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Warming and acidi�cation of the oceans as a consequence of increasing
CO2-concentrations occur at large scales. Numerous studies have shown the
impact of single stressors on individual species. However,studies on the combined
effect of multiple stressors on a multi-species assemblage, which is ecologically much
more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the
two factors warming and acidi�cation in mesocosm experiments and studied their
single and combined impact on the brown algaFucus vesiculosusassociated with its
natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from
April 2013 to April 2014). We superimposed our treatment factors onto the natural
�uctuations of all environmental variables present in the Benthocosms in so-called
delta-treatments. Thereby we compared the physiological responses of F. vesiculosus
(growth and metabolites) to the single and combined effectsof natural Kiel Fjord
temperatures and pCO2 conditions with a 5� C temperature increase and/or pCO2

increase treatment (1100 ppm in the headspace above the mesocosms). Responses
were also related to the factor photoperiod which changes over the course of the year.
Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected
growth of F. vesiculosusalone and/or interactively with warming. The response direction
(additive, synergistic, or antagonistic), however, depended on season and daylength.
The effects were most obvious when plants were actively growing during spring and
early summer. Our study revealed for the �rst time that it is crucial to always consider
the impact of variable environmental conditions throughout all seasons. In summary, our
study indicates that in futureF. vesiculosuswill be more affected by detrimental summer
heat-waves than by ocean acidi�cation although the latter consequently enhances
growth throughout the year. The mainly negative in�uence ofrising temperatures on the
physiology of this keystone macroalga may alter and/or hamper its ecological functions
in the shallow coastal ecosystem of the Baltic Sea.

Keywords: bladder wrack, climate change, laminarin, mannitol , mesocosm, multi-factorial change,
Phaeophyceae, seasonal growth
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INTRODUCTION

The most wide-spread e�ects of global environmental change
are warming and acidi�cation of the oceans as a consequence of
rising CO2-concentrations. The increase of the atmospheric CO2
partial pressure (pCO2) enhanced the greenhouse e�ect and led
to an annual rise in mean sea-surface temperature by 0.5–1� C per
decade since the second half of the twentieth century in northern
European seas (MacKenzie and Schiedek, 2007; Elken et al.,
2015). Correspondingly, surface waters in the Baltic Sea have
warmed in all seasons since 1985 (HELCOM, 2013). Atmospheric
CO2 concentration is expected to rise to 800–1100 ppm by the
year 2100 (Caldeira and Wickett, 2005; Orr et al., 2005; Bindo�
et al., 2007) and further increases of sea-surface temperatures
of the Baltic Sea by 3–6� C are predicted until the end of the
century (Gräwe et al., 2013; Elken et al., 2015). Enhanced mean
pCO2 in sea-surface waters will cause a pH decrease termed
“ocean acidi�cation” of 0.1–0.5 units in the surface ocean by
the end of the century (Feely et al., 2004; Sabine et al., 2004;
Caldeira and Wickett, 2005; Orr et al., 2005). Global change
will probably operate through combinations and interactionsof
multiple concurrent abiotic changes (e.g., temperature, pCO2,
pH, eutrophication, deoxygenation) that are likely to impact
multiple organisms as well as their biotic interactions in the Baltic
Sea (Alsterberg et al., 2013; Eklöf et al., 2015).

Marine communities in coastal ecosystems are threatened by
a wide range of anthropogenic stressors including eutrophication
and habitat fragmentation (Lotze et al., 2006; Worm and Lotze,
2006; Coleman and Kelaher, 2009; Coleman et al., 2011).
These will interact with increasing sea-surface temperature and
pCO2 which are of fundamental importance to marine primary
producers such as macroalgae (e.g.,Connell and Russell, 2010;
Harley et al., 2012; Koch et al., 2013). In the face of global
change it is predicted that the importance of habitat-forming
foundation species (e.g., macroalgae) in maintaining ecosystem
function and services will increase because they can bu�er
environmental stress by modifying their environment (Bruno
et al., 2003; Halpern et al., 2007; Wahl et al., 2015a).

In the Baltic SeaFucus vesiculosusL. is the most common
large, canopy-forming and hence structurally important
macroalga forming conspicuous belts along rocky and stony
coasts (Kautsky et al., 1992; Torn et al., 2006; Rönnbäck et al.,
2007). As a result of its high biomass and productivityFucus
stands provide habitat and protection for a diverse community
in the Baltic Sea consisting of� 30 species ofFucusassociated
macrofauna and macroscopic epi�ora (e.g.,Haage, 1975, 1976;
Aneer et al., 1983; Kautsky and Kautsky, 1989). One reason
for the high species diversity is probably the perennial and
architecturally complex nature of theFucusbelt, which provides
numerous ecological niches.Fucuscommunities o�er important
food sources for numerous organisms, thereby supporting
complex trophic interactions (Kautsky et al., 1992; Middelboe
et al., 2006; Korpinen et al., 2007; Rohde and Wahl, 2008).
Structural changes of theF. vesiculosuscommunity will also
strongly in�uence the ecology of the associated organisms.The
structure and function of theF. vesiculosusecosystem in the
shallow subtidal of the Baltic Sea has been attributed to di�erent

factors (Kautsky and van der Maarel, 1990), such as growth and
primary production, which in turn are controlled by various
biotic and abiotic stressors (Wahl et al., 2011).

The sensitivity ofF. vesiculosusto environmental changes
is suggested by the pronounced shoaling and shrinking of
Baltic populations as reported for the last �ve decades (Kautsky
et al., 1986; Vogt and Schramm, 1991; Berger et al., 2004;
Torn et al., 2006). In the southwestern Baltic, for instance,
the Fucusbelt decreased its lower depth distribution from 10
to 2 m and decreased in area by> 95% (Vogt and Schramm,
1991; Torn et al., 2006). These severe changes in distribution
and biomass have recently been attributed to multifactorial
stressors (Wahl et al., 2011). A combination of factors which
include increasing eutrophication, warming and sedimentation
on the ecosystem level, resulted in more shading, competition
with epiphytic microalgae, ephemeral fast-growing �lamentous,
and/or thermophilic invasive macroalgae, lack of suitable
substrata for attachment ofF. vesiculosuszygotes and increased
grazing pressure, �nally leading to a high mortality of this
macroalga (Kautsky et al., 1986; Lotze and Schramm, 2000;
Lehvo and Bäck, 2001; Berger et al., 2004; Korpinen et al., 2007;
Weinberger et al., 2008).

Multiple stressors may in�uence ecosystem functioning
by interacting in a non-additive way, either synergistically
or antagonistically, which likely produce complex interactive
ecosystem responses (Darling and Côté, 2008; Russell et al.,
2009; Wahl et al., 2011; Wernberg et al., 2012; Brown et al.,
2013). However, year-round studies on the combined e�ect
of multiple factors (e.g., ocean acidi�cation and warming) on
a multi-species assemblage, which is ecologically realistic and
relevant, are still scarce. Therefore, we exposedF. vesiculosusand
its associated community (epiphytes, invertebrate mesograzers,
mussels, star�sh, polychaetes) to the orthogonally crossedfactors
warming and acidi�cation, in levels expected for the shallow
western Baltic Sea region within the next 100 years (BACC
II Author Team, 2015) in four seasonal near natural climate
change scenarios using benthic mesocosms (Kiel Outdoor
Benthocosms).

Ocean acidi�cation primarily impacts calcifying organisms
and CO2-limited marine algae and seagrass (e.g.,Raven et al.,
2005; Kroeker et al., 2010, 2013). Photosynthesis of many
marine macroalgae is not carbon-saturated at current dissolved
inorganic carbon (DIC) levels in seawater (reviewed inKoch
et al., 2013). Most species acquire dissolved inorganic carbon
in the form of CO2 with many species additionally possessing
carbon concentrating mechanisms (CCMs) to satisfy their
photosynthetic carbon demand (reviewed inRaven et al., 2011).
CCMs enable these algae to acquire inorganic carbon from the
seawater by the direct uptake of HCO�

3 and/or its conversion
into CO2 through the action of internal and/or external carbonic
anhydrase (Badger, 2003; Giordano et al., 2005; Hepburn et al.,
2011), however these mechanisms come with an additional
enzymatic cost compared to passive assimilation of CO2 (Raven,
1997; Beardall et al., 1998). Consequently, an increase in pCO2
might boost the growth of macroalgae through the use of the
energy saved from the down-regulation of the energy-consuming
CCMs by facilitating their access to carbon (in the form of
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CO2; Johnston and Raven, 1990; Beardall and Giordano, 2002;
Giordano et al., 2005; Wu et al., 2008). Therefore, e�ects of high
pCO2 on photosynthesis and growth of many non-calcifying
macroalgae are thought to be stimulating (Gordillo et al., 2001;
Wu et al., 2008; Olischläger et al., 2012; Koch et al., 2013).
The e�ects of CO2-enrichment on non-calcifying algae, however
vary strongly when interacting with other abiotic factors (e.g.,
nutrients, irradiance, temperature;Gordillo et al., 2001; Zou and
Gao, 2009; Connell and Russell, 2010; Russell et al., 2011; Sarker
et al., 2013). Physiological studies on growth responses ofFucus
species are contradictionary as it was demonstrated that elevated
CO2 levels can enhance growth ofFucusspecies due to carbon
fertilization (Nygård and Dring, 2008; Saderne, 2012) or reduce
growth of F. vesiculosusprobably when interacting with other
abiotic parameters like nutrients and/or irradiance levels(Gutow
et al., 2014).

Heat waves as unpredictable extreme weather conditions
may enhance the negative e�ects of ocean warming on the
physiological performance and �tness of macroalgal populations
(Bartsch et al., 2013), and may result in poleward shifts to
avoid increasing warming (Müller et al., 2009; Wernberg et al.,
2010, 2011; Bartsch et al., 2012; Jueterbock et al., 2013).
As algae have the capacity to physiologically acclimatize to
temperature changes, they are able to optimize growth as
well as photosynthesis over a wide range of temperatures
(Davison et al., 1991; Kübler and Davison, 1995; Eggert et al.,
2006). While seasonal changes in temperature are generally
predictable and can be compensated by acclimation processes
and/or physiological plasticity of individual organisms (Davison
and Pearson, 1996; Kingsolver and Huey, 1998), the irregular
occurrence of extreme temperature conditions can seriously
increase mortality (Roth et al., 2010; Winters et al., 2011).
Not only thermal limits but also sub-lethal conditions may
cause stress by impairing physiological repair mechanisms or
by inducing accumulation of harmful intermediates such as
reactive oxygen species (Weidner and Ziemens, 1975; Davison
and Pearson, 1996).

The perennial life-cycle ofF. vesiculosuspermits to integrate
e�ects of environmental conditions over time as re�ected in
growth rates (Carlson, 1991; Lehvo et al., 2001; Kraufvelin et al.,
2012). However, assessing growth of a morphologically complex
macroalga with a di�erentiated thallus likeF. vesiculosusis
neither simple nor uniform. The three-dimensional habit ofF.
vesiculosushas to be considered in growth measurements as
apical length elongation, thallus area and biomass as well as
dichotomizing of the frondage (“bushiness”) will not develop
simultaneously (Knight and Parke, 1950). Variations between
these growth parameters may depend on environmental factors
and season.

The optimal growth temperature for western BalticF.
vesiculosusranges between 10 and 24� C and the upper survival
temperature is between 26 and 27� C if exposed for 3 weeks
to laboratory conditions (Grai� et al., 2015a). Shallow water
temperature may already reach more than 30� C for short periods
during summer in the western Baltic Sea (Wahl et al., 2010;
HELCOM, 2013). These heat-waves are expected to become
more frequent and intense due to global warming (Meehl and
Tebaldi, 2004; Di�enbaugh et al., 2005; Vasseur et al., 2014).

Therefore, extremely warm and �uctuating conditions may lead
to a frequent exposure of algae to sub-lethal temperatures,
and may further impact acclimation potential to upper lethal
temperatures inF. vesiculosus.

Consequently, the determination of temperature
requirements in combination with the acclimation potential
of F. vesiculosusin the Baltic Sea are crucial factors to assess
ecosystem resilience under predicted climate change scenarios.
In order to better understand the impact of ocean acidi�cation
and warming, their interactions and feedback loops, it is
important to study the acclimation potential over time in a
multi-species assemblage. Until now, little is known about the
seasonal phenotypic acclimation of physiological performance
traits (growth and metabolites) ofF. vesiculosusfrom the western
Baltic Sea under a near natural climate change simulation.
E�ects of future ocean warming and increasing pCO2 on F.
vesiculosusmay vary seasonally according to natural growth and
reproduction periods. Our main objectives were to quantify and
distinguish the relative and/or interactive (additive, synergistic,
or antagonistic) e�ects of ocean acidi�cation in combination
with concurrent warming on growth and basic biochemical
parameters ofF. vesiculosus. Furthermore, we tested if the impact
of these global change factors (single and combined) onF.
vesiculosusperformance and tolerance vary with season and are
related to the factor photoperiod which changes over the course
of the year.

MATERIALS AND METHODS

Sampling Site
All F. vesiculosusL. specimens were collected in each season
(spring: 2 April 2013; summer: 2 July 2013; fall: 8 October;
winter: 14 January 2014) from a depth of 0.2–1 m in the
non-tidal Kiel Fjord, western Baltic (54� 270N; 10� 120E), where
this species forms dense and almost monospeci�c stands on
single stones surrounded by soft sediments. We choseFucus
individuals of di�erent sizes and volumes, growing on small
stones. All plants were left attached to their natural rock
substratum. After sampling, the macrophytes, their epiphytes and
the associated fauna were immediately placed into water-�lled
buckets (protected from light and desiccation) and transported
to the experimental site at the GEOMAR Helmholtz Centre for
Ocean Research. Prior to their distribution to the experimental
units, Fucus individuals were sorted into three size classes
(< 15 cm, 15–30 cm,> 30 cm), identi�ed by numbered tags and
motile fauna was removed by submerging them for 10–20 s in
freshwater (Holmlund et al., 1990). The three most important
mesograzers (Littorina littorea, Idotea sp. andGammarussp.)
caught with the collectedFucusindividuals were sorted and
counted. The initial amount of grazers given into the system
varied between experiments according to the natural variability
of their abundance across seasons but was identical among
treatment levels and replicates within a seasonal experiment (for
details seeWerner et al., 2015).

Seasonal Benthocosm Experiments
In order to assess the seasonal variations of separate and
joint e�ects of simulated ocean warming and acidi�cation on
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the system, all four experiments were conducted consecutively
within 1 year. All experiments were carried out in the Kiel
Outdoor Benthocosms (KOB), a permanent experimental facility
installed outdoors on a jetty at the inner Kiel Fjord (54� 200N;
10� 090E). The �rst experiment ran from 4 April to 19 June 2013
(spring experiment), the second from 4 July to 17 September 2013
(summer experiment), the third from 10 October to 18 December
(fall experiment) and the last one from 16 January to 1 April 2014
(winter experiment), each for at least 10 weeks.

The experimental facility allows for testing near natural
scenarios (Wahl et al., 2015b), not only in terms of multiple
abiotic factors that can be manipulated simultaneously, butalso
with regard to the community being assessed, i.e., multiple
species, functional groups and trophic levels. Twenty plants
of F. vesiculosusgrowing on their rock substrata with their
associated organisms such as micro- and macro-epiphytes, their
bacterial bio�lm as well as mesograzers, mussels and star�sh were
established in each experimental unit. In the Benthocosms the
rock substrata of eachFucuswas placed in small plastic dishes (Ø
D 14 cm,h D 4 cm) which were �xed on a grating by cable ties
in order to maintain an even distribution of the plants despite
the water current. The grating was suspended at a water depth of
40 cm. Furthermore, to complete theF. vesiculosuscommunity
the three main mesograzers (Littorina littorea, Idoteasp., and
Gammarussp.) were added to the Benthocosms in previously
counted and seasonally adjusted numbers.

At the end of each experiment the micro- and macroepiphytes
as well as the mesograzers were sampled per experimental unit
but were analyzed separately (Werner et al., 2015). For estimating
microepiphyte biomass growing on theFucusthalli, one apical
branch per thallus of de�ned weight (1.5–2 mg dry weight) was
carefully scraped o�. In short the sample was homogenized and
�xed for microscopic identi�cation and counting. Microepiphyte
biomass was then estimated from cell biovolume converted to
carbon content. Macroepiphytes were collected from theFucus
thalli that also had been sampled for microepiphyte analysis
and were expressed as dry weight. During �nal sampling all
mesograzers were removed from the experimental tanks. They
were identi�ed, sorted, counted and total grazer abundancewas
determined. For further details seeWerner et al. (2015). The
micro- and macroepiphytes as well as the mesograzers showed
seasonal growth patterns under ambient conditions with highest
biomass of microepiphytes in spring and at the end of the
winter experiment (March), and lowest at the end of the fall
experiment (December). Biomass of �lamentous macroepiphytes
was highest in late summer and lowest in fall in the ambient
treatment. Total grazer abundance under ambient conditions was
signi�cantly higher in summer as compared to any other season.
In spring, fall, and winter grazers showed similar low abundances.
Generally, warming had signi�cantly stronger e�ects on the
epiphytes and mesograzers associated withFucusthan increased
pCO2. In the spring experiment, warming increased the biomass
of �lamentous macroepiphytes signi�cantly, whereas it had
no e�ect on the biomass of microepiphytes and total grazer
abundance. However, in late summer, warming induced a
cascading e�ect impacting the entireFucus system. In this
period total grazer abundance collapsed under warming, whereas
the biomass of microepiphytes and �lamentous macroepiphytes

showed a signi�cant increase (for details seeWerner et al.,
2015).

A detailed technical description of the KOB, their installation,
programming and monitoring is given inWahl et al. (2015b). The
Benthocosms comprise 12 tanks, each holding a water volume
of 1.4 m3. The experimental units are exposed to ambient light
(irradiance and photoperiod) conditions year-round. They are
equipped with gas-tight, transparent covers and can be controlled
independently for environmental factors such as seawater pCO2
and temperature. The foil (Lumisol clear, Folitec, Westerburg,
Germany) of the covers permits all wavelengths of the solar
spectrum to penetrate (Wahl et al., 2015b). The Benthocosms
were supplied with a constant �ow of non-�ltered seawater taken
from the Kiel Fjord, in close vicinity to the experimental platform
and from 1 m depth resulting in an exchange of water once
per day. A circulation pump (ATK-MP10041, AQUA LIGHT,
Germany or Kripsol OK33B, Kripsol Grupo, Spain, 104 L h� 1)
produced a current inside each tank to mimic water movements
as close as possible to natural conditions.

Temperature was controlled by aquarium controllers
(Pro�lux-3ex and Expansion Box, powerbars of the types 6D
PAB and STDL4-4, GHL Advanced Technology, Kaiserslautern,
Germany) and adjusted via electrical heat exchangers (Titan,
2000; Aqua Medic, Bissendorf, Germany) and/or internal
heating elements (Schego Titan, 600 Watt, Schemel and Goetz,
O�enbach/ Main, Germany). For seawater pCO2 manipulations
pure CO2 (Linde Gas, Pullach, Germany) was injected into the
headspace under the gas-tight cover of each experimental unit.
The pCO2 inside the headspace was automatically controlled
by injection of CO2 maintaining a treatment level of� 1100
ppm CO2 in the atmosphere under the cover (Scenty, HTK, IR
Spectroscopy, Hamburg, Germany). A wave generator regularly
induced water motion and thereby promoted di�usion of CO2
from the headspace into the water column.

The key variables temperature and pH in the Benthocosms
were continuously logged by sensors (platinum resistance
thermometer PT1000 and gel-electrolyte �lled glass electrode,
GHL Advanced Technology, Kaiserslautern, Germany). To
examine the drift of the continuously logging pH sensors the
pH of the tanks was additionally measured daily using hand-held
and calibrated sensors (Seven Multi+InLab Expert Pro, Mettler
Toledo GmbH, Giessen, Germany). The pH electrode was
calibrated with National Bureau of Standards (NBS) pH-bu�er
(4.001, 6.865). Properties of the carbonate system in the four
climate combinations were regularly measured by discrete water
sampling and subsequent analysis, e.g., for total alkalinity(TA)
and nutrients (twice per week) as well as for dissolved inorganic
carbon (DIC) in monthly intervals. Samples for seawater TA and
DIC were taken directly from the experimental units at a �xed
time (9.00–11.00 a.m.) 1 day prior to each sampling. TA samples
were measured using a titration unit with associated sample
changer (Titroline alpha plus, SI Analytical Mainz, Germany).
Water samples for DIC analysis were measured via coulometric
titration (Johnson et al., 1993; Winde et al., 2014). TA and
DIC measurements were calibrated using certi�ed seawater
standards (Dickson, Scripps Institution of Oceanography, San
Diego; e.g.,Dickson et al., 2007). Data of TA, DIC, salinity,
and temperature were used to calculate the partial pressure of
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CO2 (pCO2) with the CO2SYS program for Excel (Pierrot et al.,
2006). Nutrient samples were �ltered and stored frozen (� 20� C)
until measurement of ammonium-, phosphate- and nitrate salts
using a QuAAtro nutrient analyzer (SEAL Analytical GmbH,
Norderstedt, Germany).

Temperature and Carbonate Chemistry
Manipulations
The e�ects of future ocean warming were tested by contrasting
the levels ambient temperature of Kiel Fjord water vs. warming
(C5� C relative to fjord water) which were full-factorially crossed
with two levels of pCO2 (ambient vs. varying around 1100 ppm).
To evaluate single and interactive e�ects of warming and elevated
pCO2 on growth and biochemical parameters ofF. vesiculosus,
four di�erent treatments were tested: (1) natural temperature in
the Kiel Fjord and ambient pCO2 (control), (2) expected elevated
future pCO2 (CCO2) in natural temperature, (3) elevated
temperature (CTemp) with ambient pCO2; and (4) elevated
temperature combined with expected elevated future pCO2
(CTemp CCO2). Importantly, to take into account the natural
�uctuations of all environmental variables we superimposed
our treatment factors onto these in the Benthocosms, i.e.,
delta-treatments in all seasons were applied (natural Kiel Fjord
temperature plus 5� C and pCO2 varying around 1100 ppm
in the headspace above the Benthocosms). Both manipulations
were chosen according to climate change predictions for shallow
coastal Baltic habitats over the next 100 years (Gräwe et al.,
2013; BACC II Author Team, 2015). Each treatment combination
was replicated three times. Before starting the experiments the
algae and the associated community were acclimated to the
Benthocosm conditions for 2 days under ambient conditions.
The temperature at the warming treatments was elevated by 2� C
on the second day and by 3� C on the third day to achieve a
5� C elevated temperature compared to the natural Kiel Fjord
temperature at the fourth day. In none of the experiments this
initial warming reached critically high values (i.e., 26� C, Grai�
et al., 2015a). The CO2 was injected from the second day onwards
into the headspace above the tanks.

Monitoring of Environmental Conditions
During the Experiments
Throughout the course of each experiment water temperature
was continuously logged in every Benthocosm. In addition,
the seasonal variation in irradiance was measured in the Kiel
Fjord at 0.5 m water depth using light loggers (Onset computer
corporation, Bourne, MA, USA) and is shown in the study of
Rickert et al. (2015). Daylength was calculated for the location
of the Kiel Benthocosms with the Online-Photoperiod Calculator
V 1.94 L by L. Lammi (http://www.sci.�/~benefon/sol.html).
Variations in sea water chemistry like CO2 parameters (pH, DIC,
TA, and pCO2) and nutrient concentrations (PO4, NO3) were
measured regularly and are presented in detail inWahl et al.
(2015b). Salinity was continuously logged at the institute pier
(< 100 m distant) by GEOMAR. The original raw data on the
environmental key parameters of each Benthocosm are available
at PANGAEAR data platform (http://doi.pangaea.de/10.1594/
PANGAEA.842739).

Growth Measurements
Growth was assessed as apical length increase and biomass
change as well as change of apex numbers of theFucusindividuals
in the Benthocosms. For these measurementsFucusindividuals
of 15–25 cm length and apparently of equal vigor, growing on
stones (10–15 cm in diameter), were chosen. Other organisms
on these stones were removed leaving only oneFucusindividual
growing from a single holdfast per stone.

Growth was measured regularly as length of the apical tips
using a caliper gauge. For this, a small hole was punched 2 cm
from the ends of 12 vegetative actively growing apices and
marked with colored nylon ties on eachFucusspecimen at
the start of the experiment. This marking was done to avoid
confusion with bite marks of grazers. After 14 or 28 days,
depending on the season, the tip lengths were measured again
and the mean value of the length increase of these 12 apices
was calculated as the growth rate of eachFucusindividual.
Additionally, growth was measured as wet mass of eachFucus
individual. The completeF. vesiculosusindividuals were weighed
(EMB1200-1, Kern, Balingen, Germany) for total wet mass
after cleaning of epiphytes and standardized drying (i.e., gently
shaking the plant �ve times and blotting of surface water between
dishtowels) at the beginning and at the end of each experiment.
Relative growth rates (RGR) were calculated according toLüning
(1990)using a linear formula for length:

RGR
�
%d� 1�

D 100
xt � x0

x0 � t

and a logarithmic formula for biomass change for wet mass:

RGR
�
%d� 1�

D 100
ln(mt) � ln(m0)

t

wherex0 represents initial length (cm) andm0 the initial wet mass
(g),xt the length (cm) andmt the wet mass (g) aftert days (d).

The apex numbers of theF. vesiculosusindividuals were
counted at the beginning and at the end of each Benthocosm
experiment. One apex was de�ned as the incision of a dichotomy
� 0.5 cm. Relative changes of individual frond apices numbers of
F. vesiculosusindividuals (% d� 1) were calculated in order to
standardize changes according to the number of experimental
days.

Biochemical Features of Fucus
In order to assess the biochemical parameters ofF. vesiculosus
individuals after growing for 3 months under the four di�erent
treatments in every season the vegetative apices were cut
o�, cleaned of epibiota and freeze-dried for further analyses.
Only apices were used because older thallus parts are mainly
metabolically inactive (Carlson, 1991) and have not been formed
during the course of the experiment. At the beginning of each
experiment, vegetative apices without visible epiphytes of 12
initial F. vesiculosusindividuals were freeze-dried to document
the initial biochemical status ofF. vesiculosusin its native habitat.
For analyzing carbon and nitrogen contents, freeze-dried algal
material was ground to powder using mortar and pistil, and three
subsamples of 2 mg were loaded and packed into tin cartridges
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(6 � 6 � 12 mm). These packages were combusted at 950� C and
the absolute contents of C and N were automatically quanti�ed
in an elemental analyzer (Elementar Vario EL III, Germany)
using acetanilide as standard according toVerardo et al. (1990).
Mannitol was extracted from three freeze-dried subsamples of
10–20 mg powdered alga material and quanti�ed, following the
HPLC method described byKarsten et al. (1991). Laminarin
concentration was examined using cold water extraction (6 mL)
from freeze-dried powdered apex material (200 mg) according to
the new method described byGrai� et al. (2015b). Additionally,
alginates were precipitated with ethanol (> 99.7%) and formic
acid (98%) to avoid disturbance of the measurements. The
puri�ed extracts were analyzed and laminarin identi�ed as well
as quanti�ed using liquid chromatography-mass spectrometric
analysis (LC-MS).

Statistical Analyses
Di�erences in the relative length growth rates ofF. vesiculosus
between the treatments were analyzed with repeated measures
analysis of variance (rm ANOVA), with the within-subject factor
time (day) and the between-subject factor treatments (pCO2 and
temperature) for every experiment separately. If the assumption
of sphericity (Mauchly test) was not met, the univariate approach
with Greenhouse-Geisser adjusted degrees of freedom andp-
values for theF-test was applied.

In order to evaluate the interactive e�ect of temperature
and pCO2 on all variables measured (relative length growth
rates, biomass change, relative change of individual frondapex
numbers, CN ratio, C, N, and mannitol content) at the end of
every Benthocosm experiment, Two-way ANOVAs were used
with temperature and pCO2 as �xed factors. When the analysis
did not show signi�cant interactions, a One-way ANOVA was
carried out for each factor separately. Furthermore, to assess
seasonal di�erences of CN ratios, C, N, and mannitol contents
(% DW) of the initial biochemical status ofF. vesiculosusin its
native habitat One-way ANOVAs were applied. Prior to the use of
ANOVAs, data were tested for normality with the Kolmogorov–
Smirnov or Shapiro–Wilk test and for homogeneity of variances
with the Levene's test. When the analysis revealed signi�cant
di�erences, pairwise comparisons between means were further
explored using apost hocTukey's honest signi�cant di�erence
test. Data were analyzed using SPSS Statistics 20 (IBM, Armonk,
NY, USA) and the R software (R. Development Core Team, 2014).

RESULTS

Environmental Conditions During the
Experiments
The natural water temperature of the Kiel Fjord showed a clear
seasonal pattern with rising mean temperatures in spring and
early summer (April–June), reaching maximal values (24.1–
24.8� C) in July/August and declining temperatures during fall
and early winter (September–December). In January a minimal
water temperature of 4.2� 1.4� C was reached and afterwards
the temperature increased from February to March again (Table
S1). Accordingly, the irradiance measured in the Kiel Fjordvaried

with season showing increasing intensities in late spring and early
summer (April–June), maxima in July/August and continually
decreasing intensities in fall and winter (Rickert et al., 2015).
During the course of the spring experiment daylengths increased
from 14 to 17 h and in late summer decreased from 17 to 13 h. In
fall daylengths decreased further from 10 to 8 h and during the
course of the winter experiment they increased again from 8 to
12 h. In spring and fall water temperature correlated positively
with daylength (spring:R2 D 0.95; fall:R2 D 0.99), in contrast to
summer and winter (summer:R2 D 0.21; winter:R2 D 0.04).

The natural pH of the Kiel Fjord surface water was high
(8.5) in spring (April–June) and low (7.7) in fall (October–
November). Additionally, upwelling of CO2- and nutrient-
enriched deep water has caused stochastic changes in the nutrient
and carbonate systems, as well as of the pH of the Kiel Fjord
surface waters. During spring and late summer the water was
CO2 under-saturated (100–350 ppm) in contrast to fall and
winter (September–March) when the water column was CO2
supersaturated (500–1000 ppm). In the Benthocosms containing
the macroalgae-based communities, thein situ seasonal (and
stochastic) �uctuations were altered by the diurnal metabolic
activity of the organisms (for further details seeWahl et al.,
2015b). The pH, pCO2, TA, and DIC di�ered between the applied
treatments and between seasons (Table S2). The overall mean
e�ect of head space enrichment with CO2 from ambient (380–
450 ppm) to 1050–1100 ppm resulted in a pH reduction of the
tank water by 0.18� 0.08 pH units (Wahl et al., 2015b). The
pCO2 concentration in the water of the control tanks varied
during the course of 1 year between 130� 57 and 886� 284
ppm compared to the increased pCO2 treatment (C pCO2) which
varied between 297� 192 and 1313� 397 ppm (monthly means).
In the warming treatment under ambient CO2 conditions the
pCO2 varied between 220� 121 and 1373� 343 ppm compared
to the pCO2 of the warm and acidi�ed conditions which varied
between 503� 402 and 1585� 263 ppm (for details seeWahl
et al., 2015b). In all situations the mean di�erence between the
ambient and increased CO2 treatment ranged between 340 and
460 ppm CO2 (M. Böttcher and V. Winde pers. comm.).

Phosphate concentrations of the Kiel Fjord surface water were
low (0.19–0.48mmol L� 1) throughout the spring experiment
(April–June), increased in late summer (0.43–1.02mmol L� 1),
reached a maximum in October (1.39� 0.28mmol L� 1) and
decreased from November to March successively. In contrast,
nitrate concentrations decreased in spring reaching lowestvalues
in late summer (0.76� 0.51mmol L� 1) and increased slightly in
fall. Nitrate reached distinct maximal values in January (15.04
� 3.32mmol L� 1) and decreased in February again (V. Winde
pers. comm.). Phosphate as well as nitrate concentrations in the
Benthocosms followed the seasonal �uctuations in the Kiel Fjord
but were reduced by the uptake of macro- and micro-algae (Wahl
et al., 2015b).

Growth and Biochemical Features of F.
vesiculosus
Depending on the season temperature and to a lesser extent CO2,
a�ected growth and biochemical features ofF. vesiculosusand
some interactive e�ects were revealed.
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Algal Length Growth
F. vesiculosusexhibited vegetative apical growth throughout the
year (Figure 1). Growth ofF. vesiculosusincreased rapidly in late
spring (April-May) and reached a maximum rate of 2.96� 0.76%
d� 1 (relative vegetative apical length increase per day; mean�
SD,n D 3) in July. Later in the year growth decreased during
fall (September-November) reaching a low rate (0.40� 0.27%
d� 1) in winter (December to February) before increasing again
in March. This general growth pattern ofF. vesiculosusgrown
at ambient environmental conditions of temperature and pCO2

(control) in the Benthocosms was also apparent at warming
and/or expected future pCO2 conditions (Figure 1).

When exhibiting the growth rates either in relation to season
or in relation to season and temperature as well as daylength
over all treatments (Figures 1, 2), major e�ects of temperature
and/or CO2 enrichment mostly became evident during the active
growth phase which was present in spring and early summer
with up to three-fold (warmed condition) and two-fold (ambient
temperatures) higher growth rates compared to the rest of the
year. This resulted in signi�cant interactive e�ects of CO2 and

FIGURE 1 | Mean temperatures (solid line: natural temperature of the Kiel fjord; dashed line: natural temperature of the Kiel fjord C1 5� C) between the
length measurements as well as relative apical length growth r ates (RGR) of Fucus vesiculosus grown over different seasons, temperature and pCO 2
conditions in the Benthocosms. Seasons: spring: 4 April–19 June 2013; summer: 4 July–17 September 2013; fall: 10 October–18 December 2013; winter: 16
January–1 April 2014; temperature and pCO2 conditions: CTemp: elevated temperature and ambient pCO2, CTemp CCO2: elevated temperature and expected
elevated future pCO2 (A); control: natural temperature of the Kiel Fjord and ambientpCO2, CCO2: natural temperature and elevated future pCO2 (B); Mean values�
SD (n D 3).
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FIGURE 2 | Relative growth rates (RGR) of Fucus vesiculosus apices as a function of mean temperature and mean daylength betwe en the
measurements at different conditions ( CTemp CCO2: elevated temperature and expected elevated future pCO 2, CTemp: elevated temperature and
ambient pCO 2, CCO2: natural temperature and elevated future pCO 2, control: natural temperature in the Kiel Fjord and ambient pC O2) in spring (4
April–19 June 2013), summer (4 July–17 September 2013), fall (10 October–18 December 2013), and winter (16 January–1 April 20 14). Mean values� SD
(n D 3), trend lines within each treatment as well as the coef�cients of determination (R2) are shown.

temperature over the spring experiment (rm ANOVA,F D
6.20, df D 1, p < 0.05). In spring, warming signi�cantly
enhanced growth ofF. vesiculosusby almost 40% (rm ANOVA,
F D 18.36,df D 1, p D 0.003). In the warming treatment,
naturally increasing water temperatures of the Kiel Fjord during
the spring experiment accelerated growth until a mean water
temperature of 18� C was reached in May. Subsequently, growth
started to decrease when water temperatures over 20� C were
reached (Figures 1A, 2) and Fucusbecame increasingly fouled
with epiphytic ephemeral green algae. Under warming and
increased CO2 Fucus kept growth on a higher and more
constant rate (Figure 2). Growth of F. vesiculosusat control
conditions increased more slowly with the seasonally rising
ambient temperatures until 16� C was reached in June, and
was not overgrown by epiphytic green algae. Under ambient
temperature conditions, enhanced CO2 increased growth of
Fucusby almost 30% over the course of spring experiment,
however this was only a non-signi�cant tendency (rm ANOVA,
F D 3.02,df D 1,p D 0.12;Figure 1B).

In the summer experiment, elevated pCO2 seemed to enhance
growth in the �rst 2 weeks both under ambient and warmed
conditions, but this enhancement was not signi�cant (One-way
ANOVA with post hocTukey's test,F D 2.76,df D 3, p D
0.11). Over the course of the summer experiment growth of

F. vesiculosusceased completely under warmed but not under
ambient temperatures (rm ANOVA,F D 22.36,df D 2, p <
0.001;Figure 1). Enhanced by an unexpected natural heat-wave
in the fjord, warming produced peak temperatures between 27
and 30� C during a period of 30 days (Table S3). Subsequent to this
stress phase,F. vesiculosusindividuals showed a reddish tinge,
their complete thallus tissue disintegrated and necrosis as wellas
deterioration of the apical meristems was obvious. This period
of high water temperatures resulted in a dieback of theFucus
assemblage in the warmed treatments (Figure 1A). Even growth
of Fucusindividuals at ambient temperature conditions (maximal
temperatures of 25� C) decreased signi�cantly in the course of the
summer experiment (rm ANOVA,F D 15.59,df D 2,p < 0.05).
This natural heat stress was mitigated by increased CO2 which
kept growth ofFucusby 27% above the control, however this
growth enhancement was not signi�cant (rm ANOVA,F D 1.27,
df D 2,p D 0.33,Figure 1B).

During the fall experiment, growth ofF. vesiculosus
signi�cantly decreased over time (rm ANOVA,F D 24.02,
df D 3, p < 0.001) reaching low growth rates in December
under all treatments. During the winter experiment, growth of
Fucusincreased signi�cantly from January to April (rm ANOVA,
F D 25.08,df D 2,p < 0.001) and the mean water temperature
of the Kiel Fjord increased in parallel. No e�ects of warming or

Frontiers in Marine Science | www.frontiersin.org 8 December 2015 | Volume 2 | Article 112



Graiff et al. Warming/Acidi�cation Effects Depend on Season

increased CO2 were apparent (Figures 1, 2). However, under
warmed conditionsFucusthalli appeared to be more leathery
and had a more reddish tinge at the end of both experiments
compared to the vigorous greenishFucus individuals under
ambient temperatures.

Integrating over all seasons, growth ofF. vesiculosuswell-
related to water temperature and also daylength and two patterns
became obvious. In spring and summerFucusgrew stronger
under long-day conditions (> 12 h) compared to growth under
short-day conditions (< 12 h) in fall and winter despite similar
water temperatures (Figure 2). Under ambient temperature
conditions (ambient and increased CO2 treatment) growth of
Fucusrelated positively to water temperatures and daylength,
especially in the active growth phases in spring and early summer
(Figure 2). This bene�cial temperature and daylength e�ect was
enhanced by increased CO2 as indicated by a steeper slope of the
trend line in comparison to growth at ambient CO2 conditions.
The generally positive e�ect of higher temperatures was lost
under warmed conditions, when an upper temperature threshold
of 24� C was surpassed. Under warmed and long-day conditions
(> 12 h) no further growth increase was obvious compared to
ambient temperature and long-day conditions (Figure 2).

Comparison of Growth Parameters
Growth of a morphologically complex macroalga with a
di�erentiated thallus likeF. vesiculosuscannot be characterized
alone by elongation of the apical vegetative tips, therefore
we additionally assessed the biomass change (fresh mass) as
well as the change of apex numbers. Length elongation of the
vegetative tips ofFucusover the complete spring experiment
was high (3.48–4.67 cm) without signi�cant di�erences between
the experimental conditions (Two-way ANOVA, Table S4 and
Figure 3A). On the other hand in the course of the spring
experimentFucusindividuals considerably lost biomass due to
denudation of the wings of the lower thallus part (Figure 3B).
Additionally, during the spring experiment most of the apices
became fertile. Individual fronds then developed only few
dichotomies at the thallus apex due to deterioration of the
receptacles (Figure 3C). No e�ects of warming or increased CO2
on biomass as well as apex numbers were apparent in spring
(Two-way ANOVA, Tables S5, S6).

During the summer experiment warming signi�cantly
reducedFucusgrowth (Two-way ANOVA,p< 0.01, Tables S4,
S5, S6) resulting in a complete dieback, which indicates thatthe
upper temperature tolerance limit ofF. vesiculosuswas exceeded.
Under ambient summer temperatures apical length and biomass
of Fucusincreased and the apices dichotomized considerably
(Two-way ANOVAs,p< 0.01,Figure 3). Increased CO2 tended
to favor length elongation, biomass and apices numbers ofFucus,
but these di�erences were not signi�cant (Two-way ANOVA,
Tables S4, S5, S6).

Elongation of Fucus vegetative tips in the course of
the complete fall (0.63–0.73 cm) and winter (1.13–1.84 cm)
experiment was low and similar under all treatments. Warming
provoked a loss of biomass (Two-way ANOVA,p D 0.06, Table
S5) and a signi�cant loss of apices (Two-way ANOVA,p< 0.05,
Table S6) in fall. In fall and winter, increased CO2 enhanced

FIGURE 3 | Relative changes in length (A), biomass (B), and ind ividual
frond apices numbers (C) of Fucus vesiculosus integrated over the
whole course of each seasonal experiment in four different trea tment
conditions of temperature and pCO 2 in the Benthocosms. Seasons:
spring: 4 April–19 June 2013; summer: 4 July–17 September 2013; fall: 10
October–18 December 2013; winter: 16 January–1 April 2014;temperature
and pCO2 conditions: CTemp CCO2: elevated temperature and expected
elevated future pCO2, +Temp: elevated temperature and ambient pCO2,
CCO2: natural temperature in the Kiel Fjord and elevated future pCO2, control:
natural temperature and ambient pCO2. Mean values� SD (n D 3). Different
lowercase letters indicate signi�cantly different changesof growth rates per
season (p < 0.05, Two-way ANOVA).

biomass and apices numbers ofF. vesiculosusindividuals
compared to all other conditions (Figures 3B,C), but this e�ect
was only signi�cant for biomass increase in winter (One-way
ANOVA, with post hocTukey's test,F D 7.43, df D 3,
p < 0.05). During the winter experiment most of the vegetative
apices developed into receptacles which made up a considerable
quantity of the biomass at the end of the experiment.
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C-N Composition
The CN ratio, carbon, and nitrogen content ofF. vesiculosus
in its native habitat varied signi�cantly with season (One-way
ANOVAs with post hocTukey's test, CN:F D 406.56,df D 3,
C: F D 24.22,df D 3, N: 357.12,df D 3,p < 0.001,Table 1). In
spring and winter CN ratios (April: 8.53� 0.68, January: 11.50�
1.06) of vegetativeFucustips were signi�cantly lower compared
to summer and fall (July: 30.59� 4.73, October: 30.31� 4.68).
Thus, nitrogen content ofFucustips reached maximum values
in spring and winter (April: 4.32� 0.42% DW, January: 2.97�
0.29% DW) and minimum values in summer and fall (July: 1.24
� 0.18% DW, October: 1.20� 0.19% DW). Carbon content of
Fucusshowed maximum values varying between 36.62� 1.30
and 37.08� 0.96% DW from April to July and signi�cantly lower
values in October and January (35.46� 0.72� 33.89� 0.87% DW,
Table 1).

In accordance with the seasonal variation of carbon and
nitrogen of Fucusin its native habitat, the CN ratio ofFucus
was low (12.00–13.39) at the end of the winter experiment and
high (29.46–34.75) at the end of the summer experiment under
all treatments (Table 1). After growing in the Benthocosms for
3 months at the di�erent experimental conditions in spring,
fall and winter the CN ratio, carbon, and nitrogen content of

F. vesiculosusdid not signi�cantly di�er between the applied
treatments. Only in the course of the summer experimentF.
vesiculosusdied at elevated temperatures resulting in a signi�cant
reduction of carbon and nitrogen under warming (One-way
ANOVAs with post hocTukey's test, CN:F D 38.77,df D 3, C:
F D 955.34,df D 3, N:F D 71.62,df D 3,p < 0.001,Table 1).

Storage of Mannitol and Laminarin
Seasonal variations in mannitol content were evident forF.
vesiculosusgrown in its native habitat (One-way ANOVA with
post hocTukey's test,F D 23.18,df D 3, p < 0.001,Table 1).
The accumulation of mannitol was signi�cantly lower in winter
(January: 7.41� 1.51% DW) compared to the other seasons
(April: 12.37� 1.45% DW, July: 10.41� 1.69% DW, October:
11.55� 1.59% DW).

Similar to the seasonal variation,Fucus individuals
accumulated high quantities (17.72–22.62% DW) of mannitol
at the end of the spring experiment (June) and low quantities
(4.92–5.88% DW) in December under all treatments (Table 1).
In spring, warming decreased mannitol content ofFucusby 20%,
however this tendency was not signi�cant (One-way ANOVA
with post hocTukey's test,F D 0.67,df D 3,p D 0.59,Table 1).
In summer, warming reduced mannitol signi�cantly due to

TABLE 1 | CN ratios, C, N, mannitol, and laminarin contents (% DW ) of the initial biochemical status of Fucus vesiculosus apices in its native habitat
(initial, n D 12) and after growing for 3 months in different seasons, temperature , and pCO 2 conditions in the Benthocosms ( n D 3).

CN C N Mannitol Laminarin

(% DW)

Spring April Initial 8.53� 0.68 A 36.62 � 1.30 A 4.32 � 0.42 A 12.37 � 1.45 A 2.31 � 1.96

June

CTemp CCO2 19.43 � 5.06 a 36.28 � 0.45 a 1.71 � 0.18 a 17.83 � 2.72 a -

CTemp 19.26 � 3.41 a 35.76 � 0.38 a 1.89 � 0.30 a 17.72 � 9.09 a -

CCO2 19.57 � 3.28 a 36.28 � 0.73 a 1.89 � 0.29 a 21.18 � 3.55 a -

control 20.88 � 0.21 a 36.25 � 1.57 a 1.74 � 0.09 a 22.62 � 2.17 a -

Summer July Initial 30.59� 4.73 B 37.08 � 0.96 A 1.24 � 0.18 B 10.44 � 1.69 B -

September

CTemp CCO2 † a † a † a † a †

CTemp † a † a † a † a †

CCO2 34.75 � 8.03 b 36.64 � 1.26 b 1.09 � 0.24 b 14.12 � 0.67 b -

control 29.46 � 6.57 b 33.82 � 1.90 b 1.04 � 0.07 b 12.79 � 1.93 b -

Fall October Initial 30.31� 4.68 B 35.46 � 0.72 B 1.20 � 0.19 B 11.55 � 1.59 AB 9.60 � 2.93

December

CTemp CCO2 16.31 � 1.21 a 33.07 � 0.88 a 2.04 � 0.18 a 4.98 � 2.56 a -

CTemp 17.63 � 0.24 a 33.44 � 0.83 a 1.90 � 0.02 a 4.92 � 1.61 a -

CCO2 17.78 � 1.16 a 34.08 � 0.66 a 1.92 � 0.13 a 4.98 � 1.03 a -

control 18.17 � 2.71 a 32.89 � 1.69 a 1.85 � 0.35 a 5.88 � 0.99 a -

Winter January Initial 11.50� 1.06 C 33.89 � 0.87 C 2.97 � 0.29 C 7.41 � 1.51 C -

April

CTemp CCO2 13.39 � 1.32 a 33.61 � 0.39 a 2.53 � 0.26 a 9.64 � 0.99 a -

CTemp 13.37 � 0.99 a 33.90 � 1.03 a 2.54 � 0.15 a 9.64 � 0.57 a -

CCO2 12.00 � 0.66 a 33.77 � 0.41 a 2.82 � 0.12 a 10.97 � 0.99 ab -

control 13.15 � 2.76 a 33.77 � 0.38 a 2.64 � 0.52 a 11.63 � 0.66 b -

Seasons: spring: 4 April–19 June 2013; summer: 4 July–17 September 2013; fall: 10 October–18 December 2013; winter: 16 January–1 April 2014; temperatureand pCO2 conditions:
+Temp +CO2: elevated temperature and expected elevated future pCO2, +Temp: elevated temperature and ambient pCO2, CCO2: natural temperature in the Kiel Fjord and elevated
future pCO2, control: natural temperature and ambient pCO2. Values are means� SD. Different uppercase (comparison of initial values) and lowercase (comparison of values at the
end of each experiment between treatments) letters indicate signi�cantly different means (p< 0.05; One-way ANOVA with post hoc Tukey's test). Cross (†) indicates dieback of F.
vesiculosus in the summer experiment under warming and minus (-) the absence of laminarin in the samples.
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the dieback ofFucus(One-way ANOVA withpost hocTukey's
test,F D 174.73,df D 3, p < 0.001). Under increased CO2,
F. vesiculosusaccumulated 10% more mannitol compared to
control conditions in summer, however this accumulation was
not signi�cant (Table 1). At the end of the fall experiment
(December) similar low mannitol contents were measured inF.
vesiculosustips under all treatments. In the subsequent winter
experiment warming decreased mannitol signi�cantly by 20%
(One-way ANOVA withpost hocTukey's test,F D 4.39,df D 3,
p < 0.05,Table 1).

Apices of naturally grownF. vesiculosuscontained laminarin
in spring of 2.3� 1.96% DW (April) and higher quantities in fall
(October: 9.60� 2.93% DW). Laminarin was neither detected
in summer (July) and winter (January) in control plants from
the �eld nor after growth in the Benthocosms in all seasons and
treatments.

DISCUSSION

In coastal regions, river runo�, upwelling and biological
activity modify the e�ects of atmospherically determined ocean
acidi�cation (Duarte et al., 2013) and many macroalgae are
exposed to severe diurnal and seasonal �uctuations of the
seawater carbonate concentration (Gao et al., 1991; Delille et al.,
2000; Middelboe and Hansen, 2007). A special situation in the
western Baltic Sea, and particularly in coastal bays such as
the Kiel Fjord, are high and variable pCO2 values in surface
waters with an annual mean of� 800 ppm and peak values
of 2400 ppm during upwelling events (Thomsen et al., 2010,
2013; Melzner et al., 2013; Saderne et al., 2013). The need of
marine algae to cope with these pronounced �uctuations in
CO2 availability has probably promoted the evolution of e�ective
carbon concentrating mechanisms (CCMs) (Giordano et al.,
2005). F. vesiculosuspossesses such a CCM (Surif and Raven,
1989), which is stimulated under carbon limitation, whereas
elevated pCO2 conditions may down regulate CCM activity and
thereby energy is saved (Johnston and Raven, 1990; Beardall and
Giordano, 2002; Giordano et al., 2005; Wu et al., 2008) which may
be invested into growth and/or reproduction.

In our study, we only observed a weak e�ect of enhanced
pCO2 levels on growth ofF. vesiculosuswith only a slight increase
of length and biomass growth and a stimulation of thallus
tip formation (dichotomization) at elevated pCO2 treatments.
The scarcity of signi�cant e�ects of acidi�cation onFucus
performance in this study may be due to Baltic SeaF. vesiculosus
already being adapted to strongly �uctuating pCO2 and pH
conditions in their native habitat (Thomsen et al., 2010, 2013;
Melzner et al., 2013; Saderne et al., 2013). The biogenic circadian
pH �uctuations in the Benthocosms were of similar amplitude
as in localFucusbelts (Wahl et al., 2015c), which can exceed the
predicted shift in mean pH until the year 2100 (Wootton et al.,
2008; Saderne et al., 2013). In addition,F. vesiculosuspossess an
internal organic carbon pool which makes the algae even more
independent of external CO2 �uctuations (Kawamitsu and Boyer,
1999). The interaction of acidi�cation and warming (naturally
as well as experimental) may weaken or cover the indicated
bene�cial e�ect of pCO2 on growth as photorespiration decreases

with increasing pCO2 but increases with rising temperature (Sage
and Kubien, 2007). This situation may be further complicated
by the temperature requirements of the CCM enzymes (Shiraiwa
and Miyachi, 1985; Wu et al., 2011).

Growth stimulation as a consequence of the down-regulation
of the CCM at high CO2 and/or dissolved inorganic carbon (DIC)
conditions has been proposed for macroalgae before (Nygård and
Dring, 2008; Wu et al., 2008; Olischläger et al., 2012; Saderne,
2012; Koch et al., 2013). In contrast to our results,Gutow
et al. (2014)found a reduced biomass growth ofF. vesiculosus
from the North Sea by about 10–15% at elevated CO2 levels
(constant 700 ppm). It became however, apparent that di�erent
growth parameters (e.g., length, biomass, or dichotomization) do
not respond synchronously and with the same rates to abiotic
changes as was shown here and before (Knight and Parke,
1950). For example, in the spring experiment the three growth
parameters did not show a uniform pattern as apical length and
individual frond apices numbers of theFucusthalli increased but
biomass decreased (similarly as inGutow et al., 2014) due to
denudation of the wings of the lower part of the thalli combined
with abscission of the receptacles after gamete release.

Several other abiotic factors, such as warming or nutrients
may interact with growth under CO2 treatments as was
also shown in the current Benthocosm experiments. Growth
responses ofF. vesiculosusto experimental warming were
positive until May by providing optimal water temperatures for
apical growth ofF. vesiculosus(10–24� C, Grai� et al., 2015a).
In contrast, in the �rst 2 weeks of the summer experiment
(July) growth ofF. vesiculosusunder the warming treatment
ceased when temperatures increased above 24� C, a critical
thermal threshold, which resulted in growth reductions when
tested in a temperature gradient experiment (Grai� et al.,
2015a). Apparently this thermal stress on growth was mitigated
to some extent by increased CO2 resulting in higher and
more constant growth rates in spring and early summer. The
provision of increased amounts of DIC may have increased—
antagonistically to warming—the performance ofF. vesiculosus.
This �nding is consistent with Olischläger and Wiencke
(2013) and Sarker et al. (2013), who examined the combined
e�ects of CO2 and temperature onNeosiphonia harveyiand
Chondrus crispus, respectively, and both found a release of the
temperature stress response with increased CO2. During the
further progression of the summer experiment however, when
the Kiel Fjord water temperature exhibited a natural heat-wave
(late July/August), water temperatures in the warming treatment
reached temperatures between 27 and 30� C over 30 days (Table
S3) which clearly exceeded the thermal tolerance ofF. vesiculosus.
Grai� et al. (2015a)showed that these temperatures already cause
stress after 3 days and a reduction in growth rate after 7 days.
This situation resulted in a dieback of theFucusindividuals and
ephemeral fast-growing �lamentous algae colonized the system
(Werner et al., 2015). These results indicate that elevated pCO2
may mitigate sub-lethal temperature e�ects onF. vesiculosus
to a limited extent but future ocean warming during summer
heat-waves may probably not prevent local extinction and range
shifts ofF. vesiculosus(Wernberg et al., 2011; Jueterbock et al.,
2013).
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Growth of macroalgae became enhanced under high CO2 as
well due to an increased nitrate uptake and nitrate reductase
enzyme activity which increased carbon retention in algal thalli
under nitrogen saturation (Gordillo et al., 2001). This may
explain the signi�cant biomass increase but constant carbonand
high nitrogen content ofF. vesiculosusobserved at the end of the
winter experiment at elevated pCO2 and ambient temperature.
At the beginning of the winter experiment (January) nitrate
concentrations of the Kiel Fjord surface water were highest
compared to all other months, but probably not saturating like
under laboratory conditions. Nitrogen inF. vesiculosusfollows
the inorganic nitrogen concentration in the ambient water but
often with a time lag. Nitrogen reserves which have been builtup
during the winter months were used for growth during April–
June (Pedersen and Borum, 1996; Lehvo et al., 2001).

Other important biochemical compounds which are related
to the annual growth cycle ofFucusare the storage products
mannitol and laminarin and were also in�uenced by temperature
and CO2 conditions as revealed here. Growth rates as well as
mannitol concentration ofF. vesiculosusin the Benthocosms
were highest in spring/early summer when water temperature
and solar irradiance increased naturually and were lowest in
winter (December–January/February). Similar growth rates and
mannitol concentrations ofF. vesiculosuswere measured in its
native habitat showing comparable variations on a seasonal basis
(Knight and Parke, 1950; Carlson, 1991; Lehvo et al., 2001; Wahl
et al., 2010). In situ, F. vesiculosusonly contained laminarin in
spring and fall, but not in summer and winter. In all seasons
considerable amounts of long-chained polysaccharides (e.g.,
fucoidans) were evident by LC-MS analysis. This may indicatea
more important role of these polysaccharides for carbon storage
in F. vesiculosuscompared to laminarin which is the main storage
carbohydrate inLaminaria sp. andSaccharina latissima(Black,
1950; Jensen and Haug, 1956). Any accumulation of storage
compounds in the older basal thallus parts ofF. vesiculosus
(Küppers and Kremer, 1978), would have been missed here since
we only analyzed the vegetative apices.

The risk of global warming for bio-engineering brown algae
has been discussed in many recent publications worldwide (e.g.,
Wernberg et al., 2011; Harley et al., 2012; Wahl et al., 2015a). In
the Baltic Sea, brown macroalgae are also at a risk to decrease
in abundance or disappear over summer, however they may also
bene�t from a prolonged growth season in fall and winter due
to “better” winter temperatures (Bartsch et al., 2012). Seasonal
changes are already evident in the Baltic Sea as the durationof
the growing season has increased, and the duration of the cold
season has decreased (BACC II Author Team, 2015). Although
the simulated warming increased temperatures from ambient
4–7 to 8–12� C (December to January) in our experiemnts and
thereby elevated temperatures toward the optimum temperature
range for growth ofF. vesiculosus(Grai� et al., 2015a), in our
fall and winter experiments we observed losses of biomass and
apices as well as very low apical growth rates under the warming
scenario. One explanation might be thatF. vesiculosusis in a
phase of “rest” in winter due to endogenously controlled growth
rhythms which are synchronized with the annual change of
environmental conditions such as photoperiod (Bäck et al., 1991;

Makarov et al., 1999). The combination of presumed winter light
limitation (Rohde et al., 2008) and accelerated metabolism due to
enhanced temperatures may have triggered an energy imbalance
at elevated winter temperatures which resulted in worse overall
growth performance as well as reduced mannitol concentrations
compared to the ambient temperature treatment. Despite low
winter growth ratesF. vesiculosushad an overall vigorous
habitus at control conditions. This might be explained by the
ability of Fucusto down-regulate metabolism to dormancy for
overwintering at low temperatures (Bäck et al., 1991; Kraufvelin
et al., 2012), and reversely to up-regulate growth rapidly to a
constant high rate under optimal temperature conditions (Grai�
et al., 2015a).

Major e�ects of temperature and/or CO2 enrichment mostly
became evident during the active growth phase ofF. vesiculosus
which was present in spring and early summer with up to three-
fold (warmed condition) and two-fold (ambient temperatures)
higher growth rates under all treatments compared to the rest
of the year (Figure 2). Nevertheless, the di�erence in length
growth rates integrated over the whole course of each seasonal
experiment was not signi�cantly di�erent between the di�erent
treatments, except for summer when the thermal threshold ofF.
vesiculosuswas surpassed (Figure 3). Although the four seasonal
experiments showed di�erential responses, the global annual
response pattern could not be evaluated. A hypothetical global
growth development over 1 year was visualized by summing
up relative length, biomass and apex growth rates (Figure 4). It
clearly becomes apparent that growth was enhanced throughout
by increased pCO2 and ambient temperature conditions while
warming either with or without enhanced pCO2 was worst forF.
vesiculosusoverall �tness (Figure 4). In the course of the spring
experiment length growth seems to change from a slow steady
increasing trend to a more stationary growth (ambient condition)
or decrease (warmed condition), while net growth at the end
of the season was very similar. This might be explained by the
transition from vegetative to reproductive growth, as vegetative
growth slowed down in the course of the spring experiment
while receptacles matured. Vegetative growth and reproduction
are mutually exclusive processes. Therefore, a switch between
vegetative and reproductive growth is described as optimal
resource allocation strategy (e.g.,Cohen, 1971) which may be
found also in morphologically complex brown algal species like
F. vesiculosusor kelps (Bartsch et al., 2008). The transition from
vegetative to reproductive growth is triggered in higher plants
and also some brown algae by a sharply de�ned critical daylength
(e.g.,Lüning and tom Dieck, 1990; Araki, 2001). This is not yet
known for F. vesiculosusalthough short photoperiods have been
partially identi�ed to trigger reproduction (Bäck et al., 1991).

Furthermore, our experiments indicate that photoperiod may
be even more important in growth regulation than the seawater
temperature, especially during spring and fall. This is indicated
by stronger regressions between growth and photoperiod
compared to temperature (Figure 2). The comparison of
F. vesiculosusgrowth between the seasons depending on
temperature revealed that apex elongation in fall and winter was
between 0.72 and 1.40 cm (ambient temperature) or 0.63–1.62 cm
(elevated temperature) and in spring 3.48–4.67 cm at comparable
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FIGURE 4 | Relative annual growth changes of length, biomass a nd
individual frond apices numbers of Fucus vesiculosus summed up over
all four seasonal experiments in four different treatment condit ions of
temperature and pCO 2 in the Benthocosms. Temperature and pCO2
conditions: +Temp +CO2: elevated temperature and expected elevated future
pCO2, +Temp: elevated temperature and ambient pCO2, CCO2: natural
temperature in the Kiel Fjord and elevated future pCO2, control: natural
temperature and ambient pCO2. Mean of means� SD (n D 3).

temperatures. This could indicate a day-length stimulus initiating
growth after winter or the existence of a circannual rhythm
previously determined in other brown algae (tom Dieck, 1991;
Lüning and Kadel, 1993; Lüning, 1994; Scha�elke and Lüning,
1994; Makarov et al., 1995). Therefore, our results may indicate
shifts from endogenous- to temperature-controlled growth of
F. vesiculosusin the di�erent seasons. We thereby assume that
only if a critical day-length is reached or endogenous signals are
apparent, other environmental factors such as increased solar
irradiance, higher seawater temperatures or elevated pCO2 may
further modulate growth and development ofF. vesiculosus. In
addition, photoperiod seems to have another important function
for F. vesiculosusby providing increasing energy for growth and
photosynthesis with increasing daylengths.Strömgren (1978)
reported that growth of di�erent Fucales was proportional to
daylength. Similarly, we found that growth ofF. vesiculosuswas
proportional to daylength under control conditions which was
disrupted in the warming treatments.

Irradiance might further modulate the impact of the
treatments onFucusperformance. It was previously reported that
di�erent levels of irradiance stimulate or weaken the e�ect of
CO2 on di�erent algal species (Zou and Gao, 2009; Sarker et al.,
2013; Kübler and Dudgeon, 2015). However, in the Benthocosm
experiments it was not possible to disentangle the modulating
in�uences of light from e.g., nutrients or other factors. Therefore,
manipulating photoperiod and measuring light intensity seems
be a very important point for future experiments.

Interactions of ocean acidi�cation and warming as well as
the responses of multi-species assemblage are documented by
several studies (Connell and Russell, 2010; Alsterberg et al., 2013;
Eklöf et al., 2015; Queirós et al., 2015). In the study ofAlsterberg
et al. (2013)acidi�cation in combination with warming had
strong, positive direct and indirect e�ects on many components
of the Zostera marinasystem in late summer (July–August).

Macroalgae, sediment-associated fauna, andZ. marina were all
positively in�uenced by the combination of acidi�cation and
warming. However, this study (5 weeks during July and August
2010) did not examine the in�uence of season.

In particular, the competition ofF. vesiculosuswith fast-
growing �lamentous epiphytes for light, nutrients and CO2
as well as the top-down control of mesograzers varied with
season (Werner et al., 2015). For example, temperatures in
the warming treatment at the end of the spring experiment
slightly exceeded the optimum, and resulted in decreasing growth
rates of F. vesiculosus. These sub-optimal temperatures may
cause a reduction of net photosynthetic capacity due to elevated
respiration (Andersen et al., 2013). However, these processes
are not lethalper se, but seem to be costly over prolonged
exposure times and may leave the organisms more susceptible to
other stressors (Wernberg et al., 2010). In this period a strong
overgrowth of theFucusindividuals with epiphytic ephemeral
green algae developed until the end of the spring experiment
(June) at elevated temperatures (Werner et al., 2015). For Baltic
SeaF. vesiculosusrising temperatures (> 15� C) enhance biotic
stress by increasing micro- and macro-fouling rates (Wahl et al.,
2010), by increasing grazing rates ofIdotea balticaand by
decreasing levels of defense chemicals (Weinberger et al., 2011).
Thus, decreasing growth, followed by strong epiphytism, leading
to shading, thereby causing lowered mannitol concentrations,
pigment loss (reddish tinge) and biomass loss of thalli may
result from the additive or synergistic e�ects of abiotic and
biotic stressors (Andersen et al., 2013; Woodin et al., 2013). The
role of sub-lethal temperatures may thereby especially determine
the outcome of competitive interactions and if climate change
imposes multiple new stresses on a species, its tolerance limits
might be surpassed. Accordingly, an accumulation of small
e�ects acting in a non-linear manner could suddenly move
toward a tipping point and major regime shifts could result
(e.g.,Harley et al., 2006, 2012) which are not foreseeable from
uni-factorial or uni-species experiments.

Late summer turned out to be the critical season for
temperature impacts on the entireFucus system. Similarly,
elevated water temperature may have caused substantial losses
of S. latissimaalong the south coast of Norway (Andersen
et al., 2013) by increased competition (e.g., for light) from
�lamentous epiphytes that have become more abundant over the
last two to three decades. The frond ofS. latissimais heavily
fouled by epiphytes in summer, and preliminary results have
shown that epiphytes may attenuate as much as 80–100% of
the available light (Andersen et al., 2013) and also inhibit the
re-establishment of the disturbed population (Andersen et al.,
2011). In our system, epiphytes and ephemeral fast-growing
�lamentous algae showed massive growth in late summer,
which may have accelerated temperature-induced die-o� of
F. vesiculosus. The epiphytic overgrowth could indirectly be
explained by temperature-driven reduced top-down control,
because the main mesograzer species (Idoteasp. andGammarus
sp.) in the Benthocosms declined under high temperature during
summer as well (Werner et al., 2015). It can be suspected that in
the shallow water zone ephemeral fast-growing and loose-lying
algal species and/or thermophilic invasive algae will progressively
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take over (Kautsky et al., 1992; Korpinen et al., 2007; Weinberger
et al., 2008). Fucusin the Baltic already lives close to its upper
thermal tolerance limit and probably cannot cope with such
increased average summer temperatures and increasing heat-
wave frequency. It hence may become a “loser” of global climate
change (sensuSomero, 2010). Therefore, in addition to the
already observed depth decline ofF. vesiculosusin the Baltic
Sea the adequate habitat of this ecological keystone speciesmay
further shrink and local extinctions can result. The observed
changes in shallow water community structure would result in
loss of ecosystem services and may have important ecological
implications, sinceF. vesiculosusplays such a dominant role in
hard bottom communities in the Baltic Sea, with consequences
for many associated organisms (e.g.,Wahl et al., 2015a).

Consequently, predicted changes in ocean acidi�cation for
the next century do not represent a major direct threat for the
macroalgaF. vesiculosus. Nonetheless, ocean acidi�cation may
in�uence organisms of theFucuscommunity due to species-
speci�c di�erences in sensitivities to ocean acidi�cation within
the community (Fabricius et al., 2011; Hale et al., 2011). In
conclusion it was shown that the single and combined responses
of F. vesiculosusto elevated pCO2 and temperature in a near
natural multi-species assemblage are complex. For the �rst time
our study revealed that environmental warming and increased
CO2 will exert di�erential e�ects on growth and metabolites
depending on season and growth activity of plants. Warming
and to a lesser extent increased CO2 a�ected F. vesiculosus
growth in spring and early summer positively. In contrast, in
late summer, fall and winter warming negatively in�uenced
growth and metabolites ofFucusand growth enhancement under
increased CO2 was only slight. Our results demonstrate that
elevated pCO2 can a�ect growth of F. vesiculosusalone or
interactively with warming. The response direction (additive,
synergistic, or antagonistic) and intensity however varied with
season and photoperiod. Thus, it is crucial to always consider
the whole annual cycle of an alga or at least its di�erent seasonal

physiological states in order to be able to assess the full ecological
implications of future climate change scenarios. The observed
complexity of the responses and interactive e�ects between
climate variables are consistent with results of other mesocosm
experiments on seagrass (Alsterberg et al., 2013; Eklöf et al.,
2015) and turf-forming alga (Connell and Russell, 2010). In
conclusion, our study has added to the limited pool of long-term
mesocosm experiments and contributes to growing evidence
that ocean acidi�cation in combination with warming will a�ect
community composition of temperate macroalgae communities.
The importance of evaluating the interactive impacts of multiple
stressors (Folt et al., 1999; Darling and Côté, 2008) in the
context of seasonally �uctuating environmental conditions which
alter and control the physiological responses of macroalgae is
emphasized by our study.
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