Ultra-Wideband Radars for Measurements Over Land and Sea Ice

R. Hale, H. Miller, **S. Gogineni**, J.-B. Yan, F. Rodriguez-Morales, C. Leuschen, Z. Wang, J. Paden, D. Gomez-Garcia, T. Binder, D. Steinhage, M. Gehrmann, and D. Braaten

The National Science Foundation (NSF) National Aeronautics and Space Administration (NASA) Kansas Board of Regents (KBOR)

The University of Kansas **(KU)** Elizabeth City State University **(ECSU)** The Pennsylvania State University **(PSU)** Indiana University **(IU)** University of Washington **(UW)** Association of Computer and Information Sciences and Engineering Departments at Minority Institutions **(ADMI)** Los Alamos National Laboratory **(LANL)** Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen (CIC) Center for Polar Observations & Modeling (CPOM) Indian Institute of Technology Kanpur (IITK) University of Magallanes (UM) Alfred Wegener Institute (AWI)

Outline

- Introduction
 - Dick Moore introduced me to UWB radars (FM CW) in 1979
- Systems Description

 Antenna arrays
- Results
- Future plans
- Summary

Introduction: why

- Radar sounding and imaging with ultrawideband radars using large antenna arrays
 - Sounding of most challenging areas
 - High-altitude measurements
 - Large array
 - Mapping of internal layers with fine resolution
 - Near-surface layers with about 50 cm resolution
 - Layers near the bed with 50-200 cm resolution
 - Attenuation response of ice
 - Unambiguous determination of basal conditions
 - Estimating bottom melt rates of ice shelves
 - Optimum ice-core site selections

Layers close to the bed

20.73 ka 72.364 N 39.091 V 41,55 km 72,394 N 38,486 M distance Latitude Lonsitude 31.17 km 72.379 N 38.789 W 51,93 km 72,410 N 38,183 M Bata Frame ID: 20120330_03_006 0,00 km 72,323 N 33,590 W 10.41 km 72.343 N 39.390 W 20.79 km 72.364 N 39.091 V distance Latitude Ionaitude 31.17 km 72.379 N 38.789 V 41.55 km 72.394 N 38,496 V 51.93 ka 72.410 N 38 183 H

Data Frame [B: 20120330_03_006

CRESIS Center for Remote Sensing of Ice Sheets

Basal Conditions: Multi-Frequency

- Radar return from the ice bed depends on:
 - Dielectric contrast
 - Roughness
 - Ice loss
- Segment data in multiple bands:
 - Estimate roughness
 - Loss
 - Determine bed conditions

Reflection Coefficient at Ice-Water Interface

Radar Instrumentation

Instrument	Measurements	Frequency Range / Bandwidth	Power	Antenna	Aircraft
MCoRDS/I	Ice Thickness Internal Layering Image Bed Properties	150-600 MHz 450 MHz (190-450 MHz, 2013- 2014 field season)	~4 kW 800 W	Slotted-Array Wing-Mounted Fuselage	Basler
Ultra wideband microwave radar	Surface Topography Near Surface Layering	2-18 GHz 16 GHz	200 mW	Vivaldi Array	DC-8 P-3 Twin Otter, Basler
	Snow on Sea Ice Surface Topography Near Surface Layering	Older versions (2-8 GHz and 12- 18 GHz)	200 mW		DC-8 P-3 Twin Otter, Basler
Accumulation Radar	Ice Thickness and Layers	600-900 MHz 300 MHz	10 W	Dipole Array	P-3 Twin Otter
Temperate Ice	Ice Thickness	14 and 35 MHz	100 W	Loaded Dipolos	Small UAV

NASA

Background: Airborne Platforms

2013 Configuration

Figure 1. Photograph of the BT-67 (BASLER) platform outfitted with the radar antennas. The inset shows a photograph of the inside of the cabin equipped with the instrument package (top) and a photograph of the radar electronics (bottom)

CRESIS Center for Remote Sensing of Ice Sheets

Basler 2013/14 Antarctica

Correlation with Snow Radar

MULTIBEAM, WIDE SWATH 3D IMAGING

Measured and MC-Generated Results

MC Estimate

400

500

Depth(m)

2

2.5

3

Measured bed

100

200

300

Along-track relative GPS time(s)

the Greenland ice sheet. These echograms show radar returns from the ice surface, ice-bed and internal layers. Ice thickness estimates generated from Mass-Conservation (MC) models are shown in these echograms with the surface in red and ice bed in blue. The comparisons clearly show there are large errors in estimated thicknesses for areas with complex bed topography with peaks and troughs. The errors are as large as 700 m (echogram on bottom left) for about 2.5 km thick ice, more than 25%.

In SAR +Tomography

Coded waveforms 3-7 transmit beams 8 transmit channels 9 *Receive beams* 24 receivers

UWB MCoRDS/I

- Ice thickness measurements
- Fine resolution ice layering mapping with 33 cm vertical resolution
- Basal conditions retrieval based on multi-frequency measurements

- AWI Basler POLAR 5/6
- 3.85 m x 0.84 m x 0.16 m custom fiber glass fairing
- Three 8-element subarray with reconfigurable antenna polarization
- 150-600 MHz

UWB antenna array characterizaton

O

Time (µs)

Sample results from Greenland test flight

Instrumentation

Instrument	Measurement	Center Frequency	Bandwidth	Peak Transmit Power	Vertical Resolution
MCoRDS/I	Ice thickness Internal layering	375 MHz (150-600 MHz)	up to 450 MHz	6 kW	~38 cm
Ku-band Radar	Ice surface topography and internal layering	15 GHz (12-18 GHz)	up to 6 GHz	~200 mW	~4 cm
Snow Radar	Snow cover over sea ice and internal layering over glacial ice	5 GHz (2-8 GHz)	up to 6 GHz	~200 mW	~4 cm (~1.5 cm)
UWB Microwave Radar	Near Surface Internal Layers	10 GHz (2-18 GHz)	16 GHz	~200 mW	~1.5 cm

Results: Ku-Band Radar/Snow Radar

2-8 GHz Snow Radar

Horizontal Distance (km)

System specifications

Sample Results over sea ice

Sample Results over land

Summary

- We developed and demonstrated the application of Ultra Wideband Radars (UWB) for polar research:
 - Ice thickness and basal conditions
 - Mapping internal layers in firn and ice with fine resolution
 - 3-D topography of the ice bed and surface
 - snow accumulation rates
 - Thickness of snow over sea ice and land
- Future capabilities include fine range resolution of 2 cm and increased sensitivity.
- Other applications include detection of supraglacial lakes and ice shelves' bottom melt rates.

