taxa to the nutrient concen-
tration may be explained by the fact that most species that substan-
tially contributed to abundance need two or more growing seasons
after their recruitment to reach adult size and to appear in the
macrozoobenthos fraction of our samples. Beukema et al. (2002);
Josefson et al. (1993) and Frid et al. (1996) observed similar time
lags of a few years in the marine benthos as a response to increased
nutrient concentrations.

Among the environmental variables we studied in the DFAmodel,
only salinity was not clearly related to the temporal variability of
benthic macrofaunal abundance. Surface salinity varied largely dur-
ing the study period but had no noticeable effect on the long-term
dynamics of the benthic macrofauna. This might be partly due to
the fact that salinity variations are much lower in the benthic envi-
ronment of the deeper waters studied here and to the ability of
most benthic taxa to cope with variations in salinity (Neumann
et al., 2008). However, we should not preclude indirect effects in-
duced by planktonic processes, which are more directly influenced
by surface water salinity fluctuations and which are beyond the
scope of this study. Other factors, such as disturbance of the sedi-
ments by bottom fisheries, are other sources of variability in benthic
communities (Callaway et al., 2002) and should be carefully consid-
ered in order to reduce unexplained variability, once appropriate
data for these factors are available.
4.3. Contribution of specific taxa to the temporal variability

Canonical correlation and factor loading produced quite similar
results that suggest a good match between MAFA and DFA models.
Both techniques identified those taxa which correlated best with the
overall temporal trend of the macrofauna. Callianassa spp., S. filicornis,
T.flexuosa, Spisula spp.were related to bothMAFA axes and the common
trend of the DFA. These species are relatively small, short-lived, fast-
growing deposit feeders and their abundance was related to the MAFA
axis and the common trend. This close relationship to the MAFA axis
and the common trend may reflect that populations consisting of such
“opportunistic” small, short-lived, fast-growing species respond quickly
and strongly (in terms of change in abundance) to environmental
change (Dorsey, 1982).
Following the Pearson–Rosenberg model, it is possible to recognize
the features of disturbed or stressed benthic communities. They are
characterized by small organisms, high reproductive rates and high
abundances of few species and are thus capable to proliferate as a result
of ecological impact of various stressors (Como et al., 2007; Dorsey,
1982; Pearson and Rosenberg, 1978). They also show high turnover
and biological productivity (as shown by higher values of production
to biomass ratios, P/B).

In an unlikely case, when a community approaches the normal equi-
librium state, one would assume that the biomass becomes dominated
by a few species characterized by low abundance but large individual
size and weight. In fact, opportunists are inherently poor competitors
and may thus be out-competed by transition species and k-strategists
if conditions improve.

5. Conclusion

Our analysis indicates that temperature is themajor abiotic determi-
nant of macrobenthic temporal variability in the German Bight. This
foresees that continuous future warming of North Sea waters, as pre-
dicted by different studies (e.g.Wiltshire et al., 2010)will affect the ben-
thic macrofauna of the German Bight distinctly, with yet unpredictable
consequences for benthic secondary production and associated ecosys-
tem goods and services. Our results further indicate the importance of
climatic extreme events, such as exceptionally cold winters, for the dy-
namics of the benthic macrofauna. Climatic extreme events are predict-
ed to become more frequent in future decades (IPCC, 2013) potentially
increasing the temporal variability of the benthic system and, thus,
complicating the prediction of future developments. Opportunistic spe-
cies contributed substantially to the variability of the benthic infauna in-
dicating the importance of this group of species for the overall response
of the benthos to environmental changes. A century of intense bottom
trawling has substantially modified the marine benthos of the North
Sea (Reiss et al., 2009). Continuous mechanical disturbance of the sea-
floor has reduced populations of large, long-living species, which were
replaced by small, opportunistic species. This shift made the North Sea
benthos more opportunistic and thus reactive to environmental
fluctuations. Exclusion of bottom trawling activities from large areas of
future offshore wind farms might allow for a recovery of the benthic
community and an increase in abundances of non-opportunistic species
(Gill, 2005). Depending on habitat type and scale, frequency andmagni-
tude of fishing activities, recovery of benthic habitats after fishery
closure may take up to eight years (Kaiser et al., 2000) or even longer
(Duineveld et al., 2007). However, given the important role of warming
in the development of benthic communities in the German Bight
and the complex synergistic effects, it is difficult to predict the path
that recovery might take even if the trawling stress were removed
(O‘Neill, 1998). This development toward a new situation might stabi-
lize the benthic system and make it less susceptible to environmental
fluctuations.
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