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Outline

» Ensemble-based Kalman filters
» Implementation aspects
» PDAF — Parallel Data Assimilation Framework

» Application example
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Motivation
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quantitatively by computer algorithm

=» data assimilation
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Data Assimilation

= Combine model with real data

= Optimal estimation of system state:

* initial conditions (for weather/ocean forecasts, ...)
e state trajectory (temperature, concentrations, ...)
e parameters (growth of phytoplankton, ...)

o fluxes (heat, primary production, ...)
 boundary conditions and ‘forcing’ (wind stress, ...)

= Also: Improvement of model formulation
e parameterizations (biogeochemistry, sea-ice, ...)

» Characteristics of system:

e high-dimensional numerical model — O(10°-10°)
e sparse observations

b non'“near @*Ml
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Data Assimilation

Consider some physical system (ocean, atmosphere,...)

time Two main approaches:
>

Variational assimilation

!

Sequential assimilation

l state

model

® observation

truth ®

Optimal estimate basically by least-squares fitting
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Ensemble-based Kalman Filters
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Ensemble-based Kalman Filter
First formulated by G. Evensen (EnKF, 1994)

Kalman filter: express probability distributions by mean
and covariance matrix

EnKF: Use ensembles to represent probability distributions

forecast Looks simple!
[ensemble AUT
initial orecas - There are
[ initia J/ : ore 2
e nsemble possible
transformatlon] choices!
Cinate & ’ What is
estimate | i
observation
time O time 1 time 2
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Ensemble-based/error-subspace Kalman filters

A little “zoo” (not complete):

Which filter should one use? | 'EnKF(2003)

MLEF
EnKF(2004)
RRSQRT ‘ ‘ SPKF
EAKF
ROEK ESSE
| EnKF(94/98) | |_EnSRF |
‘ SEEK ‘ DEnKF il
Studied in Nerger anamorphosis
etal. (2005) SEIK ETKF New Study
- (Nerger 2015)

Studied in :
New filter
(Nerger et al. 2012) ESTKF eormulation
L. Nerger et al., Tellus 57A (2005) 715-735

a2
L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 @ MI/

L. Nerger, Monthly Weather Review 143 (2015) 1554-1567



Right sided ensemble transformation

/a /f
XT=X'"W
/
With ensemble perturbation matrix X ; ensemble size N

Very efficient: W issmall (N X N or (N —1) x (N —1))

Used in:

« SEIK (Singular Evolutive Interpolated KF, Pham et al. 1998)
 ETKF (Ensemble Transform KF, Bishop et al. 2001)
 EnsRF (Ensemble Square-root Filter, Whitaker/Hamill 2001)
« ESTKEF (Error-Subspace Transform KF, Nerger et al. 2012)

@
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Requirements for applying ensemble Kalman filters

“Pure” ensemble-based Kalman filters have usually bad performance
« e.g.dueto

« small ensemble size [ ocalization
* nonlinearity
* bias in model or data 5] ) |
/12 : N\
[ syl wl | )
\\ //
Improvements through 0 "
« Covariance inflation
* Localization S: Analysis region
* Model error simulation D: Corresponding data region

£
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Implementation Aspects
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Large scale data assimilation: Global ocean model

* Finite-element sea-ice ocean Sea surface elevation
model (FESOM) e P .
sooN BT, ot Lame e T Bimers
 Global configuration g SESE
(~1.3 degree resolution with o fE "
refinement at equator) | M e %
- State vector size: 107

i
120°E 180°W

« Scales well up to 256 processor 2 5 4 05 0 05
cores

* Ocean state estimation by assimilating
satellite data (,ocean topography®)

* Very costly due to large model size
(Currently using up to 2048 processor cores)

[
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Computational and Practical Issues

Data assimilation with ensemble-based Kalman filters is costly!

Memory:. Huge amount of memory required
(model fields and ensemble matrix)

Computing: Huge requirement of computing time
(ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
(needs to be implemented)

,Fixes “: Filter algorithms do not work in their pure form
(,fixes” and tuning are needed)
because Kalman filter optimal only in linear case

ps3
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Implementing Ensemble Filters & Smoothers

=» Abstraction of assimilation problem

Ensemble forecast
e can require model error simulation
« naturally parallel

Analysis step of filter algorithms operates on abstract state
vectors
(no specific model fields)

Analysis step requires information on observations
* which field?
* |ocation of observations
* oObservation error covariance matrix
» relation of state vector to observation

ps3
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Parallel

PDAF: A tool for data assimilation P AL Xesmaton

Framework

PDAF - Parallel Data Assimilation Framework

= an environment for ensemble assimilation
= provide support for ensemble forecasts
= provide fully-implemented filter algorithms

for testing algorithms and for real applications
easily useable with virtually any numerical model

makes good use of supercomputers

Open source:
Code and documentation available at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ Ml



Offline mode — separate programs

Model

Initialize Model
generate mesh
Initialize fields

v
—(Do i=1, nsteps>—>

Time stepper
consider BC
Consider forcing

i

{

Post-processing

For each ensemble state

* Integrate
 Write restart files

Assimilation

N\
~_"

program

read ensemble files

v

analysis step

v

write model
restart files

4= generic

* Read restart files (ensemble)
 Initialize from restart files « Compute analysis step
* Write new restart files

Lars Nerger — Ensemble Data Assimilation
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Parallel
Data

Logical separation of assimilation system /°/),A/ Xwiaser

Framework

single
program Filter
Initialization
analysis
state re-initialization state
time Core of PDAF observations
Model Observations
initialization | ________Mmeshdaa | obs. vector
time integration obs. operator
post processing obs. error
<— Explicit interface
<«----» |ndirect exchange (module/common)

@
Nerger, L., Hiller, W. (2013). Software for Ensemble-based DA Systems — Implementation @ m,
and Scalability. Computers and Geosciences. 55: 110-118



Parallel

Extending a Model for Data Assimilation /27D / 2 aton

Framework

Model

Initialize Model
generate mesh
Initialize fields

v
—(Do i=1, nsteps>—>

Time stepper
consider BC
Consider forcing

v

.

Post-processing

Implementation uses parallel
configuration of ensemble
forecast provided by PDAF

Lars Nerger — Ensemble Data Assimilation

|| init_parallel_pdaf

v

Initialize Model
generate mesh
Initialize fields

¥
|| init_pdaf

v

assimilate_pdaf

i
— (Do i=1, nsteps )——*
v

Time .stepper

Consider forcing

v

assimilate_pdaf

J

+

Post-processing

Extension for
data assimilation

For operational
forecasting use

aAWV/



2-level Parallelism

Parallel

Z)D FData
Assimilation

Framework

Forecast Analysis

Model
— Task 1 1

Model

Filter

A 4

Forecast

Model
— Task 1 1

A 4

- Task 2

Model
- Task 3 -

1. Multiple concurrent model tasks
2. Each model task can be parallelized

» Analysis step is also parallelized

Lars Nerger — Ensemble Data Assimilation

Model
- Task 2

\ 4

A 4

Model
- Task 3 -

A 4
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Parallel

User-supplied routines (call-back) LA L R

Framework

single
program Filter
Initialization
analysis
state re-initialization state
time Core of PDAF observations
Model Observations
initialization | ________Mmeshdaa | obs. vector
time integration obs. operator
post processing obs. error

+«— Explicit interface
<«----» |Indirect exchange (module/common)

£
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Parallel

Features of online program PO AL Rmaton

Framework
minimal changes to model code when

combining model with filter algorithm

init_parallel_pdaf

1
 model not required to be a subroutine Initialize Model

generate mesh
Initialize fields

* no change to model numerics! T
init_pdaf
* model-sided control of assimilation program v

assimilate_pdaf

i
— (Do i=1, nsteps >——
v

(user-supplied routines in model context)

 observation handling in model-context Time stepper
consider BC
 filter method encapsulated in subroutine Considefforcing
. . . imil f
« complete parallelism in model, filter, and aesmile pa
ensemble integrations [

Post-processing

ps3
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More Assimilation tools

» SANGOMA: Stochastic Assimilation for Next
Generation Ocean Model Applications

» Project funded by European Union 2011-2015

» Different benchmark setups for data
assimilation

» Development of set of data assimilation tools

« Large set of different diagnostics
(beyond RMS errors)

» Tools for ensemble generation

- Simplified filter analysis steps
o

www.data-assimilation.net

£
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Parallel Performance of PDAF

[
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Parallel performance of PDAF

= Performance tests on
SGI Altix ICE at HRLN (German “High performance computer north”)

nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz
network: 4x DDR Infiniband
compiler: Intel 10.1, MPIl: MVAPICH2

= Ensemble forecasts
» are naturally parallel

» dominate computing time
Example: parallel forecast over 10 days: 45s
SEIK with 16 ensemble members: 0.1s
LSEIK with 16 ensemble members: 0.7s

ps3
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Parallel Performance

Use between 64 and 4096 processors of
SGl Altix ICE cluster (Intel processors)

94-99% of computing time in model

integrations

Speedup: Increase number of processes
for each model task, fixed ensemble size

» factor 6 for 8x processes/model task

» one reason: time stepping solver

needs more iterations

Scalability: Increase ensemble size, fixed
number of processes per model task

» increase by ~7% from 512 to 4096
processes (8x ensemble size)

> one reason: more communication

on the network

Speedup with number of processes per model task
8 - - ' - ' —
—ensemble size 8 //
77|~ ensemble size 64 S
7
——-ideal 7 512|proc.
6 -
Q.
35t proc.
()
X
N
3 -
2r 7
4
1 # 64/512 proc. . ‘
0 10 20 30 40 50 60
processes per model task
Time increase with increasing ensemble size
1.08 : : : - . -
8 processes/model task 4096 proc.
o — 64 processes/model task
©]
S 1.06f
S
(O}
n
$ 1.04f
[ .
&)
£
o
€ 1.02f
=
proc.
1 1 1 1 1 1
0 10 20 30 40 50 60
64/512 proc. ensemble size




Parallel

Very blg test case pDAFE:;amilation

Framework

Timing of global SEIK analysis step

« Simulate a “model” ar-
3.9/ !
« Choose an ensemble @, - —
« state vector per processor: 107 _*23_7 —N=50
« observations per processor: 2:10° § 36 T
- Ensemble size: 25 55
£ 3.4
« 2GB memory per processor " gl 7
* Apply analysis step for different 2y e 1200274000
processor numbers State 1d|2m?r113|on:
2e
« 12-120-1200 - 12000 :
Observation

dimension: 2.4e9
« Close to ideal: Very small increase in analysis time (~1%)

« Didn'’t try to run a real ensemble of largest state size (no model yet)

ps3
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Application Example

g3
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Ocean Topography Assimilation

(Run by A. Androsov, R. Schnur)

« Assimilation of sea surface height

data (,ocean topography®)

» Full height generated from satellite

altimetry and geoid data

* Apply ensemble-based filter and

smoother methods

* Root-mean square errors
significantly reduced

« Smoother results in smaller errors

and smoother curve

Lars Nerger — Ensemble Data Assimilation

RMS error [m]

Sea surface elevation
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Correcting model biases

Filter analysis: mean increment Difference Steric Height (Levitus - Model KF) 2000 m

90°N P = — — P — =
60°N 60°N
30°N 30°N

o° F 0°
30°8 30°S
60°S 60°S

180°W 120°W 60°W q° 120 °F 180°W 180° 120°W 60°W 0° 60°E 120°E 180°

I 1 _ 4
-0.1 -0.05 0 0.1 —0.300 —0.225 —0.150 0. 075 0. ooo 0. 075 0. 150 0.225 0.300
m

« Mean assimilation increments show
that biases are corrected

» Consistently visible in steric height

g3
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Depth-dependent changes to steric height

>5cm
11

2-5cm
T

1 1 11 11
m— (0-200 M == 200-750m = === 750-2000 m 2000- bottom

= 0-200m == 200-750m === 750-2000 m 2000- bottom
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w
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! ! ! ! I | | | | 1
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days days

 Significant influence of assimilation (>5cm) down to 2000m

 Influence of assimilation also below 2000m depth

« State changes quite stable if model is run freely (dashed lines)

[
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Summary

» Ensemble-based Kalman filters:
« Current efficient methods
suited for large-scale problems
« Tuning of filters required

» Simplification of technical implementation using PDAF
» Assimilation with high-dimensional global ocean model
« Assimilating surface data improves mean ocean state

+ Significant influence on steric height down to 2000m

Thank you !
Lars.Nerger@awi.de - Ensemble Data Assimilation @ MI/



