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Summary 

Methane is a potent greenhouse gas and its atmospheric concentration is strongly influenced 

by microbial processes. In anoxic marine environments 80% of the methane is oxidized by 

anaerobic microorganisms leading to reduced oceanic methane emissions. This anaerobic 

oxidation of methane (AOM) is coupled to sulfate reduction and is mediated by microbial 

consortia of anaerobic methane-oxidizing archaea and partner bacteria. The physiology of the 

consortia is incompletely understood but is thought to base on a metabolic interdependency of 

the partners, a syntrophy. The research presented in this PhD thesis focused on the physiology 

and genomic profile of AOM consortia, in particular on the microorganisms that are active at 

elevated temperatures (thermophiles). The thermophilic AOM is performed by a unique 

consortium of ANME-1 archaea and HotSeep-1 bacteria. In Chapter II we describe 

physiological studies and gene expression experiments with thermophilic AOM consortia and 

propose a syntrophy of AOM via direct exchange of reducing equivalents. In support of this 

hypothesis we visualized cell-to-cell connections in these consortia that we suggest to 

function as conductive nanowires in interspecies electron transfer. For the thermophilic 

bacterial partner, HotSeep-1 we obtained an ANME-1-free enrichment culture using hydrogen 

as alternative energy source, and by physiological and genomic investigation we show in 

Chapter III that this bacterial partner grows as chemolithoautotrophic sulfate reducer. Based 

on phylogenetic analysis we propose that HotSeep-1 presents a novel species, Candidatus 

Desulfofervidus auxilii. ANME-1, the archaeon participating in thermophilic AOM, belongs 

to a large group of uncultured organisms, which are known to have reversed the 

methanogenesis pathway to metabolize methane. The metabolic diversity among members of 

the ANME-1 group is still widely unexplored. In a comparative genome analysis of different 

ANME-1 in Chapter IV we show central aspects of their metabolism including a modified 

reverse methanogenesis pathway and abundant cytochromes possibly relevant for electron 

transfer. Environments of AOM activity and in vitro AOM enrichments are dominated by 

AOM consortia, but other microorganisms sustain as low abundant community whose 

function is not well understood. In Chapter V we show the cultivation of methanogens and 

sulfur-disproportionating bacteria from AOM enrichments. In conclusion the work of this 

PhD thesis has advanced our understanding of the functioning of thermophilic AOM, while 

further detailed comparative approaches are necessary to comprehend AOM syntrophy in all 

its detail and diversity. 
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Zusammenfassung 

Methan ist ein wichtiges Klimagas, dessen atmosphärische Konzentration stark von 

mikrobiellen Prozessen beeinflusst ist. In sauerstofffreien marinen Sedimenten wird 80% des 

Methans durch Mikroorganismen verbraucht, was zu verminderter Methanemission der 

Ozeane beiträgt. Diese anaerobe Oxidation von Methan (AOM) ist gekoppelt mit 

Sulfatreduktion und findet in Konsortien aus anaerob methan-oxidierenden Archaeen 

(ANME) und Partnerbakterien statt. Die Physiologie dieser Konsortien ist unvollständig 

verstanden, aber basiert vermutlich auf metabolischer Abhängigkeit der Partner, einer 

Syntrophie. Diese Doktorarbeit behandelt die Physiologie und die genomischen Eigenschaften 

von AOM Konsortien, speziell solcher die bei erhöhter Temperatur leben (thermophile). 

Thermophile AOM wird von einem einzigartigen Konsortium aus ANME-1 Archaeen und 

HotSeep-1 Bakterien durchgeführt. In Kapitel II beschreiben wir physiologische Studien und 

Genexpressions-Experimente und schlagen vor, dass die Syntrophie von ANME-1 und 

HotSeep-1 auf dem direkten Austausch von Elektronen beruht. Diese Hypothese 

unterstützend weisen wir Zell-zu-Zell Verbindungen nach, die wir als mikrobielle Drähte 

(‚nanowires‘) beschreiben und für den Austausch von Elektronen vorschlagen. Den 

bakteriellen Partner HotSeep-1 konnten wir ohne ANME, mit Wasserstoff als alternativem 

Wachstumssubstrat, anreichern und zeigen in Kapitel III in physiologischen und 

genomischen Untersuchung, dass HotSeep-1 chemolithoautotroph als Sulfatreduzierer wächst. 

Zusammen mit phylogenetischen Analysen schlagen wir vor, dass HotSeep-1 eine neue Art 

darstellt: Candidatus Desulfofervidus auxilii. Das Archaeum, beteiligt an thermophiler AOM, 

gehört zu einer großen Gruppe unkultivierter Organismen, von denen bekannt ist, dass sie den 

methanogenen Stoffwechselweg umkehren um Methan zu oxidieren. Die metabolische 

Diversität innerhalb der ANME-1 Gruppe ist noch weitgehend unerforscht. In Kapitel IV 

zeigen wir mithilfe von vergleichender Genomanalyse zentrale metabolische Aspekte von 

ANME-1, u.a. eine modifizierte reverse Methanogenese und häufige Cytochrome, welche 

vermutlich relevant für den Elektronentransfer sind. Standorte natürlicher AOM Aktivität und 

in vitro AOM Anreicherungen sind dominiert von AOM Konsortien, dennoch überleben auch 

andere Mikroorganismen langfristig, deren Funktion kaum verstanden ist. In Kapitel V 

zeigen wir, dass aus AOM Anreicherungen Methanogene und Schwefeldisproportionierer 

kultivert werden können. Zusammenfassend hat diese Doktorarbeit unser Verständnis der 

Physiologie der thermophilen AOM vorangebracht, während weitere vergleichende Analysen 

nötig sind, um die AOM Syntrophie im Detail und in aller Diversität zu verstehen. 
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Abbreviations 

AFM Atomic Force Microscopy 

ANME ANaerobe MEthane-oxidizing archaea 

AOM Anaerobic Oxidation of Methane 

AQDS AnthraQuinone-2,6-DiSulfonate 

APS Adenosine-5'-PhosphoSulfate 

ATP Adenosine TriPhosphate 

CARD-FISH CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization 

CFE  Carbon Fixation Efficiencies 

DAPI 4,6-DiAmidino-2-PhenylIndole 

COG  Cluster of Orthologous Groups 

DBB Desulfobulbus 

DIC Dissolved Inorganic Carbon 

DIET Direct Interspecies Electron Transfer 

DNA DeoxyriboNucleic Acid 

DSS Desulfococcus/Desulfosarcina 

GC Guanine Cytosine 

HRP HorseRadish Peroxidase 

IPL Intact Polar Lipids 

ORF  Open Reading Frame 

OTU Operational Taxonomic Unit 

PCR Polymerase Chain Reaction 

POC Particulate Organic Carbon 

RNA RiboNucleic Acid 

RT Room Temperature 

SEM Scanning Electron Microscopy 

SMTZ Sulfate Methane Transition Zone 

SRB Sulfate-Reducing Bacteria 

TAOM Thermophilic Anaerobic Oxidation of Methane 

TEM Transmission Electron Microscopy 

TLE Total Lipid Extracts 

TPM Transcripts Per Million 

T4P Type IV Pili 
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Chapter I 

 

Introduction 

The anaerobic, microbially-mediated oxidation of methane coupled to the reduction of sulfate 

is a vitally important process in the global carbon cycle. In the marine realm, this process, 

alongside the production of methane by microbial communities, controls oceanic methane 

emissions and thus the impact of this ecosystem on the global methane budget. The metabolic 

processes involved in transformation of complex organic matter into methane and microbial 

methane oxidation under anaerobic conditions are closely tied to interspecies microbial 

cooperation. This cooperation is based on mechanisms of microbial syntrophy, or “feeding 

together”, which require specific physiology and interaction strategies.  

 

This introduction section emphasizes the relevance of microbial methane formation and 

consumption in context of the global methane budget and outlines the microbial processes 

involved in anaerobic transformation of complex organic matter to methane. The importance 

of microbial cooperation in anaerobic metabolism is highlighted and the concept of microbial 

syntrophy is introduced including an overview to different mechanisms of interspecies 

interaction. The main focus of this introduction is on the process of anaerobic oxidation of 

methane coupled to sulfate reduction. The involved organisms, aspects of their physiology 

and possible strategies of their interaction are covered in detail. Following this presentation of 

the state of research on anaerobic oxidation of methane, the main objectives of this thesis are 

summarized. In a subsequent material and methods section the microorganisms specifically 

studied are introduced and the main methods employed are described. Finally, an overview of 

the enclosed manuscripts and the contribution from this thesis is provided. 
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1.1. Relevance of microbial processes in the global methane budget 

Methane is the simplest and most reduced organic compound and the most abundant 

hydrocarbon on Earth. The atmospheric methane content is critical to Earth’s climate as 

methane presents the second most important anthropogenic greenhouse gas, with a per mol 

25 times stronger global warming effect than carbon dioxide (Lelieveld et al., 1998). 

Microbial activity is central in the understanding of the global methane budget: microbial 

communities able to produce and consume methane constitute both a major source and sink 

of the molecule.  

The major sources of atmospheric methane are emissions from natural wetlands and from 

anthropogenic activity such as agriculture (livestock and rice paddy emissions), fossil fuel 

production (fossil methane) or biomass burning. Anthropogenic activity has resulted in an 

increase in the concentration of atmospheric methane from 715 ppbv to 1770 ppbv since 

preindustrial times (Conrad, 2009). The total present day methane emissions are estimated to 

be between 500 to 600 Tg yr
−1

 (IPCC, 2007). Microbial methane production in both natural 

and man-made environments accounts for 70% of total methane emissions (Conrad, 2009). 

Indeed, most methane on Earth is biogenic, produced in anoxic environments such as 

terrestrial wetlands or marine subsurface sediments. In these environments methanogenic 

archaea produce methane (microbial methane) as the final product in the degradation of 

organic matter through a process termed methanogenesis (Whiticar et al., 1986; Reeburgh, 

2007). Methane furthermore derives from the thermal alteration of organic matter 

(thermogenic methane) (Schoell, 1988). Abiogenic methane, that is methane not originating 

from organic matter but from chemical reaction of inorganic compounds, is formed in the 

Earth’s crust by alteration of rock material, e.g. at mid oceanic ridges (Horita and Berndt, 

1999).  

The predominant sink for atmospheric methane (>80% of total) is photochemical 

oxidation initiated by a hydroxyl radical reaction in the troposphere (Cicerone and Oremland, 

1988; Lelieveld et al., 1998; Conrad, 2009). However, the majority of methane is consumed 

by aerobic and anaerobic microbial methane oxidation before it even reaches the atmosphere, 

thereby preventing major global warming effects (Hanson and Hanson, 1996; Reeburgh, 

2007). Aerobic methane oxidation, performed by methanotrophic bacteria is coupled to 

oxygen consumption, while anaerobic methane oxidation is coupled to alternative electron 

acceptors such as nitrate, nitrite, metal ions or sulfate and is mediated by either bacteria or 
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archaea or supposedly their combined effort (Hanson and Hanson, 1996; Boetius et al., 2000; 

Raghoebarsing et al., 2006; Beal et al., 2009; Haroon et al., 2013). 

The ocean is assigned a central role in the global methane cycle. In marine anoxic 

subsurface sediments, methane is produced by microbial methanogenesis and by thermal 

alteration processes at mid ocean ridges and spreading centers. The seabed, which covers 

70% of Earth’s solid surface, contains large reservoirs of methane (estimates range between 

5000 Gt of carbon (Buffett and Archer, 2004) and 1000 to 22000 Gt of carbon (Dickens, 

2003)), found either in solid gas hydrates (≥455 Gt carbon (Wallmann et al., 2012)), or in its 

dissolved and gaseous form (Boetius and Wenzhöfer, 2013). The exchange of methane 

between the marine realm and the atmosphere is small: only 10% of the methane produced in 

the marine environment reaches the atmosphere, the rest consumed by microbial methane 

oxidation (Reeburgh, 2007). Methane that from subsurface sources or from microbial activity 

migrates through the sediment by diffusion and advective transport is largely oxidized in the 

sediments themselves under anaerobic conditions. Indeed, more than 80% of the methane 

consumption in the ocean occurs in subsurface sediments through microbially-mediated 

anaerobic oxidation coupled to sulfate reduction, giving this process global significance 

(Hinrichs and Boetius, 2002). The remainder is released into the water column at methane 

seeps or vents and a portion of this is oxidized aerobically, again by microbial activity 

(Boetius and Wenzhöfer, 2013). Owing to this efficient microbial methane filter oceanic 

methane emission contributes only 2% to the global methane budget (Reeburgh, 2007). 

1.2. Anaerobic mineralization of organic matter 

Under anoxic conditions, microorganisms are the exclusive drivers of biologic organic matter 

degradation, ultimately leading to methane formation. Microbial processes involved in this 

degradation feature a complex network of chemical reactions which link diverse microbial 

communities by shared metabolic intermediates, necessitating interspecies cooperation.  

In the marine ecosystem, the majority of organic matter is synthesized by phototrophic 

primary producers in the illuminated epipelagic zone and is mineralized in the upper water 

column by aerobic respiratory processes. The small fraction of organic matter (Hedges and 

Keil, 1995) that sinks to the ocean floor is, through sedimentation and burial processes, 

introduced into the marine subsurface ecosystem where oxygen is rapidly depleted with depth 

and microorganisms thrive by fermentation and anaerobic respiration. Electron acceptors for 
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anaerobic respiration are consumed in a sequence tied to the energy yield of the reactions 

they allow (Canfield, 1993). In marine sediments typically the electron acceptor are 

consumed in a sequence from nitrate, manganese(IV) oxides, iron(III) oxides to sulfate and 

finally carbon dioxide, which is only reduced in the absence of any other electron acceptor. 

The corresponding respiratory processes are, nitrate reduction, manganese reduction, iron 

reduction, sulfate reduction and methanogenesis. The high availability of sulfate (seawater 

concentration of 28 mM) make sulfate reduction the most quantitatively important respiratory 

process in anoxic marine sediments, where it accounts for up to 50% of total organic carbon 

degradation (Kasten and Jørgensen, 2000). 

A succession of metabolic processes accomplishes the anaerobic degradation of organic 

matter. The different redox reactions involve functionally diverse groups of organisms, as no 

single organism is capable of complete mineralization of complex organic matter in the 

absence of oxygen (Schink and Stams, 2006; McInerney et al., 2009). In a network of 

reactions the product of one process usually is the substrate for others, creating a layering of 

microbial ecosystems (Fig. 1). In the first of these layers, large organic polymers like 

proteins, polysaccharides or lipids are broken down by extracellular enzymes secreted by 

members of the resident microbial communities. The resulting monomers such as sugars, 

organic acids and amino acids are consumed by primary fermentative organisms which 

couple their oxidation to the reduction of an endogenous electron acceptor (Müller, 2008). In 

fermentation substrates are only partially oxidized, and a diverse range of organic products 

(e.g. fatty acids and alcohols) and hydrogen is released. In marine sediments where different 

external electron acceptors are available, the fermentation products serve as substrates for 

various anaerobically respiring prokaryotes, predominantly sulfate reducers, which eventually 

complete the oxidation of organic matter to carbon dioxide (Canfield, 2005; Schink and 

Stams, 2006). In environments that lack sulfate or other terminal electron acceptors the 

products of primary fermentation are further oxidized by secondary fermenters (also termed 

syntrophic metabolizers) that release acetate, formate and hydrogen (Schink, 1997). Such 

compounds are suitable substrates for methanogens. Acetate, a common intermediate in the 

anaerobic degradation processes is also formed by homoacetogenic bacteria from hydrogen 

and carbon dioxide (Diekert and Wohlfarth, 1994). Under specific conditions microorganisms 

also thrive on the reverse process, the conversion of acetate to hydrogen and carbon dioxide 

(Schink, 1997). 

Methanogenesis is the final step of anaerobic organic matter mineralization that utilizes 

only the least complex products of previous steps and is exclusively mediated by anaerobic 
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methanogenic archaea (Thauer, 1998; Thauer et al., 2008). Methanogens mainly reduce 

carbon dioxide with hydrogen or ferment acetate to methane and carbon dioxide. Moreover, 

formate, methyl compounds and carbon monoxide serve as their substrates. As 

methanogenesis has an extremely low energy yield methanogens are outcompeted by sulfate 

reducers that utilize the same substrates (Cicerone and Oremland, 1988).  

Metabolic cooperation of microorganisms is apparent in the successive anaerobic 

degradation of complex organic matter (McInerney et al., 2009), where fermentation depends 

on polymer hydrolysis and the consumption of fermentation products by methanogens and 

other anaerobes eventually drives fermentation. Such a nutritional interdependency of 

microorganisms occurs in diverse manifestations whenever the achievement of an overall 

reaction depends on two or more metabolically distinct organisms and is generally referred to 

as microbial syntrophy (Schink and Stams, 2006; McInerney et al., 2009). 

 

Figure 1 Illustration of the network of microbial processes involved in the degradation of complex organic 

matter to methane in the absence of oxygen (modified from Schink and Stams, 2006). The different groups of 

microorganisms involved are: primary fermenters (grey) with extracellular hydrolytic enzymes, secondary 

fermenters also known as syntrophic metabolizers (green), methanogens (red) and acetogens (blue). Filled 

symbols indicate complexity of compounds: organic carbon molecules (brown), non-carbon molecules (blue), 

dissolved/solid molecules (rectangular), gaseous molecules (round); symbol size indicates relative compound 

size. Yellow frame and line to the right show the range of compounds used by sulfate reducers.  
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1.3. Microbial syntrophy 

Microorganisms of different species frequently interact with one another or with other 

organisms such as plants and animals. If this interaction is tight and persistent the organisms 

are thought to be in a symbiosis. The definition of symbiosis includes mutualistic, 

commensalistic and parasitic interactions (de Bary, 1879), of both obligatory and facultative 

character (Martin and Schwab, 2012). If symbiosis is based on obligatory mutualistic 

metabolism it is defined as syntrophy (Morris et al., 2013), also referred to as cross-feeding 

or “eating together”. In a syntrophy a compound is degraded by two or more organisms in a 

combined metabolic action, where one lives off the products of another’s metabolism, 

thereby allowing its partner to sustain metabolism by preventing product inhibition. 

Syntrophic lifestyles are adopted by microorganisms within diverse phylogenetic groups 

including several Firmicutes, Deltaproteobacteria and Euryarchaeota, and are unlikely to 

have a common evolutionary origin (Sieber et al., 2012). A syntrophic association may occur 

between closely related organisms, but also between members of different phyla or even 

domains. A famous example illustrating classical microbial syntrophy is the conversion of 

ethanol to methane by a co-culture of Methanobacillus omelianskii, a methanogenic archaeon 

and a fermenting bacterium, called the S-strain (Bryant et al., 1967; Reddy et al., 1972). The 

fermenter converts ethanol to acetate and hydrogen. This reaction is unfavorable (endergonic) 

under standard conditions but becomes favorable (exergonic) when hydrogen concentrations 

are kept low. The methanogen consumes hydrogen by converting carbon dioxide to methane, 

thereby keeping the hydrogen concentration low enough for fermentation to be favorable. 

This metabolic cooperation via interspecies hydrogen transfer promotes a reaction that 

neither of the partners could perform alone. 

Syntrophic processes are particularly important under anoxic conditions. In these energy-

limited ecosystems syntrophy is a strategy to exploit energy resources and expand habitable 

niches (Morris et al., 2013). As a consequence of energy limitation, syntrophic organisms 

grow slowly and have low growth yields (McInerney et al., 2009). Syntrophic metabolism 

often operates close to the thermodynamic equilibrium with a free energy yield of −15 to 

−20 kJ mol
−1

 or less (Scholten and Conrad, 2000; Adams et al., 2006; Schink and Stams, 

2006). This yield is far below the energy requirement for the synthesis of ATP (−60 to 

−70 kJ mol
−1

). However, since ATP synthesis can be coupled to the translocation of up to 

five protons, the minimum energetic increment can be lowered to −12 to −20 kJ mol
−1

, 

depending on thermodynamic conditions.  
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When syntrophically growing organisms form tight spatial associations they may be 

referred to as a consortium. A microbial consortium is defined as a close association of two 

or more different microbial types that are in permanent cellular contact and form an 

organized structure (Schink, 1991, 2002). This term was established for the highly-structured 

syntrophic association between several phototrophic green sulfur bacteria (Chlorobium 

chlorochromatii) and a rod-shaped central bacterium of the Comamonadaceae 

(Betaproteobacteria) (Overmann, 2006, 2010). The complexity these phototrophic consortia 

encompass is highlighted by interspecies signaling: light sensed by the phototrophic partner is 

translated into the movement of the entire consortium by the flagellated central bacterium, 

and by synchronous cell division of all consortium members. Notably, formation of cell 

aggregations or consortia is not a prerequisite for syntrophy. Syntrophy may involve 

individual cells or expand to entire communities that metabolically cooperate such as in the 

example of anaerobic organic matter degradation. 

Mechanisms of microbial syntrophy 

Syntrophy involves oxidation and reduction reactions which are physically separated in cells 

of functionally distinct organisms, thus requiring the extracellular transfer of reducing 

equivalents. In a classical syntrophic cooperation the organism that provides the reducing 

equivalents by performing the initial oxidative process, such as fermentation, is referred to as 

the syntrophic metabolizer or the S organism. The organism that carries out the reductive 

process, thereby consuming the products of the initial fermentation, is referred to as product 

scavenger. It should be noted that alternative strategies for the exchange of reducing 

equivalents are known, however, their diversity has not been fully explored. 

The most common syntrophic exchange of metabolic intermediates involves hydrogen, 

carbon, sulfur or nitrogen compounds. Many syntrophies, especially those involving 

methanogens as the product scavenger, rely on interspecies transfer of molecular hydrogen. 

Hydrogen’s small size, rapid diffusion and relevance to a broad range of metabolic processes 

render it an electron carrier preferred by many microbes. In aqueous environments formate, 

the simplest carboxylic acid, is also an important intermediate. For example, Syntrophobacter 

fumaroxidans grows syntrophically on propionate with a formate-utilizing methanogen 

(Dong et al., 1994). A switch between formate and hydrogen transfer has been observed 

(Wu et al., 1993; Bleicher and Winter, 1994) and both electron carriers may even be 

transferred simultaneously (Schink, 1991). Based on diffusion kinetics, hydrogen was 
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proposed as a preferred intermediate in dense cell aggregates (Boone et al., 1989a; Boone 

et al., 1989b), whereas formate exchange might be favored in dispersed cells, where longer 

distances need to be bridged (Schink and Stams, 2006). Acetate is another intermediate 

featured in syntrophic partnerships (Platen and Schink, 1987; Schink and Stams, 2006). In the 

syntrophic degradation of longer chain fatty acids, acetate is consumed by acetoclastic 

methanogens or sulfate reducers (Schink, 2002). Sulfur cycling as being described for co-

cultures of green sulfur bacteria (Chlorobium) and the sulfur-reducing partner bacteria 

(Desulfuromonas) is another mechanism of interspecies electron transfer (Biebl and Pfennig, 

1978). Such diverse examples show that various molecules fulfill intermediate function in 

syntrophic metabolism. 

In addition to the formation and consumption of a molecular intermediate, reducing 

equivalents may be shuttled by redox-active mediator molecules. A cysteine/cystine shuttle 

system, similar to that used in the cycling of sulfur, is the basis of the syntrophy between the 

acetate-oxidizing Geobacter sulfurreducens and the nitrate-reducing Wolinella succinogenes 

(Cord-Ruwisch et al., 1998; Kaden et al., 2002). Another class of electron carriers abundant 

in soils and sediments are humic acids, and their analog anthraquinone-2,6-disulfonate 

(AQDS). Several bacteria are able to reduce the quinone moieties in humic substances and 

thereby transfer electrons (indirectly) to insoluble electron acceptors (iron oxides) or to other 

bacteria (Lovley et al., 1996). Recently, syntrophic growth via quinone mediated interspecies 

electron transfer was demonstrated for the ethanol-oxidizing G. metallireducens and the 

fumarate-reducing G. sulfurreducens (Smith et al., 2015). Outer surface c-type cytochromes 

were suggested to be crucial at the site of quinone reduction, while the identities of the outer 

surface proteins, required to derive electrons from extracellular reduced quinones, remained 

unclear. The experimental determination of electron transfer systems in microbial syntrophies 

remains difficult. A broader variety of electron carrier systems may exist and syntrophic 

communities may utilize several different systems either separately or in parallel.  

Furthermore, as another syntrophic strategy, organisms may directly transfer electrons via 

cell-cell contacts or conductive structures. So far direct interspecies electron exchange has 

only been described for microbial consortia of G. metallireducens and G. sulfurreducens or 

G. metallireducens and methanogens. In such associations G. metallireducens donates 

electrons from ethanol oxidation to either of the electron-accepting partners (Summers et al., 

2010; Rotaru et al., 2014). Recently, also G. hydrogenophilus was found to form consortia 

with methanogens and Rotaru and colleagues (2015) suggested they likewise interact via 

direct electron transfer. In these syntrophies, Geobacter spp. are proposed to form cell-cell 
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connections via self-conductive type IV pili that resemble nanowires (Reguera et al., 2005; 

Vargas et al., 2013; Malvankar et al., 2014). Moreover, Summers and colleagues (2010) 

proposed that c-type cytochromes associated with the outer cell membrane and the pili 

themselves were crucial for electron transport. However, the role of pili and cytochromes in 

direct interspecies electron transfer remains debated. Pili and c-type cytochromes can be 

substituted by conductive materials such as biochar, carbon cloth, granular activated carbon 

(Liu et al., 2012; Chen et al., 2014) and magnetite (Liu et al., 2014), respectively. Next to 

interspecies electron transfer, the extracellular transfer of electrons to insoluble electron 

acceptors such as iron oxides was also observed in Geobacter spp. and Shewanella spp.; 

however, different mechanisms for the direct transfer of electrons are discussed for these 

organisms (Reguera et al., 2005; Gorby et al., 2006; Lovley et al., 2015). Although examples 

of direct electron transfer in syntrophic communities are limited, this mechanism may 

constitute an important but yet overlooked process as it remains difficult to be experimentally 

proven. 

Cultivation of syntrophic organisms 

To date, only a small fraction (<1%) of the estimated microbial diversity on Earth has been 

obtained in laboratory cultures (Schink and Stams, 2006). As described above, the strong and 

necessary interactions between some collections of microbes may provide partial explanation 

for the limited success of traditional isolation techniques. For example, the disruption of 

syntrophic relationships may be one reason that prevents cultivation of environmentally 

relevant organisms. In contrast, co-culture approaches, allowed cultivation of important but 

previously overlooked syntrophic metabolizers. For instance, anaerobic syntrophic sugar 

degraders could only be cultured when the culture medium was substituted with a reducing 

equivalent scavenger (Müller et al., 2008). Importantly, not all syntrophic growing organisms 

are restricted to syntrophic growth. In many cases, the syntrophic metabolizer can be isolated 

with an alternative fermentable substrate, usually a more oxidized form of the compound 

used in syntrophic growth. Other syntrophic metabolizers, such as Desulfovibrio spp. or 

Geobacter spp. (Sieber et al., 2012), are capable of anaerobic respiration. Still, for some 

syntrophic metabolizers, viable conditions for cultivation could not be established. The same 

applies to the reducing equivalent scavenger, which often can be grown independently of its 

partner by providing it with the compound it would ordinarily receive from its syntrophic 

partner. As shown for methanogens of the rice cluster I which require constant hydrogen 
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supply at very low concentration (Sakai et al., 2007), initial co-cultivation with a syntrophic 

metabolizer might be necessary to complete isolation. However, if the syntrophic 

intermediate or the mechanism of interaction is unknown, cultivation of syntrophs remains 

impossible. Examples of syntrophic associations in which neither partner has been isolated 

and physiological understanding is incomplete include the “string of pearls” consortia of SM1 

Euryarchaeota and sulfur-oxidizing bacteria (Henneberger et al., 2006) and the anaerobic 

methane-oxidizing consortia of ANME Euryarchaeota and sulfate-reducing bacteria (Boetius 

et al., 2000).  

While cultivation remains central to the study and understanding of microbial physiology, 

enrichment-based approaches and culture-independent methods, such as metagenomics or 

stable isotope probing, have also advanced the knowledge on syntrophic organisms (Morris 

et al., 2014). The anaerobic methane-oxidizing consortium (Boetius et al., 2000) is probably 

the most prominent example of an unexplained interspecies association. This consortium 

performs anaerobic methane oxidation which, as describe above (see 1.1.), is central to 

methane dynamics in the marine ecosystem. 

1.4. Anaerobic oxidation of methane 

Methane oxidation is prevalent among aerobic bacteria; however, methane also serves as an 

energy source for microorganisms in anoxic environments where it is oxidized with electron 

acceptors other than oxygen. Sulfate-dependent, nitrate/nitrite-dependent and metal ion-

dependent anaerobic oxidation of methane are examples of such alternative oxidation 

processes, each associated with a distinct microbial mechanism. The nitrite-dependent 

methane-oxidizing bacterium, Candidatus Methylomirabilis oxyfera, likely produces 

molecular oxygen intracellularly, which is fed into a canonic aerobic methane oxidation 

pathway (Ettwig et al., 2010), resembling that of aerobic methanotrophic bacteria. Sulfate-, 

nitrate- and metal ion-dependent methane oxidizers supposedly utilize a reversed 

methanogenesis pathway. Further, anaerobic oxidation of methane coupled to nitrate 

reduction is so far known to be performed by a single archaeon Candidatus Methanoperedens 

nitroreducens and methane oxidation coupled to sulfate or metal ion reduction is proposed to 

be mediated by a combined effort of anaerobic methane-oxidizing archaea (ANME) and 

sulfate reducers or metal reducers, respectively (Boetius et al., 2000; Beal et al., 2009: 

Haroon et al., 2013). The sulfate-dependent anaerobic oxidation of methane (henceforth, 
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AOM) is, thermodynamically, the least favorable of these processes; however, due to the 

abundance of sulfate in the marine ecosystem, AOM is the most globally consequential 

process. The following sections will focus on AOM: the sulfate-dependent anaerobic 

oxidation of methane. 

Sulfate-dependent anaerobic oxidation of methane 

Methane oxidation in the absence of oxygen was first observed in porewater profiles which 

showed the concurrent disappearance of methane and sulfate in oxygen-free marine sediment 

horizons (Barnes and Goldberg, 1976; Reeburgh, 1976). Later, a direct and stoichiometric 

link of methane oxidation and sulfate reduction was revealed by radio tracer experiments 

showing coinciding maxima of methane oxidation and sulfate reduction rates 

(Reeburgh, 1980; Iversen and Jørgensen, 1985), according to the following reaction: 

 CH4 + SO4
2−

 + 2 H
+
  CO2 + H2S + 2 H2O  (1) 

Since AOM relies on the availability of sulfate and methane, the process is particularly 

widespread in anoxic, methane-rich marine environments, such as methane-rich sediments 

(Niemann et al., 2005; Harrison et al., 2009) or anoxic water bodies (Michaelis et al., 2002; 

Reitner et al., 2005a) and methane seeps (Hinrichs et al., 1999; Orphan et al., 2001a; Knittel 

et al., 2005; Lloyd et al., 2006). AOM has also been observed in freshwater (Segarra et al., 

2015) and terrestrial (Alain et al., 2006) environments. Sulfate methane transition zones 

(SMTZ), sediment layers where sulfate-rich seawater diffusing through the sediment meets a 

methane-rich region, are the characteristic environments for AOM to completely consume 

any available methane (Fig. 2) (Reeburgh, 1980; Regnier et al., 2011). AOM is also the 

dominant process at marine methane seeps, mud volcanoes and hydrothermal vents where 

methane-rich fluids from a deep source such as gas hydrate migrate upwards into sulfate-rich 

sediments (Boetius and Wenzhöfer, 2013). In the anoxic, methane-rich bottom water of the 

Black Sea, AOM activity is associated with large, microbially-generated carbonate 

precipitates known as microbial reefs (Fig. 2 C, D) (Michaelis et al., 2002). While AOM is 

restricted to oxygen-free environments, it can occur across a range of salinity, pH and 

methane fluxes. Further, AOM has been measured across a wide range of in situ temperatures 

from <20°C (at cold methane seeps, where it is most prevalent) to 90°C (in hydrothermal 

environments) (Holler et al., 2011b; Wankel et al., 2012). Consequently classes of AOM are 

defined according to the temperature they occur at; these are psychrophilic (<20°C), 
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mesophilic (20-50°C) and thermophilic (>50°C) AOM. To date, thermophilic AOM has only 

been described in the hydrothermal seep sediments in Guaymas Basin (Gulf of Mexico) 

(Holler et al., 2011b) and Middle Valley (Juan de Fuca Ridge) (Wankel et al., 2012). 

Examples for studied AOM habitats include Hydrate Ridge seeps (Pacific Ocean), Gulf of 

Mexico seeps (Gulf of Mexico), Tommeliten and Gullfaks (North Sea), Haakon Mosby mud 

volcano (Barents Sea) and Amon mud volcano (Mediterranean Sea). 

 

Figure 2 AOM-associated envi-

ronments. (A) Schematic 

illustration of a sulfate methane 

transition zone (SMTZ) in marine 

sediments. The SMTZ is created 

where upward-migrating methane 

and downward-diffusing sulfate 

meet. This area is inhabited by 

consortia performing AOM. 

(B) Bacterial mats above a zone of 

active AOM at Haakon Mosby 

mud volcano (adapted from 

Boetius and Knittel, 2010). (C,D) 

Microbial reef structures in the 

Black Sea (adapted from 

Michaelis et al., 2002). (D) View 

inside a microbial reef tower 

showing pink microbial mats. 

Organisms involved in AOM 

The microorganisms responsible for AOM were first identified by their lipid biomarkers 

which have characteristic depleted carbon isotope signatures. These biomarkers co-occurred 

with 16S rRNA gene sequences of a novel archaeal group of anaerobic methanotrophic 

archaea (ANME; Hinrichs et al., 1999). Subsequently these archaea were visualized in 

association with bacteria as large consortia (Hinrichs et al., 1999; Boetius et al., 2000; Knittel 

et al., 2005). 

The anaerobic methane-oxidizing archaea (ANME) are phylogenetically related to their 

methane-producing counterpart, the methanogenic archaea within the Euryarchaeota. To date 

three lineages of ANME with their subgroups have been described. These lineages are 

polyphyletic and share as little as 75% 16S rRNA gene sequence identity (Knittel and 

Boetius, 2009). ANME of clade 1 (ANME-1) are distant relatives of the order 

Methanomicrobiales, while ANME of clade 2 (ANME-2) and 3 (ANME-3) form distinct 
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lineages within the Methanosarcinales (Hinrichs et al., 1999; Orphan et al., 2001b; Knittel 

et al., 2005; Niemann et al., 2006). Subgroups have been described within ANME-1 (a, b, c) 

and ANME-2 (a, b, c, (d)) (Orphan et al., 2001a; Orphan et al., 2001b; Knittel et al., 2005; 

Wankel et al., 2012). The cell morphology of ANME varies: ANME-1 is often of rectangular 

shape while ANME-2 and -3 are of coccoidal shape. As shown by transmission electron 

microscopy, rectangular ANME-1 cells are surrounded by an external sheath of biopolymeric 

substance and contain internal stacks of cytoplasmic membranes similar to those of 

methanotrophic Gammaproteobacteria (Reitner et al., 2005b). ANME-2 cells were found to 

store sulfur internally (Milucka et al., 2012). With respect to the environment they occur in 

ANME-2 and -3 seem restricted to AOM-associated environments with cold to moderate 

temperatures (<40°C), while ANME-1 was reported to thrive under cold and hot conditions 

and high salinities (Maignien et al., 2013). 

The three distinct lineages of ANME described above have been observed in association 

with sulfate-reducing bacteria (SRB) of different groups within the Deltaproteobacteria. The 

most frequent partner of ANME-1 and ANME-2 are of the Seep-SRB-1a and Seep-SRB-2 

groups related to the Desulfococcus/Desulfosarcina (DSS) cluster (Knittel et al., 2003, 2005; 

Kleindienst et al., 2012). Four Seep-SRB cluster are distinguished of which only Seep-SRB-1 

and -2 were shown to associate with ANME (Knittel et al., 2003). Seep-SRB-1 was further 

subdivided into 6 groups (a-f) of which Seep-SRB-1a appears to be the predominant ANME 

partner (Schreiber et al., 2010). The known morphologies of the DSS-related bacterial partner 

are diverse, including coccoidal, rod-shaped and vibroid shapes. Intracellular inclusions of 

polyhydroxyalkanoates, likely storage compounds, and iron sulfides were identified in DSS 

cells associated with ANME-2 (Reitner et al., 2005a). The dominant partner bacteria of 

ANME-3 relate to Desulfobulbus (DBB) (Niemann et al., 2006). Bacteria of the HotSeep-1 

cluster present a deep-branching lineage within the Deltaproteobacteria and are neither 

related to DSS nor to DBB. This cluster is found in association with ANME-1 at high 

temperatures (>50°C) (Holler et al., 2011b). To date, HotSeep-1 was exclusively reported at 

high temperatures while occurrence of the DSS and DBB groups was restricted to 

environments with cold to moderate oceanic temperatures. 

In rare cases, aggregation of ANME archaea with other bacteria has been reported. For 

instance, ANME-2c was shown in aggregates with Alpha- and Betaproteobacteria 

(Pernthaler et al., 2008). Furthermore, ANME-1 were repeatedly found as single cells, in 

monospecies aggregates or in cell chains while ANME-2 and -3 tend not to occur without a 

partner bacterium.  
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Association of ANME and partner bacteria in AOM consortia 

Associations of ANME and SRB have diverse morphology, structure and composition. These 

associations are generally referred to as consortia, because of their multispecies nature and 

varied structural organization (Boetius et al., 2000; Knittel and Boetius, 2009). The first 

consortia visualized by fluorescence in situ hybridization were aggregates containing an inner 

archaeal core and an outer bacterial cell layer (shell-type consortium) (Boetius et al., 2000). 

Subsequently, additional forms of consortia were described (Fig. 3). The ANME-2c/DSS and 

ANME-3/DBB associations have been observed in the shell-type consortium, while 

ANME-2a/DSS, ANME-1/Seep-SRB-2 and ANME-1/HotSeep-1 associations were observed 

as well mixed structures (mixed-type consortium) (Knittel and Boetius, 2009, 2011). 

ANME-1/HotSeep-1 associations were as well observed as filamentous consortia in which 

pairs of archaeal and bacterial cells formed long chains (Holler et al., 2011b). The observed 

ratio of ANME:SRB cells varies from 1:1 to 1:7, the latter ratio observed in shell-type 

consortia of ANME/DSS, while ANME-3/DBB consortia are strongly ANME-3 dominated 

(Cui et al., 2015). Little is known about the mechanisms which initialize consortia formation 

and sustain the structurally-aligned propagation of archaeal and bacterial cells. It is thought 

that a small number of archaeal and bacterial cells initiate consortia that develop into large 

aggregations of several hundred thousand to millions of cells (Knittel and Boetius, 2009). 

Spherical consortia with diameters of a few micrometers to 50 µm have been reported, as 

well as filamentous consortia of up to 100 µm length (Nauhaus et al., 2007; Holler et al., 

2011b). Shell-type consortia were proposed to divide into smaller aggregates once the 

bacteria grow into the inner archaeal core (Knittel and Boetius, 2009). Alternatively, 

consortia that reach a specific size may burst, thereby releasing single cells into the 

environment which eventually initiate new consortia (Knittel and Boetius, 2009). 

To date, AOM consortia have been detected in all environments within which AOM 

occurs either visually or by sequence-based methods. AOM consortia from diverse 

environmental sources could be enriched into sediment-free in vitro cultures, but isolation 

into axenic co-cultures or isolation of either of the partners into pure culture has never been 

achieved. 
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Figure 3 Anaerobic methane-oxidizing consortia visualized by fluorescence in situ hybridization. (A) Shell-type 

aggregate (adapted from Boetius et al., 2000). (B) Mixed-type aggregate (provided by Katrin Knittel). 

(C) Filament-type consortium (adapted from Holler et al., 2011b). Red: ANME archaea; green: bacterial 

partner. Scale bars: 5 µm. 

Interaction of archaea and bacteria in methane-oxidizing consortia  

The co-occurrence of ANME and bacterial cells in consortia indicated that syntrophy may be 

linked to AOM; however, the mechanisms coupling methane oxidation and sulfate reduction 

remained unresolved. Fundamentally different models describing the archaea-bacteria 

interaction have been proposed, yet all assume that ANME are responsible for methane 

oxidation (Fig. 4). 

In the syntrophic depiction of AOM with bacterial sulfate reduction, methane-derived 

intermediates or reducing equivalents are scavenged by the bacterial partner. The following 

mediators of reaction-level coupling have been proposed: a molecular intermediate such as an 

organic carbon compound derived from methane oxidation (A), molecular hydrogen formed 

from reducing equivalents of methane oxidation (B), interspecies electron transfer via redox 

active compounds (C), or interspecies electron transfer via direct cell-to-cell contacts such as 

conductive nanowires (D). An alternative model has been proposed by Milucka and 

colleagues (2012) with partial sulfate reduction in ANME cells followed by transfer of a 

sulfur intermediate which is disproportionated by the bacterial partner (E). In this model, 

AOM based on sulfur cycling would not be an obligate syntrophic process: ANME does not 

directly rely on interspecies interaction and the metabolic activity of a partner to conduct 

methane oxidation. Lastly, a non-syntrophic interaction model within AOM consortia was 

also suggested whereby ANME cells perform complete sulfate reduction and bacteria thrive 

from their metabolic by-products (F) (Widdel et al., 2007; Thauer and Shima, 2008). 

No experimental evidence for rejecting the hypothesis of syntrophy in AOM has been 

reported, however also the experimental support of syntrophy is limited: sulfur cycling is the 

only mechanism observed in vitro (Milucka et al., 2012). Despite all AOM consortia 
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presumably carrying out the same net reaction, consortia vary in the phylogenetic identity of 

their members and their structure. It is thus reasonable to expect that a diversity of interaction 

mechanisms occur, rather than a single mode. 

 

Figure 4 Schematic illustration of various models proposed for the archaeal-bacterial interaction in AOM. 

(A) Transfer of a methane-derived organic carbon intermediate produced by ANME and completely oxidized by 

the bacterial partner. (B) Interspecies transfer of hydrogen produced by reverse methanogenesis in ANME cells. 

(C) Transfer of reducing equivalents by a reduced mediator compound. (D) Direct interspecies electron transfer 

by conductive structures. (E) Transfer of zero-valent sulfur produced by partial sulfate reduction in ANME cells 

and disproportionated by the bacterial partner. (F) Transfer of metabolic by-products. Note that, strictly 

speaking, (E) and (F) present non-syntrophic interactions. See text for details. 

Evidence for molecular intermediate transfer in AOM 

Molecular compounds such as hydrogen, formate, acetate, methyl compounds and carbon 

monoxide are considered to be intermediates in syntrophic processes thus they were also 

considered to be involved in AOM (Nauhaus et al., 2002, 2005; Moran et al., 2008) 

(Fig. 4 A, B). Physiological studies testing for the existence of potential intermediates used 

classical substrate experiments assuming that the addition of a molecular intermediate to a 

syntrophic consortium would stimulate the growth of the product scavenger while inhibiting 

the syntrophic oxidizer (Schink, 1997; Stams and Plugge, 2009). However, in AOM none of 

these substrates did significantly enhance sulfide production compared to methane-dependent 

sulfide production and none of the bacterial partner could be enriched using this strategy 

(Nauhaus et al., 2002, 2005; Moran et al., 2008; Lens, 2010). Further, most of the 

compounds tested did not repress AOM as would be expected from intermediates. As 
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exceptions methyl sulfide and carbon monoxide repressed methane oxidation (Moran et al., 

2008), however a pure toxicity effect of these compounds as shown for some methanogens 

and sulfate reducers (Lens, 2010) could not be excluded. Molecular intermediates in AOM 

were further excluded by kinetic reasoning (Spormann and Widdel, 2000) and diffusion 

modelling (Sørensen et al., 2001). For instance, efficient intermediate transfer and 

intermediate concentrations of less than 10 nM would be required for an AOM energy yield 

of −31 kJ mol
−1

 (Spormann and Widdel, 2000). Presuming direct ANME-SRB attachments, 

formate transfer was predicted to be feasible. Instead all the other considered intermediates 

(including molecular hydrogen) were excluded as effective diffusion distances of less than 

the thickness of two cell walls would be required (Sørensen et al., 2001). 

Evidence for direct interspecies electron transfer in AOM 

Direct interspecies electron transfer (DIET) requires either direct contacts or a mediator 

molecule between the two cells of the partner (Fig. 4 C, D). As DIET does not involve the 

production of a molecular intermediate AOM would be insensitive to an external supply of 

substrates. Hence, DIET was proposed as possible mechanism of species interaction in AOM, 

possibly involving conductive cell-to-cell connections (Thauer and Shima, 2008; Summers 

et al., 2010). Experimental evidence for the formation of such nanowire-like structures in 

AOM consortia was however lacking and direct contact between cells was not observed. 

Furthermore, DIET via redox-active compounds such as phenazines and humic acids or their 

analog AQDS was tested but ruled out as the experimental supply of mediators to capture 

electrons did not promote methane oxidation (Nauhaus et al., 2005; Basen, 2009). A toxic 

effect of such mediator compounds, which would obscure their influence in situ, however 

could not be excluded (Nauhaus et al., 2005). Currently available genomes of ANME-1 

and -2 organisms encode extracellular cytochromes, and several authors have speculated that 

these are involved in electron transfer reactions either in association with pili or possibly 

through the formation of a conductive extracellular matrix (Meyerdierks et al., 2010; Wang 

et al., 2014). A frequently observed pinkish color of Black Sea AOM mats supports this 

proposal, the color being attributed to high cytochrome content (Michaelis et al., 2002). 

Evidence for internal sulfur cycling in AOM 

Adopting the model of AOM driven by internal sulfur cycling, an exchange of a sulfate-

derived intermediate between consortium partners would be expected (Fig. 4 E). ANME cells 
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couple methane oxidation to the partial reduction of sulfate to zero-valent sulfur, which 

accumulates intracellularly. Zero-valent sulfur that leaves the ANME cell by diffusion or 

transport reacts with extracellular sulfide to form polysulfide which, in turn, is taken up 

(mainly as disulfide) by the bacterial partner to be disproportionated into sulfate and sulfide. 

This mechanism was demonstrated in vitro for ANME-2/DSS consortia in physiological 

experiments and by the presence of sulfur inclusions in the ANME cells (Milucka et al., 

2012). There are still a number of open questions associated with this model as the enzymes 

currently understood as essential for dissimilatory sulfate reduction were exclusively 

localized in the bacterial partner (Milucka et al., 2013). Additionally, so far the required 

alternative sulfate reduction in ANME-2 has not been identified. Furthermore, yet the 

evidence of this sulfur cycling is limited to a single culture and remains to be demonstrated 

for other AOM consortia types. 

Evidence for commensalistic interaction in AOM 

A commensalistic relationship in AOM suggests the ANME perform methane oxidation and 

sulfate reduction while the bacteria benefit from the ANME metabolism without affecting it 

(Fig. 4 F). The bacteria were proposed to utilize unknown metabolites or components of the 

exopolymeric matrix surrounding the consortium (Widdel et al., 2007; Thauer and Shima, 

2008). However, a transfer of organic carbon compounds is unlikely based on stable isotope 

labeling studies that showed autotrophic growth of the bacterial partner (Wegener et al., 

2008; Kellermann et al., 2012). Although the ANME are not known to perform complete 

sulfate reduction, repeatedly found ANME-1 without partner bacteria challenge the idea of an 

obligate syntrophic AOM process. 

Physiology of organisms involved in the anaerobic oxidation of methane 

Knowledge concerning the metabolic processes involved in AOM, an area of intense research 

for some 40 years, appears remarkably limited. AOM yields a Gibbs free energy of 

−16.86 kJ per mol CH4 oxidized under standard state conditions and −20 to −40 kJ per mol 

CH4 oxidized under in situ conditions. Assuming AOM is dependent on syntrophic 

interactions, this energy yield would be shared among the partners in a given consortium. 

Thus, the organisms performing AOM operate close to the minimum energy which allows 

ATP synthesis. The consequence of such energy limitation is the extremely slow growth of 
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these organisms, which have doubling times of 2 to 6 months (Nauhaus et al., 2007; Holler 

et al., 2009, 2011a) and low biomass yields with only about 1% of reducing equivalents 

transferred into biomass (Nauhaus et al., 2007; Wegener et al., 2008).  

The characteristics of AOM described above restrict cultivation efforts and limit 

physiological experiments. Cultivation independent methods, then, are particularly promising 

in furthering our physiological understanding of AOM. Isotope labeling, metagenomics and 

metatranscriptomics conducted on enrichment cultures or samples naturally enriched in AOM 

consortia hold much promise in this pursuit. 

Methane metabolism in AOM consortia 

The proposed biochemical pathway of methane oxidation is reverse methanogenesis, 

featuring the same enzymes as the classical methanogenesis pathway. In the following 

paragraphs, the key enzyme of this pathway, the pathway itself, the possible occurrence of 

methanogenesis in ANME cells, and carbon assimilation by AOM consortia are described. 

Methyl-coenzyme M reductase (Mcr) is the key enzyme of methanogenesis and catalyzes 

the formation of methane from methyl-coenzyme M (CoM) and coenzyme B (CoB). In 

methanogens, Mcr is a heterodimeric enzyme (α2β2γ2) with a nickel porphinoid (coenzyme 

F430) as a prosthetic group (Jaun and Thauer, 2007). The detection of methanogen-related, but 

deeply-branching, mcrA sequences in AOM-associated environments has suggested the 

involvement of Mcr in AOM. This is supported by the extraction of highly abundant Mcr 

protein homologs from ANME-dominated Black Sea microbial mats (Krüger et al., 2003), 

and the subsequent localization of Mcr in ANME cells by immunolabeling (Heller et al., 

2008). ANME-1 and ANME-2 contain two distinct types of Mcr. The nickel protein I is 

found in ANME-1 and contains a modified F430 cofactor with higher molecular weight 

relative to that found in methanogens. The nickel protein II is found in ANME-2 and contains 

the same F430 cofactor present in methanogens (Krüger et al., 2003). The hypothesis of 

reversed methanogenesis in ANME was further supported by metagenome and 

metatranscriptome studies. These revealed the presence and expression of genes of the 

methanogenesis pathway in ANME (Hallam et al., 2003; Krüger et al., 2003; Hallam et al., 

2004; Meyerdierks et al., 2005, 2010; Stokke et al., 2012; Wang et al., 2014).  

In AOM itself, methane is proposed to be activated by Mcr and bound as a methyl group 

to CoM via the reduction of the disulfide CoM-CoB bond (see Chapter IV Fig. 4 for details of 

the reverse methanogenesis pathway). The activation of a carbon-hydrogen bond in the 
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methane molecule requires 439 kJ per mol (Thauer and Shima, 2008) and the activation 

mechanism is not fully understood. The subsequent methyl group transfer to the coenzyme 

tetrahydromethanopterin (H4MPT) is catalyzed by membrane-bound methyl-H4MPT-

coenzyme M methyltransferase; this releases CoM which is rebound to CoB via the 

regeneration of their disulfide linkage. Cytoplasmic enzymes subsequently oxidize the methyl 

group stepwise via the H4MPT-bound intermediates methylene, methenyl and formyl. These 

steps involve, respectively, the enzymes methylene-H4MPT reductase (Mer), methylene-

H4MPT dehydrogenase (Mtd) and methenyl-H4MPT cyclohydrolase (Mch). The formyl 

group is transferred to the coenzyme methanofuran (MFR) by the formyl methanofuran 

H4MPT transferase (Ftr) and subsequently reduced to CO2 by formyl methanofuran H4MPT 

dehydrogenase (Fmd). However, the ANME-1 metagenome lacks a Mer enzyme. To account 

for this, a bypass was proposed via methanol and formaldehyde to methylene-H4MPT 

(Meyerdierks et al., 2010). As genomic and proteomic data on ANME is still limited, it is 

unclear whether the AOM pathway may differ among ANME types. 

It has been proposed that ANME-1 cells are able to operate as both methanotrophs and 

methanogens (Lloyd et al., 2011). The numerous similarities between members of the ANME 

group and methanogens, including phylogenetic relatedness and consistent enzymatic 

inventory, as well as the detection of active ANME cells in methanogenic environments 

(Lloyd et al., 2011) supported the hypothesis of methanogenesis by ANME cells. In fact, in 

radio tracer experiments with natural AOM enrichments, methane production rates 

amounting to 13% of the rates of simultaneous methane oxidation were measured (Treude 

et al., 2007; Orcutt et al., 2008). Likewise, methanogens show trace methane oxidation of 

0.001 to 0.3% of methane formation (Zehnder and Brock, 1979). Further, a complete 

reversibility of all enzymatic reactions involved in reverse methanogenesis was recently 

shown through isotope labeling experiments with AOM consortia (Holler et al., 2011a). This 

enzymatic reversibility explains the trace reactions observed as isotope exchanges 

(a backflux) from the product to substrate pool. This is particularly pronounced in AOM, as 

the process operates close to thermodynamic equilibrium and reaction reversibility is likely to 

increase. Importantly, this reaction does not yield net methane production and does not yield 

energy (Holler et al., 2011a; Yoshinaga et al., 2014). The possibility of methanogenesis in 

ANME cells cannot be fully excluded, however no single organism has been found to sustain 

growth from both methanogenesis and reverse methanogenesis. 

The assimilation of carbon into AOM consortial biomass is dependent on the presence of 

methane as an energy source (Wegener et al., 2008). The bacterial partner predominantly 
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assimilates carbon dioxide, and thus is an autotroph. While ANME-2 cells were shown to 

assimilate larger portions of methane, ANME-1 cells predominantly incorporated carbon 

dioxide-derived carbon (Wegener et al., 2008; Kellermann et al., 2012). Therefore, 

Kellerman and colleagues (2012) suggested that the ANME-1 group should not be considered 

methanotrophic, as this would imply methane assimilation, but rather considered 

chemorganoautotrophic. Genomic data suggest that the ANME group utilizes the reverse 

acetyl CoA pathway to assimilate carbonyl and methyl groups derived from either carbon 

dioxide or carbon dioxide and methane (Meyerdierks et al., 2010; Wang et al., 2014). While 

methane is central to the energy metabolism, current knowledge suggests that carbon dioxide 

is the carbon source for the organisms in the ANME groups. 

Sulfur metabolism in AOM consortia 

Sulfate reduction in AOM consortia is methane-dependent and classically was thought to 

proceed in the bacterial partner. Since the proposal of an internal cycling of sulfur in AOM 

consortia this view has changed by attributing partial sulfate reduction to ANME and sulfur 

disproportionation to the bacterial partner. Dissimilatory sulfate reduction is carried out by a 

series of cytoplasmic enyzmes. Initially sulfate is activated by sulfate adenylyltransferase 

(Sat) to adenosine-5'-phosphosulfate (APS). Two reduction steps then convert APS to sulfite 

and further to sulfide. These reactions are catalyzed by APS reductase (Apr) and 

dissimilatory sulfite reductase (Dsr). Electrons are supplied to the reductases via different 

membrane-bound or via cytoplasmic enzyme complexes. These contain subunits of 

heterodisulfide reductases which are essential in electron transfer reactions (Pereira et al., 

2011). The heterodisulfide reductases of sulfate reducers are related to the CoM-CoB 

specific-heterodisulfide reductases found in methanogens and ANME. To date key enzymes 

of the canonical sulfate reduction pathway were localized exclusively in the bacteria as 

shown by immunolabeling of Dsr and Sat in ANME-2/DSS consortia (Milucka et al., 2013). 

Possible specific modifications of the sulfate reduction pathway can presently not be inferred 

as no genomic data are available for the bacterial partner. The so far available draft genomes 

of ANME do not encode canonical sulfate reduction genes (Meyerdierks et al., 2010; Wang 

et al., 2014). However, sulfate reduction in ANME may proceed via yet unknown enzymes. 

The presence of a supposedly non-CoM-CoB specific heterodisulfide reductase in the 

ANME-1 genome was interpreted as potentially relevant for sulfate reduction (Meyerdierks 

et al., 2010). Moreover, Meyerdierks and colleagues (2010) reported an almost complete set 
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of genes for assimilatory sulfate reduction in ANME-1. However, ANME are expected to 

assimilate sulfide and thus a potential dissimilatory function of these assimilatory sulfate 

reduction genes was not excluded (Meyerdierks et al., 2010). Further investigations are 

needed to derive a more complete picture of the sulfur metabolism in AOM consortia, the 

processes and genes involved and their spatial localization. 
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1.5. Research outline and objectives 

The sulfate-dependent anaerobic oxidation of methane is of global importance as it converts 

methane, a potent greenhouse gas, to the less impactful carbon dioxide before it reaches the 

atmospheric methane pool. The investigations summarized in this thesis focused on the 

marine microbial consortium that couples sulfate reduction to methane oxidation in order to 

perform AOM. The interaction between methane-oxidizing archaea and sulfate-reducing 

bacteria is still not fully understood, but it is thought to be a case of syntrophy. This thesis 

includes reports on enrichment-based physiological investigations combined with 

metagenomic and metatranscriptomic analyses, which provide insight into the metabolism 

and the genomic profile of the organisms involved in AOM. The organisms that perform 

AOM at elevated temperatures and which belong to the ANME-1 clade and the HotSeep-1 

cluster were the primary focus of these investigations. 

The unifying objective of the investigations described in this thesis was to deepen the 

physiological understanding of the organisms involved in sulfate-dependent anaerobic 

oxidation of methane as well as their interspecies interactions within AOM consortia. More 

specifically, the aims were i) to understand the physiology of thermophilic AOM consortia 

and the interspecies interaction of ANME-1 and HotSeep-1, ii) to elucidate the physiology 

and genomic potential of the bacterial partner HotSeep-1, iii) to provide a comparison of the 

metabolic potential of different ANME-1 subtypes and iv) to determine the metabolic 

capabilities of different AOM enrichments. Based on these objectives, the research 

hypotheses and key questions of this thesis were outlined as follows: 

- Syntrophy in thermophilic AOM involves the exchange of a molecular intermediate or 

direct electron transfer. 

Thermophilic AOM is the analog to the more studied, cold-adapted AOM process and the 

organisms involved in the former are only distantly related to those involved in the latter. 

Therefore, like their cold-adapted counterparts, thermophilic AOM consortia may have 

unique physiological capabilities. The content of Chapter II focuses on the physiology of 

thermophilic AOM and the question of how ANME-1 and HotSeep-1 perform AOM.  
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- The bacterial participant in thermophilic AOM is a novel species of sulfate reducer and is 

not restricted to growth in AOM consortia. 

Specific groups of Deltaproteobacteria have been shown to act as the bacterial partners in 

AOM consortia. However, little is known about their physiology and metabolic potential as 

no representatives could be isolated and maintained in pure culture. Further, genomic 

information on these organisms is limited. Chapter III summarizes work which has 

addressed the lack of knowledge concerning the specific physiological capabilities and 

genomic features of HotSeep-1, the bacterial partner in thermophilic AOM. 

- Anaerobic methanotrophs of clade I (ANME-1) share a central set of metabolic 

capabilities. 

The organisms classified as ANME-1 constitute a large phylogenetic group, distantly 

related to methanogens within the Methanomicrobia. The physiologic and metabolic 

characteristics of ANME-1 are largely unexplored, as is their diversity among members of the 

group. Chapter IV summarizes the results of a comparative genomic analysis which 

addressed the question: Do the genomes of different ANME-1 types encode similar or 

different metabolic potentials?  

- The microorganisms involved in AOM or associated with the AOM process have diverse 

metabolic capabilities. 

AOM is performed by a diverse set of consortia composed of ANME and SRB cells; 

however, the consortia members may not be restricted to AOM and may be capable of 

alternative metabolisms such as methanogenesis or sulfur disproportionation. Furthermore, in 

environments associated with AOM and laboratory enrichments, AOM consortia are 

accompanied by a smaller community whose metabolic potential is not well understood. 

Consequently, the microbial communities present in environments where AOM occurs 

require broader characterization. Chapter V is a comparative analysis of the community 

composition of several long-term AOM enrichments. In addition to questions of community 

composition, it addresses questions regarding the metabolic capabilities of specific 

community members.  
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1.6. Material and methods 

The following section will provide an overview of the microbial material studied and the most 

relevant methods employed in this thesis. The enrichments of anaerobic methane-oxidizing 

consortia and the sulfate-reducing bacterial partner obtained in long-term cultivation 

approaches prior to and during the work of this thesis are introduced including information on 

their specific origin, growth conditions and phylogenetic composition. The strong dominance 

of AOM organisms in those enrichments provided a system that allowed applying culture-

dependent methods while also benefiting culture-independent techniques. The methods 

employed combine microbiological approaches such as substrate tests with molecular 

techniques like isotope labeling, metagenomics and gene expression studies.  

Microbial enrichments 

Spatial and temporal agglomeration of specific microorganisms occurs naturally triggered by 

environmental parameters that favor growth of one or several types over others. Similarly the 

laboratory enrichment of microorganisms is achieved by providing defined culture media and 

selective conditions for the growth of subpopulations with specific metabolic traits from a 

bulk environmental sample. The principle of enrichment dates back to the early 1900’s and 

the work of the microbiologists Berjerink and Winogradski. It refers to the process of 

selection and accumulation of organisms compatible with the given conditions and often is an 

initial step in the process of isolation. An enrichment culture opposed to a pure culture is 

composed of a community of multiple organisms of which some may be more abundant than 

others but community composition is not necessarily stable over time. Microbial enrichments 

are important when studying the “unculturable” ones, those microorganisms for which yet no 

pure culture growth conditions were found or which may depend on other organisms for 

sustained metabolism. The enrichments central to this thesis are anaerobic methane-oxidizing 

and hydrogenotrophic sulfate-reducing enrichments. 

Anaerobe methane-oxidizing enrichments 

Anaerobe methane-oxidizing enrichments are here defined as microbial enrichments obtained 

and maintained with methane and sulfate as sole energy source and electron acceptor and with 

carbon dioxide as sole carbon source. The selective conditions promote growth of anaerobic 

methane-oxidizing archaea and sulfate-reducing bacteria, the AOM consortia. All organisms 
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in the enrichments rely on methane as primary energy source; however metabolic by- and 

end-products may allow sustaining a side population of secondary consumers in the 

enrichment. The AOM enrichments studied here were originally initiated with environmental 

samples from methane-rich habitats: shallow water seeps off the coast of Elba, Italy and deep-

sea hydrothermal vent sediments in the Guaymas Basin, Gulf of California, Mexico. 

The Guaymas Basin is part of the Gulf of California, an ocean basin formed by active 

seafloor spreading. The Guaymas Basin is characterized by strong sedimentation of organic 

matter-rich material, which results in thick sediment layers of 100-500 m, covering the 

hydrothermally active center (Teske et al., 2002). Due to fluctuations in the hydrothermal 

activity the subsurface sediment temperatures are highly variable and reach temperatures of 

up to 300°C (Welhan, 1988). The steep temperature gradients lead to thermogenic alteration 

of organic matter and release organic acids, methane and diverse hydrocarbons (Simoneit and 

Lonsdale, 1982; Jørgensen et al., 1990; Martens, 1990). Thermal fluids, enriched in methane 

(up to 16 mM), hydrocarbons and sulfide percolate the sediment and create a system of 

focused and diffusive vents. A diverse anaerobic microbial community including thermophilic 

methanogens, methanotrophs, thermophilic and hyperthermophilic sulfate-reducers as well as 

hyperthermophilic fermenters thrives on these fluids (Jannasch et al., 1988; Burggraf et al., 

1990; Teske et al., 2002; Schouten et al., 2003). Sulfate reduction and AOM were measured 

at temperatures from 60 to 95°C and between 35 to 90°C, respectively (Kallmeyer and 

Boetius, 2004). To further study the organisms responsible for thermophilic AOM, Guaymas 

Basin hydrothermally heated sediments were sampled during the RV Atlantis cruise AT15-56 

in November/December 2009 (Alvin Dive 4570; 27°00.437 N, 111°24.548 W; water depth 

1999 m). The sampling procedure and initial AOM enrichment preparation is described by 

Holler and colleagues (2011a) and in Chapter V of this thesis. Briefly, a sediment core was 

sampled from an area covered with Beggiatoa mats, indicative of AOM activity in the 

underlying sediment. Following in situ temperature profiling, the core was sectioned into 

horizons reflecting distinct temperature regimes: 2-13 cm (4-30°C; horizon A), 14-25 cm 

(30-60°C; horizon B) and 26-45 cm (60-85°C; horizon C). Sediment sections were diluted 1:1 

with artificial seawater medium (Widdel and Bak, 1992) and stored under methane headspace 

until further processing (Holler et al., 2011b). For enrichment of AOM consortia, samples 

were incubated under AOM conditions (sulfate-reducing bacteria medium (Widdel and Bak, 

1992) containing 28 mM sulfate, 0.225 MPa methane and 0.025 MPa carbon dioxide) at 

temperatures respective to the in situ temperature in the depth horizon: 37°C for sediment of 

horizon A and 50°C or 60°C for sediment of horizon B. Activity of enrichments was 
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monitored by sulfide production. Culture medium was exchanged when sulfide concentrations 

reached 12 mM and the enriched biomass was regularly diluted. In long-term approaches 

(>1.5 years), sediment-free enrichments were obtained from the Guaymas Basin samples. 

The seeps off the island Elba are located in shallow water depth (12 m) and are 

characterized by in situ temperatures of 12 to 27°C. Thermal fluids diffusing through the 

sandy sediments are rich in methane and other hydrocarbons. Sediment for AOM enrichments 

was sampled in 2010 by scuba diving. The microbial AOM enrichments established were 

initially sediment-free due to the sampling procedure and sediment texture (see Chapter V). 

Activity was monitored and biomass was diluted as described above. 

The diversity of the enrichment was assessed using molecular biological tools including 

16S rRNA gene sequencing and CARD-FISH (see below). The main community members 

were ANME-2c/Seep-SRB-2 in the Elba enrichment, ANME-1/Seep-SRB-2 in Guaymas 

Basin 37°C, and ANME-1/HotSeep-1 in the Guaymas Basin 50°C and 60°C enrichments 

(Fig. 5). Enrichment subsamples were used for physiological experiments including substrate 

tests, and isolation approaches as well as metagenome and metatranscriptome sequencing.  

Figure 5 AOM consortia types from enrichments studied in this thesis. Cells are visualized by fluorescence 

in situ hybridization. (A) ANME-2c/Seep-SRB-2 aggregate from Elba enrichment (20°C). 

(B) ANME-1/Seep-SRB-2 aggregates from Guaymas Basin enrichment (37°C). (C) ANME-1/HotSeep-1 

filament from Guaymas Basin enrichment (50/60°C). (D) ANME-1/HotSeep-1 aggregate from Guaymas Basin 

enrichment (50/60°C). Red: ANME archaea; green: bacterial partner. Scale bars: 5 µm.  

In the main focus of this thesis are the thermophilic AOM enrichments from Guaymas 

Basin (50°C and 60°C). These enrichments were shown to be initially dominated by 

filamentous AOM consortia (Fig. 5 C) (Holler et al., 2011b), but growth morphology of 

consortia changed over time to large aggregates that reached sizes of 500 µm in diameter 

(Fig. 5 D, 6). These aggregates are of brownish-red color and contain crystal needles and iron 

sulfide precipitates. The contained biomass shows, when excited with fluorescence light of 

specific wavelength distinct autofluorescence patterns indicative of ANME-1 and HotSeep-1 

cells (Fig. 6).  
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Figure 6 Visualization of thermophilic anaerobic methane-oxidizing enrichment. (A) Long-term enrichment 

incubated for 2 years at 50 or 60°C. Enrichment is sediment-free but contains crystals and precipitates 

originating from culture medium and microbial activity. (B) Close up view on the enrichment depicted in (A). 

Microbial biomass occurs in aggregates, some are marked by arrows. (C) Image of a microbial aggregate from 

enrichment depicted in (A). Brownish-red color likely originates from presence of c-type cytochromes; dark 

spots are inorganic iron sulfide precipitates. (D) Bright field image of a microbial aggregate from (A). Large 

crystals are visible. Scale bar: 100 µm. (E) Bright field image of area marked in (D) showing crystal and iron 

sulfide precipitates (dark spots). (F) Fluorescence image of (E). Cells (blue) are stained with DAPI to show 

microbial biomass. (G,I) Bright field images obtained from (A). (H,J) Fluorescence image of (G) and (I), 

respectively. ANME cells are identified by blue autofluorescence which is attributed to the presence of the 

methanogenic cofactor F420 (Doddema and Vogels, 1978). HotSeep-1 cells are identified by green 

autofluorescene. Source of autofluorescence in HotSeep-1 is not known. Scale bars in (E-J): 5 µm. 

Hydrogenotrophic sulfate-reducing enrichments 

Hydrogenotrophic enrichments of sulfate-reducing bacteria were obtained and maintained 

with hydrogen and sulfate as energy source and electron acceptor and with carbon dioxide as 

sole carbon source. Hydrogen is a common electron donor for sulfate reducers and the 

selective conditions favor growth of chemolithoautotrophic sulfate reducers. The 

hydrogenotrophic enrichments studied here were obtained with AOM enrichment subsamples 

as inoculum and by subsequent dilution-to-extinction series (see Chapter II and III). 
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Enrichments were provided with sulfate reducer medium (28 mM sulfate), hydrogen 

(0.18 MPa) and carbon dioxide (0.02 MPa). The enrichment central to this thesis is the 

thermophilic hydrogenotrophic enrichment, obtained from the thermophilic AOM enrichment 

that is highly dominated by HotSeep-1 cells (95%; Fig. 7; see Chapter II and III). The 

diversity of the enrichment was assessed using molecular biological tools including 16S 

rRNA gene sequencing and CARD-FISH (see below). Enrichment subsamples were used for 

physiological experiments including substrate tests, as well as metagenome and 

metatranscriptome sequencing.  

 

Figure 7 HotSeep-1 enrichment 

growing on hydrogen. Fluorescence 

image of DAPI stained cells. Colors are 

changed to black and white for better 

contrast. Scale bar: 5 µm.  

Methods applied to characterize the physiology of microorganisms 

The field of microbial physiology concerns the study of the metabolism, structure, growth and 

genetic basis of the cell and its interrelation with the environment. Classic microbiological 

approaches require a rather defined system (pure cultures). Here we studied slow-growing 

enrichments with substantial contaminations of microorganisms that are not directly involved 

in AOM. Thus, the AOM enrichments needed constant maintenance and experimental 

approaches required optimization for limited biomass and accountance for the presence of 

multiple responsible organisms.  

Substrate tests 

Classically the metabolic capabilities of an isolate are determined by following the 

consumption of a provided substrate and the production of a metabolic product. When applied 

to enrichments such substrate tests aid to identify the possible alternative metabolic 

capabilities of all organisms present. Studying syntrophic associations, the response to 

artificial substrates is indicative for the substrate being an intermediate of the syntrophy or an 
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alternative substrate for one of the partners. We performed substrate tests with enrichment 

aliquots of either the AOM enrichments or the HotSeep-1 enrichment. The enrichments were 

tested for alternative sulfur metabolism, alternative organic and inorganic electron donors and 

alternative organic carbon sources to carbon dioxide. The culture medium was sulfate reducer 

medium, optionally omitting sulfate when testing for alternative electron acceptors or 

disproportionation. All soluble compounds tested were supplemented in defined portion from 

sterile anoxic stock solutions. Metabolic activity was followed by sulfide production, methane 

production and selectively by cell counts. Incubations showing a positive response to the 

substrate were analyzed for the enriched organisms using molecular tools. 

14
C tracer incubations 

Incubation with radiolabeled substrates are advantageous when studying slow growing 

organisms as already trace activities can be measured as tracer turnover. In 
14

C tracer assays 

the sample is incubated with a 
14

C-labeled substrate, here 
14

C-bicarbonate or 
14

C-methane in 

the presence of unlabeled substrate for a defined period of time. To measure methane 

oxidation rates, samples were incubated with carrier-free 
14

C-methane tracer in the presence 

of methane, sulfate and carbon dioxide. At the incubation end, samples were transferred to 

NaOH and immediately sealed. To determine activity of 
14

C-methane, the headspace gas was 

combusted and trapped as carbon dioxide as previously described (Treude et al., 2003; Holler 

et al., 2011a). Radioactivity was subsequently measured by liquid scintillation counting. To 

determine transfer of 
14

C from methane to the product pool (CO2) the sample was acidified 

and in a closed system the emerging carbon dioxide was trapped as carbamide following 

previously reported protocols (Treude et al., 2003; Holler et al., 2011a). The activity of the 

14
CO2 fraction was determined by liquid scintillation counting. The rate of methane oxidation 

was calculated from the tracer turnover, the methane concentration and incubation time.  

To measure the enzymatic back reaction of methane oxidation samples were incubated 

with 
14

C-bicarbonate in the presence of methane, sulfate and carbon dioxide. At the 

incubation end, the activity of the carbon dioxide and methane pool was determined as 

described above. The back reaction rate was calculated from the tracer transfer considering 

the concentration of bicarbonate and the incubation time.  

To quantify carbon assimilation and determine the carbon source assimilated in AOM 

enrichments samples were incubated with either 
14

C-methane or 
14

C-bicarbonate in the 

presence of methane, sulfate and carbon dioxide for a defined period of time. Uptake of 

labeled carbon into biomass was determined by transferring the sample onto filters. After 
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removal of residual inorganic carbon by exposure to HCl atmosphere, radioactivity was 

determined by liquid scintillation counting. Assimilation rates of methane or carbon dioxide 

were calculated from the tracer turnover, considering the concentrations of methane or 

bicarbonate, respectively and incubation time. 

Carbon assimilation by the hydrogenotrophic HotSeep-1 enrichment was determined by 

incubation of samples with 
14

C-bicarbonate following the same approach as described above 

but instead of methane supplying hydrogen as energy source. 

Methods to identify and visualize microorganisms 

The identification and classification of microorganisms has been largely based on the 

comparison of their genetic material since classification systems based on physiological and 

morphological properties were found to be inapplicable. The phylogenetic classification of the 

microbial world has been revolutionized by the use of the 16S rRNA gene as evolutionary 

marker, which was initially introduced by Woese in the 1970’s and remains in use to date. 

The detection of the 16S rRNA in situ applying fluorescently labeled oligonucleotides has 

been widely used to link phylogenetic identification and quantification. We used sequencing 

of the 16S rRNA gene to identify the microbial community in enrichments and applied 

CARD-FISH to show spatial arrangement of dominant groups.  

Amplification, sequencing and analysis of 16S rRNA genes 

The 16S rRNA gene, because of its ubiquitous presence, its conserved function and 

interspaced conserved and variable sequence regions allows inferring phylogenetic 

relatedness of organisms based on comparative analysis of their sequence. We used a clone 

library based approach to identify the dominant members of enrichment cultures based on 

their 16S rRNA gene phylogeny. The employed protocol starts with the PCR amplification of 

the 16S rRNA gene from a bulk DNA extract, using general primer pairs for archaea and 

bacteria. Amplicons were purified in a gel, ligated into a vector and cloned into competent 

Escherichia coli cells. Separation of E. coli cells by plating and subsequent PCR 

amplification and Sanger sequencing of separate colonies allows retrieval of the 16S rRNA 

gene of a specific community member. Sequences were phylogenetically classified using the 

SILVA SSU reference database (Quast et al., 2013) and the ARB software package (Ludwig 

et al., 2004). The number of sequences obtained by this method is rather small (~100 clones 

per library) when compared to next generation sequencing techniques that allow to deeply 
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sequence microbial communities. However, it is sufficient to describe the dominant 

community members and importantly provides full length sequences of those.  

Application of 16S rRNA targeted fluorescence probes (CARD-FISH) 

The rRNA targeted fluorescence in situ detection of microorganisms applies fluorescently 

labeled oligonucleotide probes designed to complementarily bind on a region of the 

16S rRNA of a specific taxonomic group. Those probes may be general to match all bacteria 

or specific to target classes like Deltaproteobacteria or even smaller clades. A more sensitive 

alternative to FISH is CARD-FISH which combines horseradish peroxidase labeled 

oligonucleotide probes with catalyzed reporter deposition of fluorescently labeled tyramides 

(Amann and Fuchs, 2008). The standard CARD-FISH protocol according to Pernthaler and 

colleagues (2002) was used here with some modification. In short, cells were fixed with 

formaldehyde to stabilize cell morphology followed by embedding in agarose and inactivation 

of endogenous peroxidases by hydrogen peroxide treatment. Cell wall permeabilization is 

required for probe penetration into the cells and depends on the type of sample. Cell wall 

permeabilization was achieved by treatment with lysozyme, proteinase K or a combination of 

both. Subsequently, the probe was applied to the sample at stringent temperature and 

formamide concentration in a hybridization buffer. After probe hybridization, remaining 

unbound probe was washed away. Signal amplification was achieved by incubation with 

fluorescently labeled tyramides. The tyramides are converted to a radical stage by the 

horseradish peroxidase enzyme and bind to the cell wall to give a strong signal (Amann and 

Fuchs, 2008). In a final washing step unbound probe was removed. In case of a double 

hybridization the peroxidases are inactivated prior to application of the second probe, which 

follows the same subsequent steps as described. Samples were visualized using 

epifluorescence microscopy with filter sets for excitation and emission respective to the 

applied tyramides. Optionally confocal laser scanning microscopy was applied to obtain 

images of consortia. 

Methods to study genomic potential and gene expression 

The term genome, first proposed 1920 by the botanist Hans Winkler refers to the total 

hereditary information of an organism encoded in DNA, or RNA in viruses. Genomics 

broadly describes the study of genes and their functions in an organism. The related term 

transcriptomics describes the study of RNA, the expressed part of the genome while 
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proteomics describes the study of proteins, the translated part of the genome of an organism. 

Genomics and related ‘omics’ fields have greatly improved the understanding of the 

functioning of single, isolated organisms. In contrast the emerging fields of metagenomics, 

metatranscriptomics or metaproteomics facilitate the study of the collective of the genomes, 

transcriptomes or proteomes of a microbial community. These approaches allow insights into 

the metabolic potential of organisms that remain unculturable and also allow studying the 

metabolic functioning and activity of complex assemblages in their natural environment. We 

used metagenome sequencing of enrichments to reconstruct the draft genomes of dominant 

community members. This genomic information allowed insight into the metabolic potential 

of the organisms. We performed metatranscriptome sequencing of the same enrichments to 

obtain information of the actively expressed genes and in combination with substrate 

incubation experiments determined gene expression patterns. 

From metagenomes to draft genomes 

The metagenome of a sample contains the sum of the genetic information of its members. To 

obtain a metagenome a sample of genomic DNA is randomly fragmented and, in a so called 

shot gun approach, sequenced using next generation sequencing technologies. Subsequently 

bioinformatic tools are required to assemble the short sequence fragments into larger 

fragments (contigs) and assign those genome fractions to members of the community. 

In this approach we used the Illumina sequencing technology for metagenome sequencing 

of AOM enrichments and sulfate-reducing enrichments. The principle workflow of DNA 

library preparation starts with the fragmentation of high molecular weight genomic DNA. 

DNA fragments of the required length for library preparation are selected via the Solid Phase 

Reversible Immobilization (SPRI) bead method or by extracting them from a preparative 

agarose gel (Fig. 8). The two general types of libraries used here are distinguished as paired 

end and mate pair library. For paired end libraries a fragment size of ~500 bp was selected 

using SPRI beads. The protocol of paired end library preparation includes several steps to 

prepare the DNA fragment for adapter ligation including end repair and attachment of a 

5’ A overhang base. Two different adapters are ligated to the 5’ and 3’ end of a fragment to 

facilitate sequencing of the same fragment from both sides. Paired end sequencing generates 

two reads per fragment that represent the 5’ end of the forward and reverse DNA strand, 

respectively, and point towards each other. In contrast to paired end libraries, mate pair 

libraries are prepared from larger fragments excised from an agarose gel, here >5000 bp. The 

principle workflow encompasses the attachment of biotin-labeled adapters to both ends of the 
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DNA fragment followed by fragment circularization and re-fragmentation. Fragments 

containing the biotin tag are enriched. Those fragments represent the two ends of the initial 

long fragment in an inverted direction. After further steps to prepare the fragment for adapter 

ligation, the sequencing adapters are attached. Paired end sequencing of these fragments 

produces reads that point away from one another on the original DNA fragment. While paired 

end reads may overlap to produce a larger fragment mate pair reads do not and are referred to 

as jump libraries as the read pairs represent distant regions on the genome. Mate pair data in 

combination with paired end reads are usually beneficial for the assembly and scaffolding 

process. 

Illumina technology bases on sequencing by synthesis meaning that the base pair 

composition of a DNA strand is captured base-by-base while being synthesized. Prior to 

sequencing the adapter ligated DNA fragments are immobilized on a solid surface, the flow 

cell, and are clonally amplified generating clusters of millions of identical sequences. Illumina 

platforms use the cyclic reversible termination technology with color labeled dNTPs to 

determine base composition of the DNA fragment. In this process, the polymerase enzyme 

reads along the DNA fragment and incorporates a fluorescently labeled dNTP complement to 

the template’s base, which is subsequently detected by fluorescence signal. As each base has a 

unique fluorescence emission the detected color converts to its identity. After cleavage of the 

3’ end blocking group and dye the next sequencing cycle starts. Number of cycles determines 

the read length which currently is limited to a maximum of 300 bp. In paired end sequencing 

runs, two reads are generated in subsequent sequencing steps. Illumina sequencing is one of 

the several next generation sequencing technologies which because of its principle of 

sequencing claims low error rate and allows high throughput and massive data production in 

short time and to moderate costs.  
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Assembly is the process of joining together the small fragments (reads) to reconstruct the 

larger DNA fragments that they originate from and which eventually represent the genome of 

an organism. Assemblies of metagenome datasets are complicated by the fact that the 

fragments originate from several organisms, and hence the reconstruction process becomes 

more complex. Genome assembly and metagenome assembly especially is a compute 

intensive process that is prone to errors as often fragments are joined wrongly or discarded 

besides being part of the assembly. Repeat elements and missing data eventually limit the 

ability to reconstruct the complete fragment initially sequenced and hence often prevent 

complete genome assembly. De novo assemblies (assemblies of genomes for which no 

reference is available) are evaluated based on general metrics such as contig number, contig 

length, assembly length or N50 value. N50 is the contig size above which 50% of the 

assembly is represented. Other measures to judge genome assembly quality are estimates of 

the completeness based on single copy genes, tRNAs or other functional marker genes. In our 

Figure 8 Schematic overview of steps to 

prepare DNA for metagenome 

sequencing. DNA is extracted from 

microbial enrichments followed by 

fragmentation and size separation of 

fragments. Fragments of desired size are 

selected for Illumina paired end and 

mate pair library preparation. For paired 

end sequencing, fragments are end 

repaired and an A overhang is added to 

the 5’ end to allow adapter ligation. For 

mate pair sequencing fragments are 

tagged with a biotin label, circularized 

and refragmented. Biotin-labeled 

fragments are enriched and adapters are 

ligated as for paired end libraries. 

Fragments are then ready for sequencing 

using Illumina technology. See text for 

more details. 
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approach we used the metagenome assembly as a basis to extract and reconstruct the genomes 

of abundant community members (Fig. 9). The initial metagenome assembly was binned, a 

process in which contigs belonging to the same organism are grouped together, according to 

tetranucleotide frequency, GC content and coverage. The bins of organisms of interest were 

extracted for targeted bin reassembly. This included mapping of the original reads to the bin, 

reassembly using mapped reads and re-binning. This process was repeated until no further 

increase of assembly quality was achieved. Contigs were arranged into larger fragments so 

called scaffolds and were annotated using protein domain models, blastp hits and subcellular 

localization patterns. The annotated draft genomes were analyzed for the encoded metabolic 

potential and genetic basis involved in cellular functions. 

 

Figure 9 Schematic overview of metagenome assembly and draft genome reconstruction. Illumina raw reads are 

quality controlled and then assembled to reconstruct larger fragments (contigs) which altogether represent the 

metagenome. Contigs of the metagenome assembly are assigned to separate bins (potentially presenting the 

genome of an organism) in a process called binning. Bins can be selected based on GC and coverage spread of 

contigs. To obtain improved assembly of a selected bin, reads are mapped to the respective contigs and 

reassembly followed by binning of contigs is repeated. The process is iterated until assembly quality is not 

improved anymore. The final bin is annotated and considered a draft genome. Color coding: grey and black for 

forward and reverse Illumina read, respectively and larger assembled fragments (contigs); red and green indicate 

contigs of two different bins; other colors indicate contigs not belonging to the target bin (e.g. contamination 

from genomes of other organisms).  



Chapter I 

43 

Metatranscriptomics – studying gene expression in a diverse culture 

A metatranscriptome captures the genes expressed by a community of microorganisms at a 

certain time point and therewith provides a snapshot of the active microbial community and 

its metabolism. Because RNA and especially mRNA, the template for protein synthesis, are 

easily degradable, preservation of RNA at the moment of sampling is crucial to avoid RNA 

loss and artificial changes in the gene expression profile. In our studies we worked with 

thermophilic anaerobes for which a transition from their growth temperature and anaerobic 

milieu is likely to affect gene expression patterns. Furthermore, because biomass of 

enrichment cultures was limited, the method for RNA extraction had to be optimized for low 

input samples. For RNA expression experiments we therefore used a protocol that included 

initial sample preservation in RNAlater (Sigma, Aldrich) under in situ conditions (60°C and 

specific headspace gas composition). This step was crucial since omitting it resulted in low 

quantity and poor quality of RNA. RNAlater was subsequently removed by transferring the 

sample onto a 0.2 µm pore size polycarbonate filter using a vacuum filtration set up. RNA 

was immediately extracted from the filter using a commercial RNA extraction kit (see also 

Chapter II).  

We performed Illumina sequencing on total RNA extracts from AOM enrichments and 

HotSeep-1 enrichments using strand-specific library preparation and paired end or single end 

sequencing. Because of the low amount of total RNA input, an enrichment of mRNA was 

omitted and total RNA was sequenced. The protocol for RNA Seq library preparation starts 

with fragmentation of input RNA. Next, RNA fragments are reverse transcribed into cDNA, a 

step called first strand synthesis. In the next step, the second strand is synthesized using the 

cDNA as template. Finally, adapters are ligated to the cDNA fragments to allow Illumina 

sequencing as described above.  

The reads obtained were mapped to draft genomes and quantified as counts per genome 

feature (gene). Several ways exist to represent RNA Seq data. To quantify and compare gene 

expression, the transcript counts per genome feature were first normalized to the length of the 

feature (bp). To obtain its relative transcription value (T), the normalized counts value of a 

genome feature i was put into relation with the normalized counts values of all other genome 

features using the following equation, according to Li and colleagues (2010):  

 Ti = Xi / li × (∑ Xj / lj)
−1 

(2) 

  

Figure 8 Schematic overview of 

steps to prepare DNA for 

metagenome sequencing. DNA is 

extracted from microbial enrichments 

followed by fragmentation and size 

separation of fragments. Fragments of 

desired size are selected for Illumina 

paired end and mate pair library 

preparation. For paired end 

sequencing, fragments are end 

repaired and an A overhang is added 

to the 5’ end to allow adapter ligation. 

For mate pair sequencing fragments 

are tagged with a biotin label, 

circularized and re-fragmented. 

Biotin labeled fragments are enriched 

and adapters ligated as for paired end 

libraries. Fragments are then ready 

for sequencing using Illumina 

technology. See text for more details. 
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where X = counts and l = length of the feature (bp). For ease of notation, the relative 

transcription values were multiplied by 10
6
, and are given in terms of transcripts per million 

(TPM). When comparing data from replicate substrate incubation experiments, differential 

gene expression was tested using ANOVA-like statistics and applying a compositionality 

correction to the dataset. 
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Intercellular wiring enables electron transfer between methanotrophic archaea and 

bacteria 

Gunter Wegener, Viola Krukenberg, Dietmar Riedel, Halina E. Tegetmeyer & Antje Boetius 

Published in Nature 526, 587-590 (22. October 2015) 

This study reports on the physiology of thermophilic methane-oxidizing enrichments 

consisting of consortia of ANME-1 and HotSeep-1. Based on results from substrate 

experiments in combination with gene expression analysis and electron microscopic 

visualization techniques a model of direct interspecies electron transfer is proposed for the 

archaeal-bacterial interaction in thermophilic AOM.  

The study was cooperatively designed by G. Wegener, V. Krukenberg and A. Boetius. 

G. Wegener, V. Krukenberg and H.E. Tegetmeyer performed experiments and data analysis. 

D. Riedel performed electron microscopy. G. Wegener, V. Krukenberg and A. Boetius wrote 

the manuscript with contributions from the other co-authors. 

Chapter III 

Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium 

involved in the thermophilic anaerobic oxidation of methane 

Viola Krukenberg, Katie Harding, Michael Richter, Frank Oliver Glöckner, Harald Gruber-

Vodicka, Birgit Adam, Jasmine Berg, Katrin Knittel, Halina E. Tegetmeyer, Antje Boetius 

& Gunter Wegener 

Submitted to Environmental Microbiology (21. October2015) 

This study describes the first ANME-free enrichment of an AOM partner bacterium, 

HotSeep-1. The physiology and genome of this representative of the HotSeep-1 cluster are 

analyzed and its deep-branching phylogenetic position is discussed with the proposal to name 

this chemolithoautothrophic sulfate-reducing bacterium Candidatus Desulfofervidus auxilii.  

The study was designed by V. Krukenberg, A. Boetius and G. Wegener. Experiments were 

performed by V. Krukenberg and K. Harding. Data were analyzed by V. Krukenberg, 

K. Harding, M. Richter, H. Gruber-Vodicka, K. Knittel and G. Wegener. Microscopic 

imaging was performed by V. Krukenberg, B. Adam, J. Berg and H. Gruber-Vodicka. 

V. Krukenberg, A. Boetius and G. Wegener wrote the manuscript with contributions from all 

co-authors. 
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Chapter IV 

Comparative analysis of the metabolic potential of different subgroups of anaerobic 

methanotrophic archaea of clade 1 

Viola Krukenberg, Harald Gruber-Vodicka, Halina E. Tegetmeyer & Gunter Wegener 

In preparation for submission 

In this study the draft genomes of meso- and thermophilic ANME-1 are analyzed and 

compared to the available draft genome of psychrophilic ANME-1. The general metabolic 

potential is shown to be shared among ANME-1 and a modified reverse methanogenesis 

pathway is proposed to be a likely characteristic of the ANME-1 clade. We found indication 

for the capability of direct interspecies electron transfer in all analyzed ANME-1 subclades 

suggesting similar metabolic interspecies interaction as described in the thermophilic 

subclade. 

The study was designed by V. Krukenberg and G. Wegener. Experiments and data analysis 

were performed by V. Krukenberg, H.E. Tegetmeyer and H. Gruber Vodicka. The manuscript 

was written by V. Krukenberg and G. Wegener and with contributions from all co-authors. 

Chapter V 

Metabolic capabilities of microorganisms involved in and associated with the anaerobic 

oxidation of methane 

Gunter Wegener, Viola Krukenberg, S. Emil Ruff, Matthias Y. Kellermann & Katrin Knittel 

Submitted to Frontiers in Microbiology; Special issue: Living on gas – microbial degradation 

of gaseous alkanes, from mud to genes (23. October 2015) 

In this study we compared the phylogenetic composition and metabolic capabilities of 

sediment-free anaerobic methane-oxidizing enrichments. We found distinct dominating AOM 

consortia types and a differing phylogenetic composition including the presence of species 

that are unlikely directly involved in AOM. We could show that alternative catabolic 

processes such as methanogenesis and sulfur disproportionation are not performed by ANME 

and their partner bacteria but by less abundant background community members.  

This study was designed by G. Wegener and V. Krukenberg. Experiments and data 

analysis were performed by G. Wegener and V. Krukenberg with contributions of 

M.Y. Kellermann, S.E. Ruff and K. Knittel. The manuscript was written by G. Wegener and 

V. Krukenberg with contributions from all co-authors. 
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Abstract 

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the 

greenhouse gas methane from the ocean floor
1,2

. In marine sediments, AOM is performed by 

dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing 

bacteria (SRB) inhabiting the methane-sulfate transition zone
3-5

. The biochemical pathways 

and biological adaptations enabling this globally relevant process are not fully understood. 

Here we studied the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 

archaea and their sulfate-reducing partner bacteria HotSeep-1
6
 thriving at 60°C, to test the 

hypothesis of a direct interspecies exchange of electrons
7,8

. The activity of TAOM consortia 

was compared to the first ANME-free culture of an AOM partner bacterium that grows on 

hydrogen as sole electron donor. The thermophilic ANME-1 do not produce sufficient 

hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of 

the HotSeep-1 partner by hydrogen addition represses methane oxidation and metabolic 

activity of the ANME-1. Further supporting the hypothesis of direct electron transfer between 

both partners, we observed that under TAOM conditions, both the ANME and the HotSeep-1 

bacteria overexpress genes for extracellular cytochrome production, and form cell-to-cell 

connections resembling the nanowire structures for interspecies electron transfer between 

syntrophic consortia of Geobacter
9,10

. HotSeep-1 highly expresses genes for pili production 

only during consortial growth on methane, and the nanowire-like structures are absent in 

HotSeep-1 cells isolated on hydrogen. These observations suggest that direct electron transfer 

is a principle mechanism in thermophilic AOM, which may also explain the enigmatic 

functioning and specificity of other methanotrophic ANME-SRB consortia. 
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Main text 

The anaerobic oxidation of methane with sulfate (AOM) controls the emission of methane 

from the seabed
1,3,4

. At environmental conditions the net reaction (Eq. 1)  

 CH4(aq) + SO4
2‒

    HS
‒
 + HCO3

‒
 + H2O (1) 

allows an energy yield of only ‒20 to ‒40 kJ per mol methane oxidized, shared between the 

two partner organisms. Generally, AOM consortia show exceptionally slow growth with 

generation times >2 months, which has so far impeded their cultivation
6,11

. Sulfate-coupled 

AOM in marine habitats is performed by members of three different ANME clades 

(ANME-1,-2,-3), which associate physically with specific partner bacteria of the 

Desulfosarcina/Desulfococcus or the Desulfobulbus cluster
11-13

, suggesting an obligate 

functional role of the sulfate-reducing bacteria in AOM. Early studies had already suggested a 

syntrophic coupling of both partners via a transfer of reducing equivalents
4,14

. Yet, the 

underlying mechanisms remain unknown. Biochemically, the anaerobic oxidation of methane 

appears in the ANME and involves a reversal of the enzymatic machinery of the 

methanogenesis pathway
15-18

. However, reversing an energy-yielding process is per se 

endergonic, and hence AOM requires an efficient transfer of reducing equivalents from 

methane to sulfate, so that the ANME can gain energy by AOM
14,19

. Previous results indicate 

that the sulfate reducing partner bacteria
4,20

 act as electron sink of AOM, but recently also 

members of the ANME-2 clade were suggested to perform incomplete sulfate reduction by a 

yet unknown pathway
21

.  

In this study we focused on the hypothesis of syntrophic growth in thermophilic AOM 

consortia by direct interspecies electron transfer, and tested this and alternative hypotheses 

(mechanisms illustrated in Extended Data Fig. 1). The studied sediment-free TAOM 

enrichment was cultivated at 60°C supplied with 28 mM sulfate and 0.2 MPa methane, 

allowing an energy yield (ΔGR) of −34 kJ mol
–1

, and resulting in doubling times of approx. 

68 days (Fig. 1a) and growth efficiencies of 2% (see Methods). The culture is dominated by 

consortia of ANME-1 and HotSeep-1 appearing in an approximate 1:1 stoichiometry. Due to 

their larger size ANME account for around 75% of the consortial biomass (Fig. 1b; Extended 

Data Table 1). Using a dilution-to-extinction approach (1:10 to 1:10
9
) with hydrogen 

(0.2 MPa) and sulfate (28 mM), we were able to separate a strain of HotSeep-1 identical with 

the partner bacterium of the TAOM consortium (>99% identity in 16S rRNA gene and 

internal transcribed spacer region (ITS); and (genomic) average nucleotide identity (ANI) of 

>99%; Extended Data Table 2). This strain grows without ANME-1 as single cells or in 



Chapter II  

50 

monospecies aggregates (Extended Data Fig. 2a) and with a single contaminant, 

Archaeoglobus sp. (1-5% of all cells), which does not form consortia with HotSeep-1. 

Substrate tests with the HotSeep-1 culture showed that it is an obligate chemolithoautotroph 

with hydrogen and sulfate as sole molecular redox couple and doubling times of 4 to 6 days 

(see Methods and Extended Data Fig. 2b,c). Although the supplied hydrogen (0.2 MPa) could 

provide a tenfold higher energy yield to HotSeep-1 than syntrophy in TAOM (ΔGR=−151 kJ 

mol
-1

 vs. −17 kJ mol
-1

, i.e. half of the net energy yield of TAOM consortia), its carbon 

assimilation remained similarly low (approx. 1.5% of converted reducing equivalents).  

We compared the activity of the TAOM consortia and the hydrogenotrophic HotSeep-1 by 

physiological experiments combined with metagenomic and metatranscriptomic analyses and 

electron microscopy of the involved organisms. A classical experiment for the study of 

syntrophy in dual-species consortia is the addition of potential intermediates that could be 

theoretically produced by the ANME as a by-product of methane oxidation, and consumed as 

electron donor by the partner SRB (mechanisms illustrated in Extended Data Fig. 1). If these 

compounds were relevant in interspecies transfer of reducing equivalents, their amendment to 

the medium should favour the electron-accepting partner, and should repress the electron 

transfer between the consortial partners
14,21-23

. In contrast, a model of direct electron transfer 

via nanowires as proposed by 7,8,10, would be insensitive to such external additions of 

potential intermediates, if the amendments do not represent an alternative, preferred substrate 

for one of the partner organisms. 

With the exception of hydrogen, none of the potential intermediates added as sole electron 

donor caused significant microbial sulfide production in the TAOM enrichment (Extended 

Data Table 3). Carbon monoxide and methyl sulfide even inhibited sulfide production when 

added together with methane. Carbon monoxide is known to inhibit type-c cytochrome 

activity, which may play an important role in intra- and intercellular transfer of reducing 

equivalents in AOM
17

. Methylated substrates may interfere with the reverse, oxidative 

operation of the methanogenesis pathway
24

. The addition of colloidal zero-valent sulfur to the 

TAOM culture (supplied in concentrations from 1 to 25 mM, Extended Data Fig. 3a) did not 

result in production of sulfide and sulfate as reported in a previous study with ANME2a/DSS 

consortia
21

. However, with hydrogen as electron donor (0.16 MPa), sulfide production rates 

increased 3 to 8 fold compared to replicate incubations with methane as sole electron donor at 

TAOM conditions (Fig. 1c; Extended Data Table 3). We investigated further the influence of 

hydrogen on the oxidation of methane using headspace-free incubations (Extended Data 

Fig. 4). In incubations with methane and hydrogen, hydrogen was first selectively consumed 
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and methane oxidation was repressed. When hydrogen was consumed, methane oxidation 

rates recovered to the same level as in replicate incubations with only methane, suggesting an 

inhibition of methane oxidation in the presence of hydrogen. To investigate the influence of 

hydrogen on the consortial partners, we mapped total RNA reads to the genome drafts of 

ANME-1 and HotSeep-1 after exposure to different substrate conditions (Fig. 1d, for read 

numbers see Supplementary Information Table 1). Under TAOM conditions, relative RNA 

expression patterns reflected the biomass ratio between the ANME and their partner 

bacteria (3:1) (Fig. 1d). The addition of hydrogen caused a strong relative increase of 

HotSeep-1 over ANME gene expression, even in the presence of methane. This indicates that 

if the partner SRB does not act as electron sink for reverse methanogenesis, ANME activity is 

repressed; an effect of syntrophic cooperation that was predicted previously
14

. 

To test the hypothesis of hydrogen production by the ANME as direct intermediate in 

TAOM (Extended Data Fig. 1) that would be consumed by HotSeep-1, we assessed the 

presence and production of hydrogen under TAOM conditions. Maximal hydrogen 

concentrations were only about 2 Pa in the TAOM enrichments, and re-established within 

7 hours after gas phase exchange (Fig. 2a). Thermodynamically, HotSeep-1 could thrive on 

these low hydrogen concentrations with an energy yield of approx. −24 kJ mol
−1

. However 

the production of hydrogen in TAOM cultures corresponded to only ~0.5% of the theoretical 

hydrogen production rates as reflected by sulfide production (according to the stoichiometry 

of reverse methanogenesis; Fig. 2b). This is insufficient to explain consortial growth of 

HotSeep-1. Furthermore, we could not detect catalytic subunits of (Fe,Fe) or 

(Ni,Fe)hydrogenases in the ANME-1 draft genome. In conclusion, hydrogen appears to be an 

alternative growth substrate for HotSeep-1 when available externally, but is not provided by 

ANME-1 as intermediate in TAOM.  

An alternative explanation of the TAOM interaction could be the direct interspecies 

electron transfer (DIET) between ANME-1 and HotSeep-1, also hypothesized as principle 

mechanism for syntrophic growth of AOM consortia
8,10,17,25

. A switch from interspecies 

hydrogen transfer to DIET has been previously shown for the dual-species interaction 

between Geobacter sulfurreducens and Geobacter metallireducens, benefiting both consortial 

partners, as evidenced by their increased growth rates via DIET
10,26

. In their tightly packed 

consortia, a dense network of cell-cell connections was detected by transmission electron 

microscopy and immunogold labeling, likely serving in electron transfer
10

. This finding 

supports recent observations of redox-dependent staining of the intercellular matrix of 

ANME-2/SRB consortia
8
. The functioning of electron transfer via conductive cell-to-cell 
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connections (nanowires) is not fully understood, but apparently involves the expression of the 

pilin protein PilA of the TypeIV pili (T4P) together with certain c-type cytochromes
9,10,27,28

.  

To find evidences for DIET in TAOM we analysed the genome and specific gene 

expression of ANME-1 and HotSeep-1, with the focus on similarities to the Geobacter 

consortia using DIET as main electron transfer mechanism. The ANME-1 draft genome also 

contains several potentially extracellular multiheme c-type cytochromes, some of which are 

highly expressed during TAOM, but no genes for pili formation (Extended Data Table 4, 

Supplementary Information Table 2). However, HotSeep-1 comprises the genes for the 

biosynthesis and assembly of TypeIV pili, as well as large multiheme c-type cytochromes, 

both with high amino acid similarity to respective proteins in Geobacter spp.
29

 (Extended 

Data Table 4, Supplementary Information Table 3-4). We further investigated expression 

patterns of these potentially DIET-related genes, in comparison to genes for AOM (mcrA) and 

sulfate reduction (dsrA), representing key catabolic processes in ANME-1 and HotSeep-1 

(Fig. 3a, for statistical analyses see Supplementary Information Table 5). In agreement with 

the results from total RNA expression (Fig. 1d), a switch from methane to hydrogen (or 

methane plus hydrogen) as energy sources caused an immediate drop in mcrA and 

cytochrome expression in the ANME, as well as a reduction of the expression of the 

HotSeep-1 pili and cytochromes. Comparing relative gene expression of HotSeep-1 in 

consortial growth on methane, versus single growth on hydrogen, both pilA and cytochrome c 

are clearly overexpressed under TAOM conditions, also when compared to dsrA (Extended 

Data Fig. 5, for statistical analyses see Supplementary Information Table 5). 

This observation is supported independently by transmission electron microscopy on thin 

sections of TAOM consortia. Using two different embedding techniques we found a dense 

network of pili-like structures connecting HotSeep-1 to ANME-1 cells (Fig. 3b-c, Extended 

Data Fig. 6a), resembling the nanowire structures found in Geobacter consortia (visualized 

with the same methods, see Extended Data Fig. 6b). In TAOM consortia the nanowires are 

larger, and appear more dense, with diameters of approx. 10 nm and apparent lengths of 

100 to >1000 nm. In agreement with the genomic patterns, these wires seem to be formed by 

the partner bacteria, connecting to the ANME-1 at their polar sides (Fig. 3b-d). In contrast, 

HotSeep-1 cells in mono-species aggregates isolated on hydrogen show smooth surfaces 

without such extracellular extensions (Fig. 3e,f), indicating that the observed intercellular 

structures are specific to consortial growth under TAOM conditions, and not only related to 

cellular attachment. 
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In conclusion, our data show that consortial growth of the thermophilic ANME-1 archaea 

and HotSeep-1 bacteria is likely based on similar principles as those in Geobacter consortia, 

where direct interspecies electron transfer is mediated by intercellular wiring by pili-like 

structures and outer-membrane multi-heme cytochromes. The underlying biophysics and 

biochemistry of intercellular wiring for direct electron transfer needs further investigation. If 

this mode of syntrophic cooperation between the electron-generating archaea and nanowire-

producing bacteria is also the underlying mechanism for other types of AOM consortia as 

suggested recently
8
, it may explain the enigmatic specificity of the dual-species partnerships 

in AOM in general.  

Methods  

Cultivation of TAOM consortia 

Sediment-free, thermophilic AOM enrichment cultures were obtained after 1.5 years by semi-

continuous incubation of hydrothermal vent sediments from Guaymas Basin with sulfate 

reducer medium
31

 and 0.225 MPa CH4 (+0.025 MPa CO2) as sole energy source at 60°C as 

described by ref. 6. Culture medium was replaced and samples were diluted 1:2 when sulfide 

concentrations exceeded 12 mM. For the different experiments, subsamples of the main 

culture (biological replicates) were incubated in parallel. 

DNA extraction, sequencing and phylogenetic classification of TAOM partners 

Genomic DNA was extracted as described before
32

 from an active TAOM culture. The 

protocol encompassed three cycles of freezing and thawing, chemical lysis in a high-salt 

extraction buffer (1.5 M NaCl) by heating of the suspension in the presence of sodium 

dodecyl sulfate and hexadecyltrimethylammonium bromide, and treatment with proteinase K. 

To amplify bacterial 16S rDNA genes the primer pair GM3/GM4
33

 was used. For archaeal 

16S rDNA genes the primers 20F
34

 and Arc1492R
35

 were selected. PCR reactions were 

performed according to ref. 6. The phylogenetic affiliation was inferred with the ARB 

software package
36

 and release 115 of the ARB SILVA database
37

. Representative 16S rRNA 

gene sequences are deposited at NCBI with the accession numbers KT152859-KT152885.  
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Visualization of TAOM aggregates by fluorescence in situ hybridisation 

Cell aliquots were fixed in 2% formaldehyde for 2 h at room temperature, washed with 

1x phosphate buffered saline (PBS; pH 7.4). Fixed cell suspensions were treated with mild 

sonication (Sonoplus HD70; Bandelin) and aliquots of 50-250 µl were filtered onto GTTP 

filter (0.2 µm pore size, 20 mm diameter). CARD-FISH was performed as described 

previously
38

 with the following modifications: For cell wall permeabilization, filters were 

sequentially incubated in lysozyme solution (10 mg ml
−1

 lysozyme powder, 0.1 M Tris–HCl, 

0.05 M EDTA, pH 8) for 15-30 min at 37°C and proteinase K solution (0.45 mU ml
−1

, 

0.1 M Tris–HCl, 0.05 M EDTA, pH 8, 0.5 M NaCl) for 2 min at room temperature. 

Endogenous peroxidases were inactivated by incubating the filters in 0.15% H2O2 in methanol 

(30 min, room temperature). The oligonucleotide probes ANME-1-350 and HotSeep-1-590 

were applied with formamide concentrations according to ref. 6. For dual CARD-FISH, 

peroxidases of the first hybridization were inactivated by 0.3% H2O2 in methanol (30 min, 

room temperature). Catalysed reporter deposition was combined with the fluorochromes 

Alexa Fluor 488 and Alexa Fluor 594. Filters were stained with DAPI (4,6-diamidino-2-

phenylindole). Micrographs were obtained by confocal laser scanning microscopy (LSM 780; 

Zeiss; Oberkochen, Germany).  

Influence of potential AOM intermediates/alternative HotSeep-1 substrates on sulfide 

production rates 

All experiments were performed with artificial seawater medium containing 30 mM of 

carbonate buffer at TAOM cultivation temperature (60°C), except when specified otherwise. 

To ensure equilibration of gas phases, samples were agitated on shaking tables. Highly pure 

gases and chemicals were used as amendments to the incubations. Standard TAOM 

conditions are defined here as 0.2 MPa methane and 28 mM sulfate. To test the TAOM 

enrichment for substrate specific sulfide production, triplicate culture aliquots (10 ml in 20 ml 

Hungate tubes) were supplemented with different substrates (Extended Data Table 2) at 

concentrations of 20 mM, except of methyl sulfide and carbon monoxide (both 0.05 MPa), 

and hydrogen (0.16 MPa) with and without methane (0.2 MPa). Zero-valent sulfur was 

prepared according to ref. 39 and was supplied as dissolved species. For this compound we 

additionally tested sulfide development via disproportionation in a concentration gradient 

from 1-12 mM final S
0
 concentration (Extended Data Fig. 6a). As positive reference, methane 

was provided at 0.2 MPa (at 60°C roughly equivalent to 1.6 mM in solution). Sulfide 

production in the experiments was repeatedly measured every 3 to 4 days using the copper 
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sulfide assay
40

 and absorption spectrometry at 480 nm. TAOM rates with methane as sole 

energy source (0.2 MPa) reached approx. 0.100 +/ ̶ 0.030 µM d
−1

, compared to a negative 

control (nitrogen; <0.001 µM d
−1

). Rates determined for other substrates were compared to 

those under TAOM conditions. 

Influence of hydrogen addition on methane oxidation in TAOM cultures 

To determine the effect of hydrogen addition on methane oxidation rates, TAOM culture 

aliquots were supplemented with methane:hydrogen (0.15 MPa and 0.05 MPa), and only 

methane as control (0.15 MPa). Cultures were incubated headspace-free at 50°C for this 

experiment, because hydrogen was too rapidly consumed at 60°C for time-course 

experiments. To determine concentrations of methane and hydrogen, 1 ml medium was 

sampled with gas-tight glass syringes, and the sampled medium was concurrently replaced 

with substrate-free medium to avoid the formation of a headspace. The sampled medium was 

injected through the septum of 10 ml Exetainer® filled with 1 ml NaOH and concentrations of 

CH4 and H2 were measured as described below.  

Presence and production of hydrogen in active TAOM cultures with and without 

inhibition of sulfate reduction 

To determine hydrogen concentrations at TAOM conditions, 20 ml culture were transferred 

into 156 ml bottles at 60°C and gas phases were repeatedly sampled using glass syringes 

(1 ml) combined with direct measurements on the gas chromatograph. Cultures incubated 

≥3 days reached stable hydrogen concentrations. A comparison to molybdate addition is 

provided in Extended Data Fig. 6b,c. To quantify molecular hydrogen production in TAOM, 

20 ml culture was supplied with sodium molybdate (10 mM final conc.). This molybdate 

concentration assured complete inhibition of hydrogen-dependent sulfate reduction as shown 

in replicate incubations of TAOM culture (1 to 25 mM molybdate) with hydrogen (0.1 MPa) 

as sole electron donor (Extended Data Fig. 6d). Samples were stored at 60°C on a shaking 

table and repeatedly sampled by glass syringes. Concentrations of methane and hydrogen 

were measured via gas chromatography coupled to flame ionization detection (Focus GC, 

Thermo) and via reducing compound photometry (RCD; Peak Performer 1 RCP; Peak 

Laboratories; Mountain View, CA, USA). 
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Determination of carbon fixation by TAOM consortia 

Replicate culture aliquots (n=5) were incubated in 5 ml Hungate tubes supplemented with 

methane, sulfate and 
14

C-labeled inorganic carbon (380 kBq). AOM-independent carbon 

fixation was determined under N2 atmosphere (n=5). To determine methane oxidation rates, 

replicate vials were incubated with 
14

C-methane (14 kBq). Incubations were performed at 

60°C for 24 hours. Samples were blotted onto 0.2 µm mixed cellulose esters membrane filters 

(Millipore, Merck, Darmstadt, Germany). Filters were dried and potential residual inorganic 

carbon was removed by exposing the filters to an HCl atmosphere for 24 hours. Radioactivity 

in liquid aliquots (0.1 ml) and filters was determined by liquid scintillation counting 

(scintillation mixture; Filtercount; Perkin Elmer, Waltham, MA, USA; scintillation counter 

2900TR LSA; Packard, Waltham, MA, USA). 

Cultivation of HotSeep-1 on molecular hydrogen 

To isolate the hydrogenotrophic sulfate reducers in the TAOM enrichment, aliquots were 

transferred to Hungate tubes (20 ml) and diluted 1:10 to 1:10
9
 with marine sulfate reducer 

medium. All vials were amended with 0.2 MPa H2:CO2 (80:20) gas phase, and additionally 

stored in N2 atmosphere to prevent oxygen flux into the culture vials. Vials were stored at the 

TAOM temperature optimum (60°C) and measured for sulfide production using the copper 

sulfate assay
40

. To identify cultivated microorganisms, the 16S rRNA gene of active 

hydrogenotrophic cultures was directly amplified from freeze-thawed pellets of culture 

aliquots (primer pair GM3/GM4) and sequenced as described above. The phylogenetic 

affiliation was inferred with the ARB software package
36

 and release 115 of the ARB SILVA 

database
37

. Representative sequences are deposited at NCBI with the accession numbers 

KT152886-KT152887. 

Physiology experiments with HotSeep-1 

Electron acceptor tests. Culture aliquots (1 ml 10 fold diluted in artificial anoxic seawater 

medium) were supplied with different potential electron acceptors (colloidal sulfur, sulfite, 

thiosulfate) with and without addition of hydrogen. Potential growth on alternative carbon 

sources (i.e. acetate, butyrate, peptone, methyl sulfide) was tested. Growth rates. Growth rates 

were independently determined from the development of sulfide concentrations and cell 

counts (from DAPI stained cells for total cell numbers and from fluorescence in situ 

hybridized cells for specific cell numbers) from replicate cultures (grown from 10% 

inoculum). Growth efficiencies. Growth efficiencies were determined in a 
14

C-DIC radiotracer 
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assay. Replicate cultures were spiked with 
14

C-DIC (~5.4 MBq) and incubated with H2:CO2 

or, as control with N2:CO2 headspace. Sulfate-dependent hydrogen consumption was 

determined as by the increase of sulfide (colorimetrically
40

) and by the decrease of sulfate (via 

ion chromatography) in the medium. Fixed carbon was measured from culture aliquots (5 ml 

volume) blotted on filters as described above. Concentrations of radioactivity on the filter and 

the medium were determined via scintillation counting. The total carbon fixation was 

calculated as 
14

C uptake into particulate organic carbon multiplied by total DIC 

[
14

C-POC (Bq mlculture
−1

) / 
14

C-total (Bq mlculture
−1

) × DIC (mmol mlculture
−1

)] and values are 

compared normalized to reducing equivalents with the consumption of sulfide. 

Metagenome sequencing and draft genome assembly of ANME-1 and HotSeep-1 

Genomic DNA was extracted from TAOM and HotSeep-1 enrichment cultures (as described 

above) and prepared for Illumina sequencing using the Nextera mate pair sample preparation 

kit (Illumina, CA, USA), following the Gel-Plus protocol of the manufacturer's user guide. 

DNA fragments with a length of approx. 5-8 kb were extracted from a preparative gel prior to 

circularization. Additionally a paired end read library with insert size of 500 bp was 

constructed for the TAOM enrichment using the TruSeq library preparation kit. Libraries 

were sequenced on a MiSeq instrument (MiSeq, Illumina), in a 2x250 bases paired end run. 

Quality controlled mate pair reads were assembled using the SPAdes genome assembler 

v.3.5.0
41

 with default values of k and the --hqmp option. Assembled contigs from the TAOM 

metagenome were binned based on tetranucleotide frequency using the Metawatt software
42

. 

ANME-1 and HotSeep-1 specific bins were extracted for targeted reassembly using the 

SPAdes genome assembler v.3.5.0
41

 with mapped mate pair and paired end read data and 

default values of k and subsequently were used as draft genomes. A HotSeep-1 draft genome 

was also obtained from the assembled contigs of the highly enriched HotSeep-1 culture 

metagenome (hydrogenotrophic HotSeep-1).  

Draft genome analysis 

Draft genomes were annotated with prokka
43

, and the draft genome of HotSeep-1 (obtained 

from the hydrogenotrophic HotSeep-1 enrichment) was additionally annotated with an in 

house pipeline and analysed using GenDB
44

 and JCoast
45

. The annotation of reported genes 

was manually curated. An expectation (E)-value cut-off of 10
−5

 was considered for all 

predictions of putative protein functions. Identity of the enriched hydrogenotrophic 

HotSeep-1 and the TAOM partner HotSeep-1 was evaluated by pairwise blast search of the 
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nucleotide sequence of the 16S and 23S rRNA genes, functional and housekeeping genes and 

the intergenic spacer region (ITS) (see Exteded Data Table 2) derived from the draft genome 

of the TAOM partner HotSeep-1 (query) vs the hydrogenotrophic HotSeep-1 (subject). To 

verify that the organisms belong to the same species the average nucleotide identity (ANI) 

and the tetranucleotide frequency correlation of the two draft genomes were determined using 

JSpecies
46

 (v.1.2.1). Analyses resulted in tetranucleotide frequency correlation of 0.999 and 

ANI of >99%. To check for absence of ANME-1 in the hydrogenotrophic HotSeep-1 culture 

metagenomic reads were mapped to the SILVA SSU 119 reference database (bbmap v.35 and 

pyhloflash v.1.5) for phylogenetic classification at minimum identities of 90%, 95% and 97% 

resulting in approx. 3500, 2100, 1500 classified 16S rRNA gene fragments, respectively 

which were screened for hits to ANME related sequences. 

To identify potential cytochrome c and T4P genes in the draft genomes of ANME-1 and 

HotSeep-1 protein domains were predicted using hmmscan (HMMER 3.0
47

) with the PfamA
48

 

and TIGRFAM
49

 reference databases. Potential cytochromes were identified by the CXXCH 

motive and cytochrome c specific protein domain models. Potential T4P genes were identified 

using protein models related to T4P. ANME-1 cytochrome and HotSeep-1 cytochrome and 

pili genes were compared for their best matching hits in the G. sulfurreducens (strain PCA) 

and G. metallireducens genome and the NCBI non-redundant protein database using blastp. 

Cytochrome annotation based on detected protein domains in PfamA, pili annotation based on 

detected protein domains and amino acid sequence. Subcellular localization was predicted 

with PSORTb
50

 (v.3.0.2). For cytochromes the number of potential heme-binding sites was 

derived from the abundance of the CXXCH motif. For sequence comparison to the NCBI 

non-redundant protein database and Geobacter spp. and for details on protein domains and 

subcellular localization prediction see Supplementary Information Table 2a,b (ANME-1 

cytochromes), Supplementary Information Table 3a,b (HotSeep-1 cytochromes), and 

Supplementary Information Table 4a,b for HotSeep-1 TypeIV pili biogenesis.   

The ANME-1 draft genome was searched for genes encoding catalytic subunits of 

hydrogenases using blastp search against known genes of catalytic subunits of NiFe and FeFe 

hydrogenases (MvhA, EchA, FrhA, VhuA, VhtA, EhaO, HymC). Annotation of genes with 

hits was evaluated by blastp search against the NCBI non-redundant protein database for best 

matching reference sequences related to hydrogenases, but none were found.  
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Transcriptome analysis of TAOM and HotSeep-1 

To harvest cells for transcriptome analyses a 3.5 days experiment with replicates of 20 ml 

culture in 60 ml vials was carried out (Fig. 1). From triplicate TAOM cultures incubated on 

methane as control, on hydrogen, on methane/hydrogen mixture, or nitrogen as negative 

control, ~80% of the enrichment medium was removed and RNA was preserved using pre-

heated RNA later (Life Technologies, ThermoFisher Scientific). Total RNA was extracted 

using the Quick-RNA MiniPrep kit (Zymo Research, Irvine, CA, USA), treated with DNase I 

(Roche, Rotkreuz, Switzerland) and purified using the RNeasy MinElute Cleanup kit (Qiagen, 

Hilden, Germany) following manufacturer recommendations. Removal of rRNA was omitted 

and total RNA was prepared for sequencing using the TruSeq stranded mRNA library prep kit 

(Illumina CA, USA) following the manufacturer’s guidelines. The cDNA library was 

sequenced on a MiSeq instrument (MiSeq, Illumina) generating between 2 to 3 Mio 150 bp 

single end reads per library. Quality controlled reads were mapped to the draft genomes of 

HotSeep-1 and ANME-1 using bbmap (v. 35) with minimum mapping identity of 98%. To 

quantify gene expression unambiguously mapped reads per gene were counted using bedtools 

multicov (v.2.24.0). To compare relative expression patterns within each organism across 

treatments, read counts per feature were converted to transcripts per million (TPM, which is 

the number of a transcript (i) in a million sequenced transcripts taking into account the 

abundance of all other transcripts) calculated according to ref. 51 

 TPMi=Xi/li × (1 / ∑j Xj/lj) × 10
6 

(2) 

with X=counts, l=length (bp). Relative changes in expression of selected genes were 

calculated by comparing TPM normalized expression data of the H2 and H2+CH4 treatment to 

those under TAOM (control) conditions. Differential expression (p-value, fold change and 

effect size) between control (TAOM condition) and treatment (H2 or H2+CH4) was computed 

with the aldex2 R package
52

 for ANOVA-like differential expression analysis. Raw read 

numbers, read mapping data and statistical analysis are provided in Supplementary Table 1 

(total expression) and Supplementary Table 5 (specific gene expression). 

For HotSeep-1 transcriptomes total RNA was extracted from triplicate cultures (50 ml) 

grown on hydrogen/CO2 following the same procedure as described for TAOM enrichments 

(see above). Removal of rRNA was omitted and total RNA was prepared for sequencing 

using the TruSeq stranded mRNA library prep kit (Illumina CA, USA) following the 

manufacturer’s guidelines. The cDNA library was sequenced on a MiSeq instrument (MiSeq, 

Illumina) generating between 6.4 to 6.9 Mio 75 bp paired end reads per library. Quality 

controlled reads were mapped to the draft genome of HotSeep-1 using bbmap (v. 35) with 
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minimum mapping identity of 98%. To quantify gene expression unambiguously mapped 

reads per gene were counted using featureCount
53

 (part of Subread, v. 1.4.6.) with the –p 

option to count fragments instead of reads. Fragment counts per gene were converted to 

transcripts per million (TPM) as described above for TAOM transcriptome analyses. 

Cultivation of Geobacter consortia 

Active cultures of G. sulfurreducens (strain PCA; DSM 12127) and G. metallireducens strain 

(GS-15; DSM 7210) were mixed in fresh medium (DSM Medium 826) supplied with 

Na2-fumarate (50 mM) and ethanol (20 mM) according to reference 10 and cultivated 

anaerobically at 33°C. After subsequent transfers (1% inoculum) a well growing culture 

consisting of reddish microbial aggregates developed, which was used for thin-sectioning and 

electron microscopy. 

Transmission electron microscopy 

The cell material was harvested at 2000 rpm using a Stat Spin Microprep 2 table top 

centrifuge. After centrifugation the pellet was fixed by immersion using 2% glutaraldehyde in 

0.1 M cacodylate buffer at pH 7.4. Fixation was performed for 60 min at room temperature. 

The fixed pellet was immobilized with 2% agarose in cacodylate buffer at pH 7.4. The pellet 

was cubed and the pieces carefully washed with buffer and further fixed in 1% osmium 

tetroxide. After pre-embedding staining with 1% uranyl acetate, samples were dehydrated and 

embedded in Agar 100. As independent complementary method (shown in Extended Data 

Fig. 5a) samples were placed in aluminium platelets of 150 µm depth containing 

1-hexadecene
54

. The platelets were frozen using a Leica Em HPM100 high pressure freezer 

(Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany). The frozen samples were 

transferred to an Automatic Freeze Substitution Unit Leica EM AFS2 and substituted at 

−90°C in a solution containing anhydrous acetone, 0.1% tannic acid for 24 h and in anhydrous 

acetone, 2% OsO4, 0.5% anhydrous glutaraldehyde (EMS Electron Microscopical Science, 

Ft. Washington, USA) for additional 8 h. After a further incubation over 20 h at −20°C 

samples were warmed up to +4°C and washed with anhydrous acetone subsequently. The 

samples were embedded at room temperature in Agar 100 (Epon 812 equivalent) at 60°C over 

24 h. Thin sections (30-60 nm) were counterstained with uranyl acetate and lead citrate and 

examined using a Philips CM 120 transmission electron microscope (Philips Inc. Eindhoven, 

The Netherlands). In total, we recorded more than 200 views on TAOM consortia, 64 views 

on HotSeep-1 and 90 views of Geobacter consortia.  
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Thermodynamic calculations 

Free energy yields (ΔGrxn) were calculated according to equation 3 

 ∆Grxn = ∆G(T)
° + RT × ln

[Pi]n

[Ri]
n  (3) 

including the gas constant R, the temperature T (K) and the measured activities/partial 

pressures of the respective products [Pi] and reactants [Ri] in their respective stoichiometric 

appearance (n) in the reaction. Values consider activities and fugacity of respective 

compounds. The temperature corrected standard free energy ΔG
°
(T) were determined 

according to ref. 55.   
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Figures 

 
Figure 1 Activity of the TAOM consortia in culture. a, The exponential increase of sulfide production translates 

to a doubling time of 68 days (biological replicates; n=4). b, Fluorescence micrograph of TAOM consortia from 

(a), hybridization see methods; white bar scales 10 µm. c, Sulfide production under TAOM conditions (red 

circles; 0.07 mM sulfide per day) versus a control (white squares; 0.02 mM per day). Hydrogen (blue triangles), 

or hydrogen plus methane (purple stars) increased sulfide production (both 0.55 mM per day; biological 

replicates n=3; symbols=mean values; error bars=s.d.). d, Percent total RNA reads mapped to ANME-1 (red) 

and HotSeep-1 (green) after 3 days incubation (c), biological replicates n=3, bars=means, for statistical analyses 

see Supplementary Table 1. 
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Figure 2 Hydrogen in TAOM cultures. a, Hydrogen gas pressure under TAOM conditions (methane 0.2 MPa; 

sulfate 28 mM; 5 day incubation (filled circle)). The dashed arrow depicts gas phase exchange with methane. 

Open circles show equilibration of hydrogen in the headspace (n=1; experiment repeated with same results (not 

shown)). b, Hydrogen production in 10 ml TAOM culture supplied with 0.2 MPa methane after headspace 

exchange and addition of 10 mM molybdate (final concentration) to inhibit hydrogen consumption. Open circles 

are replicate measurements with hydrogen production of 2 and 3 nmol l
−1

 min
−1

. Dotted line: Predicted hydrogen 

production for reverse methanogenesis (CH4+2H2OCO2+4H2) = 420 nmol H2  l
−1

 min
−1

 culture, for an 

observed sulfide production rate of 104 nmol l
−1

 min
−1

). 
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Figure 3 Expression of genes and visualisation of structures attributed to interspecies electron transfer in 

TAOM. a, Expression of archaeal (red) and bacterial genes (green) in incubations with hydrogen (dark shade), or 

hydrogen plus methane (light shade), relative to methane alone (expression under TAOM condition = 1; 

biological replicates; n=3; *p-value <0.05; for statistics see Supplementary Table 5b). b-f, Micrographs of thin-

sections; bar scales 300 nm. b-d, TAOM consortia with HotSeep-1 cells (H; rod-shaped; approx. 1×0.5 µm) and 

ANME-1 cells (A; cylindrical shape with envelope
30

; 1.5×0.8 µm). Nanowires of 10 nm diameter and up to 

several 1000 nm length connect both species. c,d, Arrows mark the apparent origin of the wires from the 

membrane of HotSeep-1 bacteria to the polar sites of ANME-1 cells. d, HotSeep-1 cell with nanowires crossing 

the cell membrane (marked by the arrow). e,f, Aggregated HotSeep-1 cells grown on hydrogen do not develop 

nanowires. 
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Extended data 

Extended data figures 

 

Extended Data Figure 1 Models of possible species interaction mechanisms in TAOM tested in this study. 

a, Transfer of molecular intermediates such as hydrogen; b, incomplete reduction of sulfate in ANME and 

zero-valent sulfur transfer to the partner bacteria; c, direct interspecies electron transfer via conductive 

nanowires.  

 

 

 
Extended Data Figure 2 Visualisation of and growth experiments with HotSeep-1. a, Fluorescence micrograph 

of HotSeep-1 culture (probe HotSeep-1-590). Cells are solitary or form small aggregates, bar scales 10 µm. 

b,c, Semi-logarithmic illustration of the development of (b) sulfide, or (c) numbers of cells and resulting 

doubling times (doubling time = ln(2)/exponential factor of the regression curve) during incubation of the 

HotSeep-1 culture with hydrogen as sole energy source and sulfate. (b,c) biological replicates n=3, circles=mean 

values, error bars=s.d. 
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Extended Data Figure 3 Effect of zero-valent elemental sulfur and molybdate additions on TAOM. a, Sulfide 

production in response to zero-valent (colloidal) sulfur amendments versus TAOM conditions; zero-valent sulfur 

did not cause sulfide formation. b,c, Monitoring of hydrogen partial pressures at TAOM conditions (open 

circles) versus extra addition of 10 mM molybdate (filled circles); (b) full times series, (c) subset first 10 hours. 

Molybdate addition caused 10 times higher hydrogen concentrations than TAOM condition. d, Inhibition of 

methane-dependent sulfide production at different molybdate concentrations. (a,d) biological replicates n=3, 

symbols=mean values, error bar=s.d.; (b, c) single time series with the same culture. 
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Extended Data Figure 4 Effect of hydrogen on microbial methane oxidation. a, Methane (0.15 MPa) supplied 

as sole electron source was steadily consumed with time by TAOM. b, When both methane (0.15 MPa) and 

hydrogen (0.05 MPa) were added, hydrogen was rapidly consumed (grey bars), whereas methane consumption 

was reversely inhibited (green line) until hydrogen was fully consumed. Afterwards methane consumption 

occurred at the same rate as in the control with only methane (a). Technical replicates n=3, symbols=mean 

values, error bar=s.d. Experiment was replicated once in the laboratory.  

 

 

 

 

 

Extended Data Figure 5 Relative expression of marker genes of HotSeep-1 in consortial growth on methane 

(TAOM) versus enrichment on hydrogen. Genes encoding proteins apparently involved in direct interspecies 

electron transfer (cytC and PilA) are strongly overexpressed during TAOM (red) compared to hydrogenotrophic 

growth (green). Biological replicates n=3, error bars=s.d. 
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Extended Data Figure 6 Thin-sections of TAOM and dual species Geobacter spp. aggregates. a, TAOM 

culture. High-pressure frozen ANME-1 cells (A) have a cylindrical shape and a size of 1.5×0.8 µm, looking 

circular in cross-sections, and rectangular when cut along the axis. Their cell content shows a high contrast. 

A* shows cell envelopes. HotSeep-1 cells (H) are smaller (approx. 1×0.5 µm), of rod-like shape, and have lower 

contrast. The matrix between the cells is largely filled with filaments. Bar scales 3 µm. b, Thin-sections of 

Geobacter consortia and their intercellular nanowires using the same embedding techniques as for TAOM 

consortia. Bar scales 300 nm. 
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Extended data tables 

Extended Data Table 1 Phylogenetic affiliation of cloned 16S rRNA gene sequences obtained from TAOM 

enrichments in 2010 (compiled from ref. 6) and after 1.5 years of cultivation in 2012 (this study).  

Phylogenetic Group No of clones 

  2010, slurry 2012, sediment-free 

Archaea   

Euryarchaeota 

ANME-1   

ANME-1-Guaymas cluster 46 (82%) 148 (89%) 

Other related ANME-1 - 7 

Thermoplasmatales (19c-33 related) 6 7 

Thermococcales - 1 

Others 4 3 

Sum 56 166 

   

Bacteria   

Proteobacteria   

Betaproteobacteria 3 1 

Gammaproteobacteria 11 - 

Deltaproteobacteria   

HotSeep-1-Cluster 124 (60%) 89 (59%) 

DSS group 1 1 

Others 16 4 

Acidobacteria 1 - 

Actinobacteria 3 - 

Candidate Division OD1 6 1 

Candidate Division OP3 5 40 

Candidate Division OP8 21 6 

Chloroflexi 8 - 

Others 8 9 

Sum 207 151 
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Extended Data Table 2 Pairwise comparison of nucleotide sequences from the HotSeep-1 draft genomes 

derived from the TAOM culture versus the HotSeep-1 culture on hydrogen. 

 Feature Identity (bp) 

Identity 

(%) Gaps 

Query 

coverage E value 

16S rRNA 1554/1555 99 0/1555 100 0 

23S rRNA 3025/3029 99 0/2029 100 0 

ITS (23S-16S) 270/271 99 0/271 100 3.00E-145 

dsrA 1406/1438 98 0/1438 100 0 

aprA 1905/1905 100 0/1905 100 0 

Hydogenase small subunit  1437/1437 100 0/1437 100 0 

Hydrogenase large subunit 916/918 100 0/918 99 0 

dnaK 1884/1893 99 0/1893 100 0 

 

 

 
 

Extended Data Table 3 Effect of potential intermediates in AOM on sulfide production (SP) of TAOM culture 

(3 replicates, 20 day incubation). ‘ ̶ ’ SP at level of negative control; ‘+’ SP similar to TAOM under standard 

conditions; ‘+++’ SP tripled compared to TAOM standard conditions.  

  Sulfide production 

Substrate plus substrate plus methane 

Control (no donor) ̶  

Methane +  

Colloidal sulfur ̶ + 

Hydrogen +++ +++ 

Carbon monoxide ̶ ̶ 

Methyl sulfide ̶ ̶ 

Methanol ̶ + 

Acetate ̶ + 

Formate ̶ + 
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Extended Data Table 4 Genes encoding for c-type cytochromes identified in thermophilic ANME-1 and 

HotSeep-1 genome draft, and for Type IV pili (T4P) biogenesis identified in the HotSeep-1 genome draft with 

expression >20 TPM. Genes in bold are presented in Fig. 3a. 

Cytochrome c type 

based on PfamA 

domain prediction 

Predicted cellular 

localization (PSORTb) 

Predicted heme 

groups 

Expression 

in TAOM 

(TPM) 

Expression 

change in H2 

treatment 

ANME-1 
    

Cytochrom_c3_2       Unknown (CM,CW,E) 8 1,063 ↓ 

Cytochrome_C7       Unknown (CM,CW,E) 4 603 ↓ 

Cytochrome_C7       Extracellular 4 506 ↓ 

Cytochrom_NNT       Cytoplasmic 5 73 ↓ 

HotSeep-1 
   

 Paired_CXXCH_1       Extracellular 6 2,485 ↓ 

Cytochrom_CIII      Periplasmic 4 1,011 - 

Paired_CXXCH_1      Unknown (CM,OM,P,E) 7 974 - 

Cytochrome_C554     Unknown (CM,OM,P,E) 5 881 - 

Cytochrom_CIII      Periplasmic 4 179 - 

Cytochrome_C7       Cytoplasmic Membrane 5 95 - 

Paired_CXXCH_1      Cytoplasmic 10 95 - 

Cytochrom_c3_2      Unknown (CM,P,E) 12 86 - 

Cytochrom_c3_2      Periplasmic 12 74 - 

Cytochrome_C554     Unknown (CM,P,E) 4 24 ↓ 

Predicted pili protein  
Predicted cellular 

localization (PSORTb) 

% identity to G. 

sulfurreducens 

Expression 

in TAOM 

(TPM) 

Expression 

change in H2 

treatment 

HotSeep-1 
    

assembly protein (pilA) Extracellular 74 1084 ↓ 

retraction ATPase (pilT) Cytoplasmic 40 51 ↓ 

assembly protein (pilY) Extracellular 26 46 ↓ 

assembly ATPase (pilB) Cytoplasmic 47 26 - 

secretion (pilQ) Unknown (OM, C) 32 26 - 

assembly protein (pilA) Cytoplasmic Membrane 41 23 ↓ 

retraction ATPase (pilT) Cytoplasmic 55 21 - 

assembly protein (pilM) Cytoplasmic 35 21 - 

assembly protein (pilO) Cytoplasmic Membrane 35 21 ↓ 

(E=Extracellular, CM=Cytoplasmic Membrane, CW=cell wall, OM=Outer Membrane, P=Periplasm); ↑ up-

regulated by factor 2; ↓ down-regulated by factor 2; - no change. 
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Supplementary information 

Supplementary information is available in the online version of the paper. 
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Summary 

The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-

oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia 

enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of 

the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The 

partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron 

acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name 

this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii 

grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C 

and doubling time of four to six days. Its genome draft encodes for canonical sulfate 

reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the 

reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, 

and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via 

direct interspecies electron transfer when the organism grows in consortia with ANME. This 

first ANME-free enrichment of an AOM partner bacterium and its characterization opens the 

perspective for a deeper understanding of syntrophy in anaerobic methane oxidation. 
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Introduction 

The microbially mediated anaerobic oxidation of methane (AOM) is a key process in anoxic 

methane-rich marine habitats, controlling methane efflux from the seabed (Boetius and 

Wenzhöfer, 2013). Marine AOM is performed by consortia of anaerobic methanotrophic 

archaea (ANME) and partner bacteria coupling the oxidation of methane to the reduction of 

sulfate in a syntrophic process (Boetius et al., 2000; Orphan et al., 2001b). The oxidation of 

methane is mediated by the archaea, involving the reversal of the methanogenesis pathway 

(Hoehler et al., 1994; Hallam et al., 2004). Previous studies have assigned canonical sulfate 

reduction to the consortial partner bacteria (Boetius et al., 2000; Milucka et al., 2013). The 

mode of interspecies transfer of electrons from the ANME to the partner SRB remains 

uncertain. Exchange of metabolic intermediates, hydrogen or direct interspecies electron 

transfer have been discussed (Hoehler et al., 1994; Widdel et al., 2007; Moran et al., 2008; 

McGlynn et al., 2015). Alternatively, it was suggested that archaea could carry out partial 

sulfate reduction, with the bacterial partner disproportionating zero-valent sulfur species 

(Milucka et al., 2012). AOM is mediated by members of three different phylogenetic clades 

(ANME-1, ANME-2 and ANME-3; Knittel and Boetius, 2009) which comprise a substantial 

diversity of subgroups (Ruff et al., 2015). Although the consortia formed by the different 

ANME are highly specific associations with only one type of partner bacterium, there is a 

considerable diversity of Deltaproteobacteria that can form AOM consortia. The Seep-SRB-1 

cluster (Desulfosarcina/Desulfococcus) prevails in most natural and laboratory psychro- and 

mesophilic enrichments dominated by ANME-2 (Boetius et al., 2000; Orphan et al., 2001a; 

Michaelis et al., 2002; Knittel et al., 2003). The Seep-SRB-2 cluster is frequently observed as 

partner of psychro- and mesophilic ANME-1 and -2 (Kleindienst et al., 2012) and 

Desulfobulbus-relatives as partners of ANME-3 (Niemann et al., 2006). None of the psychro- 

to mesophilic ANME or their partner bacteria has yet been obtained as pure culture hence 

some of these organisms might be obligate syntrophs. 

Here we studied the bacterial partner in thermophilic AOM (growth range 50 to 65°C), 

HotSeep-1, recently enriched from the methane-rich hydrothermal system of Guaymas Basin, 

Gulf of California (Holler et al., 2011). In thermophilic AOM enrichments HotSeep-1 bacteria 

associate with ANME-1 archaea to form filamentous or densely packed spherical consortia. 

So far, sequences similar to those of this bacterial partner have only been reported from 

hydrothermal vent systems (Teske et al., 2002; Biddle et al., 2011), and thermophilic short-

chain hydrocarbon-degrading enrichments originating from the Guaymas Basin (butane-

degrading) and from Middle Valley, Juan de Fuca Ridge (butane- and propane-degrading) 
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(Kniemeyer et al., 2007; Adams et al., 2013). In thermophilic AOM, HotSeep-1 retrieves 

reducing equivalents from its ANME partner through the oxidation of methane (Holler et al., 

2011) likely via direct interspecies electron transfer (Wegener et al., 2015). 

Here we studied the metabolic and genomic features of a representative of the HotSeep-1 

cluster, proposed as Candidatus Desulfofervidus auxilii, with the focus on its potential role as 

syntrophic partner in hydrocarbon degradation.  

Results and discussion 

Enrichment and cultivation of HotSeep-1  

During thermophilic anaerobic oxidation of methane (TAOM), HotSeep-1 formed dense cell 

aggregates with ANME-1 archaea in the form of filaments or large spherical aggregates 

(Fig. 1). In filaments, HotSeep-1 and ANME-1 cells associated in close proximity and often 

1:1 stoichiometry within a sheath-like structure (Holler et al., 2011) (Fig. 1 B). Spherical 

aggregates reaching sizes of 0.5 mm contained well-mixed, approximately equal portions of 

HotSeep-1 and ANME-1 cells and were the dominant consortia growth type in long-term, 

sediment-free TAOM enrichments (>2 years of enrichment by continuous dilution) (Fig. 1 A). 

When the energy supply to the TAOM enrichment was switched from methane to hydrogen, 

the enrichment responded with a fivefold increase of the sulfide production rate within nine 

days (Fig. 2 A). Other substrates including a variety of organic compounds including acetate, 

formate, alcohols, benzoate, dicarboxylic acids, pyruvate, methyl sulfide, and carbon 

monoxide did not lead to sulfide production. Serial dilution-to-extinction cultivation of this 

enrichment at 60°C with sulfate and hydrogen as the energy source, and inorganic carbon as 

the sole carbon source, resulted in separation of HotSeep-1 cells from the ANME partner in 

initial dilutions of up to 1:10
6
. Continuous dilution yielded an enrichment of >95% HotSeep-1 

cells (Fig. 2 B-D). A persistent archaeal contaminant, identified as Archaeoglobus sp. by 

16S rRNA gene sequencing, accounted for around 5% of all cells during exponential growth 

phase (Fig. S1). Classification of metagenomic 16S rRNA gene fragments (approx. 2000 

reads) obtained from the enrichment estimated HotSeep-1 to Archaeoglobus sp. 16S rRNA 

genes in a ratio >100:1. Accordingly, the from the metagenome assembled nearly full length 

16S rRNA gene sequences related to HotSeep-1 and Archaeoglobus fulgidus showed 

coverages of 108x and 3x, respectively. ANME-1 was not detected in the hydrogenotrophic 

HotSeep-1 enrichment. Based on phylogenetic, genomic and metabolic data we propose that 
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the enriched HotSeep-1 represents a novel species, Candidatus Desulfofervidus auxilii, 

referring in denotation to the bacterium’s sulfate-reducing metabolism in thermophilic 

syntrophic consortia. 

Physiological characterization of Ca. D. auxilii 

Hydrogen-dependent sulfate-reducing activity of Ca. D. auxilii cultures was observed at 

temperatures between 50-70°C. Sulfate reduction rates were highest at 60°C (Fig. S2). The 

cell specific sulfate reduction rate at 60°C was 46 fmol sulfate reduced per day per cell 

(Fig. S1). No activity was observed below 50°C and above 70°C, matching the temperature 

optimum in consortial growth with ANME-1 (Holler et al., 2011). Freshly inoculated 

Ca. D. auxilii cultures showed a relatively long lag phase of approximately 12 days followed 

by an exponential increase of sulfate-reducing activity, carbon fixation and cell numbers until 

sulfate was depleted (after about 32-35 days) (Fig. S1). Ca. D. auxilii tolerates high sulfide 

concentrations of up to 25 mM (Fig. S1), which is an advantage in its highly sulfidic natural 

habitat in subsurface sediments of methane-rich hydrothermal vents (Jørgensen et al., 1990; 

Vigneron et al., 2014). The calculated doubling time of 4-6 days is slow compared to other 

hydrogenotrophic sulfate reducers (doubling time of 12-24 h (Brysch et al., 1987; Alazard 

et al., 2003; Audiffrin et al., 2003; Rabus et al., 2006)). However, compared to the inherently 

slow growth as partner bacterium in thermophilic AOM (doubling time approx. 50 days as 

estimated from the increase in sulfide production), growth dynamics were 12 times faster in 

single culture on hydrogen. Organic compounds (including acetate, formate, alcohols, 

benzoate, dicarboxylic acids, pyruvate, methyl sulfide, carbon monoxide) were not used as 

energy source for sulfate reduction (Fig. S3) which is in agreement with the absence of sulfide 

production in TAOM enrichments supplemented with organic compounds other than methane 

(see above). Notably, no sulfate-reducing activity of Ca. D. auxilii was observed on methane 

and short-chain hydrocarbons (butane, propane), which contrasts earlier reports of HotSeep-1-

dominated hydrocarbon (propane)-degrading enrichments (Adams et al., 2013) (Fig. S3, S4). 

Further, tested organic compounds did not stimulate the sulfate-reducing activity of 

Ca. D. auxilii during growth on hydrogen suggesting that Ca. D. auxilii grows 

autotrophically. Autotrophic growth of Ca. D. auxilii is in line with earlier studies on other 

sulfate-reducing AOM partner bacteria also showing carbon dioxide fixation (Wegener et al., 

2008; Kellermann et al., 2012). Autotrophic carbon fixation by Ca. D. auxilii accounts for on 

average 0.03 to 0.04 mol carbon dioxide fixed per mol sulfate reduced (Fig. S5) with a carbon 

fixation rate of 1.3 fmol per day per cell. This corresponds to the use of only 1.5% of the 
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reducing equivalents derived from hydrogen oxidation for carbon fixation. This carbon 

fixation capacity is much lower than in other studied hydrogenotrophic sulfate reducers 

(Brandis and Thauer, 1981; Cypionka and Pfennig, 1986), which explains the comparatively 

low growth rates and limited cell densities of the Ca. D. auxilii culture. It compares well to 

the carbon fixation capacity in TAOM of 2%, when determined as reducing equivalents 

derived from methane oxidation (Wegener et al., 2015). Furthermore, alternative sulfur 

sources (i.e. sulfite, thiosulfate and elemental sulfur) were neither reduced nor 

disproportionated by Ca. D. auxilii (Tab. 1), indicating that Ca. D. auxilii is an obligate 

sulfate reducer.  

Phylogenetic position of Ca. D. auxilii 

Ca. D. auxilii is the first cultured representative of its 16S rRNA gene sequence cluster 

(>97.5% similarity) which to date comprises almost full-length sequences (>1400 bp) 

obtained from Guaymas Basin environmental samples (Teske et al., 2002) and methane- and 

butane-degrading enrichments (Kniemeyer et al., 2007; Holler et al., 2011), and additionally 

assigned partial sequences retrieved from Middle Valley hydrocarbon-degrading enrichments 

(NCBI SRA066151) (Adams et al., 2013). The first sequences of this cluster were identified 

by Teske and colleagues (2002) as “Guaymas-specific sequence cluster”. Later, when Holler 

and colleagues (2011) assigned similar sequences to the bacterial partner in thermophilic 

AOM the cluster was denoted “HotSeep-1”. The genomic 16S rRNA gene obtained from the 

hydrogenotrophically grown Ca. D. auxilii is identical or highly similar to sequences of the 

HotSeep-1 cluster (see Tab. S1). Our 16S rRNA gene phylogenetic analysis confirmed the 

previously described deep-branching position of this cluster (Holler et al., 2011) and showed 

that its affiliation within the bacterial phylogenetic tree varied highly depending on the set of 

reference sequences used for tree calculation (Fig. S6). This unstable phylogenetic placement 

is also reflected in earlier discordant classifications of the cluster as related to the 

Thermodesulfobacteria phylum or as a member of the Deltaproteobacteria with Desulfurella 

and Hippea as distant relatives (Teske et al., 2002; Holler et al., 2011). Accordingly, a 

database comparison with the genomic 16S rRNA gene of Ca. D. auxilii shows among the top 

10 hits (84-86% identity) members of (Delta)Proteobacteria and Thermodesulfobacteria, 

with the best scoring hit (86% similarity) to Thermodesulforhabdus norvegica 

(Deltaproteobacteria) (Tab. S2). According to recent taxonomic thresholds defined in Yarza 

and colleagues (2014), a 16S rRNA gene sequence similarity of ≤86.2% suggests a 
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membership in different families. Hence, we propose that Ca. D. auxilii and related sequences 

in the HotSeep-1 cluster represent a novel family, Candidatus Desulfofervidaceae. 

To further resolve the phylogenetic classification of Ca. D. auxilii we reconstructed a 

23S rRNA gene based phylogeny. This placed Ca. D. auxilii within the Deltaproteobacteria. 

Notably, Ca. D. auxilli’s relatives were Desulfobacca acetoxidans, Geobacter spp. and 

Syntrophobacter fumaroxidans, with the latter two being known to grow syntrophically 

(Fig. S7). We furthermore used a genome-based phylogenetic approach. Phylotyping of 

30 single copy genes identified in the Ca. D. auxilii genome assigned 47% (14) of these genes 

to the Deltaproteobacteria, and 40% (12) to Thermodesulfobacteria (Tab. S3). The 

phylogenetic tree reconstructed from a subset of 19 ubiquitous single copy genes (detected in 

all here analysed genomes) revealed a sister relationship of Ca. D. auxilii to members of the 

Thermodesulfobacteria, namely Thermodesulfatator indicus and Thermodesulfobacterium 

geofontis, and an affiliation of this cluster as sister clade of the Deltaproteobacteria (Fig. 3). 

In contrast based on 16S rRNA gene phylogeny the Thermodesulfobacteria represent a 

phylum distantly related to the Deltaproteobacteria. A discrepancy between 16S rRNA gene 

and whole genome-based phylogeny of the Thermodesulfobacteria has been previously 

described (Lang et al., 2013) and the authors suggested that Thermodesulfobacteria may not 

represent a distinct phylum but were to be included in the Deltaproteobacteria. The observed 

placement of Ca. D. auxilii may suggest a basal position within the Thermodesulfobacteria. It 

however also indicates that Ca. D. auxilii affiliates with both Thermodesulfobacteria and 

Deltaproteobacteria, which may be interpreted as an intermediate position between these 

groups. In addition to the phylogenetic resolution of conserved single copy genes we also 

compared the taxonomic assignment (on phylum and species level) of all Ca. D. auxilii 

proteins (using the in house genomesDB as a reference (Richter et al., 2008)). Consistently 

with the observation on single copy gene level the highest number of best hits was assigned to 

Thermodesulfatator indicus (Tab. S4). Subsequent reciprocal best match blast analysis of the 

Ca. D. auxilii genome versus selected genomes (see Tab. S5) consistently showed highest 

similarity to T. indicus. Although to some degree Ca. D. auxilii resembles T. indicus in 

lifestyle (thermophilic chemoautotrophic metabolism) and habitat (deep-sea vents) 

(Moussard, 2004), they share only 958 genes, representing 37% of the genes of Ca. D. auxilii 

and including only 195 genes with similarity above 60%. Among the Deltaproteobacteria, 

Ca. D. auxilii shows most genomic similarity to another syntrophic organism, the propionate-

oxidizer Syntrophobacter fumaroxidans, with 912 shared orthologous genes (36% of the 

Ca. D. auxilii genes). This comparative genomic analysis revealed that Ca. D. auxilii affiliates 
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with both thermophilic sulfate-reducing and syntrophic organisms and concordantly with the 

results from 23S rRNA gene and single copy gene analysis suggests that, both, 

S. fumaroxidans and T. indicus were among the closest relatives of Ca. D. auxilii. The 

observed moderate genomic similarity (<40% based on shared orthologous genes) to 

members of both Thermodesulfobacteria and Deltaproteobacteria, may further indicate a 

basal position of Ca. D. auxilii in either of the two groups. At the time of writing the genomes 

of the thermophilic sulfate reducers T. norvegicus, Dissulfuribacter thermophilus and 

Desulfosoma caldarium, which are more closely related on 16S rRNA gene level, were not 

available. The remarkably low genomic similarity of the Ca. D. auxilii genome to any genome 

analyzed here (Tab. S4, S5) might be due to its phylogenetic isolation; however it might also 

point towards metabolic characteristics which impede cultivation of close relatives.  

On a functional level, the dissimilatory sulfite reductase gene (Dsr), encoding a key 

enzyme of sulfate reduction, is also a functional marker gene for sulfate reducers (Klein et al., 

2001; Müller et al., 2014). The amino acid sequence of the Dsr subunit A (DsrA) of 

Ca. D. auxilii affiliates with DsrA sequences from Desulfatiglans anilini (formerly 

Desulfobacterium anilini), Moorella thermoacetica and Desulfotomaculum spp. (Fig. S8), 

with highest amino acid sequence similarity of 75% to D. anilini. The drsA gene is prone to 

lateral gene transfer and Desulfotomaculum species (Firmicutes) are proposed to have 

acquired their dsrA gene through lateral transfer from D. anilini (Klein et al., 2001; Zverlov 

et al., 2005). A placement of the Ca. D. auxilii dsrA in this cluster might indicate an 

involvement of this deep-branching bacterium in lateral gene transfer events. The 

identification of the genomic dsrA of Ca. D. auxilii as reported here allows for its detection in 

functional gene-based surveys of sulfate reducers. 

Based on our phylogenetic analysis and whole genome comparison as well as physiologic 

characteristics we suggest a tentative classification of Ca. D. auxilii in the 

Deltaproteobacteria. A clear classification on higher taxonomic level (above family) awaits 

clarification by isolating and describing further members of this novel deep-branching 

lineage. 

General genome features 

The here described draft genome of Ca. D. auxilii has a size of 2.55 Mbp and a GC content of 

37%. The obtained sequencing data provided an estimated 430 fold coverage of the genome. 

In total, 2528 open reading frames (ORFs) were identified of which about 66% (1658 ORFs) 

could be assigned to COG (clusters of orthologous genes) categories (see Tab. S6 for an 
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overview of observed COG categories). The genome contains one 16S-23S-5S rRNA operon 

and 47 tRNAs. Genome completeness was almost reached, based on estimations by (i) the 

checkM software (Parks et al., 2015) using 340 markers (97% completeness with 

4% contamination and without detected strain heterogeneity) and (ii) the AMPHORA2 

package with 31 bacterial markers (all detected, DnaG duplicated) (Wu and Scott, 2012), and 

(iii) based on the detection of tRNAs for all amino acids. The general genome features are 

summarized in Table 2. The draft genome of Ca. D. auxilii is comparable in size and GC 

content to genomes of other sulfate- and sulfur-reducing bacteria retrieved from hydrothermal 

habitats such as Thermodesulfatator indicus (2.5 Mbp, GC content 40%), 

Thermodesulfobacterium geofontis (1.3 Mbp, GC content 30%), and Hippea maritima 

(1.7 Mbp, GC content 37%) (Anderson et al., 2004; Huntemann et al., 2011; Elkins et al., 

2013). In the course of evolution genome reduction might occur as a result of adaptation to 

specific environmental niches, thus Ca. D. auxilii’s limited metabolic versatility is 

presumably reflected in its small genome size. 

Genomic basis for hydrogenotrophic growth of Ca. D. auxilii 

Ca. D. auxilii‘s draft genome encodes a complete set of proteins required for hydrogen-

dependent sulfate-reduction (see Supplementary Information Annotation Tables for an 

overview of annotated genes). It includes a soluble (HS1_002313-HS1_002314) and a 

periplasmic (HS1_000162-HS1_000163) NiFe hydrogenase, and proteins required for its 

maturation and expression (HS1_000157-HS1_000161, HS1_000149-HS1_000151). The 

predicted non-membrane-bound periplasmic hydrogenase is proposed to transfer electrons 

from hydrogen oxidation to periplasmic c-type cytochromes (Matias et al., 2005). The 

identified soluble NiFe methyl viologen hydrogenase (MvhA) may form a cytoplasmic 

complex with subunits of the heterodisulfide reductase (HS1_001272-HS1_0001274) as 

previously suggested (Thauer et al., 2008). This HdrABC/MvhADG complex may couple 

hydrogen oxidation to the endergonic reduction of the low-potential redox-carrier ferredoxin 

and the exergonic reduction of a heterodisulfide bond in a flavin-based electron bifurcation 

mechanism (Buckel and Thauer, 2013). 

As a terminal electron sink, Ca. D. auxilii has a complete dissimilatory sulfate reduction 

pathway. It is located in the cytoplasm and consists of ATP sulfurylase (Sat, HS1_002311), 

APS-reductase (AprAB, HS1_000253-HS1_000254), and a dissimilatory sulfite reductase 

complex (DsrABCD, HS1_002180-HS1_002182, HS1_000090). Electrons derived through 

the periplasmic oxidation of molecular hydrogen are proposed to reduce the periplasmic 



Chapter III 

88 

cytochrome pool and enter the sulfate reduction pathway via cytochrome- and menaquinone-

interacting membrane-bound electron transfer complexes, several of which are known from 

sulfate-reducing bacteria and archaea (Pereira et al., 2011). The quinone reductase complex 

(QrcABCD, HS1_000675-HS1_000678) was proposed to reduce the membrane menaquinone 

pool via electrons from periplasmic cytochromes (Venceslau et al., 2010). The menaquinone- 

interacting oxidoreductase complex (QmoABC, HS1_002183-HS1_002185) then delivers 

electrons from the reduced menaquinone pool to the APS reductase complex (Pires et al., 

2003; Ramos et al., 2012; Grein et al., 2013). The TmcABCD complex (HS1_001244-

HS1_001247) and DsrMKOPJ or HmeABCDE complex (HS1_002291-HS1_002295) were 

suggested to directly deliver electrons from the periplasmic cytochrome pool to the 

cytoplasmic DsrAB complex through a reduction of the disulfide bond in DsrC via 

heterodisulfide reductases (Venceslau et al., 2014). Electrons derived through cytoplasmic 

hydrogen oxidation by HdrABC/MvhADG (HS1_002313-HS1_002314/HS1_001272-

HS1_0001274) possibly enter the dissimilatory sulfate reduction pathway also at the level of 

DsrAB via reduction of DsrC by HdrB (Pereira et al., 2011; Grein et al., 2013). 

Energy conservation during hydrogenotrophic growth of Ca. D. auxilii could occur via 

electron transport phosphorylation utilizing the electrochemical gradient created by 

periplasmic hydrogen oxidation for synthesis of ATP via ATP synthase (F-type ATPase, 

HS1_001679-HS1_001682, HS1_001898-HS1_001904). Alternatively, Ca. D. auxilii may 

utilize a membrane-associated ion translocating complex (Rnf complex, HS1_001621-

HS1_001626) (Buckel and Thauer, 2013) which was suggested to couple the exergonic re-

oxidation of reduced ferredoxin with NAD
+
 to the translocation of protons (Na

+
 or H

+
) across 

the membrane, creating an electrochemical gradient for ATP synthesis (Biegel and Müller, 

2010). Thus Ca. D. auxilii potentially conserves energy via two mechanisms: electron 

transport phosphorylation and electron bifurcation. However, ferredoxin is a central electron 

carrier and reduced ferredoxin is crucial for autotrophic carbon fixation in anaerobes. 

Ca. D. auxilii may generate reduced ferredoxin from hydrogen through cytoplasmic electron 

bifurcation at the MvhADG/HdrABC complex as suggested before for other sulfate reducers 

(Thauer et al., 2008; Buckel and Thauer, 2013). Another possibility would be a reverse-

functioning Rnf complex to generate additional reduced ferredoxin (e.g. for carbon fixation) 

with NADH (endergonic) utilizing energy conserved in the proton gradient (Schmehl et al., 

1993; McInerney et al., 2007). 

As generally observed in genomes of sulfate reducers (Strittmatter et al., 2009; Pereira 

et al., 2011) several (16) genes encoding putative heterodisulfide reductase (Hdr) subunits 
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were identified in the Ca. D. auxilii draft genome. Besides the Hdr-containing membrane-

bound electron transfer complexes Tmc, Dsr and Qmo an additional gene cluster was 

identified that potentially encodes another membrane-bound complex with Hdr-related 

subunits. The genes of this cluster were annotated as an integral membrane protein with a 

HdrB-related domain and a potential c-type cytochrome (HS1_002398), two electron transfer 

flavoproteins (HS1_002399-HS1_002400) and two proteins with HdrA- and HdrB-related 

domains, respectively (HS1_002397, HS1_002401). Encoded directly upstream of this cluster 

were genes for another HdrA-like protein (HS1_002394), for two delta subunits of the 

methyl viologen-reducing hydrogenase (HS1_002393, HS1_002395) and for two beta 

subunits of formate dehydrogenase (HS1_002392, HS1_002396), which may be involved in 

electron transfer reactions. Together these proteins could form an additional electron transport 

complex directly interacting with the reduced periplasmic cytochrome pool and possibly via 

HdrB reduce DsrC or transfer electrons onto cytoplasmic electron transfer proteins. 

Possible mechanisms for syntrophic growth in the anaerobic oxidation of methane via 

direct electron transfer  

Microbial syntrophy can occur by transfer of a molecular intermediate such as hydrogen or 

formate that is produced by a syntrophic metabolizer, e.g. a fermenting bacterium and 

scavenged by a single or multiple partners that oxidize the compound. The activity of the 

latter prevents product inhibition (McInerney et al., 2009). Alternatively, some organisms 

have the capability to directly transfer electrons (Summers et al., 2010; Rotaru et al., 2014). 

Consequently, common features such as systems for reverse electron flow, hydrogenases, 

formate dehydrogenases, pili and outer membrane cytochromes have been highlighted in the 

genomes of syntrophic metabolizers (Sieber et al., 2012). Ca. D. auxilii grows as syntrophic 

partner of ANME-1 archaea, both in the environment and in vitro (Holler et al., 2011; 

Wegener et al., 2015). Formate can be excluded as substrate of Ca. D. auxilii as it does not 

grow on formate and its genome does not encode a complete formate dehydrogenase, 

necessary to metabolize formate. In contrast, Ca. D. auxilii grows on hydrogen and could 

theoretically utilize its hydrogenases during syntrophic growth via interspecies hydrogen 

transfer. During TAOM, production of molecular intermediates was however not observed 

(Wegener et al., 2015). Instead direct electron transfer via excreted multi-heme cytochrome c 

and nanowire-like structures was proposed for the syntrophic coupling in AOM consortia 

(McGlynn et al., 2015; Wegener et al., 2015). DIET is the preferred mode of syntrophic 

interaction between the syntrophic ethanol metabolizer G. metallireducens and its product 



Chapter III 

90 

scavenger G. sulfurreducens (Summers et al., 2010). They can switch between interspecies 

hydrogen transfer and DIET, which may indicate that only a few genetic adaptations are 

required to alternate between the two modes. In TAOM consortia a dense network of 

nanowire-like structures was observed that might enable direct interspecies electron transfer 

(Wegener et al., 2015). The Ca. D. auxilii genome encodes a set of genes required for 

biogenesis and assembly of type IV pili (HS1_000117, HS1_000600-HS1_000604, 

HS1_002000, HS1_002454). Although type IV pili may have various functions including 

attachment, they seem to play a crucial role in mediating direct electron transfer in 

syntrophically growing dual-species Geobacter consortia (Summers et al., 2010). Recent 

studies indicated that the Geobacter-specific geopilins are self-conductive and that the PilA 

protein contains aromatic amino acids that are the key to electron transport along pili via 

delocalized charges (Liu et al., 2014; Malvankar et al., 2014, 2015). Comparison of the amino 

acid sequences of PilA prepilins from Ca. D. auxilii (HS1_000117) and G. sulfurreducens 

revealed that the Ca. D. auxilli pilin contains 3 of the 5 aromatic amino acids found in the 

N-terminal domain of geopilin. Furthermore, in Geobacter spp. highly expressed multi-heme 

c-type cytochromes (OmcS) were proposed to play an important role in electron transfer. 

Ca. D. auxilii lacks this specific cytrochrome, but harbors a variety of c-type cytochromes 

(24), several (10) of which have orthologs in the G. sulfurreducens genome and could 

possibly fulfill similar functions. Three potentially secreted multi-heme c-type cytochromes 

were related to OmcT (HS1_000545, HS1_000649, HS1_000650), which in G. 

sulfurreducens was suggested to be involved in DIET. Further, seven multi-heme c-type 

cytochrome encoding genes (HS1_000540 (10 heme), HS1_000543 (12 heme), HS1_000544 

(12 heme), HS1_000545 (7 heme), HS1_000548 (7 heme), HS1_000555 (26 heme), 

HS1_000556 (16 heme)) were located in a large cluster together with other genes, including 

one encoding an outer-membrane channel cytochrome c (HS1_000541 (1 heme)), related to 

OmcL of G. sulfurreducens, and two encoding lipoproteins. Although the mechanisms of 

extracellular electron transfer by Ca. D. auxilii remain unknown, these cytochromes may be 

candidates for the extracellular transfer of electrons between pili and outer-membrane and the 

channeling of electrons into the periplasm via a porin outer-membrane protein. Once 

transferred to the periplasmic cytochrome pool electrons may be delivered to membrane-

bound electron transport complexes via a cytochrome-interacting periplasmic subunit (see 

above) and subsequently fuel sulfate reduction. Ca. D. auxilii could possibly utilize the same 

redox components to pass electrons between the periplasmic cytochrome pool and 

cytoplasmic sulfate reduction complexes during DIET-based syntrophic and 
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hydrogenotrophic growth (Fig. 4). This would allow a rather quick transition between both 

growth modes and may explain its fast response to hydrogen as alternative substrate. 

Syntrophic growth via DIET would circumvent hydrogenases; hence during syntrophic 

growth in AOM Ca. D. auxilii would not reduce ferredoxin via electron bifurcation at the 

MvhADG/HdrABC complex. Under these conditions ferredoxin reduction could be driven by 

proton translocation at the reverse working Rnf complex (see above).  

Furthermore, flagella have previously been reported to be an important feature of 

syntrophy establishment (Shimoyama et al., 2009). Ca. D. auxilii includes an almost complete 

set for flagella assembly and movement (HS1_000713-HS1_000715, HS1_000723-

HS1_000730, HS1_000732-HS1_000750, HS1_000753-HS1_000763). Although not 

observed during growth in consortia (Wegener et al., 2015) or in the solitary growth mode in 

the hydrogen enrichment (Fig. 2 D), flagella might be important to initiate the contact 

between Ca. D. auxilii and ANME-1, or other suitable syntrophic partners. It further contains 

a variety of genes encoding for chemotaxis and response regulation, which possibly play a 

role in interspecies signaling during syntrophic growth or syntrophy establishment. 

Carbon and nitrogen metabolism 

Autotrophic carbon fixation in Ca. D. auxilii likely proceeds via the reductive tricarboxylic 

(citric) acid cycle (rTCA) as the complete enzyme set is encoded in its draft genome. In 

contrast only an incomplete set of genes for carbon fixation via the Wood-Ljundahl pathway 

(reductive acetyl CoA pathway) was identified, lacking the key enzyme of this pathway, the 

carbon monoxide dehydrogenase/acetyl CoA synthase. The reductive TCA cycle which forms 

one molecule acetyl CoA from the fixation of two molecules of CO2, is a central metabolic 

pathway in the cell that generates precursors for lipid and protein biosynthesis (Fuchs, 2011). 

In sulfate reducers this mechanism of carbon fixation was first described in the 

hydrogenotrophic Desulfobacter hydrogenophilus (Schauder et al., 1987). In the 

Ca. D. auxilii genome the key enzymes of the reductive TCA cycle, fumarate reductase 

(HS1_001279, HS1_001733, HS1_001734, HS1_001735), ferredoxin-dependent 

2-oxoglutarate oxidoreductase (HS1_001275-HS1_001277) and ATP citrate lyase 

(HS1_001265-HS1_001266) are encoded in one cluster together with genes for other enzymes 

of the cycle (HS1_001263, HS1_001268-HS1_001271, HS1_001275, HS1_001281-

HS1_001282). This cluster also comprises genes encoding a heterodisulfide reductase 

(HdrABC, HS1_001272-HS1_001274), adjacent to the ferredoxin-dependent 2-oxoglutarate 

oxidoreductase genes. The potential electron bifurcating function of Hdr within the 
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MvhADG/HdrABC enzyme complex (Buckel and Thauer, 2013) may provide reduced 

ferredoxin to the 2-oxoglutarate oxidoreductase during hydrogenotrophic growth. As 

indicative from the draft genome, Ca. D. auxilii converts the product of the reductive TCA 

cycle, acetyl CoA, further to pyruvate in a ferredoxin-dependent reductive carboxylation 

reaction that leads to the fixation of another molecule of CO2. Genes encoding the responsible 

enzyme, pyruvate ferredoxin oxidoreductase (HS1_001566, HS1_001571-HS1_001573), 

were observed in a cluster with genes for an aldehyde ferredoxin reductase (HS1_001562, 

HS1_001567) two proteins containing 4Fe-4S ferredoxin (HS1_001563, HS1_001568) and 

proteins with similarity to HdrA (HS1_001564-HS1_001565), HdrB (HS1_001570) and HdrC 

(HS1_001569). These proteins could be involved in electron transfer reactions and 

regeneration of reduced ferredoxin. Genes for further conversion of pyruvate to oxalacetate, 

either via phosphoenolpyruvate (PEP; PEP synthase, HS1_001176 and PEP carboxylase, 

HS1_002476-HS1_002477) or directly (pyruvate carboxylase, HS1_000172), were present 

and link carbon fixation to carbohydrate biosynthesis via gluconeogenesis. Although growth 

of Ca. D. auxilii on acetate was not observed, its genome encodes genes for the conversion of 

acetate to acetyl CoA by acetyl CoA synthetase (HS1_001676, HS1_001693).  

Ammonium is likely to be used as inorganic nitrogen source by Ca. D. auxilii. Its genome 

encodes glutamine synthetase (HS1_000233) for the condensation of ammonium and 

glutamate to glutamine and glutamate synthase (HS1_001956-HS1_001957) to further 

convert glutamine and 2-oxoglutarate to yield two glutamate molecules. Genes encoding 

enzymes to catalyze the formation of ammonium from nitrate, nitrate reductase and nitrite 

reductase, were not found. Further, genes for a nitrogenase complex were not identified; only 

two genes for a nitrogen fixation protein (nifU, HS1_000655, HS1_001433) were present. 

This confirms earlier studies which indicated that partner bacteria in AOM consortia do not 

fix molecular nitrogen but assimilate ammonia (Dekas et al., 2009).  

Implications for the lifestyle of Ca. D. auxilii in the environment 

In solitary growth mode in our enrichment, Ca. D. auxilii thrives as an obligatory 

thermophilic, hydrogenotrophic and autotrophic sulfate reducer. However, in natural 

hydrothermally heated hydrocarbon-rich sediments as well as in thermophilic methane-

amended enrichments, Ca. D. auxilii cells generally appear to be associated with ANME-1 

(Fig. 1), implying that close proximity is crucial for dual-species syntrophic growth (Holler 

et al., 2011). A tight cell-to-cell association seems characteristic for DIET-performing 

syntrophic consortia. As previously shown in the Geobacter dual-species consortium, the two 
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partners require direct contact; a partner capable of alternating between hydrogen uptake and 

DIET would only aggregate during DIET but not during interspecies hydrogen transfer 

(Summers et al., 2010; Rotaru et al., 2014). Despite Ca. D. auxilii’s inability to utilize 

hydrocarbons, highly affiliated 16S rRNA gene sequences were also detected in anaerobic 

enrichments with butane or propane as sole energy source (Kniemeyer et al., 2007; Adams 

et al., 2013). Hence, in its natural environment, Ca. D. auxilii may not be restricted to TAOM 

syntrophy, but may act as syntrophic partner to a variety of thermophilic organisms, which 

lack complete oxidative pathways. Its fast (within a few days) response to hydrogen addition 

together with its rather small genome size indicates that switching between solitary or 

consortial growth does not require major transformations in the proteome, but may be 

mediated by similar redox components and enzyme complexes. In hydrothermal sediments 

Ca. D. auxilii therefore possibly also grows non-syntrophically using naturally abundant 

hydrogen as the energy source for sulfate reduction. The flexibility to transition between 

growth strategies might be of selective advantage in dynamic hydrothermal systems and allow 

for sustained metabolism on changing substrates. 

Description of ‘Candidatus Desulfofervidus auxilii‘ and ‘Candidatus Desulfofervidaceae’ 

‘Candidatus Desulfofervidus auxilii’ (De.sul.fo.fer'vi.dus, N.L. prefix Desulfo used in 

taxonomic names for sulfate-reducing bacteria, fervidus L. adj. hot, L. n. the hot one, N.L. n. 

Desulfofervidus hot sulfate reducer; au.xi' li.i, L. neut. n. auxilium help/support, auxilii, 

L. gen. n. of help/support indicating that the organism is capable of a syntrophic life style). 

The bacterium was enriched from a thermophilic anaerobic methane-oxidizing enrichment 

obtained with hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. The 

bacterium grows chemolithoautotrophically with sulfate and hydrogen in a temperature range 

between 50 and 70°C, optimal at 60°C. No heterotrophic growth was observed. Syntrophic 

growth (chemoorganoautotrophic) is observed on methane with thermophilic ANME-1 

archaea. Cell morphology is rod shaped with a length of 1.0-2.0 µm and width of 0.5-1.0 µm. 

The bacterium is proposed to belong to the Candidatus Desulfofervidaceae (-aceae ending to 

denote a family), a novel family of sulfate-reducing bacteria tentatively placed in the 

Deltaproteobacteria. 
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Material and methods 

Enrichment and maintenance of Ca. D. auxilii 

Ca. D. auxilii was obtained from a sediment-free, thermophilic (60°C) AOM enrichment from 

Guaymas Basin sediments (Gulf of California) (see Holler et al., 2011). It has been separated 

from its methanotrophic partner by dilution-to-extinction series with sulfate and hydrogen as 

sole energy sources. Dilution-to-extinction series were prepared in 20 ml Hungate tubes filled 

with 10 ml artificial seawater medium for sulfate-reducing bacteria (Widdel and Bak, 1992). 

Hungate tubes were supplied with a 250 kPa H2:CO2 (80:20) headspace. Dilution series were 

inoculated with 10% of the anaerobic methanotrophic enrichment and serial dilutions of 1:10 

were performed resulting in effective dilutions from 10
2 

to 10
10

. To determine microbial 

sulfate reduction, sulfide concentration in the medium was repeatedly measured using a 

colorimetric test (Cord-Ruwisch, 1985). After three months the highest active dilutions were 

analyzed for the presence of Ca. D. auxilii cells. The purest enrichments were maintained by 

transfer into fresh medium (5-10% culture). The latter procedure was repeated when sulfide 

concentration exceeded 15 mM. 

DNA extraction, 16S rRNA gene amplification and clone library construction 

DNA was extracted from 40 ml of the thermophilic AOM enrichment (50 and 60°C) and from 

100 ml of Ca. D. auxilii culture following the protocol by Zhou and colleagues (1996). For 

16S rRNA gene amplification the bacterial specific primer set GM3 and GM4 was employed 

(Muyzer et al., 1995). The dsrA gene, encoding dissimilatory sulfate reductase subunit A, was 

amplified using the primer set DSR1Fmix (containing DSR1F, DSR1Fa, DSR1Fb, DSR1Fc, 

DSR1Fd) (Wagner et al., 1998; Loy et al., 2004; Zverlov et al., 2005) and DSR1334R 

(Santillano et al., 2010). The archaeal primer pair Arch20F (Massana et al., 1997) and 

Arch958 (DeLong, 1992) was used to identify the archaeal contaminant in the Ca. D. auxilii 

culture. PCR reactions were performed in a 20 µl reaction volume, containing 0.5 µM of each 

primer, 200 µM of each deoxyribonucleoside triphosphate, 6 µg bovine serum albumin, 

1x PCR buffer (5’Prime, Hamburg, Germany), 0.25 U Taq DNA Polymerase (5’Prime) and 

1 µl of template (20-30 ng). The cycle conditions were as follows: initial step at 95°C for 

5 min; 26 cycles, each at 95°C for 1 min, 46°C (GM3/GM4) or 52°C 

(DSR1Fmix/DSR1334R) for 1.5 min, and 72 °C for 3 min; and final step at 72°C for 10 min. 

PCR amplicons from 3 reactions were pooled, purified and concentrated using the QIAquick 

PCR Purification Kit (Qiagen, Hilden, Germany), gel excised and purified again using the 
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QIAquick Gel Purification Kit (Qiagen) according to the manufacturer’s recommendations. 

Ligation was carried out with the pGEM-T Easy vector system (Promega, Madison, WI, 

USA) followed by transformation of Escherichia coli One Shot Top10 cells (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer’s recommendations. Clones were 

screened using the M13F/R primer pair and a standard PCR procedure. Positive inserts were 

sequenced using ABI BigDye Terminator chemistry and an ABI377 sequencer (Applied 

Biosystems, Foster City, CA, USA). The PCR product obtained with the archaeal-specific 

primer pair was purified and sequenced directly. 

Probe design 

An oligonucleotide probe specifically targeting Ca. D. auxilii, probe HotSeep1_1465 (probe 

sequence 5’-CCCAAGGUGUGGUCGGCG-3’) was designed using the probe design tool in 

the ARB software package (Ludwig et al., 2004). The oligonucleotide probe (HRP labeled) 

was synthesized by Biomers (Ulm, Germany). The probe was in silico tested for sensitivity 

(target group hits) and specificity (outgroup hits) with the ARB probe match tool (Quast et al., 

2013). Probe HotSeep1_1465 covers sequences currently assigned to the Ca. D. auxilii cluster 

(97% similarity threshold) with the exception of three sequences (NCBI acc. no.’s KJ569680, 

FR682643, FR682645; compare Tab. S1) and has at least one mismatch to non-target group 

sequences (sequences less than 97% similar to the Ca. D. auxilii cluster). The stringency of 

the newly designed probe was tested in a CARD-FISH experiment by increasing the 

formamide concentration in the hybridization buffer from 0% to 70%.  

Catalyzed reporter deposition fluorescence in situ hybridization 

CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization) was applied to 

detect Ca. D. auxilii cells in AOM enrichments and to repeatedly analyze the purity of 

Ca. D. auxilii cultures. Cells for CARD-FISH were fixed in 2% formamide for 2 h at room 

temperature and filtered onto polycarbonate filters, 0.2 µm pore size (GTTP, Whatman). 

CARD-FISH was performed following the standard procedure as described previously 

(Pernthaler and Amann, 2004) with some modifications. In short: filters were embedded in 

0.2% low melting agarose prior to the CARD-FISH procedure. Optimized cell wall 

permeabilization for probe HotSeep-1_1465 was achieved with lysozyme treatment for 7 min 

at 37°C (10 mg ml
−1

 lysozyme, lyophilized powder (SigmaAldrich) in 0.1 M Tris–HCl, 

0.05 M EDTA, pH 8) followed by proteinase K digestion for 2 min at RT (4.5 mU ml
−1

 

proteinase K (Merck) in 0.1 M Tris−HCl, 0.05 M EDTA and 0.5 M NaCl, pH 8). Endogenous 
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peroxidases were inactivated with 0.15% H2O2 in methanol (30 min, RT). For hybridization 

the following oligonucleotide probes were applied with respective formamide concentration 

(according to original publication or derived from the melting curve for probe 

HotSeep-1_1465): EUB338I-III, 35%, Arch915, 35%, ANME-1-350, 40%, HotSeep-1_1456, 

35%. Catalyzed reporter deposition was performed using tyramides labeled with the 

fluorochromes Alexa Fluor 594 or Alexa Fluor 488. When performing double hybridizations 

(e.g. for the AOM consortia) the peroxidase enzymes of the first hybridization were 

inactivated with 0.3% H2O2 in methanol (30 min, RT) prior to the application of the HRP 

probe in the second hybridization. For archaeal cell wall permeabilization only 7 min 

lysozyme at 37°C was used as proteinase K treatment resulted in damage of archaeal cells. 

Hence in dual CARD-FISH experiments targeting HotSeep-1 and Archaea permeabilization 

was restricted to lysozyme treatment resulting in less bright signals in HotSeep-1 cells. 

Samples were stained with DAPI (4,6-diamidino-2-phenylindole) and visualized using 

epifluorescence microscopy. 

Physiological experiments 

To analyze the response of Ca. D. auxilii to different substrates and temperatures 1 ml 

aliquots of cultures pre-grown at 60°C with sulfate, hydrogen and carbon dioxide were 

inoculated to 20 ml Hungate tubes filled with 10 ml artificial seawater medium 

(28 mM sulfate). The medium and/or headspace composition was modified with respect to 

electron donor, electron acceptor/sulfur compound and carbon source to be tested (see below). 

Sulfate-reducing activity was determined by measuring the sulfide concentrations in the 

medium using the copper-sulfide formation assay (Cord-Ruwisch, 1985). 

To test the temperature range and optimum of sulfate-reducing activity, cultures were 

incubated between 20°C and 80°C (9 temperatures: 20°C, 27°C, 37°C, 50°C, 55°C, 60°C, 

65°C, 70°C and 80°C; with triplicates for each temperature). The incubations were provided 

with 28 mM sulfate and a 250 kPa H2:CO2 (80:20) headspace. Sulfide production at each 

temperature was determined over a period of three weeks. 

To test an influence of organic substrates (carbon sources) cultures were incubated with 

28 mM sulfate and 150 kPa H2:CO2 (80:20) plus the potential substrate: acetate, formate, 

ethanol, lactate, benzoate, dicarboxylic acid mixture (succinate, fumarate, malate), fructose, 

methanol, pyruvate, methyl sulfide; all 2 mM, yeast extract and peptone; both 0.01% (w/v), 

carbon monoxide, methyl sulfide; both 10 kPa or methane; 150 kPa. CO2 was present as 

additional carbon source in all incubations. Control experiments were performed under 



Chapter III 

97 

standard conditions with CO2 as sole carbon source. All substrates were tested in duplicates 

and incubation was performed at 60°C. The sulfide production was determined over a period 

of three weeks. 

To test activity of Ca. D. auxilii on alternative electron donors substrates were added to 

incubations containing sulfate (28 mM) and a N2:CO2 (90:10) headspace, except gaseous 

electron donors (see below). Acetate, formate, ethanol, lactate, benzoate, dicarboxylic acid 

mixture (succinate, fumarate, malate), fructose, methanol, pyruvate were supplied in 

concentration of 10 mM, yeast extract and peptone as 0.1% (w/v). The following gaseous 

substrates were tested (% atmosphere added): methyl sulfide (10%), carbon monoxide (10%), 

methane (90%), butane (90%) and propane (90%). Control experiments were performed under 

standard conditions with hydrogen as sole electron donor (250 kPa H2:CO2 (80:20)). All 

substrates were tested in duplicates and incubation was performed at 60°C with sulfide 

production measured over three weeks. To test for fermentation of organic carbon sources the 

headspace was tested for hydrogen production after three weeks of incubation by gas 

chromatography coupled to mercury reduction detection (Shimadzu).  

The capability to utilize alternative sulfur compounds as electron acceptors or to 

disproportionate was tested in sulfate-free incubations supplemented with either sulfite 

(0.5 mM), thiosulfate (5 mM), sulfate (10 mM), elemental sulfur and colloidal sulfur. In 

disproportionation experiments the headspace contained 250 kPa N2:CO2 (80:20) while in 

experiments testing for the capability of reduction hydrogen was supplied as electron donor 

(250 kPa H2:CO2 (80:20)). Sulfide production was measured over three weeks. 

Growth characteristics were determined from replicate cultures (7.5% inoculum) incubated 

in 256 ml bottles containing 150 ml artificial seawater medium and a H2:CO2 headspace. To 

measure inorganic carbon fixation in a 
14

C-DIC radiotracer assay replicates (3 of 6 cultures) 

were spiked with 
14

C-DIC (~5.4 kBq). Controls were supplied with a N2:CO2 headspace 

(80:20; 2 replicates, 1 
14

C spiked, 1 non-spiked). To provide an abiotic control a sterilized 

(121°C, 25 min) culture aliquot served as inoculum (2 replicates, 1 
14

C spiked, 1 non-spiked). 

All incubations were performed at 60°C. Incubations were sampled repeatedly for sulfide 

(copper sulfide formation assay) and sulfate (ion chromatography) concentrations, for DIC 

concentrations, for 
14

C-tracer content and for cell counts over a period of 5 weeks. To 

measure carbon fixation aliquots of spiked cultures (3 to 5 ml volume) were blotted on filters 

(0.2 µm, GSWP). Inorganic carbon was removed via exposure to HCl atmosphere and fixed 

radiocarbon was determined by scintillation counting. The total carbon fixation was 

calculated as 
14

C uptake into particulate organic carbon multiplied by total DIC 
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[
14

C-POC (kBq mlculture
−1

) / 
14

C-total (kBq mlculture
−1

) × DIC (mmol mlculture
−1

)]. Cell numbers 

were determined from non-labeled replicates by counting DAPI-stained cells to obtain total 

cell numbers and specific CARD-FISH-stained cells to determine the fraction of 

Ca. D. auxilii cells. 

Scanning electron microscopy 

Culture aliquots of Ca. D. auxilii were blotted onto gold/palladium sputtered polylysine 

coated glass slides and single TAOM aggregates were picked from the enrichment culture. 

Samples were dehydrated in an ethanol series, dried and mounted on electrically conductive, 

adhesive tags (Leit-Tab; Plano GmbH, Wetzlar, Germany). Specimens were investigated with 

a FEI environmental field emission SEM Quanta 250 FEG (FEI, Eindhoven, Netherlands) at 

electron energy of 2 keV using the Everhart-Thornley secondary electron detector (ETD). 

Atomic force microscopy 

Samples were retrieved from the supernatant of a TAOM enrichment, fixed in 20 g l
−1

 

formaldehyde for 30 min at RT and directly filtered onto 0.2 µm pore size GTTP 

polycarbonate filter, 25 mm diameter (Millipore, Germany) sputtered with a gold palladium 

(20%/80%) layer (~40 nm). Filters were stored at −20°C or directly analyzed using an atomic 

force microscope (AFM) (NT-MDT Co., Russia) in semi-contact mode with a gold coated 

silicon cantilever (NSG10). Images were processed using NT-MDT Image Analysing 3.5. 

Image color and contrast was optimized using conventional image processing software 

(Adobe Photoshop CS5, version 12.0.4). 

Metagenome sequencing and assembly 

Genomic DNA was extracted according to the protocol by Zhou and colleagues (1996) from a 

cell pellet of 100 ml Ca. D. auxilii culture (harvested by centrifugation at 5000×g for 

15 min, 4°C). 2 µg of high molecular weight DNA was subjected to fragment library 

construction using the Nextera Mate Pair Library Preparation Kit, following the Gel-Plus 

protocol of the manufacturer’s user guide. DNA fragments of approx. 5-8 kb were extracted 

from a preparative gel prior to circularization. The mate pair library was sequenced on a 

MiSeq instrument (MiSeq, Illumina) in a 2x300 bases paired end run. 

To estimate the taxonomic composition of the metagenomic dataset raw reads were 

mapped to the SILVA database (release 119) (Quast et al., 2013) using bbmap v.35 

implemented in phyloflash v.1.5 with minimum identity of 95%. For quantification only 
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unambiguously mapped reads were counted. Nearly full length 16S rRNA gene sequences 

assembled by phyloflash were classified as HotSeep-1 (99.4% identity, 1530 bp, coverage 

107.5) and Archaeoglobus fulgidus (98% identity, 1035 bp, coverage 2.5). 

Quality of raw read data was assessed using FastQC and raw reads were processed, 

including adapter clipping, trimming of bases with quality below Q30 and removal of reads 

shorter 50 bp using bbduk2 (bbmap v.35). De novo assembly was performed with quality 

controlled mate pair reads using the SPAdes genome assembler v. 3.5.0. (Bankevich et al., 

2012) with default values for k and the option for high quality mate pairs (--hqmp). In total 

2,577,039 bp were assembled into 57 contigs >1000 kb, representing 31 scaffolds 

(N50 2,540,211 bp). The largest, final scaffold of 2,540,211 bp was used for all further 

analysis. Small and low coverage scaffolds (on average <5 kb length and <2x coverage) were 

excluded from the analysis. 

Completeness of the draft genome assembly was evaluated with checkM (Parks et al., 

2015) using the lineage-specific workflow. In addition completeness was also estimated with 

the AMPHORA2 package using the 31 bacterial marker genes (Wu and Scott, 2012). 

ORF prediction and annotation 

Gene prediction was carried out using the Glimmer3 software package (Delcher et al., 2007). 

Ribosomal RNA genes were detected by using the RNAmmer 1.2 software (Lagesen et al., 

2007) and transfer RNAs by tRNAscan-SE (Lowe and Eddy, 1997). Batch cluster analysis 

was performed by using the GenDB (version 2.2) system (Meyer et al., 2003). Annotation and 

data mining were done with the tool JCoast, version 1.7 (Richter et al., 2008), using 

observations from similarity searches against several sequence databases (NCBI nr, 

Swiss-Prot, KEGG-Genes, genomesDB) and to the protein family databases InterPro (Mulder 

et al., 2005) and Pfam (Bateman et al., 2004) for each coding region. Predicted protein coding 

sequences were automatically annotated by the software tool MicHanThi (Quast, 2006). 

Briefly, the MicHanThi software infers gene functions based on similarity searches against 

the NCBI nr (including Swiss-Prot) and InterPro databases using fuzzy logic. The annotation 

of proteins highlighted within the scope of this study was subject of manual inspection. For all 

observations regarding putative protein functions, an expectation (E)-value cut-off of 10
−5

 

was applied. For proteins of interest the subcellular localization was predicted by 

PSORTb v.3.0.2. (Yu et al., 2010) and transmembrane helices were identified by TMHMM 

scan v.2.0 (Krogh et al., 2001). Further for selected proteins signal peptides and alternative 

secretion (without signal peptide) were predicted with SignalP 4.1 (Petersen et al., 2011) and 
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SecretomP 2.0 (Bendtsen et al., 2005), respectively. Potential c-type cytochromes and type IV 

pili were identified by protein domain models related to cytochrome c or type IV pili, 

respectively. For cytochromes the number of hemes was derived from the number of detected 

CXXCH motifs, which are indicative for heme-binding sites. An overview of the observations 

made for selected proteins including the ones discussed is provided as Supplementary 

Information Annotation Tables.  

Comparison of the shared gene content by reciprocal best matches (RBMs)  

Determination of the shared orthologous gene content has been performed by a blast 

‘all-versus-all’ search between selected organisms (Deltaproteobacteria and 

Thermodesulfobacteria and Nitrospira). Reciprocal best matches were counted by a blast 

result with E-values of <10
−5

 each and a subject coverage of over 65%. 

Taxonomic distributions  

To analyze the Ca. D. auxilii genome for the taxonomic distribution of best matches the 

genome was compared against the genomesDB database (Richter et al., 2008), an in house 

protein database based on the NCBI Reference Sequence database (RefSeq) containing 

protein sequences from all sequenced bacterial and archaeal genomes. Each predicted protein 

of Ca. D. auxilii was searched against the genomesDB and the best match was recorded on 

phyla and species level. Only those proteins with significant hits (E-value >10
−5

) were 

considered.  

Functional classification with KEGG 

For metabolic pathway identification, genes were searched for similarity against the KEGG 

database. A match was counted if the similarity search resulted in an E-value below 10
−5

. All 

occurring KO (KEGG Orthology) numbers were mapped against KEGG pathway functional 

hierarchies and statistically analyzed. 

Functional classification with COG 

All predicted ORFs were also searched for similarity against the COGs database (Tatusov 

et al., 2003). A match was counted if the similarity search resulted in an E-value below 10
−5

. 
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16S rRNA gene sequence analysis 

The genomic 16S rRNA gene sequence of Ca. D. auxilii was compared to the NCBI database 

of reference sequences (rna-RefSeq, containing curated, non-redundant sequences; 

17,765 database entries, 15.10.2015) and the NCBI nucleotide collection database (nt/nr, 

including environmental sequences; 28,723,871 database entries, 27.10.2014) using NCBI 

blastn (2.2.30) (Zhang et al., 2000) under default settings. Phylogenetic analysis was 

performed using the ARB software package (Ludwig et al., 2004) and the SILVA database 

(release 119) (Quast et al., 2013). Sequence selection for analysis was based on the initial 

blast hits to Ca. D. auxilii (see above); the 100 top scoring rna-RefSeq database entries (query 

coverage >85%) were included and used as references to guide further sequence selection 

from related classes/phyla. In addition, sequences in the nt/nr database with similarity >90% 

to Ca. D. auxilii as well as sequences obtained from the thermophilic Guaymas Basin AOM 

enrichments and Ca. D. auxilii culture were considered. The Ca. D. auxilii sequence cluster 

was defined based on 97.5% sequence similarity. Similarity was determined from a similarity 

matrix (neighbour joining algorithm) considering nearly full length sequences (>1300 bp). For 

phylogenetic reconstruction 654 nearly full length sequences (>1300 bp) covering several 

bacterial classes and phyla including Deltaproteobacteria, Nitrospira, Thermodesulfobacteria 

were aligned using the SINA aligner implemented in ARB (Pruesse et al., 2012) and the 

alignment was manually curated. Distance matrix trees were calculated with the neighbour 

joining algorithm (Saitou and Nei, 1987) and Jukes Cantor correction. Maximum likelihood 

based trees were calculated using RAxML (version 8.0.26) (Stamatakis, 2006) with 

GTRGAMMA as nucleotide substitution model and PhyML based trees with GTR as 

nucleotide substitution model. A base frequency filter was employed for each tree calculation 

to consider only alignment regions which are 50% conserved. 1000 bootstrap replicates were 

used to estimate branch support. 

23S rRNA gene sequence analysis 

Phylogenetic analysis of the genomic 23S rRNA of Ca. D. auxilii was performed with the 

SILVA LSU reference database (release 119) (Quast et al., 2013) and the ARB software 

package (Pruesse et al., 2012). The sequence alignment was manually curated and 

phylogenetic trees were calculated with the maximum likelihood algorithm using RAxML 

(version 8.0.26) (Stamatakis, 2006) with GTRGAMMA as nucleotide substitution model or 

PhyML with GTR as nucleotide substitution model. To include only conserved alignment 
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regions a 50% base frequency filter was employed. Branch support was estimated by 100 

bootstrap replicates. 

DsrA sequence analysis 

For functional gene based phylogenetic analysis the dsrA gene sequence of Ca. D. auxilii was 

obtained from its genome sequence. Additional dsrA gene sequences were retrieved from the 

thermophilic AOM enrichments (50°C and 60°C) and the Ca. D. auxilii culture. Related 

sequences were obtained from the NCBI nr database using a blastp search of the genomic 

DsrA amino acid sequence of Ca. D. auxilii. For phylogenetic analyses sequences were added 

to the dsrAB/DsrAB database constructed by Müller and colleagues (2014) and aligned using 

the ARB software package (Ludwig et al., 2004). A phylogenetic tree was calculated from 

256 aligned amino acid sequences with the maximum likelihood algorithm (RAxML 

version 8.2.4.) using the rate distribution model PROTGAMMA and LG as substitution 

matrix. The best suited substitution model was determined by RAxML using the –m 

PROTGAMMAAUTO option. Employing a 30% base frequency filter to exclude highly 

variable regions a total of 260 alignment positions were included in the phylogenetic 

reconstruction. Branch support was estimated from 100 bootstrap replicates. 

Single copy gene analysis 

Single copy gene analysis of Ca. D. auxilii was carried out with the AMPHORA2 software 

package which uses a set of 31 universal bacterial single copy genes as marker (Wu and Scott, 

2012). Single copy genes were identified from the nucleotide sequence, aligned with 

references and assigned to phylotypes by maximum likelihood algorithm. To reconstruct the 

phylogenetic affiliation of Ca. D. auxilii on the level of multiple single copy genes the 

AMPHORA2 MarkerScanner and MarkerAlignTrim tools were used to identify, align and 

trim single copy genes present in Ca. D. auxilii and selected reference genomes. As references 

genomes of organisms that had been used in 16S rRNA gene based phylogenetic analysis (if 

available) and additionally those that were of interest based on the results from comparative 

genomic analysis were included. A marker gene was excluded if not present in all analyzed 

genomes resulting in ubiquitous 19 single copy genes (Tab. S3). The trimmed protein 

alignments of each marker were concatenated using SequenceMatrix (Vaidya et al., 2011) and 

phylogenetic trees were calculated from the multi-protein alignment (2857 positions) using 

the maximum likelihood algorithm (RAxML version 8.2.4.) applying PROTGAMMA and LG 

as substitution model and 100 bootstrap replicates to estimate branch support (Stamatakis, 
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2006). The best suitable substitution model for the concatenated multi gene alignment was 

selected by using the –m PROTGAMMAAUTO option provided by RAxML. The iTOL 

software (Letunic and Bork, 2011) was used for tree visualization. 

Nucleotide sequence accession numbers 

The Whole Genome Shotgun project has been deposited in INSDC (DDBJ/EBI-

ENA/GenBank) under the BioProject PRJNA276404. The sequence associated contextual 

(meta)data are MIxS (Yilmaz et al., 2011) compliant. Representative dsrA sequences are 

deposited in INSDC (DDBJ/EBI-ENA/GenBank) under accession numbers KT819174-

KT819177. 
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Figures and tables 

 

 

Figure 1 Microbial consortia from thermophilic AOM enrichments. (A) SEM image of a spherical TAOM 

aggregate, scale 100 µm. (B) AFM image of a component of a TAOM filament showing close proximity of 

archaeal (left) and bacterial (right) cells in a common envelope, visualized on a 0.2 µm pore-size filter, scale 

1 µm, color bar indicates object height in nm. 

 

 

 

 

 

Figure 2 Effect of hydrogen on TAOM enrichment (A) and visualization of Ca. D. auxilii cells (B-D). 

(A) Sulfide production in thermophilic AOM consortia enrichment supplied with methane (blue), methane plus 

hydrogen (green) or hydrogen (red), and without energy source (grey) in replicate incubation per condition 

(filled and empty circle). (B) Ca. D. auxilii cells in a highly enriched culture on hydrogen; cells were visualized 

with the specific CARD-FISH probe HotSeep-1_1465, scale 2 µm. (C) Differential interference contrast 

micrograph of Ca. D. auxilii cells (marked by arrow) aggregating around inorganic precipitates (brownish color), 

scale 1 µm. (D) Scanning electron microscopy image of a Ca. D. auxilii cell grown on hydrogen, scale 500 nm. 



Chapter III 

114 

 

Figure 3 Phylogenetic affiliation of Ca. D. auxilii reconstructed from the concatenated protein alignment of 

19 universal single copy marker genes. The phylogenetic tree was calculated using the maximum likelihood 

algorithm (RAxML). For clarity only a subset of the tree is depicted. Values at nodes indicate bootstrap support 

calculated from 100 replicates. The 16S rRNA gene based phylogeny is indicated to the right and is not fully 

congruent with the clustering observed in the depicted single copy gene tree. Ca. D. auxilii branches off at the 

root of the Thermodesulfobacteria, which form a sister clade to the Deltaproteobacteria. 
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Figure 4 Scheme of energy metabolism and autotrophic carbon fixation in Ca. D. auxilii reconstructed from its 

draft genome. Depicted are the proposed reducing equivalent entry points during the possible alternative growth 

strategies of Ca. D. auxilii via hydrogen, green arrows (either supplied hydrogen or syntrophic interspecies 

hydrogen transfer) or via direct electron transfer, red arrow. Color coding: red for c-type cytochrome, purple for 

b-type cytochrome, orange for FeS proteins, turquoise for molybdopterin family proteins, dark blue for CCG 

proteins, yellow for flavoproteins, green for hydrogenase (catalytic subunit), white means not assigned and grey 

indicates protein may represent an additional subunit. Protein complex structure is adapted from previous models 

(Pereira et al., 2011). Dashed lines represent potential electron flow pathways. Dotted lines represent proton flow 

pathways or possible ferredoxin linkage. Black line color: path predicted to exist during growth with hydrogen 

and DIET; red line color: path predicted to only exist during growth via DIET; green line color: path predicted to 

exist only during growth on hydrogen. Rnf complex is depicted as working in both directions. C: Cytoplasm, 

PM: Periplasmic membrane, P: Periplasm, OM: Outer membrane. 
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Table 1 Morphological and physiological characteristics of Ca. D. auxilii. 

Characteristic Ca. D. auxilii 

Cell morphology rod 

Cell size (µm) 1.5-2.0 x 0.5 

Doubling time (days) 4-6 

Temperature range (°C) 50-70 

Activity optimum (°C) 60 

Carbon source CO2 

Electron acceptors  

  Sulfate + 

  Sulfite − 

  Thiosulfate − 

  Sulfur
1
 − 

Electron donors  

  H2 + 

  Formate − 

  Acetate − 

  Hydrocarbons
2
 − 

  Other organic compounds
3
 − 

Disproportionation  

  Sulfite − 

  Thiosulfate − 

  Sulfur
1
 − 

Syntrophic growth
4
 + 

1
 Sulfur was provided in form of either S

°
 powder or as colloidal S

° 

2
 Methane, propane and butane were tested 

3 
Other organic electron donors tested: pyruvate, lactate, benzoate, succinate, fumarate, malate, ethanol,   

  methanol, fructose, peptone, yeast extract, carbon monoxide, methyl sulfide 
4
 Determined as consortial growth in AOM enrichments with methane as substrate 

 

Table 2 Draft genome sequence information. 

Feature Value 

Scaffolds 1 

Genome size (bp) 2,540,211 

Coding DNA sequence (bp) 2,286,941 

Coding DNA sequence (%) >90 

N (%) <1 

GC content (%) 37 

ORFs 2528 

Genes assigned to COGs 1658 

rRNAs (5S, 16S, 23S) 3 

tRNAs 47 

tRNA completeness (%)
1
 100 

Single copy genes
2
 31 

Single copy gene completeness (%)
2
 97-100 

1
 Estimate of completeness based on identification of at least one tRNA for each amino acid; tRNAscan-SE  

  v.1.21 (Lowe and Eddy, 1997). 
2
 Estimate of completeness based on single copy gene analysis using AMPHOR2 (Wu and Scott, 2012) and  

  checkM (Parks et al., 2015) pipeline (see material and method, and results and discussion). 
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 Supplementary information 

Supplementary figures and tables 

 

Figure S1 Evolution of sulfide (white symbols), sulfate (black symbols) and cell numbers (bars) in triplicate 

Ca. D. auxilii cultures grown with hydrogen and sulfate. Total cell numbers were determined by DAPI stained 

cell counts, fractions of Ca. D. auxilii and the contaminating archaeal cells were determined after dual 

CARD-FISH treatment with the Ca. D. auxilii specific probe (HotSeep-1_1465) and a general Archaea-targeting 

probe (Arch915). During exponential growth phase 90 to 95% of all cells were identified as Ca. D. auxilii (grey 

bar area). The contaminating species (patterned bar area) was identified as Archaeoglobus sp.. 

 

 

Figure S2 Temperature dependency of sulfate reduction in Ca. D. auxilii. Sulfate reduction rates were calculated 

from sulfide production observed in triplicates over three weeks of incubation at the designated temperature.  
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Figure S3 Effect of organic electron donors (A) and carbon sources (B) on the sulfate-reducing activity of 

Ca. D. auxilii. Activity of the culture is shown as % of sulfate reduction rates observed in incubations under 

standard conditions (hydrogen as electron source and carbon dioxide as carbon source). Activity was low in 

incubations with alternative electron donors (A) accounting for less than 5% of the sulfate reduction rate 

observed in controls supplemented with hydrogen, CO2 and sulfate (patterned bar). Activity in the presence of 

alternative carbon sources (B) and hydrogen as electron donor varied with the organic compound supplied from 

less than 3% (CO and yeast extract) to about 90% (pyruvate and propane) of the sulfate reduction rate observed 

in incubations supplemented with hydrogen, CO2 and sulfate (lowest bar in chart). Incubations testing the effect 

of organic carbon sources also included carbon dioxide (as it is part of the buffering system). As activity was not 

increased by additional organic carbon compounds heterotrophic growth of Ca. D. auxilii is unlikely.   

 

Figure S4 Sulfide production in long-term incubations of Ca. D. auxilii with different hydrocarbons (methane, 

propane, butane) and in control incubations with hydrogen (circles) and without electron donor (diamonds). 

Incubations were performed in duplicates (filled and open symbols). Sulfide production in hydrocarbon amended 

cultures was comparable to the control without electron donor over 3 months. Incubations supplemented with 

hydrogen showed high sulfide concentrations after approximately 3 weeks proving that the culture used as 

inoculum was active. 
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Figure S5 Correlation of sulfate reduction and carbon fixation. Sulfate consumption (black symbols) and sulfide 

production (white symbols) in triplicate Ca. D. auxilii cultures grown with sulfate and hydrogen (circles) and in 

control incubations without electron donor (triangles) and abiotic control (squares). CO2 fixation (bars) was 

determined by 
14

C-bicarbonate uptake into particulate organic material. CO2 fixation in control experiments 

(without electron donor and in abiotic controls) is not visible. Sulfide development was determined in parallel 

incubations without 
14

C-labeling. During exponential growth phase CO2 fixation accounts for 2.4 to 4.1% of the 

sulfate reduction rate (3% on average). 
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Figure S6 16S rRNA gene based phylogenetic classification of Ca. D. auxilii and representative related 

sequences. The phylogenetic tree was calculated applying the maximum likelihood algorithm (RAxML) with a 

50% base frequency filter and 100 replicates to estimate branch support. The phylogenetic position of the 

16S rRNA gene of Ca. D. auxilii was not stable as indicated by a comparison of trees calculated by different 

methods (RAxML, PhyML, Neighbor Joining, and Maximum Parsimony). Other observed relationships were 

within Thermodesulfobacteria or Desulfurellales. Sequences in the Ca. D. auxilii cluster share >97.5% sequence 

similarity and affiliate with environmental sequences currently exclusively retrieved from the Guaymas Basin. 

Indicated are the accession numbers and the source of the sequence, for more details on these and other 

HotSeep-1 related sequences see Tab. S1. Colour coding: black, genomic 16S rRNA of Ca. D. auxilii; red, 

obtained from Guaymas Basin enrichments on methane (Holler et al., 2011; Kellermann et al., 2012); blue, 

obtained from Guaymas Basin enrichment on butane (Kniemeyer et al., 2007); green, obtained from Guaymas 

Basin sediments (Teske et al., 2002 and Dowell et al., unpublished). 
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Figure S7 Phylogenetic classification based on the 23S rRNA gene. The phylogenetic tree was calculated with 

the RAxML algorithm and application of a 50% variability filter to exclude highly variable alignment regions. It 

is shown that the genomic 23S rRNA gene of Ca. D. auxilii affiliates with known syntrophically growing 

organisms of the class Deltaproteobacteria.  

  



Chapter III 

122 

 

 

Figure S8 Phylogenetic classification of the dissimilatory sulfite reductase gene, subunit A of Ca. D. auxilii. The 

phylogenetic tree was calculated from the amino acid sequence alignment of 219 sequences applying the 

maximum likelihood algorithm (RAxML) with the LG substitution model and employing a 30% variability filter 

to exclude highly variable alignment regions. Branch support was calculated from 100 replicates. The genomic 

dsrA of Ca. D. auxilii clusters with sequences from Guaymas Basin AOM enrichments incubated at 50°C and 

60°C (red) and sequences from early hydrogenotrophic-growing HotSeep-1 enrichments (blue) with 

>95% amino acid sequence similarity. The Ca. D. auxilii dsrA cluster affiliates with environmental sequences 

obtained from methane-rich estuary sediments (Baker et al., 2015) and relates to the dsrA sequences of 

Desulfatiglans anilini (formerly Desulfobacterium anilini), Moorella thermoacetica and Desulfotomaculum spp.. 
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Table S1 Overview of available 16S rRNA gene sequences (full length) related to Ca. D. auxilii, their isolation 

source, sequence similarity to the genomic 16S rRNA gene of Ca. D. auxilii and relative abundance of related 

sequences in thermophilic AOM enrichments (GB50 and GB60). Sequences >99% similar are marked by black 

lines and relative abundance of clones is given for each cluster observed in the thermophilic AOM enrichments. 

Grey shaded sequences are considered the closest related environmental sequences but are not classified as 

Ca. D. auxilii (based on 97% sequence similarity threshold).  

GenBank 

ID 
Isolation source Sequence description 

Author 

year 

Similarity 

to genomic 

16S (%) 

% of clones 

GB50 

AOM 

GB60 

AOM 

KT795323 
Guaymas Basin H2 

enr 60°C 
Genomic 16S rRNA    

Wegener 

2015 
  

40 69 

KT152887 
Guaymas Basin H2 

enr 60°C 
clone HotSeep1_G4_Bac_G5 

Wegener 

2015 
100.0 

KT152872 
Guaymas Basin AOM 

enr 50°C 
clone GB50_Bac_F2 

Wegener 

2015 
99.9 

EF077228 
Guaymas Basin 

Butane enr 60°C 
clone Butane60-GuB 

Kniemeyer 

2007 
99.9 

KT152886 
Guaymas Basin H2 

enr 60°C 
clone HotSeep1_G3_Bac_C4 

Wegener 

2015 
99.9 

FR682637 
Guaymas Basin AOM 

enr 37°C 
clone GUAY_enr37_Bac26 

Kellermann 

2012 
99.7 

KT152882 
Guaymas Basin AOM 

enr 60°C 
clone GB60_Bac_F4 

Wegener 

2015 
99.7 

FR682647 
Guaymas Basin AOM 

enr 50°C 
clone GUAY_enr50_Bac31 

Holler   

2011 
99.7 

AF419676 
Guaymas Basin 

hydroth sed 
clone a2b002 

Teske    

2002 
99.7 

FR682650 
Guaymas Basin AOM 

enr 50°C 
clone GUAY_enr50_Bac6 

Holler   

2011 
98.8 

  

KJ569680 
Guaymas Basin Mat 

Mound 
clone  BAC2_60 

Dowell   

2014 
98.7 

  

FR682648 
Guaymas Basin AOM 

enr 50°C 
clone GUAY_enr50_Bac3 

Holler   

2011 
98.5 

6 2 KT152874 
Guaymas Basin AOM 

enr 50°C 
clone GB50_Bac_C2 

Wegener 

2015 
98.5 

KT152884 
Guaymas Basin AOM 

enr 60°C 
clone GB60_Bac_B9 

Wegener 

2015 
98.5 

KJ569657 
Guaymas Basin Mat 

Mound 
clone BAC2_45 

Dowell  

2014 
98.4 

  

FR682643 
Guaymas Basin AOM 

enr 37°C 
clone GUAY_enr37_Bac9 

Kellermann 

2012 
98.3 

  

FR682645 
Guaymas Basin AOM 

enr 50°C 
clone GUAY_enr50_BAC18 

Holler   

2011 
98.0 

  

AF419677 
Guaymas Basin 

hydroth sed 
clone a2b033 

Teske    

2002 
93.6 

  

KJ569666 
Guaymas Basin Mat 

Mound 
clone BAC2_21 

Dowell   

2014 
91.5 

  

AF419675 
Guaymas Basin 

hydroth sed 
clone a1b020 

Teske    

2002 
91.4 

  

KJ569654 
Guaymas Basin Mat 

Mound 
clone BAC1_24 

Dowell   

2014 
91.4 
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Table S2 Top scoring hits from blastn search of the genomic Ca. D. auxilii 16S rRNA gene sequence (1560 bp) 

against the NCBI database of 16S ribosomal RNA (Archaea and Bacteria); from 13.10.2015; 17762 sequences. 

Organism NCBI acc # 
% 

identity 

% query 

coverage 

Bit 

score 
Phylum 

Thermodesulforhabdus norvegica strain A8444 NR_025970.1 86 97 1594 Proteobacteria 

Syntrophobacter fumaroxidans strain MPOB NR_075002.1 85 100 1585 Proteobacteria 

Dissulfuribacter thermophilus strain S69 NR_109598.1 86 96 1580 Proteobacteria 

Syntrophobacter sulfatireducens strain TB8106 NR_043073.1 85 99 1561 Proteobacteria 

Desulfobacca acetoxidans strain DSM 11109 NR_074955.1 85 99 1559 Proteobacteria 

Desulfovirga adipica strain TsuA1 NR_036764.1 85 98 1531 Proteobacteria 

Desulfosoma caldarium strain USBA-053 NR_116707.1 86 92 1526 Proteobacteria 

Anaeromyxobacter dehalogenans strain 2CP-1 NR_027547.1 84 99 1524 Proteobacteria 

Desulfosoma profundi strain SPDX02-08 NR_117786.1 86 93 1517 Proteobacteria 

Thermodesulfatator indicus strain DSM 15286 NR_075021.1 84 99 1515 Thermodesulfo-

bacteria 

 

 

 
Table S3 Overview of single copy marker genes identified in the Ca. D. auxilii genome and their assigned 

phylotypes on phylum and order level. Single copy genes were identified from a set of 31 universal bacterial 

marker genes and phylogenetically classified using the AMPHORA2 software package (Wu and Scott, 2012). 

Marker genes in bold were used for phylogenetic reconstruction. 

Marker gene Phylotype phylum level Phylotype order level 

frr Proteobacteria Desulfovibrionales 

nusA Proteobacteria Desulfovibrionales 

rplC Proteobacteria Syntrophobacterales 

rplE Proteobacteria Desulfarculales 

rplN Proteobacteria Desulfovibrionales 

rplP Proteobacteria Desulfobacterales 

rpsB Proteobacteria Syntrophobacterales 

rpsC Proteobacteria Desulfobacterales 

rpsS Proteobacteria not assigned 

tsf Proteobacteria Syntrophobacterales 

Pgk Proteobacteria Desulfarculales 

rplA Proteobacteria Desulfovibrionales 

rplL Proteobacteria Syntrophobacterales 

smpB Proteobacteria Desulfarculales 

rplB Thermodesulfobacteria Thermodesulfobacteriales 

rplD Thermodesulfobacteria Thermodesulfobacteriales 

rpmA Thermodesulfobacteria Thermodesulfobacteriales 

rpsE Thermodesulfobacteria Thermodesulfobacteriales 

rpsJ Thermodesulfobacteria Thermodesulfobacteriales 

rpsK Thermodesulfobacteria Thermodesulfobacteriales 

rpsM Thermodesulfobacteria Thermodesulfobacteriales 

pyrG Thermodesulfobacteria Thermodesulfobacteriales 

rplK Thermodesulfobacteria Thermodesulfobacteriales 

rplS Thermodesulfobacteria Thermodesulfobacteriales 

rpoB Thermodesulfobacteria Thermodesulfobacteriales 

rpsI Thermodesulfobacteria Thermodesulfobacteriales 

rplF Spirochaetes Spirochaetales 

rplT Aquificae Aquificales 

rplM Fusobacteria Fusobacteriales 

dnaG Planctomycetes Planctomycetales 
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Table S4 Distribution of best scoring database hits of Ca. D. auxilii proteins across phyla and species. 

Phylum/Species 

# of Ca. D. auxilii 

proteins (E-value 

1.0E
−5

) 

% of total 

best hits 

Proteobacteria 1020 53.1 

Desulfobacca acetoxidans 147 7.65 

Syntrophobacter fumaroxidans 100 5.21 

deltaproteobacterium NaphS2 85 4.42 

Syntrophus aciditrophicus 59 3.07 

Desulfatibacillum alkenivorans 55 2.86 

Desulfarculus baarsii 41 2.13 

Desulfococcus oleovorans 35 1.82 

Desulfobacterium autotrophicum 30 1.56 

Geobacter uraniireducens 29 1.51 

Pelobacter carbinolicus 26 1.35 

Geobacter metallireducens 23 1.2 

Desulfonatronospira thiodismutans 23 1.2 

Geobacter sp. FRC-32 21 1.09 

Thermodesulfobacteria 210 10.93 

Thermodesulfatator indicus 171 8.9 

Thermodesulfobacterium sp. OPB45 39 2.03 

Euryarchaeota 97 5.05 

Nitrospirae 66 3.44 

Thermodesulfovibrio yellowstonii 47 2.45 

Aquificae 59 3.07 

Cyanobacteria 35 1.82 

Chloroflexi 34 1.77 

Bacteroidetes 23 1.2 

Other phyla (with <1% of total matches) 143 7.44 

Other species (with >1% of total matches) 24 1.25 

Desulfotomaculum kuznetsovii 24 1.25 

Other species (with <1% of total matches) 966 50.29 
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Table S5 Reciprocal best match analysis of the Ca. D. auxilii genome versus selected organisms. 

Species Phylum 

# of 

shared 

genes 

% of 

total Ca. 

D. auxilii 

genes 

# of shared 

genes with 

similarity 

>60% 

% of total 

shared Ca. 

D. auxilii 

genes 

Thermodesulfatator indicus Thermodesulfobacteria 958 37 195 20 
Syntrophobacter fumaroxidans Proteobacteria 912 36 143 16 
Desulfobacca acetoxidans Proteobacteria 882 34 160 18 
Desulfobacterium autotrophicum Proteobacteria 881 34 91 10 
deltaproteobacterium NaphS Proteobacteria 880 34 125 14 
Thermodesulfovibrio yellowstonii Nitrospira 857 34 121 14 
Thermodesulfobacterium geofontis Thermodesulfobacteria 852 33 148 17 
Geobacter metallireducens Proteobacteria 850 33 105 12 
Desulvovibrio hydrothermalis Proteobacteria 848 33 88 10 
Desulfovibrio vulgaris Proteobacteria 801 31 93 11 
Syntrophus aciditrophicus Proteobacteria 798 31 112 14 

 

 

 
Table S6 Classification of Ca. D. auxilii genes according to COG categories. 

COG category No of genes 

[J] Translation, ribosomal structure and biogenesis 142 
[A] RNA processing and modification 1 
[K] Transcription 69 
[L] Replication, recombination and repair 152 
[B] Chromatin structure and dynamics 2 
[D] Cell cycle control, cell division, chromosome partitioning 26 
[Y] Nuclear structure 0 
[V] Defense mechanisms 26 
[T] Signal transduction mechanisms 87 
[M] Cell wall/membrane/envelope biogenesis 153 
[N] Cell motility 48 
[Z] Cytoskeleton 0 
[W] Extracellular structures 0 
[U] Intracellular trafficking, secretion, and vesicular transport 54 
[O] Posttranslational modification, protein turnover, chaperones 80 
[C] Energy production and conversion 146 
[G] Carbohydrate transport and metabolism 68 
[E] Amino acid transport and metabolism 127 
[F] Nucleotide transport and metabolism 56 
[H] Coenzyme transport and metabolism 87 
[I] Lipid transport and metabolism 49 
[P] Inorganic ion transport and metabolism 73 
[Q] Secondary metabolites biosynthesis, transport and catabolism 33 
[R] General function prediction only 227 
[S] Function unknown 117 
ORFs with COGs 1658 
ORFs 2528 
COGs 1823 

 

 

Annotation Tables are not displayed. 
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Abstract 

The anaerobic oxidation of methane is an efficient microbial methane sink in marine 

environments. The responsible anaerobic methanotrophic archaea (ANME) form consortia 

with specific partner bacteria. The physiological mechanisms underlying sulfate-dependent 

methane oxidation are not yet completely understood but presumably involve a syntrophic 

interaction. Here we performed metagenomic and transcriptomic analyses on sediment-free 

mesophilic and thermophilic ANME-1 grown at 37°C or 60°C in association with either 

Seep-SRB-2 or HotSeep-1. We compared the obtained draft genomes of the meso- and 

thermophilic ANME-1 among one another and also to the published psychrophilic ANME-1 

dataset from the Black Sea. Despite differences in growth temperature, cell morphology and 

partner bacterium, the similarly small genomes of meso- and thermophilic ANME-1 

(~1.5 Mbp) share most properties. The ANME-1 encode and express the genes of the reverse 

methanogenesis pathway. However, consistently with previous studies on ANME-1 lack the 

mer (N
5
,N

10
-methylenetetrahydromethanopterin reductase) gene, which would catalyze the 

oxidation of the methyl group to methylene. We suggest that this step is instead adopted by a 

tetrahydrofolate reductase that may allow similar function but is commonly not expressed in a 

canonical methanogenesis pathway. Genes for dissimilatory sulfate reduction or hydrogen 

metabolism were not found in any of the ANME-1 draft genomes, hence the ANME-1 require 

an efficient alternative pathway for the removal of electrons. We found highly expressed 

membrane-associated and extracellular cytochromes in ANME-1, which indicates their 

central role in ANME-1 and likely in an interspecies electron transfer to partner bacteria. 

Archaeal cytochromes may not only promote electron transfer within specific AOM consortia, 

they may play a prominent role in the archaeal-bacterial interactions in general. 
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Introduction 

The sulfate-dependent anaerobic oxidation of methane (AOM), an efficient methane sink in 

anoxic marine environments, regulates oceanic methane emissions to the atmosphere (Boetius 

and Wenzhöfer, 2013). The responsible microbial consortia of anaerobic methanotrophic 

archaea (ANME) and their specific partner bacteria couple the oxidation of methane to the 

reduction of sulfate in an interspecies effort (Boetius et al., 2000; Orphan et al., 2001b). The 

overall process of AOM yields a minimal amount of energy (ΔGr) of approx. −30 kJ mol
−1

 to 

be shared among the partners, resulting in low growth yields and doubling times of 2 to 

7 months of the involved organisms (Knittel and Boetius, 2009; Holler et al., 2011). The 

methane-consuming ANME are relatives of methanogenic archaea and have reversed the 

methanogenesis pathway to oxidize methane (Hoehler et al., 1994; Hallam et al., 2004). 

ANME are classified into three main phylogenetic clades (ANME-1, -2, -3) and several 

subclades, but none of these clades has cultured representatives (Knittel and Boetius, 2009; 

Ruff et al., 2015). The ANME form consortia with specific bacterial groups. While ANME-1 

and -2 archaea associate with partner bacteria of the Seep-SRB-1a or Seep-SRB-2 cluster 

(Desulfosarcina/Desulfococcus) (Orphan et al., 2001a; Michaelis et al., 2002; Knittel et al., 

2003; Kleindienst et al., 2012), ANME-3 form consortia with bacteria of the Desulfobulbus 

cluster (Niemann et al., 2006), and the deep-branching HotSeep-1 cluster associates in 

consortia with thermophilic ANME-1 (Holler et al., 2011).  

The metabolic interaction between ANME and their partner bacteria in AOM is explained 

in different models. For ANME-2/DSS consortia an internal cycling of zero-valent sulfur was 

suggested that proposed partial sulfate reduction in ANME-2 and sulfur disproportionation by 

DSS (Milucka et al., 2012). Alternatively, ANME-2 was proposed to directly transfer 

reducing equivalents from methane oxidation to sulfate-reducing partner bacteria via redox 

active extracellular c-type cytochromes (McGlynn et al., 2015). In thermophilic 

ANME-1/HotSeep-1 consortia the bacterial partner was suggested to additionally produce 

nanowire-like connections to retrieve the electrons from the ANME-1 (Wegener et al., 2015). 

Yet the general applicability of these proposed models to the complete ANME clades and 

bacterial partners is unknown. 

Here we focus on the molecular basis of methane oxidation and electron transfer in 

ANME-1-dominated consortia. The ANME-1 clade comprises a large group of environmental 

sequences obtained from >50 AOM habitats that form a distinct phylogenetic branch within 

the Methanomicrobia (Knittel and Boetius, 2009). Based on 16S rRNA gene similarity 

ANME-1 was classified into ANME-1a and ANME-1b. Central aspects of the physiology of 
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ANME-1 were revealed in culture-independent studies (Wegener et al., 2008; Kellermann 

et al., 2012). Metagenomic approaches, together with transcriptomic and proteomic data, have 

provided detailed insights into the potential metabolic capabilities of the clade (Hallam et al., 

2004; Meyerdierks et al., 2005, 2010; Stokke et al., 2012). As physiologic and genomic 

information on ANME-1 is still limited, little is known about the potential metabolic diversity 

within this large group. Consequently, the general characteristics of ANME-1 that distinguish 

them from other methanotrophic archaea such as ANME-2 or methanogenic archaea are 

difficult to determine. We obtained draft genomes from two members of the ANME-1 clade 

that are characterized by distinct growth temperatures and specific bacterial partners. We 

performed comparative analysis of our datasets and previous ANME-1 genome drafts 

focusing on their central metabolisms and commenting on potential interaction mechanisms 

with their bacterial partners. 

Material and methods 

AOM enrichments 

Material for AOM enrichments was sampled during the RV Atlantis cruise AT15-56 in 

November/December 2009 (Alvin Dive 4570) from hydrothermal vent sediments in the 

Guaymas Basin, Gulf of California, Mexico (27°00.437 N, 111°24.548 W). Enrichments were 

initiated as described by Holler and colleagues (2011) and were incubated with sulfate reducer 

medium (28 mM sulfate; Widdel and Bak, 1992). The electron donor was CH4 (0.225 MPa 

CH4) and sulfate served as the sole energy source and CO2 (0.025 MPa CO2; 30 mM 

dissolved inorganic carbon) as additionally offered carbon source. Parallel enrichments were 

incubated at 37°C and 60°C. Culture medium was exchanged when sulfide concentrations 

exceeded ~12 mM and samples were regularly diluted (1:2; 1:4) to obtain sediment-free 

enrichments after ~2 years. The phylogenetic composition and metabolic capabilities of the 

two enrichments was described previously (Wegener et al., submitted).  

Catalyzed reporter deposition fluorescence in situ hybridization 

Aliquots of AOM enrichments were fixed in 2% formaldehyde for 2 h at room temperature 

and washed with 1x phosphate buffered saline (PBS; pH 7.4). Fixed cell suspensions were 

treated with mild sonication (Sonoplus HD70; Bandelin) and aliquots of 50-250 µl were 

filtered onto GTTP filters (0.2 µm pore size, 20 mm diameter). CARD-FISH was performed 
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as described previously (Pernthaler and Amann, 2004) with some modifications. For cell wall 

permeabilization, filters were sequentially incubated in lysozyme solution (10 mg ml
−1

 

lysozyme powder, 0.1 M Tris–HCl, 0.05 M EDTA, pH 8) for 15-30 min at 37°C and 

proteinase K solution (0.45 mU ml
−1

, 0.1 M Tris–HCl, 0.05 M EDTA, pH 8, 0.5 M NaCl) for 

2 min at room temperature. To inactivate endogenous peroxidases filters were incubated in 

0.15% H2O2 in methanol (30 min, room temperature). The oligonucleotide probes 

ANME-1-350, HotSeep-1-1456 and SEEP2-658 were applied with formamide concentrations 

of 40%, 35% and 45%, respectively. To specifically target Seep-SRB-2 cells a competitor 

(unlabeled DSS658) was included with probe SEEP2-658 to avoid cross hybridization to cells 

of the DSS clade (Kleindienst et al., 2012). For dual CARD-FISH, peroxidases of the first 

hybridization were inactivated by incubation of filters in 0.3% H2O2 in methanol (30 min, 

room temperature). Catalyzed reporter deposition was combined with the fluorochromes 

Alexa Fluor 488 and Alexa Fluor 594. Filters were stained with DAPI (4,6-diamidino-2-

phenylindole). Micrographs were obtained by confocal laser scanning microscopy (LSM 780; 

Zeiss; Oberkochen, Germany).  

Visualization of ANME by autofluorescence 

To visualize autofluorescence of cofactor F420 AOM aggregates were sampled from the 

enrichments, transferred to microscopy slides and immediately analyzed using a confocal 

laser scanning microscope with an excitation light of 390 to 420 nm and a ≥463 nm emission 

filter.  

Extraction of genomic DNA, library preparation and sequencing 

Genomic DNA was extracted from 45 ml active TAOM enrichment culture harvested by 

centrifugation at 5000xg for 15 min. Supernatant was discarded and the pellet resuspended in 

extraction buffer prepared according to Zhou and colleagues (1996). Cell aggregates were 

disrupted by 40 cycles of manual grinding in a tissue grinder (Wheaton, 1 ml) followed by 

3 cycles of freezing in liquid nitrogen and thawing at 65°C. DNA was extracted according to 

the protocol by Zhou and colleagues (1996) which includes cell lysis by proteinase K 

digestion, sodium dodecyl sulfate (SDS) extraction and chloroform:isoamylalcohol extraction. 

DNA was precipitated with isopropanol at –20°C overnight, pelleted by centrifugation for 1 h 

at 13000 rpm and washed three times with ice-cold 70% EtOH. The pellet was air dried, 

resuspended in PCR water and DNA quantity and quality was assessed by Qubit 

measurements and gel electrophoresis. 
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For metagenome sequencing 2 µg and 4 µg high molecular weight DNA was used for 

PCR-free TruSeq paired end and mate pair library preparation, respectively, following the 

manufacturer guidelines. Paired end libraries were prepared from ~500 bp DNA fragments 

and mate pair libraries from DNA fragments of ~5000 bp size. Libraries were sequenced on 

an Illumina MiSeq platform using chemistry to generate 250 bp long reads.  

16S rRNA diversity, metagenome assembly and draft genome reconstruction 

The taxonomic composition of the metagenomic dataset was estimated by mapping the raw 

reads to the SILVA database (release 119) (Quast et al., 2013) using bbmap v.35 implemented 

in phyloflash v.1.5 with minimum identity of 95%. For quantification only unambiguously 

mapped reads were counted.  

Quality of raw read data was assessed using FastQC (v.011.2) and reads were processed, 

including adapter clipping, trimming of low quality bases from sequence ends and removal of 

reads with quality <10 and length <50 bp using bbduk (bbmap v.35). Prior to assembly a read 

error correction was performed using BayesHammer implemented in the SPAdes software 

package (Bankevich et al., 2012). Mate pair reads were assembled with SPAdes v.3.5.0. using 

default values of k and the –hqmp option. Binning of the bulk metagenome assembly was 

performed within the Metawatt software version 3.2 (Strous et al., 2012) combining 

tetranucleotide frequency binning with manual bin refinement based on coverage and GC 

spread. Bins of ANME and partner bacteria were extracted from the bulk assembly for 

targeted reassembly. Mate pair and paired end reads were mapped to the binned contigs using 

bbmap (v. 35) with minimum mapping identity of 98% and best site of ambiguous reads. 

Mapped reads including unmapped read pairs were reassembled using SPAdes with default 

values of k. Binning and bin refinement as described above was repeated. Paired end 

connections of contigs was assessed using mate pair mapping data and the scripts of the 

multimetagenome workflow (Albertsen et al., 2013) to further refine the bin. The process of 

reassembly and binning was repeated until no further improvement was achieved. Then the 

assembled contigs were subjected to iterative scaffolding and gapfilling using SSPACE 

(Boetzer et al., 2010) and GapFiller (Boetzer and Pirovano, 2012), respectively. Assembly 

quality and bin completeness was assessed repeatedly during the assembly process. QUAST 

(Gurevich et al., 2013) was used to obtain general assembly metrics and single-copy gene 

analysis provided estimates of the degree of completeness and level of contamination of the 

bin. Final draft genome completeness was estimated using checkM (Parks et al., 2015) and 

AMPHORA2 (Wu and Scott, 2012). Draft genomes were annotated using prokka (Seemann, 
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2014). Protein domains were identified by hmmscan (HMMER 3.0) (Eddy, 1998) using the 

PfamA (Bateman et al., 2004) and TIGRFAM (Haft et al., 2003) reference databases. Proteins 

were compared to the NCBI nr protein database in a blastp (2.2.29+) search (Altschul et al., 

1990). Subcellular localization of selected proteins was determined with PSORTb 3.0 (Yu 

et al., 2010). Potential c-type cytochromes were identified by the presence of the CXXCH 

motif, indicative of a heme-binding site and when matching a c-type cytochrome related 

protein domain were considered as such. Potential type IV pili genes were identified based on 

the presence of respective protein domains. Annotation of all genes discussed here was 

manually inspected and curated. 

Extraction of RNA, library preparation and sequencing  

Total RNA was extracted from 20 ml enrichment aliquots. For thermophilic cultures ~80% 

culture medium was removed under ambient temperatures and 5 volumes of pre-warmed 

RNA later (SigmaAldrich) was injected to prevent mRNA degradation. RNAlater amended 

cultures were kept at ambient temperature and headspace gases for 20 min. Biomass was then 

collected onto 0.2 µm pore size GTTP polycarbonate filters and total RNA was immediately 

extracted using the Quick-RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) following 

manufacturers recommendations. For mesophilic cultures ~95% culture medium was 

removed, 2 volumes extraction buffer was injected and samples were immediately processed 

with the Quick-RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) following 

manufacturers recommendations. RNA extracts were treated with DNase I (Roche, Rotkreuz, 

Switzerland) in the presence of RNasin for 30 min at 37°C followed by DNase I inactivation 

at 56°C for 10 min. RNA was then purified with the RNeasy MinElute Cleanup kit (Qiagen, 

Hilden, Germany) following manufacturer recommendations and eluted with RNase-free 

water. RNA quality and quantity was measured on a Bioanalyzer instrument using RNA 

chips. DNA contamination was tested by PCR reaction. 

For RNA sequencing 50 ng total RNA was prepared using the TruSeq stranded mRNA 

library prep kit (Illumina CA, USA) omitting the rRNA depletion step and including a PCR 

amplification step of 15 cycles. Synthesized cDNA was sequenced on a MiSeq instrument 

(MiSeq, Illumina) generating between 2 to 3 Mio 150 bp single end reads per library and on a 

HiSeq generating additionally 30 to 40 Mio 150 bp reads per library.  
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Gene expression analysis 

Quality of raw read data was assessed using FastQC (v.011.2) and reads were processed, 

including adapter clipping, trimming of low quality bases from sequence ends and removal of 

reads with quality <10 and length <25 bp using bbduk (bbmap v.35). Reads were mapped to 

the draft genomes obtained from the respective thermophilic or mesophilic enrichments with a 

minimum mapping identity threshold of 98%. Unambiguously mapping reads per feature 

(gene) were quantified with bedtools multicov (v.2.24.0). Count data were converted to 

transcripts per million mapped reads by first normalizing each count value by the length of its 

feature. Then, to calculate relative values of transcription (T), the normalized count value of a 

genome feature i was set in relation to the normalized count values of all other genome 

features using the following equation, according to Li and colleagues (2010) 

 Ti = Xi / li × (∑ Xj / lj)
−1  

(1)
 

where X = counts and l = length of the gene (bp). The relative transcription values were 

multiplied by 10
6
, and are given in terms of transcripts per million (TPM). 

Results and discussion 

The meso- and thermophilic AOM enrichment cultures  

The studied AOM enrichments were cultivated at mesophilic (37°C; G37) and thermophilic 

(60°C; G60) conditions, respectively (Holler et al., 2011; Wegener et al., submitted). The 

G37 enrichment was dominated by ANME-1/Seep-SRB-2 consortia while 

ANME-1/HotSeep-1 consortia prevailed in G60 (Fig. 1 A, B) (Wegener et al., submitted). 

Both consortia were observed to grow as aggregates of visible size, however aggregates in 

G37 were smaller than in G60 (<100 µm and 500 µm in diameter, respectively). Aggregated 

cells were surrounded by an extrapolymeric matrix, also containing iron sulfide precipitates 

and in particular in the G60 culture carbonate crystals. The microbial consortia in the G60 

culture were easily detectable by their brownish-red color similar to ANME-1-dominated 

regions of microbial reefs from the Black Sea (Michaelis et al., 2002), which might be 

attributed to a high cytochrome c content. As for the consortia, differences in morphology 

between growth temperatures were also observed for ANME-1 cells: The G37 enrichment 

was dominated by large coccoid ANME-1 cells (~2 µm diameter), whereas ANME-1 in G60 

were cylindrical and enclosed in an envelope similar to previous reports (Reitner et al., 2005a; 

Wegener et al., 2015). In both, G37 and G60 ANME-1 cells showed the characteristic 
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autofluorescence of the methanogenic cofactor F420, which is indicative for the activity of the 

methanogenesis pathway (Fig. 1 C, D) (Doddema and Vogels, 1978). The dominant archaeal 

16S rRNA gene sequences from the two enrichments (Wegener et al., submitted) showed an 

identity of >98% and represented two clusters of partial sequences with within cluster 

similarity of >99%. These mesophilic and thermophilic clusters are distinguished by <96% 

similarity indicating temperature-dependent growth of the two different ANME-1 subtypes. 

Classification of 16S rRNA gene fragments obtained by metagenome sequencing supported 

that two distinct and abundant variants of ANME-1 were present (Fig. 2). Further, sequences 

related to the mesophilic ANME-1 were not detected at thermophilic conditions and vice 

versa. In both metagenomic libraries, ANME-1 accounted for about 40% of all 16S rRNA 

gene reads and their bacterial partners for about 30%. From a bulk assembly of the 

metagenomic datasets, ANME-1-related bins were extracted for targeted assembly of 

mesophilic and thermophilic ANME-1 draft genomes. 

We also compared our data to the available genomic dataset of psychrophilic ANME-1b 

(Meyerdierks et al., 2010). This ANME-1b dataset was derived from the inner part of 

microbial reef structures from the Black Sea naturally enriched in ANME-1b cells. With 

in situ temperatures ~8 to 10°C in the Black Sea these ANME-1b represent the cold-adapted 

(psychrophilic) counterpart to the mesophilic and thermophilic ANME-1 from our Guaymas 

Basin enrichments.  

Classification of ANME-1 draft genomes 

ANME-1 comprises a large clade within the Methanomicrobia. To resolve the phylogenetic 

relatedness of the studied ANME-1 we compared their 16S rRNA gene and the functional 

gene mcrA, which encodes the key enzyme of methanogenesis. Each of the ANME-1 draft 

genome datasets investigated contained only a single 16S rRNA gene; however, the 

metagenomic dataset of G37 contained at least two further closely related ANME-1 clades 

(Fig. 2). Furthermore, the 16S rRNA gene sequence of the studied bin showed two insertions 

which were not observed in any ANME-1-related full length 16S rRNA gene sequence in the 

NCBI non-redundant sequence database. As the 16S rRNA gene is highly conserved, the 

insertions observed may result from assembly problems derived from the presence of closely 

related ANME-1 subtypes in the enrichment. 

The genomic 16S rRNA gene of the G37 and the G60 ANME-1 bins showed a similarity 

of 89% while they shared 90% or 93% similarity with the 16S rRNA gene sequence of the 

psychrophilic ANME-1b, respectively. Even when masking the regions of insertion in the 
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mesophilic ANME-1 16S rRNA gene sequence similarities only slightly increased (91% 

identity to both, thermo- and psychrophilic ANME-1). Hence according to a minimum 

identity threshold of 94.5% as genus border (Yarza et al., 2014) the ANME-1 analyzed here 

likely represent different genera of methanotrophic archaea. The 16S rRNA gene based 

phylogenetic reconstruction showed that the genomic 16S rRNA gene of the G60 ANME-1 

affiliates well with cloned sequences amplified from Guaymas Basin sediment samples and 

the G60 enrichments (Fig. 3 A). In contrast the genomic 16S rRNA gene of the G37 ANME-1 

did not affiliate with the dominant sequences retrieved from the G37 enrichment previously 

(Wegener et al., submitted) but formed a cluster with few sequences of the G37 enrichment. 

Again, the observed insertion in its genomic 16S rRNA gene may impede reliable 

classification of mesophilic ANME-1. For comparison, the best database hit was observed to a 

clone from a Guaymas Basin AOM enrichment incubated at 50°C, regardless of masking the 

insertion or not (identities of 93% and 92%, respectively). As previously shown, the 

psychrophilic ANME-1 from the Black Sea belongs to a well separated branch including 

clones from the Black Sea and other cold methane seep sites.  

A phylogenetic classification of the Mcr alpha subunit, a part of the key enzyme of 

methanogenesis, revealed a similar clustering (Fig. 3 B). Thermophilic and mesophilic 

ANME-1 form distinct branches, however while here the mesophilic ANME-1 affiliates in the 

same branch as the dominant mcrA obtained from Guaymas Basin AOM enrichments (at 37 

and 50°C) (Holler et al., 2011), the thermophilic ANME-1 clusters with a single sequence 

obtained from an AOM enrichment incubated at 50°C. As also observed for the 16S rRNA 

gene the mcrA of ANME-1b formed a distinct cluster. Sequence identities of the analyzed 

McrA proteins ranged from 89 to 90% among the three ANME-1.  

Comparison of ANME-1 draft genomes 

Tetranucleotide frequency binning of the initial metagenome assemblies followed by iterative, 

targeted bin reassembly and bin refinement yielded draft genomes of mesophilic and 

thermophilic ANME-1a variants. We performed comparative analyses of the two retrieved 

draft genomes and the draft genome of the psychrophilic ANME-1b (Meyerdierks et al., 

2010). The general genome properties and the estimated degree of draft genome completeness 

of the three datasets are summarized in Table 1. Our meso- and thermophilic ANME-1 have 

relatively small genomes of about 1.5 Mb, which is approximately half of the assembly size 

obtained for the psychrophilic ANME-1. The GC content is considerably higher in mesophilic 

ANME-1 (52%) relative to the thermophilic (41%) or psychrophilic ANME-1 (43%). Such 
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observations suggest that elevated growth temperatures do not lead to increased GC content in 

ANME-1, as suggested for other archaea (Merkel et al., 2013). The three genomes encode for 

38 to 46 tRNAs, whereas the tRNA for tyrosine is missing in all three genomes. We estimated 

the completeness of the draft genomes of mesophilic and thermophilic ANME-1 by three 

independent methods (see Tab. 1). Based on the presence of tRNAs for all except one amino 

acid, the genomes showed a 95% completeness. Two sets of single-copy genes were used to 

further evaluate genome completeness. Detection of archaeal-specific single-copy genes 

indicated a completeness of 90 to 91%. In all three ANME-1 most of the detected marker 

genes were classified into the Euryarchaeota and thereof the largest fraction was assigned to 

the Methanosarcinales (Tab. S1). Based on detected Euryarchaeota-specific single-copy 

genes the genome completeness was 89 to 92%. When comparing the identity of the single 

copy genes missing, 6 Archaea-specific and 8 Euryarchaeota-specific genes were absent in 

all three ANME-1 datasets. This might indicate that the ANME-1 branch lacks some single-

copy genes generally thought to be characteristic for Euryarchaeota or Archaea in general. 

The degree of contamination observed in the two draft genomes was below 2% for the 

thermophilic and below 1% for the mesophilic ANME-1 variant. Estimated strain 

heterogeneity accounted for 75% and 0% of contamination by other organisms, respectively. 

In comparison, the previously-described ANME-1b dataset (Meyerdierks et al., 2010) 

represents a less complete (87%) genome that contains a higher degree of contamination 

(20%), of which 80% are attributed to strain heterogeneity. Hence, this dataset was considered 

as composite genome of several ANME-1 strains (Meyerdierks et al., 2010; Parks et al., 

2015). It probably also provides an at least partial explanation for the observed larger size of 

this psychrophilic ANME-1 genome relative to the genomes of meso- and thermophilic 

ANME-1. But the small genome of the meso- and thermophilic ANME-1 may also be 

interpreted as adaptation to specific environmental conditions or limited metabolic versatility 

and may be a feature contrasting the Guaymas-specific ANME-1 population from other 

ANME-1. In contrast to all previous ANME-1 metagenomic datasets, the draft genomes of the 

mesophilic and thermophilic ANME-1 generated here provide genomic information of two 

specific ANME-1a subtypes differentiated by their phylogenetic affiliation and also their 

morphology, growth temperature, and the identity of their bacterial partner. Together, these 

datasets allow deeper insight into the potential metabolic diversity within the ANME-1 group.  
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The reverse methanogenesis pathway in ANME-1  

Sulfate-dependent methane oxidation by ANME is proposed to proceed via a reversal of the 

methanogenesis pathway (Hallam et al., 2004). The mesophilic and thermophilic ANME-1 

types studied here originate from enrichments in which methane and sulfate display the only 

redox couple for cell catabolism. Despite earlier proposals that ANME-1 may be able to 

switch to methanogenic metabolism (Lloyd et al., 2011) methane production by ANME-1 was 

not measureable in the G37 and G60 enrichments (Wegener et al., submitted). Hence, we 

attribute the detection of methanogenesis-related genes in the ANME-1 draft genomes to their 

utilization in methane oxidation. With the exception of the mer gene, encoding N
5
,N

10
-

methylenetetrahydromethanopterin (methylene-H4MPT) reductase, we found that both 

ANME-1 types contain and express all the genes necessary to convert methane to CO2 via 

reverse methanogenesis (Fig. 4; compare Tab. S2). Notably, following the 16S and 23S rRNA 

genes, mcrA was the most highly expressed gene in the enrichments, and its expression was 

almost two orders of magnitudes higher than for all other enzymes of the methanogenesis 

pathway. Mcr catalyzes the initial activation of methane to methyl-CoM. Due to the 

endergonic character of methyl-CoM formation this is the rate limiting step of the overall 

metabolism of ANME (Thauer and Shima, 2008). This limitation explains the high amount of 

McrA protein in the cells (Krüger et al., 2003) and the respective predominant expression of 

this gene. The enzymes catalyzing the subsequent steps of methane oxidation were less 

expressed as they rely on the supply of activated methane which they sequentially turnover. 

We observed a gradual decrease in gene expression along the pathway, with an increased 

expression of only the genes catalyzing the last two reaction steps (Fig. 5). 

The mer gene is not present in G37 and G60, which is in agreement with the earlier 

findings that showed the absence of a mer gene in cold-adapted ANME-1 (Meyerdierks et al., 

2010; Stokke et al., 2012). Consequently, a bypass for this enzymatic step was proposed that 

involves the formation of methanol and formaldehyde which finally re-enters the 

methanogenesis pathway via oxidation to methylene-H4MPT (Welander and Metcalf, 2008; 

Meyerdierks et al., 2010). Indeed, we also detected genes encoding the enzymes proposed to 

catalyze the mer bypass reaction sequence, including a fusion protein of formaldehyde-

activating enzyme (FaeA) and hexulose-6-phosphate synthase (Hps), and an alcohol 

dehydrogenase. However, all genes showed low expression in both ANME-1 (Tab. S2), 

which argues against their involvement in the methane catabolism. Furthermore, the 

FaeA/Hps enzyme is probably necessary for the ribose phosphate synthesis (Goenrich et al., 

2005). As alternative to a bypass Stokke and colleagues (2012) proposed a substitution of Mer 
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by a methylenetetrahydrofolate (methylene-H4F) reductase (MetF) in ANME-1. MetF is a 

Mer analog that acts on similar substrates and may be a suitable candidate to replace Mer. 

Mer catalyzes the F420-dependent conversion of methylene-H4MPT to methyl-H4MPT while 

in MetF the reduction of methylene-H4F is NADH-dependent and proceeds via two steps in 

which first NADH reduces FAD and reduced FADH2 reduces methylene-H4T to methyl-H4T 

(Maden, 2000; Shima et al., 2000). MetF and additionally a MetV gene, which was reported 

to associate with MetF (Bertsch et al., 2015) is present in the ANME-1b dataset of 

Meyerdierks and colleagues (2010). Additionally, these genes were present and expressed in 

the meso- and thermophilic ANME-1. In some organisms MetFV were shown to form a 

complex with RnfC or with HdrABCD and MvhD. These additional subunits were proposed 

as alternative electron entry points (Mock et al., 2014; Bertsch et al., 2015). In principle, in 

ANME-1 such a MetFV/HdrABC complex could exist and engage in electron transport. 

Together these data support the notion that a modified methanogenesis pathway, lacking the 

Mer protein and utilizing the MetFV enzyme may operate in ANME-1. Such a modification in 

the enzyme series of the methanogenesis pathway would be a characteristic of the ANME-1 

which distinguishes these methanotrophic archaea from their methanogenic counterparts and 

also from the related ANME-2 in which a complete methanogenesis pathway was detected 

(Wang et al., 2014). Tetrahydrofolate-dependent enzymes like MetFV are usually found in 

non-methanogenic organisms such as Eukaryotes, Bacteria and some Archaea (Thauer, 

1998). In Methanosarcina spp. these genes are proposed to involve in C1 metabolism from 

serine/glycine and they seemed to originate from lateral gene transfer from a bacterial donor 

(Deppenmeier et al., 2002; Buchenau and Thauer, 2004). The MetFV in ANME-1 are also 

likely acquired by horizontal gene transfer from bacteria. This hypothesis is supported by a 

comparison of the ANME-1 MetV and MetF proteins to the NCBI non-redundant protein 

database. The closest matches of ANME-1 MetV proteins were to bacterial MetV genes. For 

the ANME-1 MetF closest matches again included many bacterial MetF genes but the top hits 

derived from miscellaneous Crenarchaeota (unpublished) and Lokiarchaeota (Spang et al., 

2015), respectively. Currently, ANME-1 seems to be among the few Archaea containing a 

methylene-H4T reductase and unique in that it possibly employs this enzyme in the 

methanogenesis pathway. Yet, biochemical characterization of MetFV in ANME-1 is required 

to elucidate its mechanisms and structural composition and to verify the hypothetical function 

in methane turnover.  

  



Chapter IV 

140 

Carbon assimilation in ANME-1 

The mesophilic and thermophilic ANME-1 studied here produce their biomass from the 

assimilation of carbon dioxide (Wegener et al., 2008; Kellermann et al., 2012; Wegener et al., 

submitted). Hence it might be more accurate for ANME-1 to be referred to as 

chemoorganoautotrophs than as methanotrophs, considering that methanotrophy would imply 

direct assimilation of methane carbon (Kellermann et al., 2012). In the meso- and 

thermophilic ANME-1 we found expression of the genes encoding a 

CO dehydrogenase/acetyl CoA synthase (CODH/ACS) complex, the key enzyme of the 

reductive acetyl CoA pathway for carbon fixation (Fig. 5, Tab. S2). This is in agreement with 

the previous report of this enzyme in the ANME-1b dataset (Meyerdierks et al., 2005, 2010). 

The CODH/ACS complex combines a carbonyl and methyl group with CoA to yield acetyl 

CoA, a central metabolite of the cell (Fuchs, 2011). In methanogens utilizing the reductive 

acetyl CoA pathway a tetrahydromethanopterin bound methyl group is produced via the 

enzymatic steps of methanogenesis. In ANME-1, employing the reversal of the 

methanogenesis pathway, a tetrahydromethanopterin bound methylgroup is produced from 

methane. However, the observed absence of transfer of methane-derived carbon into biomass 

implies that also in ANME-1 a carbon dioxide-derived methyl group is assimilated. Hence 

ANME-1 possibly utilizes the enzymes of the methanogenesis pathway partially in a 

reductive direction to generate a carbon dioxide-derived methyl group. Indications for CO2 

fixation via an alternative pathway were not found in the present genomic dataset. A 

characteristic of the reductive acetyl CoA pathway is its simultaneous fixation of CO2 and 

generation of ATP, when acetyl CoA is converted to acetate (Fuchs, 2011). Employing such a 

pathway may be advantageous for the generally energy limited ANME, however the genes 

required for acetyl CoA conversion to acetate were only partially detected and low expressed 

(see Tab. S3). It is probably also energy efficient for ANME to utilize the same enzyme 

complexes for carbon fixation that are already available in the cell for energy metabolism. 

However, utilizing the same enzymes in opposite directions will require specific mechanisms 

to regulate the direction or a spatial separation within the cell.  

Nitrogen and sulfur metabolism in ANME-1 

We further investigated the meso- and thermophilic ANME-1 for their metabolic potential 

regarding nitrogen and sulfur metabolism. Ammonium is likely the source of nitrogen to the 

here investigated ANME-1 types as in both draft genomes we identified the genes for 

glutamate synthase and glutamine synthetase which are required for the two step conversion 
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of ammonium to glutamate. Next to those genes Meyerdierks and colleagues (2010) identified 

a branched amino acid transporter in the psychrophilic ANME-1, which they interpreted as 

second way of nitrogen assimilation in ANME. Also the thermophilic ANME-1 encodes such 

a five subunit transporter system, of which the ligand binding subunit showed elevated 

expression (see Tab. S3). The in this subunit identified type I periplasmic ligand binding 

domain is found in active ABC transport systems predicted to function in the uptake of amino 

acids, peptides or inorganic ions, but ligand specificity is not experimentally determined. 

Because of its elevated expression it may be speculated that this protein in ANME-1 is also 

involved in transport of substrates other than branched amino acids. Such a transporter 

complex was not detected in the mesophilic ANME-1 draft genome, which may present 

differences in the nitrogen sources utilized by the ANME-1 types. However, it may also be 

that the respective genes are hidden in yet missing parts of the genome. Genes encoding 

nitrate- or nitrite-reducing capabilities (nitrate and nitrite reductase) were not found. All three 

ANME-1 genomes encode an incomplete set of genes required for nitrogen fixation 

(nif genes) including genes with similarity to nifH, encoding dinitrogenase reductase (see 

Tab. S3). In meso- and thermophilic ANME-1 the nifH gene showed almost no expression, as 

also all other detected nitrogen fixation related genes. This lack of expression together with 

the incompleteness of the nif gene set and the phylogenetic placement of the nifH of ANME-1 

in nifH group IV (representing non-functional nifH; Dekas et al., 2015) suggest that ANME-1 

do not assimilate molecular nitrogen. This contrasts the proposed nitrogen fixation capability 

of ANME-2 archaea as observed by stable isotope labeling experiments (Dekas et al., 2009, 

2015). While nitrogen fixation in ANME-1 awaits further experimental elucidation it is 

intriguing that energy-limited organisms such as ANME should invest into nitrogen fixation 

(16 ATP per N2 fixed) as they also inhabit ammonium-rich habitats. 

Genes involved in sulfur metabolism in meso- and thermophilic ANME-1 largely correlate 

with those reported by Meyerdierks and colleagues (2010). Encoded were a sulfur transporter, 

an ATP sulfurylase, an APS kinase and an assimilatory sulfite reductase (see Tab. S3). All 

genes showed low expression levels suggesting that they were less important for ANME-1 

metabolism under the given growth conditions. As previously suggested, due to energetic 

reasons and because of the abundance of sulfide ANME may rather assimilate sulfur from its 

reduced form (Meyerdierks et al., 2010). Our results contradict dissimilatory sulfur 

metabolism in ANME, if present it would need to proceed via yet unknown enzymes. 
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Intracellular electron transport and energy conversion in ANME-1 

The complete oxidation of a molecule of methane by reverse methanogenesis releases eight 

electrons. To sustain metabolism ANME-1 require efficient mechanisms for electron transport 

and removal. As an internal terminal electron sink in ANME is not present (Meyerdierks 

et al., 2010; Wang et al., 2014; this study) electrons are thought to be transferred across the 

cell membrane to an external sink (i.e. a syntrophic partner). Electrons liberated during 

methane oxidation are transferred to the electron carriers ferredoxin (Fd) or F420 generating 

Fdred and F420H2 which are recycled by deposition of electrons to other redox active 

compounds. The mesophilic and thermophilic ANME-1 genomes encode a membrane-bound 

F420H2:quinone oxidoreductase (Fqo) complex, previously observed in the ANME-1 dataset 

(Meyerdierks et al., 2010), which was described in Archaeoglobus fulgidus and shows 

similarity to the NADH dehydrogenase complex (Brüggemann et al., 2000). This complex 

supposedly couples the reoxidation of reduced F420 to the export of protons across the 

membrane and the transfer of electrons to a membrane-associated electron carrier. The 

potential electron carrier is yet not known, but in A. fulgidus was proposed as special form of 

a menaquinone. Proton translocation at the Fqo complex contributes to generation of an 

electrochemical gradient for ATP synthesis. Furthermore, both here analyzed ANME-1 draft 

genomes encode a multi-subunit H
+
/Na

+
 antiporter and a V-type ATP synthase (see Tab. S3) 

for energy conservation. The reduced Fd produced in the last step of methane oxidation was 

proposed to be reoxidized at the membrane-bound electron-translocating complex (Rnf 

complex) in ANME-2 (Wang et al., 2014). Genes encoding this complex are however absent 

in all available ANME-1 datasets and the mechanisms of Fd recycling is yet unknown. In 

hydrogenotrophic methanogens a membrane-bound Ech hydrogenase couples Fd reduction to 

hydrogen oxidation (Thauer et al., 2008). Consequently a reverse operating reaction in 

methanotrophs would recycle reduced Fd with the generation of hydrogen. Although a 

hydrogenase was observed in the ANME-1b dataset (Meyerdierks et al., 2010) the draft 

genomes of meso- and thermophilic ANME-1 as also the ANME-2 genome draft (Wang 

et al., 2014) contain no catalytic subunits of hydrogenases. Hence protons are unlikely the 

terminal electron acceptor for methane oxidation. The in the initial step of methane oxidation 

utilized heterodisulfide of CoM and CoB is regenerated by a heterodisulfide reductase 

complex. The ANME-1 datasets encodes subunits of soluble HdrABC but lack the respective 

membrane-bound variant (HdrDE) of the complex which was detected in ANME-2 

(Meyerdierks et al., 2010; Stokke et al., 2012; Wang et al., 2014). The acceptor for electrons 

liberated in the heterodisulfide reductase reactions is unknown in ANME-1. Delta subunits of 
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the methyl viologen hydrogenase, detected in all ANME-1 genomes may function as an 

electron transferring subunit interacting with HdrABC, hence electrons might be further 

transferred from the HdrABC complex to a membrane-bound complex as proposed previously 

(Meyerdierks et al., 2010). The available ANME-1 genomes all encode a set of c-type 

cytochromes, some predicted to be located extracellular. These cytochromes may play a 

crucial role in energy metabolism of ANME-1 as they possibly could act as extracellular sink 

for the methane-derived electrons (Meyerdierks et al., 2010; McGlynn et al., 2015; Wegener 

et al., 2015). Electrons deposited in the membrane-associated redox carrier pool (e.g. by the 

Fqo complex) could be transferred to the extracellular cytochrome pool via an interacting 

membrane-bound enzyme complex. However, as to date no candidate for such an enzyme 

could be described, the mechanisms of coupling electron flow to extracellular cytochromes 

remain unclear. 

Interaction of ANME-1 with their partner bacteria 

The genomic information obtained here supports functioning of reverse methanogenesis in 

ANME and sulfate reduction in partner bacteria as suggested before (Boetius et al., 2000; 

Wegener et al., 2015). However, a transfer of molecular intermediates including hydrogen 

could be excluded based on the absence of hydrogenases (see above). This is consistent with 

previous experiments that found a lack of hydrogen production in ANME or a lack of 

response of the partner bacteria to hydrogen addition (Nauhaus et al., 2005; Moran et al., 

2008; Wegener et al., 2015). Furthermore, genes of dissimilatory sulfur metabolism were not 

detected (Meyerdierks et al., 2010) and disproportionation in the partner bacteria were not 

observed (Wegener et al., 2015; Wegener et al., submitted), excluding partial sulfate 

reduction in ANME-1. In contrast, for thermophilic AOM consortia a direct electron transfer 

via extracellular cytochromes and conductive structures was suggested (Wegener et al., 

2015). Consistently with previous reports from thermophilic ANME-1, we detected 

expression of c-type cytochromes in the mesophilic ANME-1 (Fig. 6, Tab. S4) (Wegener 

et al., 2015). In thermophilic ANME-1, the cytochrome with highest expression has a 

predicted potential extracellular location. For the mesophilic ANME, the localization of the 

highest expressed cytochromes could not be predicted, however it could be outside the cell. 

Consistently, also the psychrophilic ANME-1 contains cytochromes with potentially 

extracellular localization (Meyerdierks et al., 2010). The presence of potentially extracellular 

cytochromes in the different ANME-1 with high expression suggests that these cytochromes 

serve in electron shuttling in ANME-1-dominated consortia. When we searched the ANME-1 
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draft genomes for genes encoding potential extracellular structures, we detected an 

incomplete set of genes related to the archaeal flagellum (archaellum), which resembles a 

bacterial type IV pilus (Albers et al., 2015), in both datasets. It may be speculated that also the 

archaellum can exhibit conductive properties just like bacterial nanowires. Genes encoding 

flagellin (or putative flagellin) showed elevated expression in both ANME-1, while all other 

archaellum-related genes however showed almost no expression (see Tab. S4). Still this 

suggests a function of these proteins in AOM consortia and the identification of the origin of 

nanowire structures in AOM consortia requires further attention. 

As expression of cytochrome and pili in the partner bacteria were proposed to enable the 

archaeal-bacterial interaction in thermophilic AOM (Wegener et al., 2015), we searched the 

preliminary genome bin (90% complete) of the bacterial partner of mesophilic ANME-1, 

Seep-SRB-2, for c-type cytochrome and type IV pili-related genes. Indeed, also Seep-SRB-2 

encodes several cytochromes and an almost complete set of pili genes. As observed for the 

bacterial partner in thermophilic AOM cytochrome expression was partially high in 

Seep-SRB-2. The pilA gene, encoding the major pilin subunit, however showed instead lower 

expression than observed for HotSeep-1 when growing in thermophilic AOM. This finding 

indicates a generally lower abundance of pili-based nanowire connections in 

ANME-1/Seep-SRB-2 consortia. This might reflect the internal structuring of 

ANME-1/Seep-SRB-2 consortia, which appear to be more densely packed and therefore 

would not require wire-like connections to bridge distances between the partners. 

Visualization of the intercellular space in mesophilic consortia (e.g. by transmission electron 

microscopy) is required to complement transcriptomic data and to verify pili-like structures in 

these consortia. Instead of pili-like connections a direct cytochrome-cytochrome bridge might 

also be sufficient for electron transfer (Meyerdierks et al., 2010; McGlynn et al., 2015). Large 

multi-heme cytochromes associated with the archaeal S-layer in ANME-2/DSS consortia 

were reported to conduct electrons between the partners (McGlynn et al., 2015). We searched 

the meso- and thermohilic ANME-1 draft genomes for such a cytochrome type but did not 

detect this kind of cytochrome. This is consistent with the absence of these cytochromes in 

ANME-1 as reported by McGlynn and colleagues (2015). The largest multi-heme 

cytochromes we found in ANME-1 contained only 9 hemes, while bacterial partners 

contained cytochromes with up to 26 hemes. In particular, these multi-heme cytochromes 

however were only poorly expressed (Tab. S5). We suggest that cytochromes detected in and 

expressed by ANME-1 and their bacterial partner may fulfill similar functions despite 

different properties such as cytochrome type, heme content and S-layer fusion. The present 
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data indicate that mechanisms of the archaeal-bacterial interaction in ANME-1-dominated 

consortia, including the involvement of different cytochromes, pili and archaellum in electron 

transfer, might be more diverse than anticipated. 

Conclusion  

We studied the metagenomic and transcriptomic information of ANME-1 archaea and their 

partner bacteria in sediment-free meso- and thermophilic AOM consortia. The genomes of 

meso- and thermophilic ANME-1 are with estimated sizes of 1.5 Mb only half the genome 

size previously estimated for ANME-1 and ANME-2 (Meyerdierks et al., 2010; Wang et al., 

2014). We showed expression of all methanogenesis pathway genes, except for the mer gene, 

in the meso- and thermophilic ANME-1 and together with previous observations on ANME-1 

datasets suggest that ANME-1 employ a modified reverse methanogenesis pathway. This 

would involve a replacement of Mer by the tetrahydrofolate-dependent enzyme MetFV, 

which is usually found in non-methanogens. Biochemical analysis will be required to test 

functioning of MetFV in ANME-1. However, a reverse methanogenesis pathway in ANME-1 

employing a gene of likely bacterial origin would present a unique characteristic of these 

methanotrophs. With respect to recent proposed archaea-bacteria interactions in AOM 

consortia we showed that both meso- and thermophilic ANME-1 and their bacterial partner 

express c-type cytochromes. This may indicate a general function of c-type cytochromes in 

the interspecies interaction in AOM consortia. In contrast to thermophilic AOM, in the 

mesophilic partner bacterium type IV pili are poorly expressed. The absence of pili structures 

in the mesophilic consortia remains to be shown by complementary visualization techniques. 

However, it may as well be that interaction mechanisms in AOM consortia, even within 

different ANME-1-dominated consortia are versatile and not dependent on one single 

strategy. The hypothesis of direct electron transfer in AOM and the mechanisms by which 

diverse ANME/SRB consortia possibly achieve it needs further systematic experimental 

investigation. 
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Figures and tables 

 
Figure 1 Visualization of the AOM consortia enriched at 60 and 37°C. (A,B) Micrograph of CARD-FISH 

stained cells of (A) a thermophilic consortium with ANME-1 cells (red) and HotSeep-1 cells (green), and (B) a 

mesophilic consortium with ANME-1 cells (red) and Seep-SRB-2 cells (green); scale bar: 10 µm. (C,D) 

Autofluorescence of the methanogenic cofactor F420 in ANME-1 in (C) a section of a thermophilic AOM 

consortium and (D) three mesophilic AOM consortia; scale bar: 2 µm. 

 

 

 

 

Figure 2 Diversity and relative abundance of 16S rRNA gene fragments recovered from the metagenomic 

dataset of the meso- and thermophilic AOM enrichments. G60: Thermophilic AOM enrichment dominated by 

ANME-1 (40%) and HotSeep-1 (35%) related sequences. G37: Mesophilic AOM enrichment dominated by 

ANME-1 (35%) and Seep-SRB-2 (30%) related sequences.  
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Figure 3 Phylogenetic relatedness of the here studied ANME-1. (A) 16S rRNA gene based phylogenetic tree 

calculated by the maximum likelihood method (RAxML) employing a 50% base frequency filter and 100 

bootstrap replicates. The three genomic 16S rRNA gene sequences affiliate in three cluster and share <94% 

sequence similarity. (B) Phylogenetic tree based on the McrA, the key enzyme of the methanogenesis pathway. 

The tree was calculated from the amino acid sequence alignment of McrA with the maximum likelihood method 

(RAxML) employing a 50% base frequency filter and 100 bootstrap replicates. The three genomic mcrA 

sequences affiliate in three distinct clusters and share 80% similarity. Genomic sequences are shown in bold. 

Color code: red, Guaymas Basin 60°C AOM enrichment (G60); green, Guaymas Basin 37°C AOM enrichment 

(G37); blue, Black Sea microbial mat. Sequences with the same color originate from the same enrichment. 
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Figure 4 Reconstruction of the central metabolism in ANME-1 from draft genomes of mesophilic, thermophilic 

and psychrophilic ANME-1 (see Tab. S2, S3, S4). Expression refers to average expression in meso- and 

thermophilic ANME-1. Color code indicates the presence of the gene in the different ANME-1 draft genomes. 

Dotted line, not all subunits present. Gene expression expressed as transcripts per million (TPM). 
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Figure 5 Relative expression of genes attributed to C1 metabolism in ANME-1. Relative gene expression in 

transcripts per million (TPM) of the genes encoding enzymes of reverse methanogenesis (indicated by red line) 

and autotrophic CO2 fixation (indicated by blue line) in mesophilic (green bars) and thermophilic (orange bars) 

ANME-1. Pattern indicates proposed putative involvement of enzyme in C1 metabolism in ANME-1. Met is 

proposed to replace Mer, which is absent in ANME-1 draft genomes. Autotrophic CO2 fixation in ANME-1 is 

proposed to proceed via the reductive acetyl CoA pathway employing the enzymes of the methanogenesis 

pathway and additionally the carbon monoxide dehydrogenase/acetyl CoA synthase complex. Bar height 

indicates average gene expression of multi subunit complexes. If a complex or subunit was present more than 

once only the one with highest expression is considered here. For Mcr subunits A, B, G were included. Error bar 

indicates standard deviation of expression between subunits of one complex. 

 

 

 

 

 

Figure 6 Relative expression of c-type cytochromes in ANME-1 and their bacterial partner. Relative gene 

expression in transcripts per million (TPM) of cytochromes detected in thermophilic ANME-1, mesophilic 

ANME-1, HotSeep-1 and Seep-SRB-2 with expression >100 TPM. Color indicates predicted subcellular 

localization (prediction by PSORTb). Color code: dark blue, extracellular; light blue, putatively extracellular; 

green, periplasmic; yellow, cytoplasmic; grey, unknown.  
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Table 1 Overview of the general genome properties and the estimated genome completeness of different 

ANME-1 draft genomes available. 

  ANME-1 60 ANME-1 37 ANME-1 20 

Sample characteristics    

sample source 
Guymas Basin 

enrichment 

Guymas Basin 

enrichment 

Black Sea microbial 

mat 

growth temperature (°C) 60°C 37°C ~20°C 

dominant AOM organisms 
ANME-1/ 

HotSeep-1 

ANME-1/ 

Seep-SRB-2 

ANME-1/ 

Seep-SRB-1 

Genome properties 

assembly size (Mb) 1.59 1.51 2.95 

scaffolds 36 4 13 sc + 17 fs 

% GC 46 52 43 

ORFs 1635 1493 3618 (3578) 

rRNAs 3 3 4 

tRNAs 41 38 46 (42) 

Genome completeness 

% tRNAs (20 tRNAs) 95 95 88 

tRNAs missing 1 (Tyr) 1 (Tyr) 3 (Tyr, His, Trp) 

% SCG (104 Archaea-specific 

genes) 
90 91 86 

SCGs 98 98 113 

SCGs missing 8 8 13 

SCGs replicated 2x 2 
 

20 

SCGs replicated 3x  1 1 

% SCG (189 Euryarchaeota-

specific genes) 
89 92 85 

SCGs 171 174 129 

SCGs missing 16 11 22 

SCGs replicated 2x 2 3 34 

SCGs replicated 3x 0 1 4 

% contamination 2 4 23 

% strain heterogeneity 0 67 78 

sc=supercontig; fs=fosmid; values in italic were taken from Meyerdierks et al., 2010. 
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Supplementary information 

Supplementary tables  

 

Table S1 Distribution of Archaea-specific single copy genes in ANME-1. 

Taxon level ANME-1 60 ANME-1 37 ANME-1 20 

Euryarchaeota 86 84 101 

Methanosarcinales 37 37 52 

Methanomicrobiales 14 18 16 

Archaeoglobales 18 9 10 

Methanocellales 7 12 15 

Methanopyrales 4 3 3 

Methanococcales 3 0 1 

Methanobacteriales 1 3 0 

Halobacteriales 0 1 1 

Thermoplasmatales 0 0 2 

Thermoccales 0 0 1 

Crenarchaeota 1 2 3 

Thermoproteales 1 2 1 

Desulfurococales 0 0 2 

Thaumarchaeota 1 2 0 

Nanoarchaeota 0 1 0 

Nanoarchaeum 0 1 0 

unassigned 10 9 9 

unassigned 13 12 9 
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Table S2 Genes related to C1 metabolism in ANME-1 and their expression in transcripts per million (TPM). 

Note that no further normalization was applied to compare the data from different organisms. 
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Table S3 List of selected genes discussed in the main text and their expression value in transcripts per million 

(TPM). Note that no further normalization was applied to compare the data from different organisms. 
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Table S3 continued. 
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Table S4 Overview of c-type cytochromes detected in different ANME-1. Depicted is the number of hemes as 

determined by the detected CXXCH motifs, the cytochrome type as according to the best scoring pfamA protein 

domain model, the predicted subcellular localization according to PSORTb and the expression in transcripts per 

million (TPM) if available. Note that no further normalization was applied to compare data from different 

organisms. Data for ANME-1 Guaymas Basin 60 was taken from Wegener et al., 2015. 
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Table S5 Overview of c-type cytochromes detected in different AOM parner bacteria. Depicted is the number of 

hemes as determined by the detected CXXCH motifs, the cytochrome type as according to the best scoring 

pfamA protein domain model, the predicted subcellular localization according to PSORTb and the expression in 

transcripts per million (TPM). Note that no further normalization was applied to compare data from different 

organisms. Data for HotSeep-1 was taken from Wegener et al., 2015. 
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Abstract 

In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor 

(AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is 

performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific 

partner bacteria. The physiology of these organisms is poorly understood, which is due to 

their slow growth with doubling times in the order of months and the phylogenetic diversity in 

natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM 

enrichments that were cultivated from seep sediments sampled off the Italian Island Elba 

(20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, 

cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia 

of ANME-2 archaea and Seep-SRB-2 partner bacteria (E20) or by ANME-1, forming 

consortia with Seep-SRB-2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). 

We investigate lipid membrane compositions as possible factors for the different temperature 

affinities of the different ANME strains and show autotrophy as characteristic feature for both 

ANME clades and their partner bacteria. Although in the absence of additional substrates 

methane formation was not observed, methanogenesis from methylated substrates (methanol 

and methylamine) could be quickly stimulated in the E20 and G37 enrichments. Responsible 

for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, 

which are minor community members during AOM (1 to 7‰ of archaeal 16S rRNA gene 

amplicons), and which likely feed on methylated substrates produced in side reactions of 

AOM. In the same two cultures also sulfur disproportionation could be quickly stimulated by 

addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor 

community members (1 to 9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant 

partner bacteria (Seep-SRB-1a, Seep-SRB-2 or HotSeep-1) did not grow on elemental sulfur. 

Our results support a functioning of AOM as syntrophic interaction of obligate 

methanotrophic archaea that transfer non-molecular reducing equivalents (i.e. via direct 

interspecies electron transfer) to obligate sulfate-reducing partner bacteria. Additional 

catabolic processes in these enrichments but also in sulfate methane interfaces are likely 

performed by minor community members.  
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Introduction 

In the anoxic marine subsurface large amounts of the potential greenhouse gas methane are 

formed by microbial and thermal degradation of organic matter. Hence methane is highly 

abundant in the marine subsurface (Reeburgh, 2007). The efflux of methane from sediments 

into the water column is however limited, which is mostly due to the effective barrier of 

methanotrophic microorganisms. The quantitatively most important sink is the coupling of 

methane oxidation to the reduction of sulfate (AOM) according to the net reaction (Eq. 1) 

 CH4 + SO4
2−

  HCO3
−
 + HS

−
 + H2O (1) 

with an energy yield of only −34 kJ per mol substrate turnover at standard conditions (Knittel 

and Boetius, 2009). AOM is performed in dual species microbial consortia of anaerobic 

methane-oxidizing archaea (ANME), which are closely related to known methanogens, and 

partner bacteria affiliated to canonical sulfate reducers of the Desulfosarcina/Desulfococcus 

clade (Hinrichs et al., 1999; Boetius et al., 2000; Orphan et al., 2001; Knittel et al., 2005) or 

of the HotSeep-1 group (Krukenberg et al., submitted). Currently three major clades of 

ANME archaea are known. ANME-2 is the most prominent methanotrophic clade at marine 

cold gas seeps (Orphan et al., 2002; Mills et al., 2003; Wegener et al., 2008b; Knittel and 

Boetius, 2009). The temperature at those sites is usually between 4 and 14°C (Knittel and 

Boetius, 2009). ANME-3 often occurs at mud volcanoes (i.e. Haakon Mosby mud volcano; 

Niemann et al., 2006; in situ temperature −1.5°C) and the Eastern Mediterranean seepages 

(14°C; Omoregie et al., 2008). To our knowledge so far ANME-3 does not proliferate 

in vitro. The third phylogenetic group ANME-1 has been originally described at cold seeps 

(Hinrichs et al., 1999), but it is particular abundant in diffusive sulfate methane interfaces 

(Thomsen et al., 2001; Lanoil et al., 2005; Harrison et al., 2009; Aquilina et al., 2010) and in 

microbial mats and chimney structures at methane seeps in the Black Sea (Michaelis et al., 

2002; in situ temperature of 10°C). In hydrothermally heated sediments such as in the 

Guaymas Basin (AOM activity up to 70°C) ANME-1 perform thermophilic methane 

oxidation (Teske et al., 2002; Holler et al., 2011b; Dowell et al., this issue). All ANME clades 

form dense consortia with deltaproteobacterial partners, which belong either to Seep-SRB-1a 

from the Desulfosarcina/Desulfococcus subcluster (Schreiber et al., 2010), Seep-SRB-2 from 

the Desulfbacterales subcluster (Kleindienst et al., 2012) or Desulfobulbus (mostly ANME-3; 

Niemann et al., 2006). The partner of thermophilic ANME-1 is Candidatus Desulfofervidus 

auxilii (prior known as HotSeep-1; Holler et al., 2011b; Wegener et al., 2015; Krukenberg 

et al., submitted). Different naturally enriched AOM communities proliferated in vitro 
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(Nauhaus et al., 2002; Krüger et al., 2005; Holler et al., 2009), however cultivation at low 

temperatures (≤20°C) repeatedly selected for ANME-2, although several source sediments 

were dominated by other clades (ANME-1 from the Black Sea or ANME-3 at Haakon Mosby 

mud volcano; Holler et al., 2009; own data). The principles underlying this selective growth 

of ANME-2 in vitro have so far not been resolved. Only cultivation at elevated temperatures 

sustained ANME-1 (Holler et al., 2011b). 

The potential of ANME to perform methanogenesis has been repeatedly suggested. This 

hypothesis based on experiments with natural enrichments (Bertram et al., 2013), on 

thermodynamic constrains (Alperin and Hoehler, 2009) and on the phylogenetic proximities 

and genomic similarities of ANME and known methanogens (Lloyd et al., 2011). 

Furthermore, using radiotracer co-occurrence of AOM and methane formation has been 

repeatedly measured (Treude et al., 2007; Orcutt et al., 2008) and ANME-1 archaea have 

been found to be abundant in potentially methanogenic sedimentary horizons (Lloyd et al., 

2011). However, tracer transfer from product (DIC) into the reactant pool (methane) might 

also be explained as inherent process of AOM as suggested by Holler and colleagues (2011a).  

The certainly least understood feature of AOM is how archaea and bacteria interact in the 

characteristic dual-species consortia. The activation and complete oxidation of methane via a 

reversal of the well-described methanogenesis pathway can be confidently assigned to the 

ANME archaea (Hallam et al., 2004; Meyerdierks et al., 2010; Thauer, 2011; Stokke et al., 

2012; Wang et al., 2014). The fate of the released electrons including the localization of 

sulfate reduction is instead so far controversial. Based on their phylogenetic classification as 

Deltaproteobacteria (Knittel et al., 2003; Schreiber et al., 2010; Kleindienst et al., 2012) and 

the presence of genes and enzymes of sulfate reduction (Milucka et al., 2013; Wegener et al., 

2015; Krukenberg et al., submitted), all different partner bacteria are likely involved in the 

sulfur cycle. However, it is still unclear if the partner bacteria disproportionate elemental 

sulfur-derived from incomplete sulfate reduction in ANME-2 (Milucka et al., 2012), or if 

ANME transfer reducing equivalents released during AOM via cytochromes (McGlynn et al., 

2015) or additionally via nanowires (Wegener et al., 2015) to their partner bacteria, which in 

this case would be sulfate reducers. 

Here we retrieved three sediment-free AOM enrichments derived from methane-percolated 

coastal sands off the Mediterranean Island Elba (Italy; enriched at 20°C; E20) as well as a 

mesophilic enrichment (37°C; G37) and a thermophilic enrichment culture (50°C; G50) from 

the Guaymas Basin. We describe community compositions and membrane lipid patterns of 

these enrichments and performed physiological experiments to test metabolic capabilities 
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attributed to AOM community members including chemoautotrophy, methanogenesis and 

sulfur disproportionation. Findings were evaluated in further AOM enrichments obtained 

from different seep sites. 

Material and methods 

Production of AOM enrichments and maintenance 

Source material for the E20 enrichment were clastic sediments sampled by scuba diving in 

2010 from the coastal hydrocarbon seeps off the Mediterranean Island Elba (in situ water 

temperature 12 to 27°C and 12 m water depth, further described in Ruff et al., this issue). By 

shaking and collecting the supernatant we concentrated slowly settling microbial biomass 

from rapidly sinking mineral particles (sand). The concentrated biomass (<1% of the sediment 

weight) resembled 60% of the microbial methane-dependent sulfate reduction rate of the 

sediment. The G37 and G50 enrichments derived from the methane-rich hydrothermally 

heated sediments in the Guaymas Basin, Gulf of California, sampled during RV ATLANTIS 

cruise AT15-56 with the submersible ALVIN in 2009. After determination of applicable 

cultivation temperatures in a temperature gradient block (Holler et al., 2011b), sediments 

from distinct temperature horizons have been enriched at the determined temperature optima 

of AOM in a mixed sediment (37°C, 50°C, 60°C). All enrichments were incubated with 

marine sulfate reducer medium (Widdel and Bak, 1992) and supplied with methane and 

sulfate as sole potential redox couple for at least three years. Medium was exchanged when 

sulfide concentrations exceeded 15 mM and biomass was diluted (1:2 or 1:4) when sulfide 

production exceeded approx. 0.2 mmol l
−1

 day
−1

. Community structures in the 50°C and 60°C 

enrichment were highly similar, thus experiments presented here were performed at 50°C. 

The additional sample “GF” (here only studied for microbial diversity and sulfur 

disproportionation), derived from the methane seeps in the vicinity of the Gullfaks oil field in 

the North Sea and was sampled during RV ALKOR cruise 267 in October 2005 (Wegener 

et al., 2008b). Sediment-free AOM enrichments from this site were produced by incubation 

under AOM conditions at room temperature and subsequent dilution as described above. 

Further, methanotrophic enrichment cultures from the Mediterranean (NAUTNIL expedition 

with RV L Atalante in 2003), from Hydrate Ridge (RV SONNE expedition SO148 in 2000), 

the Black Sea (RV POSEIDON expedition POS 148 in 2004) and Gulf of Mexico RC 
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SONNE expedition SO 174), which were only screened for their microbial diversity, were 

retrieved and cultivated as described (see Supplementary Tab. 1). 

Cultivation of methanogens from AOM enrichments 

To determine potential methanogenesis activity in the AOM enrichments E20, G37 and G50, 

triplicate sulfate-free culture aliquots of 10 ml (1:10 dilution) were incubated in 20 ml 

Hungate tubes with alternative substrates (hydrogen (0.1 MPa), carbon monoxide (0.05 MPa), 

formate, acetate, methylamine and methanol (all 20 mM)) for 30 days at their distinct 

temperature. The development of methane in the headspace was measured using gas 

chromatography coupled to flame ionization detection (Focus GC, Thermo equipped with a 

Poropak column; Analytical columns). In this time interval, methane formation was only 

observed for methylamine and methanol (for both, E20 and G37), but substrates were already 

fully turned over after 10 days. For these substrates experiments were repeated with more 

frequent sampling intervals (Fig. 4 A). Furthermore, for the substrates methanol and 

methylamine triplicate dilution-to-extinction series with factor 10 dilutions were prepared 

(down to 10
8
). Methane formation was repeatedly measured and the highest active dilutions 

(1:10
5
) were further diluted (1:1000). From freeze-thawed pellets of aliquots of these cultures 

we identified the enriched microbes by direct 16S rRNA gene amplification using the primer 

pair Arch20F (Massana et al., 1997) and Arc1492R (Teske et al., 2002) and sequencing (PCR 

and sequencing as described below for AOM enrichments).  

Cultivation of sulfate reducers from the AOM enrichments 

To determine potential methane-independent sulfate reduction in the AOM enrichments, 

triplicate culture aliquots of 10 ml were incubated with possible alternative substrates 

(hydrogen (0.1 MPa), carbon monoxide (0.05 MPa), methyl sulfide (0.05 MPa) formate, 

acetate, methylamine and methanol (all 20 mM)) for 30 days at their distinct temperature. The 

development of sulfide was measured by a copper sulfate assay and spectroscopic analyses 

(Cord-Ruwisch, 1985). Dilution-to-extinction series (down to 10
8
 dilution) were set up from 

active AOM enrichments (G37, G50) with hydrogen as only used alternative electron source, 

and incubated at their respective temperature for 2 months. After a subsequent second dilution 

step (1:100) of the highest sulfide-producing dilutions, enriched microbes were identified by 

16S rRNA gene amplification (primer pair GM3/GM4; Muyzer et al., 1995) from freeze-

thawed pellets of culture aliquots and direct sequencing (PCR and sequencing as described 

below for AOM enrichments).  
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Experiments on alternative sulfur sources in the AOM enrichment 

To identify the spectrum of sulfur sources used by the microbial communities in the E20, G37 

and G50 AOM enrichments, sulfate-free culture aliquots were incubated with the alternative 

sulfur sources sulfite (5 mM), thiosulfate (20 mM), and with sulfate (20 mM) as control. 

Furthermore we incubated with colloidal (zero-valent) sulfur (ca. 50 mM) that was prepared 

according to Steudel and colleagues (1988), and dissolved in anaerobic deionized water 

(approx. 0.5 mol S
0 

per liter). Triplicate incubations with and without methane (0.2 MPa 

CH4:CO2 (90:10)) were performed for each substrate. We measured sulfide production 

calorimetrically using the copper sulfate assay (Cord-Ruwisch, 1985). Dilution-to-extinction 

series (as described above) were performed for alternative substrates which showed 

substantial sulfide production (only in zero-valent sulfur enrichment). The highest active 

dilutions were further diluted (1:100) and enriched microbes were identified by 16S rRNA 

gene amplification (primer pair GM3/GM4; Muyzer et al., 1995) from freeze-thawed pellets 

of culture aliquots and direct sequencing (PCR and sequencing conditions as described below 

for AOM enrichments). 

To study the underlying principle of zero-valent sulfur disproportionation, we tested the 

stoichiometry of sulfur disproportionation by simultaneously measuring sulfate (by ion 

chromatography; 761 Compact ion chromatograph (Metrohm) with a Metrosep A SUPP 5 

column) and sulfide production (copper sulfate assay; Cord-Ruwisch, 1985) in the AOM 

enrichments and in the zero-valent sulfur enrichments. 

Extraction and analysis of archaeal intact polar lipids from the AOM enrichment 

Cell pellets from 30 ml AOM enrichment cultures were spiked with an internal standard 

(phosphatidylcholine C21:0/21:0) and 3 g of combusted sand and extracted using a modified 

Bligh and Dyer protocol (Sturt et al., 2004). The obtained TLEs were stored at −20°C until 

analyses. IPLs were analyzed by high-performance liquid chromatography electrospray 

ionization mass spectrometry (HPLC-ESI-MS). Separation of IPLs was achieved on a Dionex 

Ultimate 3000 UHPLC equipped with a Waters Acquity UPLC BEH amide column 

(150 x 2.1 mm, 1.8 µm particle size). Chromatographic conditions included constant flow rate 

of 0.4 ml/min with eluent A (75% acetonitrile; 25% dichloromethane; 0.01% formic acid; 

0.01% ammonium hydroxide solution (NH3 aq.)) and eluent B (50% methanol 50% Milli-Q 

water; 0.4% formic acid; 0.4% NH3aq as previously published (Wörmer et al., 2013)). Under a 

constant flow, the HPLC routine applied: 99% A and 1% B for 2.5 min, increasing to 5% B at 

4 min, followed by a linear gradient to 25% B at 22.5 min and then to 40% B at 26.5 min. 
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Thereafter a 1 min washing step with 40% B followed and afterwards reset to the initial 

conditions for 8 min to achieve column re-equilibration. Compound detection was conducted 

on a maXis Ultra-High Resolution qToF-MS (Bruker, Bremen, Germany). IPLs were 

measured in positive ionization mode scanning a mass-to-charge (m/z) range of 150–2,000, 

with automated data-dependent MS/MS fragmentation of base peak ions. Compound 

identification was achieved by monitoring exact masses of possible parent ions (present 

mainly as H
+ 

and NH4
+ 

adducts) in combination with characteristic fragmentation patterns 

(Sturt et al., 2004; Yoshinaga et al., 2011). The reported relative distribution of microbial 

lipids is based on the peak areas of the respective molecular ions without differentiating for 

potential differences in response factors; results should therefore be considered as semi-

quantitative. 

Determination of microbial carbon sources and growth efficiencies in the AOM 

enrichments 

To determine the role of methane and bicarbonate as carbon sources in the AOM enrichment 

and their assimilation rate in relation to AOM, we incubated triplicate culture aliquots of E20, 

G37 and G50 (4 ml) in 5 ml Hungate tubes with 
14

C-bicarbonate (380 kBq; equilibrated with 

0.2 MPa CH4:CO2 or N2:CO2 (90:10)) or with 
14

C-methane (14 kBq; equilibrated with 

0.2 MPa CH4:CO2 (90:10)). After 5 days of incubation cell material was transferred to 

membrane filters (GSWP, 0.2 µm pore size). To remove non-fixed inorganic carbon we 

washed the filters with saline water (0.5 M NaCl). Potential residual inorganic carbon was 

removed by exposing the dried filters to a HCl atmosphere for 24 hours. Total radioactivity 

was determined from liquid incubation aliquots (0.1 ml) and incorporated radioactivity was 

determined from the particulate organic carbon fraction (POC) collected on filters by liquid 

scintillation counting (scintillation mixture; Filtercount or Permafluor; Perkin Elmer, 

Waltham, MA, USA; scintillation counter; 2900TR LSA; Packard, Waltham, MA, USA). 

Counts for 
14

C-compound in POC were corrected for background values. To determine carbon 

fixation efficiencies (CFE) values were normalized to the added amount of radiotracer and the 

rate of sulfate reduction 

      CFE (%) = [
14

C-POCi (kBq) / 
14

C-totali (kBq) × concCS (mmol) × 100] / SRR (mmol)    (2) 

where 
14

C-POC defines the concentration of radiotracer in the particulate organic carbon 

(biomass) and 
14

C-total defines the concentrations of added radiotracer (
14

CH4 or 

14
C-inorganic carbon) in an experiment ‘i’, and concCS is the concentration of the carbon 
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source (either methane or inorganic carbon) and the respective sulfate reduction rate (SRR) in 

replicate vials determined as described below. 

Radiotracer measurement of inorganic carbon fluxes in the AOM enrichments 

To track the carbon fluxes between methane and inorganic carbon in AOM enrichments E20, 

G37 and G50, replicate culture aliquots (4 ml) were incubated in 5 ml Hungate tubes 

equilibrated with 0.2 MPa CH4:CO2 (90:10). After 5 days of pre-incubation the vials were 

completely filled with methane-saturated medium and carrier-free 
14

C-bicarbonate (~66 kBq 

per sample) or 
35

S-sulfate (100 kBq per sample) was injected into 5 replicates, respectively 

according to protocols described by Holler and colleagues (2011a). Concurrently controls 

inactivated by formaldehyde addition were performed to estimate impurities or abiotic 

reactions. Samples were incubated for 2 days and reactions were stopped by transferring 

samples into sodium hydroxide solution (0.5 N) or zinc-acetate solution (20% w/v), 

respectively for 
14

C and 
35

S labeling. The 
14

C-bicarbonate and the 
35

SO4 samples were 

processed as described before (Kallmeyer et al., 2004; Holler et al., 2011a). The turnover 

rates of bicarbonate were inferred by calculating the portion of radiotracer transferred into the 

methane pool multiplied by the concentration of DIC and divided by the total tracer content in 

the experiment. Sulfate reduction rates were calculated as described below. 

Sequencing of 16S rRNA gene libraries of AOM enrichments 

DNA from AOM enrichments was extracted as described before (Zhou et al., 1996). The 

protocol encompassed three cycles of freezing and thawing, chemical lysis in a high-salt 

extraction buffer (1.5 M NaCl) by heating of the suspension in the presence of sodium 

dodecyl sulfate and hexadecyltrimethyl-ammonium bromide, and treatment with proteinase K, 

followed by chloroform:isoamylalcohol extraction (24:1) and isopropanol based nucleic acid 

precipitation. To analyze the phylogeny of the dominant members of the enrichment and to 

obtain representative full length 16S rRNA gene sequences, the bacterial and archaeal 

16S rRNA genes were amplified from the extracted DNA using the primer pair GM3/GM4 

(Muyzer et al., 1995) and Arch20F (Massana et al., 1997)/Arc1492R (Teske et al., 2002), 

respectively. PCR reaction mixtures were prepared as previously described (Holler et al., 

2011b) and subjected to the following cycle conditions: 95°C for 5 min; 26 cycles, each 95°C 

for 1 min, 46°C (GM3/GM4) or 58°C (Arch20F/Arc1492R) for 1.5 min, and 72°C for 3 min; 

and a final step at 72°C for 10 min. The amplicons of three replicate PCR reactions were 

pooled. Following gel electrophoresis bands were extracted from an agarose gel and purified 
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using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s recommendations. Purified amplicons were ligated into the pGEM-T Easy 

vector (Promega, Madison, WI, USA) and transformed into Escherichia coli (One Shot Top10 

cells; Invitrogen, Carlsbad, CA, USA) following the manufacturer’s recommendations. Taq 

cycle sequencing was performed using ABI BigDye Terminator chemistry and an ABI377 

sequencer (Applied Biosystems, Foster City, CA, USA). 

Sequencing of 16S rRNA genes retrieved from AOM enrichments 

To obtain an overview about the diversity of rare microbial phyla we performed massive 

parallel tag sequencing of ten long-term AOM enrichment cultures. In addition to the four 

enrichments presented in detail (E20, GB37, GB50 and GF) we also investigated six 

enrichment cultures that were inoculated with samples from Amon mud volcano, a Black Sea 

microbial reef, Black Sea sediments, Caldera mud volcano, the Gulf of Mexico and Hydrate 

Ridge. The latter six enrichment cultures were used for comparison, but are not focus of this 

study. From DNA that was extracted as described above, we amplified 16S rRNA genes using 

the primer pairs GM3/907RM (Muyzer et al., 1995; Muyzer et al., 1998) for bacteria and 

Arch20F/Arch958RV (Massana et al., 1997; Pires et al., 2012) for archaea. The amplicon 

libraries were prepared, and the V3-V5 region of these amplicons was sequenced on a 

454 Genome Sequencer GS FLX+ (Roche, Basel, Switzerland) at the Max Planck Genome 

Centre (Cologne, Germany). The raw read data was processed based on a standard operating 

procedure (Schloss et al., 2011) using Mothur (release 1.33, 02/2014; Schloss et al., 2009). 

Reads were denoised based on PyroNoise (Quince et al., 2009), trimmed, preclustered (Huse 

et al., 2010) and chimeras removed (Edgar et al., 2011). After quality filtering we had a total 

of 122,363 archaeal and 102,762 bacterial reads forming 13,935 unique archaeal and 17,237 

unique bacterial sequences with an average length of 488 and 435 nucleotides, respectively. 

The alignment and taxonomic classification of the sequences was based on the SILVA small 

subunit reference database (release 119, 07/2014; Quast et al., 2013). Operational taxonomic 

units were clustered at 98% 16S rRNA gene V3-V5 sequence identity using average neighbor 

clustering. The datasets were subsampled to account for unequal sampling effort prior to 

community analyses and multivariate statistics. 

Comparison of 16S rRNA tags and 16S rRNA gene libraries 

To investigate whether the same organisms are present in gene libraries as well as tag datasets 

we compared the results of the two methods. We made a sequence database of the 16S rRNA 
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gene tags using blast (Boratyn et al., 2013) and then searched this database with target 

16S rRNA gene sequences from the enrichments. The headers of the resulting output were 

matched with an OTU0.02 list created by mothur (Schloss et al., 2011) to find the sequences 

that were present in both datasets. We only used sequences that matched the whole length of 

the sequence and had an E value of basically 0. 

Phylogenetic analysis of retrieved 16S rRNA gene sequences 

Retrieved partial 16S rRNA gene sequences (from AOM enrichments and alternative 

substrate enrichments) were aligned with the SILVA Incremental Aligner (SINA) (Pruesse 

et al., 2007) and classified based on the SILVA small subunit database (release 115; Quast 

et al., 2013). Phylogenetic analysis was performed with representative, nearly full length 

(>1200 bp) sequences (from AOM enrichments, and from methanogenic, sulfate-reducing and 

sulfur-disproportionating enrichments (see above)) using the ARB software package (Ludwig 

et al., 2004). Maximum likelihood based trees were calculated by RAxML (Stamatakis, 2006) 

with GTRCAT as nucleotide substitution model including 235 bacterial and 148 archaeal 

nearly full length sequences (>1200 bp). A base frequency filter was employed to consider 

only alignment regions which are at least 50% conserved. 100 bootstrap replicates were used 

to estimate branch support. 

Nucleotide sequence accession numbers 

The 16S rRNA gene sequences were archived in the NCBI public nucleotide sequence 

databases under the accession numbers KT899714, KT899739-KT899743 (bacteria) and 

KT899737, KT899738 and KM605124 (archaea). Pyrosequencing raw reads were deposited 

in the sequence read archive under Bioproject PRJNA299125 with accession numbers 

SAMN04194115 to SAMN04194124. 

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) 

For CARD-FISH culture aliquots were fixed in 2% formaldehyde for 2 h at room temperature, 

washed with 1× phosphate buffered saline (PBS; 8,2 g l
−1

 NaCl, 0.2 g l
−1 

KCl, 

1,8g Na2HPO4×2H2O, 0.24g KH2PO4, adjusted to pH 7.4) and stored in 1× PBS:ethanol (1:1) 

at −20°C. Fixed cells were treated with mild sonication (Sonoplus HD70, Bandelin, Berlin 

Germany) for 30 sec at 10W and filtered onto GTTP filter (0.2 µm pore size). CARD-FISH 

was performed as described previously (Pernthaler et al., 2002). For cell wall 

permeabilization, filters were sequentially incubated in lysozyme solution (10 mg ml
−1

 



Chapter V 

176 

lysozyme, lyophilized powder (SigmaAldrich) in 0.1 M Tris–HCl, 0.05 M EDTA, pH 8) for 

30 min at 37°C, proteinase K solution (15 to 150 µg l
−1

 proteinase K (Merck) in 0.1 M Tris–

HCl, 0.05 M EDTA, 0.5 M NaCl, pH 8) for 2 min at room temperature and optionally in 

sodium dodecyl sulfate solution (0.5%) for 10 min at room temperature. Endogenous 

peroxidases were inactivated by incubating the filters in 0.15% H2O2 in methanol (30 min, 

room temperature). Oligonucleotide probes were synthesized by Biomers (Ulm, Germany) 

and applied with formamide concentrations in the hybridization buffer according to literature 

values. For dual CARD-FISH, peroxidases of the first hybridization were inactivated by 

0.3% H2O2 in methanol (30 min, room temperature). Catalyzed reporter deposition was 

combined with the fluorochromes Alexa Fluor 488 and Alexa Fluor 594 (Thermo Fisher 

Scientific). Filters were stained with DAPI (4,6-diamidino-2-phenylindole). Micrographs 

were obtained by confocal laser scanning microscopy (LSM 780; Zeiss, Oberkochen, 

Germany). 

Results and discussion 

Cultivation, microbial diversity and archaeal intact polar lipids in the studied 

enrichment cultures 

The original sediment samples from Guaymas Basin and the Elba seeps showed already high 

methane-dependent sulfide production when incubating them at AOM conditions (about 

0.15 µmol gdw
−1

; gram dry weight; E20; Ruff et al., this issue to 0.5 and 1.25 µmol gdw
−1

 in 

Guaymas Basin (G37 and G50; Holler et al., 2011b). In E20, cells were separated from the 

sandy matrix (see Material and Methods). All samples were further enriched for AOM by 

cultivation in anoxic marine sulfate-reducer medium equilibrated with 0.225 MPa methane 

and 0.025 MPa carbon dioxide headspace. Cultivation was performed at the respective 

temperature optima of 20°C (E20) and 37°C and 50°C (G37/G50). From the development of 

sulfide production rates and dilution frequencies we estimated doubling times of 69 days 

(G37) and 55 days (G50) (Supplementary Fig. 1 A, B). Due to repeated subsampling for 

experiments similar required long-term incubations are yet not available for E20, but we 

expect doubling times in the range of other cold-adapted enrichments (2 to 7 month; Girguis 

et al., 2005; Nauhaus et al., 2005). The studied meso- and thermophilic cultures from 

Guaymas Basin grew faster than the before studied cold-adapted deep sea AOM enrichments 

(i.e. 7 month in Hydrate Ridge enrichments; Nauhaus et al., 2007). Hence, after repeated 

dilution and cultivation a sediment-free state (<100 mg background sediment per liter culture) 



Chapter V 

177 

was reached after 1.5 to 2 years in the Guaymas Basin cultures. Cultures are maintained at 

sulfide production rates of 100 to 250 µmol linoculum
−1

 d
−1

. The microbial compositions of the 

three enrichments were analyzed by sequencing archaeal and bacterial 16S rRNA genes 

(Fig. 1 A, B, Tab. 1, Supplementary Fig. 2). In E20 the most sequence-abundant archaeal 

group was ANME-2 (all three subgroups ANME-2a, ANME-2b, ANME-2c), which according 

to fluorescence in situ hybridization (FISH) were associated with Seep-SRB-2 partner bacteria 

(Fig. 1 C). G37 mainly consisted of dual-species consortia of ANME-1 and Seep-SRB-2 

partner bacteria (Fig. 1 D). The dominance of ANME-1 and Seep-SRB-2 is typical for 

moderately heated surface sediments of the Guaymas Basin seeps (Dowell et al., this issue). 

As shown for 60°C thermophilic AOM enrichments before also the 50°C enrichment was 

dominated by ANME-1 and their partner bacteria Ca. Desulfofervidus auxilii (Wegener et al., 

2015; Fig. 1 E).  

Our results of the E20 enrichment and also prior in vitro cultivation at low-temperatures 

(≤20°C; i.e. Hydrate Ridge, Mediterranean seeps such as Amon mud volcano, Black Sea; 

Holler et al., 2009) showed that low-temperature enrichments of mixed communities always 

led to ANME-2-dominated enrichments (Supplementary Fig. 2), whereas ANME-1 is usually 

not sustained in vitro. In contrast, cultivation at elevated temperatures (≥37°C) led to 

ANME-1-dominated enrichments, even from sites that harbored mixed communities (Tab. 1, 

c.f.; Holler et al., 2011b; Kellermann et al., 2012). The different temperature optima and 

growth ranges of ANME-1 and ANME-2 might be due to their cell membrane structure. The 

ANME-2 in the E20 enrichments assemble their membranes from double layers of diether 

lipids (intact archaeols) such as hydroxylated (PG)phosphatidylglycerol archaeol (Fig. 1 G, 

Tab. 2). ANME-1 are instead able to condense diethers to tetraether lipids (Kellermann et al., 

submitted). Hence in the G37 enrichment culture an about 1:1 mixture of diether and 

tetraether lipids (i.e. glyceroldialkylglyceroltetraether GDGTs) was detected, whereas the 

high-temperature enrichments (G50 and also G60; the latter only shown in Tab. 2) contained 

between 80 to 94% tetraether lipids. The formation of GDGT might allow higher temperature 

optima (Kellermann et al., 2012) or better resistance in starvation periods (Schouten et al., 

2003; Rossel et al., 2008). Additionally, next to temperature adaption, tetraether lipids will 

tighten the cells, which could help ANME-1 to outlast starvation phases. This observation 

might also explain the predominance of ANME-1 in most deep sulfate-methane interfaces or 

in inner parts of microbial chimneys where they have to survive under often minimal substrate 

concentration. The adaption to harsh conditions or limited substrate availability may, on the 
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other hand, also explain their inability to compete with ANME-2 during cultivation at low 

temperatures and high substrate availability. 

Origin of biomass carbon in AOM-performing microbial enrichments 

To interpret natural biomass stable isotope signals and to perform stable isotope studies the 

dominant biomass carbon sources of the active organisms need to be identified. For AOM 

methane and inorganic carbon have been suggested as carbon sources (Hinrichs et al., 1999; 

Blumenberg et al., 2005; Wegener et al., 2008a; Kellermann et al., 2012). Here we studied 

inorganic carbon and methane assimilation into AOM communities using a radiotracer assay 

with respective labeled carbon sources and tracked the assimilation into the bulk sample. In 

all three cultures mainly inorganic carbon was assimilated, whereas only 3 to 15% of the 

biomass carbon derived from methane (Fig. 2). In the absence of methane as energy source, 

assimilation of inorganic carbon dropped to about 1/10 of the values measured during AOM 

conditions. This shows that the microbial activity and carbon fixation in the studied cultures 

strongly depended on the presence of methane and the process of AOM, respectively. During 

the oxidation of 1 mol methane only 10 to 40 mM of carbon (mostly of inorganic origin) were 

incorporated. The rates of inorganic carbon assimilation measured here were in the upper 

range of growth/carbon fixation reported in earlier studies (Nauhaus et al., 2007; Wegener 

et al., 2008a). However, in those studies extremely slow-growing AOM enrichments were 

investigated with doubling times of approx. seven months, e.g. for enrichments from Hydrate 

Ridge. 

The predominant use of inorganic carbon as carbon source for assimilation is in line with 

earlier observations stating “chemoorganoautotrophy” for mesophilic ANME-1 (Kellermann 

et al., 2012). This growth mode seems to be consistent in cold-adapted and thermophilic 

methane-oxidizing enrichments. The minor amounts of methane carbon incorporation 

observed here and in earlier studies (Wegener et al., 2008a) should also be interpreted as 

assimilation of methane-derived inorganic carbon. The assimilation of methane-derived CO2 

and further isotope fractionation might also explain the extremely low carbon isotope values. 

Carbon fixation in ANME proceeds most likely via the acetyl CoA pathway (Koga and Mori, 

2005; Meyerdierks et al., 2010), which causes the highest 
13

C-discrimination (Preuß et al., 

1989). It is furthermore consistent with the observation of lowest 
13

C-lipid values in highly 

active AOM sites, where pore water inorganic carbon derives mostly from methane, thus is 

also strongly depleted in 
13

C. In less active AOM sites rather moderate 
13

C-signatures of 

archaeal lipids are observed (Elvert et al., 2005). 
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Methanogenesis in the AOM cultures 

Using radiotracer isotope assays (i.e. 
14

CO2) transfer of inorganic carbon into the methane 

pool has been shown for many different AOM systems. This phenomenon has been repeatedly 

interpreted as capacity of ANME to thrive as methanogens. However, alternatively this tracer 

transfer was related to enzymatic back reactions. Also our cultures showed substantial tracer 

transfer from DIC into the methane pool amounting to 5 to 10% of the methane-dependent 

sulfate reduction rate (Fig. 3). This tracer transfer is independent of a net formation of 

methane, as in none of the three cultures methane formation was observed without addition of 

further methanogenic substrates. Hence, in agreement with earlier hypothesis (Holler et al., 

2011a) the observed tracer flux should be seen as intrinsic back reaction during the oxidation 

of methane in ANME, which proceeds on the same pathways as methanogenesis (Hallam 

et al., 2004), but is not an energy conserving net reaction. 

We furthermore aimed to induce methanogenesis in the AOM enrichments with typical 

substrates for methanogens. Therefore, we incubated 1:10 diluted AOM enrichments in 

sulfate-free medium with different methanogenic substrates and screened those enrichments 

for methane formation. Hydrogen, acetate and carbon monoxide addition did not cause 

methane formation in any of the three studied enrichments (Tab. 3), also after extended 

incubation times of several months (data not shown). However, in the E20 and the G37 

cultures methylated substrates (methanol, methylamine) were largely converted to methane 

within 18 days of incubation (Fig. 4 A, B). In contrast, the G50 AOM enrichment culture did 

not show methanogenic activity even after prolonged incubation of 60 days with these two 

substrates. 

Using the dilution-to-extinction approach with methylamine or methanol we yielded pure 

cultures of methanogenic archaea from the E20 and G37 enrichments. Sequencing of the 

16S rRNA gene amplified from the enrichments identified all methylamine cultures as 

relatives of Methanococcoides spp., whereas organisms in methanol cultures were identified 

as relatives of Methanohalophilus spp.. As methylotrophs, both methanogenic cultures grow 

on methanol and methylamine. Generally, methylotrophic methanogens can grow rapidly, and 

are hence relatively easy to cultivate (Sowers and Ferry, 1983; Kendall and Boone, 2006). We 

also retrieved those groups in archaeal 16S rRNA gene tag datasets of the enrichments 

(Tab. 4). Both groups contributed between 1 to 3‰ of all archaeal sequences retrieved from 

the E20 and G37 enrichments. Furthermore, we screened the additional low temperature (4 to 

20°C) methanotrophic enrichment cultures (Supplementary Tab. 1) for methanogens. All 

those enrichments contain few but also up to 10‰ sequences that align with 
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Methanococcoides or Methanohalophilus. In contrast, in the G50 only a single read aligned to 

Methanococcoides. ANME archaea, however, were not enriched in any of the methanogenic 

enrichments which clearly indicates that ANME cannot thrive as methanogens. 

Minor populations of methanogens also regularly appear in sulfate methane interfaces 

(Wegener et al., 2008b; Ruff et al., 2015), where they likely also thrive on methylated 

substrates. These substrates (i.e. methanol, methylamines and methyl sulfides) are not 

competitively used by other anaerobic microorganisms with potential higher energy yields 

including sulfate reducers (King, 1984; Kiene et al., 1986; Lovley and Klug, 1986). Yet, the 

source of methylated substrates in those environments and in the studied laboratory 

enrichments is unclear. We hypothesize that active ANME may leak methylated compounds, 

as was shown for aerobic methanotrophs (Xin et al., 2004). For instance, in ANME-1 the 

reversal of methanogenesis lacks the methylenetetrahydromethanopterin reductase (Mer) 

enzyme which might be bypassed by enzymes that lead to the formation of methanol or 

methylamine as intermediates (Meyerdierks et al., 2010). Furthermore, the strong reversibility 

of the enzymes involved in AOM, particular of the methyl-CoM reductase, might cause trace 

formation of methylated compounds (Holler et al., 2011a). These compounds might be 

sufficient to sustain the low numbers of methanogens observed in our enrichments and in 

sulfate methane interfaces. An experimental detection of these compounds is however 

challenging as they are efficiently consumed by the methanogenic side communities. In G50 

methanogens could not be stimulated. The considerably higher maintenance energy at 

elevated temperatures (Tijhuis et al., 1993) might be the reason for the lack of methanogens 

and stimulation of methanogenesis here. Our results allow an alternative explanation for the 

observed stimulation of methane and lipid production in Black Sea mats by methylated 

compounds as demonstrated by Bertram and coworkers (2013). This production is unlikely 

caused by ANME archaea, but should be rather interpreted as growth of specific 

methanogenic side communities.  

Hydrogenotrophic sulfate reduction and sulfur disproportionation in the AOM 

enrichments 

We tested the capabilities of the three enrichments to metabolize sulfate with alternative 

energy sources. As shown before Ca. D. auxilii, the sulfate-reducing bacterium in 

thermophilic AOM, instantly reacts on hydrogen with elevated sulfide production and growth 

uncoupled from ANME-1 (Wegener et al., 2015; Krukenberg et al., submitted). However, 

besides G50, also the G37 culture showed sulfide production on hydrogen as substrate. Rates 
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quickly exceeded those of parallel incubations on methane. Following this observation we 

cultivated the sulfate reducers from the sediment-free AOM enrichment using the 

dilution-to-extinction approach. The retrieved cultures were characterized by direct 16S rRNA 

gene sequencing. The 16S rRNA gene sequence obtained from one of the cultures affiliated to 

the larger cluster of Seep-SRB-2 bacteria, but was clearly not identical (only 93% sequence 

similarity which is below the proposed threshold of 94.5% for a genus; Yarza et al., 2014) 

with the Seep-SRB-2 partner bacterium found in this mesophilic and in the cold-adapted 

AOM culture (Fig. 5). In another hydrogenotrophic culture a bacterium related to 

Desulfatitalea tepidiphila was obtained. The mesophilic D. tepidiphila was described to grow 

as autotroph by hydrogen-dependent sulfate reduction or alternatively by using thiosulfate as 

electron acceptor and various organic carbon sources as electron donor (Higashioka et al., 

2013). Hydrogenotrophic sulfate reduction could not be stimulated in the E20 culture, which 

likewise is dominated by Seep-SRB-2 partner bacteria. Hence it is unlikely that the meso- or 

psychrophilic AOM partner bacteria can thrive on hydrogen, therewith confirming earlier 

results which excluded hydrogen as intermediate in low-temperature AOM or as (alternative) 

substrate of their partner bacteria (Nauhaus et al., 2002). 

To investigate the response of the AOM cultures to additions of zero-valent sulfur and 

therewith test the observations made by Milucka and colleagues (2012) we supplied aliquots 

of the three cultures with freshly prepared colloidal sulfur solution and tracked the 

development of the chemical endmembers of disproportionation, sulfide and sulfate. As 

described before (Wegener et al., 2015) sulfur disproportionation was absent in the 

thermophilic AOM culture (Fig 5 C). In contrast, E20 and G37 responded to elemental sulfur 

addition with rapid sulfide and sulfate production tightly following the 3:1 stoichiometry 

characteristic for the disproportionation of elemental sulfur (Fig. 5 D, E). Disproportionation 

stopped when sulfide concentrations reached approx. 3 mM (E20) or 7 mM (G37). A 7:1 

stoichiometry between sulfide and sulfate production, as described for another Mediterranean 

enrichment (Isis mud volcano; cultivated at 20°C and dominated by ANME-2; Milucka et al., 

2012) has not been observed in any of our enrichments. 

Using a dilution-to-extinction approach with colloidal sulfur as only available electron 

donor we repeatedly isolated specific single strains of sulfur-disproportionating bacteria from 

the two natural enrichments. Interestingly in the dilution series from G37 we repeatedly 

isolated a single strain (hereon called GB-DISP1) that is basically identical to the one isolated 

on hydrogen (Fig. 5 F). GB-DISP1 is a rare member in the 37°C AOM enrichment, 

accounting for about 9‰ of the bacterial 16S rRNA gene sequences. The at AOM conditions 



Chapter V 

182 

dominant bacterium Seep-SRB-2 however, did not respond to additions of elemental sulfur, 

hence pointing towards a neutral role of elemental (zero-valent) sulfur in mesophilic AOM 

proceeding in the G37 enrichment. Growth experiments with the enriched GB-DISP1 showed 

that it can grow as sulfate-reducing hydrogenotroph (with activity doubling time of 3 days), it 

can couple sulfur reduction to hydrogen oxidation (activity doubling time 1 day) or it grows 

as sulfur-disproportionating bacterium (with activity doubling times of about 1 day). Using 

hydrogen as electron donor GB-DISP1 thrives at sulfide concentrations of up to 20 mM. 

Instead via sulfur disproportionation GB-DISP1 grows well to sulfide concentrations of up to 

5 mM. Above this value sulfide production slows down and sulfide levels off at around 

7 mM. At these sulfide concentrations the energy yield of sulfur disproportionation at 37°C is 

reduced to approx. −10 kJ mol
−1

 elemental sulfur turnover (Finster, 2008), which is about the 

minimum free energy yield (∆Gmin) to sustain microbial metabolism (Hoehler, 2004).  

The E20 dilution-to-extinction series with elemental sulfur yielded several replicates of a 

single bacterium, hereon called Elba-DISP1, with high identity to the uncultivated 

deltaproteobacterial cluster MSBL7 (Pachiadaki et al., 2014) and the isolated 

disproportionating bacterium Desulfurivibrio alkaliphilus (Sorokin et al., 2008). 

D. alkaliphilus was described as halophilic chemoautotrophic sulfate reducer, capable to 

thrive by sulfur disproportionation even without supplying a sulfide sink (Poser et al., 2013). 

According to our substrate tests Elba-DISP1 thrives exclusively by sulfur disproportionation. 

Unlike described for D. alkaliphilus, we did not succeed to grow Elba-DISP1 as 

hydrogenotrophic sulfate or elemental sulfur reducer. Furthermore, we searched for sulfur 

disproportionation in the cold seep AOM enrichment culture ‘GF’ retrieved from the Gullfaks 

oil field (Norwegian North Sea). Indeed also this culture showed a relatively fast response to 

elemental sulfur addition. The disproportionating microorganism enriched from the GF 

cultures was Desulfocapsa sulfoexigens (>99% 16S rRNA gene identity), one of the first 

described sulfur-disproportionating microorganism (Finster et al., 1998). In contrast to many 

other sulfide-disproportionating enrichments we were able to proliferate the enriched sulfur-

disproportionating cultures without the addition of iron as sulfide sink as also shown for 

halophiles by Poser and colleagues (2013). However, due to the limitation by sulfide 

developments and expected low growth yields the cell densities remained low in our cultures. 

We searched for the disproportionating bacteria in the other AOM enrichments that were 

grown on methane for 5 to 15 years in laboratory. The genus Desulfocapsa was found in 5 of 

10 enrichments, whereas Elba-DISP1 was only found in the Black Sea enrichment with more 

than 0.5‰ of the sequences (Supplementary Fig. 2). Bacteria related to GB-DISP1 were not 
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found in other enrichments than in the GB37 enrichments. Hence, we conclude that 

disproportionating bacteria are a general impurity of AOM enrichment cultures. 

Sulfur-disproportionating bacteria such as Desulfocapsa sp. have been furthermore 

repeatedly identified in reduced ecosystems and in particular at cold seeps (Lloyd et al., 2006; 

Sylvan et al., 2012; Ruff et al., 2015). A direct connection of these groups to AOM is 

meanwhile unlikely, as they appear in rather low numbers compared to the known partner 

bacteria. In the environment they might thrive on elemental sulfur produced by sulfide-

oxidizing bacteria or chemical oxidation of sulfide or being involved in the cryptic sulfur 

cycle rather below the sulfate methane interfaces (Holmkvist et al., 2011). Proliferation of 

disproportionating bacteria in in vitro AOM enrichments might be at first surprising. 

However, the cultivation medium will provide at least trace amounts of elemental sulfur that 

is produced when sodium sulfide is used as reducing agent. Furthermore, also any leak of 

oxygen during cultivation will lead to formation of zero-valent sulfur. Activity directly after 

medium exchange (medium is prepared with about 0.5 mM sulfide) is likely sufficient for the 

responsible sulfur-disproportionating bacteria to survive later inactivity at increased sulfide 

concentrations (regular medium change at approx. 12 to 15 mM sulfide). These short periods 

of activity are likely sufficient to thrive in the infrequently diluted AOM enrichments. At 

higher temperatures increased demands of maintenance energy may not have allowed survival 

of disproportionating bacteria in the G50 culture. Likewise ANME on methanotrophic 

substrates, the abundant partner bacteria, namely Seep-SRB-1, Seep-SRB-2 and HotSeep-1, 

did not respond to the addition of elemental sulfur. Our results strongly discourage the 

interpretation of zero-valent sulfur as intermediate exchanged in AOM in at least all here 

studied AOM enrichment cultures, which are dominated by ANME-1 or ANME-2. In reverse, 

the results support direct interspecies electron transfer as suggested for thermophilic AOM 

and psychrophilic AOM (McGlynn et al., 2015; Wegener et al., 2015) as most likely 

mechanism for the syntrophy of these ANME and their partner bacteria.  

Conclusions 

Here we described physiological characteristics of AOM communities at different 

temperatures from the Elba cold seeps and the Guaymas Basin hydrothermal vent area. We 

identified inorganic carbon as the dominant carbon source of AOM communities in all three 

tested AOM cultures, and hence provide additional evidence that all studied ANME and their 

partner bacteria are autotrophs. Further stable isotope probing experiments should consider 
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this finding, when considering selection of labeled carbon sources. We found no indications 

for a capability of ANME to reverse their metabolism towards net methanogenesis. In 

contrast, we showed the presence of specific known methanogens (Methanococcoides spp., 

Methanohalophilus spp.) in all studied low and medium temperature AOM enrichments. 

Those methanogens can be enriched and isolated using methylated compounds. Under natural 

and AOM enrichment conditions these organisms might benefit from trace losses of 

methylated compounds in the enzymatic machinery of AOM-active ANME archaea. 

Furthermore we were able to enrich sulfur-disproportionating bacteria from different AOM 

enrichments. None of the sulfur-disproportionating isolates was identical to the abundant 

AOM partner bacteria (Seep-SRB-1, Seep-SRB-2 or HotSeep-1). A lack of disproportionation 

in the partner bacteria also questions the production of sulfur intermediates by ANME-2, 

including their proposed capability of incomplete sulfate reduction (i.e. to disulfide; Milucka 

et al., 2012). Those results are in line with the lack of sulfur disproportionation in the 

thermophilic Guaymas Basin AOM enrichment (G50), where the partner bacterium has been 

recently identified as hydrogenotrophic sulfate reducer capable to directly retrieve electrons 

via nanowires from the ANME (Wegener et al., 2015). Although the low temperature 

enrichments were incapable of growing on hydrogen within consortia they may thrive by 

similar mechanisms as described for their high-temperature analog.  

This study narrows down the metabolic capabilities of the AOM core community, the 

ANME and their syntrophic partner bacteria. ANME thrive as obligate methane-oxidizing, but 

autotrophic organisms, which however depend on specific partner bacteria that are obligate 

autotrophic sulfate-reducers. Of the partner bacteria only HotSeep-1 could be independently 

isolated from the ANME using hydrogen as molecular electron donor. To conclude, our 

results are in line with direct interspecies electron transfer as general mechanism between 

ANME and the partner bacteria. Other metabolic processes observed in AOM cultures and 

natural enrichments, such as methanogenesis and sulfur disproportionation, are performed by 

specialized minor community members thriving on potentially AOM derived methylated 

substrates or purely chemically produced zero-valent sulfur species. 
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Figures and tables 

 

Figure 1 Comparison of community composition, typical microbial aggregates and archaeal lipids of the three 

AOM enrichment cultures (A,B) Comparison of normalized archaeal and bacterial clone numbers retrieved from 

the enrichment (for clone number see Tab. 1; short, badly aligning sequences were not considered here). 

(C-E) Fluorescence in situ hybridization of dual-species aggregates in the enrichment (E20: red=ANME-2-538 

(Treude et al., 2005), green=DSS658 (Manz et al., 1998); G37: red=ANME-1-350 (Boetius et al., 2000), 

green=DSS658; G50: red=ANME-1-350, green=HotSeep-1-590 (Holler et al., 2011b)), bars scale 10 µm. 

(F) Major archaeal membrane intact polar lipid types defined by hydrophobic core group: OH=hydroxyarchaeol, 

AR=archaeol, MAR=macrocyclic archaeol, GDGT=Glycerol dialkyl glycerol tetraether. At higher temperatures 

ANME-1 archaea tend to produce predominantly GDGTs, likely a temperature adaption (for details and 60°C 

example see Tab. 2). 
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Figure 2 Assimilation of carbon sources in relation to reducing equivalent transfer assuming an average 

oxidation state of organic carbon of 0 (red=methane assimilation; dark grey=DIC assimilation in presence of 

methane; light grey=DIC assimilation in absence of methane; blue=derived methane-dependent DIC 

assimilation; error bars=standard deviation; n=3 per treatment). In all cultures assimilation of inorganic carbon 

strongly exceeds methane carbon assimilation, suggesting that the latter is likely methane-derived DIC 

assimilation. 

 

 

 

 

 

Figure 3 Production of 
14

C-methane from 
14

C-bicarbonate relative to AOM rates (here determined by production 

of 
35

S-sulfide from 
35

S-sulfate) in the three studied AOM enrichments incubated at AOM conditions at their 

respective temperature optima (error bars=standard deviation; n=5 per treatment). 
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Figure 4 Methanogenesis and methanogenic archaea in AOM cultures. (A-D) Methane production in 1:10 

dilutions of the E20 and G37 AOM enrichments after addition of methanol or methylamine (10 mM) to the 

enrichments. Filled and open circles indicate replicate incubations. (E) Phylogenetic affiliation of methanogens 

isolated in dilution-to-extinction approaches with methanol and methylamine. 
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Figure 5 Sulfur disproportionation in AOM enrichment cultures. (A-C) Comparison of development of sulfide 

concentrations in the three AOM enrichments at AOM conditions (methane (2.25 atm) plus sulfate (20 mM; 

open circles)) and during addition of colloidal sulfur (20 mM; filled circles) within 18 days. (D-E) Comparison 

of sulfide and sulfate production in zero-valent sulfur amendments of E20 and G37; disproportionation has not 

been observed in G50. The observed approximate 3:1 stoichiometry between sulfide and sulfate production is 

characteristic for disproportionation of elemental (zero-valent) sulfur. (F) Phylogenetic affiliation of sulfur-

disproportionating bacteria within the Deltaproteobacteria based on full length 16S rRNA gene sequences 

retrieved from high dilutions of AOM-active cultures supplied with elemental sulfur. 
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Table 1 Analyzed clones from 16S rRNA gene libraries established from sediment-free anaerobic methane-

oxidizing enrichment cultures from Elba and the Guaymas Basin. Percent of total sequences is indicated for 

AOM organisms in parenthesis. 

  enrichment  

Phylogenetic Group E20 G37 G50 G60 G50 & 60 

Archaea 

   

  

 Euryarchaeota 

     Methanomicrobia 

     ANME-1 

 

    

ANME-1a 

 

71 (83%) 85 (99%) 70 (88%) 155 (93%) 

ANME-1b 1 (1%) 

    Methanosarcinales 

     ANME-2 

     ANME-2a-2b 9 (11%) 

    ANME-2b 23 (30%) 

    ANME-2c 46 (58%) 6 (7%) 

   Others 

 

3 

 

1 1 

Thermoplasmata 

 

6 1 6 7 

Thermococci 

   

1 1 

Thaumarchaeota 

   

1 1 

Crenarchaeota 

   

1 1 

Total sequences analyzed 79 86 86 80 166 

      Bacteria 

     Proteobacteria 

     Deltaproteobacteria 

     HotSeep-1 

  

41 (48%) 48 (74%) 89 (59%) 

Seep-SRB-1 7 (9%) 

 

1 (1%) 

 

1 (1%) 

Seep-SRB-2 35 (46%) 60 (88%) 

   Others 2 5 4 

 

4 

Betaproteobacteria 

   

1 1 

Bacteroidetes 6 

    Spirochaetes 3 

    Chloroflexi 1 

    Planctomycetes 5 

    Firmicutes 3 

    Candidate division OP-3 

  

37 3 40 

Candidate division OP-8 1 

  

6 6 

Candidate division JS1 

 

2 

   Others 13 1 3 7 10 

Total sequences analyzed 76 68 86 65 151 
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Table 2 Relative composition of archaeal lipids in the three studied enrichments, and for comparison, of lipids 

in G60.  

  ANME-2 ANME-1 

Diethers E20 G37 G50 G60 

1Gly-AR 9 

   1Gly-OH-AR 31 

   2Gly-AR 18 7 9 3 

GNG-AR 3 

   PG-AR 12 25 6 2 

PG-OH-AR 19 1 0 0 

Pent-PG-AR 2 

   PE-AR 2 

   PE-OH-AR 1 44 0 0 

PE-MAR 

 

3 4 2 

PI-AR 0 

   PI-OH-AR 1 

   Tetraethers         

PG-GDGT-PG 

 

0 0 0 

PG-GDGT 

 

5 0 0 

1Gly-GDGT 1 0 1 5 

2Gly-GDGT 1 14 79 88 

Summary         

OH-AR 51 44 0 0 

AR 47 32 16 5 

MAR 0 3 4 2 

Tetraether 2 20 80 94 
Abbreviations: Headgroups Gly = glycosyl, PG = phosphatidylglycerol, PE = phosphatidylethanolamine, 

PI = phosphatidylinositol, PE = phosphatidylethanolamine. Core lipid: AR = archaeol, MAR = Macrocyclic 

archaeol, GDGT = glyceroldibiphytanylglyceroltetraether  
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Table 3 Stimulation of methanogenesis and sulfate reduction in enrichments from Elba (E20) and Guaymas 

Basin (G37 and G50) using different substrates (methanogenesis w/o sulfate). 

  E20 G37 G50 

Substrate Methanogenesis 

AOM control + + + 

No-substrate control  0 0 0 

Hydrogen 0 0 0 

Formate 0 0 0 

Acetate 0 0 0 

Methanol +++ +++ 0 

Methylamine +++ +++ 0 

  Sulfate reduction 

AOM control + + + 

No-substrate control  0 0 0 

Hydrogen 0 ++ +++++ 

Carbon monoxide 0 0 0 

Methyl sulfide 0 0 0 

Methanol 0 0 0 

Acetate 0 0 0 

Formate 0 0 0 

Propionate 0 0 0 
'+' expected rate measured; '++' instant rates low, but rates exceed AOM after longer time, '+++' instant rate 

low, but rapidly higher than AOM, '+++++' rate instantly 3 times higher than during AOM 

 

 
Table 4 Methanogenic and sulfur-disproportionating minor community members.  

OTU0.02* E20 G37 G50 Gullfaks Organism**    

Sequences from 

isolates 

A-Otu00017 2.8 1.3 0.1 4.3 Methanococcoides KT899737 

A-Otu00024 2.9 1.8 − 7.0 Methanohalophilus KT899738 

B-Otu00016 − − − 1.0 Desulfocapsa KT899741 

BOtu00114 8.6 − − − Elba-DISP1 KT899742 

BOtu00373 − 2.2 − − GB-DISP1 
KT899739; 

KT899740 

*based on 454 pyrosequencing of the 16S rRNA V3-V5 region; **Presented organisms had a taxonomy quality 

score of 100; Numbers report detected sequences as parts of 1000 (‰). 
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Supplementary information 

Supplementary data description 

Here we provide additional phylogenetic analyses of the four AOM enrichment cultures 

described in the main text and of six other methanotrophic enrichment cultures. All 

cultivations were performed with anaerobic seawater medium and methane and sulfate as 

provided electron donor and acceptor source.  

Supplementary Table 1 provides an overview on the sample origin and cultivation 

conditions. Supplementary Table 2 depicts the relative abundance of specific methanogenic 

and methanotrophic archaea and known AOM partner bacteria and clades of known sulfur-

disproportionating bacteria. Supplementary Fig. 2 provides an overview on the distribution of 

microbial taxa in the different AOM enrichment cultures. 

Our results show that long-term, sediment-free AOM enrichments are dominted by typical 

AOM organisms (ANME clades and their partner bacteria). However these enrichments still 

harbor a large diversity of different archaea (i.e. Thermoplasmatales or MBGD) and bacteria 

(i.e. Anaerolinaceae, Cladithrix or relatives of the Candidate divisions JS1, OD1 and OP11). 

The function of these organisms is so far unknown, however they are most likely heterotrophs 

feeding on exudates of AOM (Supplementary Fig. 2). Nearly all studied cultures contain 

sequences of methylotrophic methanogens and disproportionating bacteria. These organisms 

are usually rare and not identical with ANME and their partner bacteria (Supplementary 

Tab. 2), however when supplying their specific substrates these groups can grow rapidly. 
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Supplementary figures and tables 

 

 

Supplementary Figure 1 Development of sulfide production in the studied mesophilic G37 (A) and 

thermophilic G50 (B) AOM enrichment culture normalized to calculated dry weights. The slope of the 

regression line (calculated by least square fitting) was used to determine activity doubling times 

Td=ln2/ln(ΔSP/Δt). 
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Supplementary Figure 2 Relative sequence abundances of archaea (A) and bacteria (B) in ten long-term 

enrichment cultures under strict AOM conditions based on 16S rRNA gene tags of the variable region V3-V5. 

Bubble sizes depict relative sequence abundances in %. AMV: Amon mud volcano, BSC: Black Sea seep, BSM: 

Black Sea microbial reef, MC: Menez Caldera seep, E20: Elba seep (20°C), GB37: Guaymas Basin seep (37°C), 

GB50: Guaymas Basin seep (50°C), GF: Gullfaks seep, GOM: Gulf of Mexico seep, HR: Hydrate Ridge seep. 

Next to ANME and their partner bacteria, AOM enrichment cultures cultivated on methane and sulfate for many 

years still contain a large number of other microorganisms with yet unknown function.   
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Supplementary Table 1 Origin, sampling depth and sampling year of different AOM enrichment cultures. 

*Temperature (Temp.) describes the in vitro incubation temperature. 

Sample 
Acro-

nym 
Location 

Water 

depth 
Site 

Samp-

ling 

Temp. 

(°C)* 
Sampling campaign 

Guaymas50 G50 

27.01 N 

111.41 W 

 

1999m 

Hydrothermal 

Vent 2009 50 
RV Atlantis exp. AT15-45 

with submarine Alvin; 

Chief Scientist A. Teske 
Guaymas37 G37 

27.01 N 

111.41 W 

 

1999m 

Hydrothermal 

Vent 2009 37 

Elba Seep E20 

42.74 N 

010.12 E  12m Cold Seep 2010 20 

Hydra Diving Station;  

PI Miriam Weber 

Gullfaks Seep GF 

61.17 N 

002.24 E 150m Cold Seep 2005 20 

RV Alkor Cruise 267; 

Chief Scientist A. Boetius  

Amon MV AMV 

31.73 N 

032.37 E 1250m Mud Volcano 2003 20 

NAUTINIL exp. RV L 

Atalante; CS J.-P. Foucher 

Black Sea mat BSM 

44.74 N 

031.97 E 300m 

Microbial 

Chimney 2004 12 

RV POSEIDON exp. 317/3 

with submersible JAGO; 

Chief Scientist. B.B. 

Jørgensen (METROL) 
Black Sea 

culture BSC 

44.74 N 

031.97 E 300m 

Microbial  

Chimney 2004 4 

Menes Caldera  MC 

32.11 N 

028.16 E 3018m Cold Seep 2003 20 

NAUTINIL exp. RV L 

Atalante; Jean-Paul 

Foucher 

Hydrate Ridge HR 

44.55 N 

125.25 W 780m Cold Seep 2000 12 

RV SONNE Exp. SO-148; 

CS E.Suess, P. Linke 

Gulf of Mexico GoM 

27.74 N 

091.31 W 504m Cold Seep 2003 20 

RV Sonne exp. 174; CS G. 

Bohrmann OTEGA 

Supplementary Table 2 Relative abundance of methantrophic and methanogenic archaeal clades, known AOM 

partner bacteria and disproportionating bacteria in 10 studied AOM enrichment cultures. Values normalized to 

parts of 1000 (‰). 

Organism  E20 G37 G50 GF AMV BSC BSM  MC GoM HR 

Archaea 

          
ANME-2a/2b 217 8 10 616 390 177 517 878 528 76 

ANME-2c 457 6 7 11 276 601 152 23 87 343 

ANME-1 7 15* 805 7 6 5 7 7 5 5 

ANME-1a 2 12 87 1 2 2 2 2 2 2 

Methanococcoides 3 2 0 5 5 5 2 10 6 2 

Methanohalophilus 3 2 0 8 1 0 1 2 3 0 

Bacteria 

          
SEEP-SRB-1a 9 6 58 435 56 205 109 245 158 161 

SEEP-SRB-2 83* 383 3 7 25 4 1 4 30 35 

HotSeep-1 1 2 270 2 1 1 2 2 2 3 

Desulfocapsa 0 0 0 1 22 0 0 1 69 6 

Elba-DISP1 10 0 0 0 0 1 0 0 0 0 

GB-DISP1 0 2 0 0 0 0 0 0 0 0 

* likely underestimated sequence abundance; 0 = <0.5‰ of all sequences. 
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Chapter VI 

 

Discussion and perspectives 

In this Chapter the central findings of the thesis are shortly summarized and discussed in the 

context of the original thesis hypotheses. The insight obtained into the thermophilic 

ANME-1/HotSeep-1 consortium including its physiology and genomic profile is discussed in 

the context of AOM in general and the current knowledge in this field. This Chapter ends by 

addressing perspectives for future work and by highlighting general concluding remarks to 

this thesis. 
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6.1. Physiology and interspecies interaction in thermophilic AOM 

Since the discovery of ANME archaea and partner bacteria as central members of AOM 

consortia these organisms were thought to interact in a syntrophic manner. Several models 

aimed to explain the coupling of methane oxidation to sulfate reduction (see Chapter I). 

Among those hypotheses was direct electron transfer from ANME archaea to bacterial partner 

(Thauer and Shima, 2008; Summers et al., 2010). This hypothesis was supported in 

metagenomic studies (Meyerdierks et al., 2010; Wang et al., 2014); however experimental 

evidence and visual detection of structures that would support the model of direct interspecies 

interaction were missing. 

In the framework of this thesis we investigated the physiology of thermophilic AOM 

consortia composed of ANME-1 and HotSeep-1 (Chapter II). We combined physiological 

experiments with differential gene expression analysis and electron microscopy. In these 

consortia we excluded the exchange of molecular intermediates. Instead we observed a dense 

network of cell-to-cell connections. We furthermore observed that under AOM conditions, 

HotSeep-1 expresses pilA, a gene encoding the major subunit of pili proteins, while both 

ANME-1 and HotSeep-1 express c-type cytochromes. Based on these results we formulated a 

model for the functioning of thermophilic AOM via direct electron transfer through 

conductive charge transport in nanowires. Our model emanates from a combination of c-type 

cytochromes and pili, which likely together provide a conductive path for electron transfer in 

thermophilic AOM (Wegener et al., 2015; Chapter II).  

Extracellular electron transfer either to insoluble acceptors or to other microbes has been 

reported previously (Reguera et al., 2005; Gorby et al., 2006; Summers et al., 2010; Rotaru 

et al., 2014, 2015). Iron-reducers of the Geobacter spp. produce nanowire-like structures 

thought to be made of type IV pili (Reguera et al., 2005). Pili are general bacterial features 

that serve functions such as motility or attachment and it is still not fully clear how pili are 

involved in electron transfer. Two principle mechanisms by which pili conductance is 

achieved are debated: (1) Based on the stacked arrangement of aromatic amino acids in the 

PilA protein pili may have a metallic like self-conductance (Vargas et al., 2013; Malvankar 

et al., 2014) or, (2) c-type cytochromes that associate on the pili surface facilitate electron 

hopping along the pili (Summers et al., 2010; Snider et al., 2012). Cytochromes are suggested 

to be generally relevant for direct electron transfer by Geobacter spp. and to promote the 

transfer of electrons from the cell membrane onto the pili or from the pili to the electron sink 

(Metha et al., 2005; Estevez-Canales et al., 2015). This potentially explains the observed 

expression of both pili and cytochromes under AOM conditions in thermophilic consortia 
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(Chapter II). We attributed the intercellular filamentous structures, observed in the 

thermophilic ANME-1/HotSeep-1 consortia, to the production of pili by the bacterial partner 

and proposed that they may resemble in function the pili-based nanowires produced by 

Geobacter spp., considering the sequence similarity of both PilA proteins. We did not attempt 

to localize cytochromes in the thermophilic AOM consortia yet. Future studies should address 

the localization of cytochromes in the extracellular space and also target the conductive 

property of the observed nanowire-like structures. We also detected type IV pili genes in the 

genome of the Seep-SRB-2 partner bacterium (Chapter IV). However, the expression level 

was low, and we cannot infer a general function of pili in ANME-1-dominated consortia 

presently. 

Simultaneously with our proposal of nanowire and cytochrome mediated electron transfer 

in ANME-1/HotSeep-1 consortia McGlynn and coworkers (2015) proposed direct electron 

transfer in ANME-2/DSS consortia. Based on in situ staining of c-type cytochromes and 

genome analysis of ANME they proposed electron transfer mediated by cytochromes 

(McGlynn et al., 2015). The authors allocated a particularly important role to high molecular 

weight c-type cytochromes (31 heme), that localize in the S-layer of ANME-2 and would 

permit conductivity of the intercellular matrix. This type of cytochrome was not found in 

ANME-1 (McGlynn et al., 2015; own data Chapter II and IV). However, all available ANME 

genomes encode a variety of cytochromes and some of those were also shown to be expressed 

(Meyerdierks et al., 2010; Wang et al., 2014; Wegener et al., 2015; own data Chapter IV) 

indicating a central role of cytochromes in the functioning of electron transfer in AOM 

syntrophy. McGlynn and coworkers (2015) focused on the role of the archaea in electron 

transfer. Hence the bacterial partner and extracellular structures possibly produced by it were 

not further considered; however such structures were not apparent in the presented TEM 

images, suggesting their minor importance in ANME-2 consortia.  

The recent findings from ANME-1/HotSeep-1 (Chapter II) and ANME-2/DSS consortia 

(McGlynn et al., 2015) suggest a central role of direct electron transfer for the functioning of 

AOM. Genome analysis indicates that cytochromes are important for this process in both 

consortia types. The exact mechanism may be dependent on the combination of partners, their 

specific genomic and physiologic potential and spatial arrangement of cells. Future in depth 

research is necessary to verify the concept of direct electron transfer in AOM and to explain 

the cellular fundamentals to achieve it. Syntrophy based on direct interspecies electron 

transfer in AOM would extend the spread of this mechanism beyond the known Geobacter-
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involving microbial syntrophies and therewith hints on a larger relevance in nature than 

anticipated. 

6.2. Physiology and genomic profile of the bacterial partner HotSeep-1 

So far four main groups of ANME partner bacteria are described: Seep-SRB-1, Seep-SRB-2, 

Desulfobulbus-relatives and HotSeep-1. Phylogenetically those groups are placed as separate 

clusters in the Deltaproteobacteria, but none contained cultured representatives. Prior to the 

work included in this thesis HotSeep-1 bacteria referenced a deeply-branching cluster; 

members of it were known as unique partner bacteria in thermophilic AOM consortia (Holler 

et al., 2011b), but their actual metabolic capabilities were unknown. In the work presented in 

Chapter II and III we reported on the physiology and genome of a representative of the 

HotSeep-1 bacteria that resembles the partner bacterium involved in thermophilic AOM.  

The main physiologic characteristic of HotSeep-1, that distinguishes it from all other 

known partner bacteria, is its ability to grow on molecular hydrogen. Using this electron 

donor and sulfate as acceptor we achieved growth of HotSeep-1 in the absence of ANME 

archaea. Partner-independent growth of organisms involved in a syntrophy as reducing 

equivalent scavenging partner is often promoted by artificially providing the intermediate 

exchanged. We however have disproven hydrogen as shuttled intermediate in the 

ANME-1/HotSeep-1 syntrophy (Chapter II). Nevertheless, hydrogen is the compound with a 

redox chemistry most closely mirroring the one involved in direct electron transfer (i.e. when 

HotSeep-1 growth in thermophilic AOM consortia). To switch from syntrophic to 

hydrogenotrophic growth HotSeep-1 relies on a single additional enzyme: a hydrogenase. We 

attribute the observed 3-day lag phase when HotSeep-1 switched from syntrophic to 

hydrogenotrophic growth to the need to synthesize hydrogenases. We hypothesize that 

HotSeep-1 channels electrons derived from periplasmic hydrogen oxidation into the enzyme 

series of sulfate reduction via the same path as electrons that directly enter the cell, i.e. via a 

periplasmic pool of cytochrome c. In its natural environment, the Guaymas Basin, HotSeep-1 

may encounter hydrogen sporadically and therefore has preserved the ability to metabolize it. 

In contrast, in environments where cold-adapted AOM consortia occur hydrogen 

concentrations are minimal (Hoehler et al., 1994; Hoehler et al., 1996), and presence of a 

hydrogenase system is likely not of selective advantage. Concordantly those bacterial partner 

from cold-adapted AOM consortia do not respond to hydrogen as growth substrate (Nauhaus 
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et al., 2005; own data Chapter V). The ability of HotSeep-1 to grow partner-independent 

allowed novel lines of experimental analyses of the metabolism involved in AOM.  

Considering its physiology, HotSeep-1 is not necessarily limited to thermophilic AOM, but 

might also engage in other syntrophic processes, which base on interspecies hydrogen or 

direct electron transfer. Sequences closely related to HotSeep-1 were reported to be abundant 

in short chain alkane-degrading enrichments (Kniemeyer et al., 2007; Adams et al., 2013). 

Our physiological tests and genome analyses indicate that HotSeep-1 alone cannot degrade 

alkanes. Instead it may participate in syntrophic hydrocarbon degradation as scavenger of 

reduced products. The syntrophic alkane metabolizer remains to be identified and we suggest 

it may be found in the Candidate Division OP 8, Firmicutes or Archaea; based on sequence 

data reported by Adams and colleagues (2013) from hydrocarbon-degrading enrichments. 

Based on its physiological properties we proposed to name HotSeep-1 Candidatus 

Desulfofervidus auxilii. A Candidatus status remains as we could not obtain a pure culture 

yet. In addition to its physiological properties, we studied the phylogenetic position of 

HotSeep-1 (Chapter III). Its deep-branching position has been reported previously (Teske et 

al., 2002; Holler et al., 2011b). Candidatus Desulfofervidus auxilii is, according to our 

understanding, a member of a new family that is tentatively placed in the Deltaproteobacteria 

but the clear classification remained difficult in the absence of close relatives.  

6.3. Metabolic potential of ANME-1  

The three described ANME clades 1 to 3 comprise uncultured anaerobic methanotrophs, 

phylogenetically related to the methanogenic archaea. Physiologic differences between 

members of the different clades are widely unexplored. We focused here on ANME-1. In a 

comparative genome analysis of different members of the ANME-1 clade, we investigated the 

diversity in metabolic potential among members of this large clade and suggest metabolic 

traits unique to ANME-1 (i.e. not known in ANME-2 or -3 or in methanogens). The compared 

members are likely to represent distinct genera of anaerobic methanotrophs and differ in 

growth temperature and associated bacterial partner. 

We obtained for a meso- and a thermophilic ANME-1 almost complete draft genomes of 

only ~1.5 Mb, a size considerably smaller than the previously reported ANME-1 assembly 

(Meyerdierks et al., 2010). This discrepancy in genome size may reflect limited metabolic 

versatility of the meso- and thermophilic ANME-1 types or may be explained by the 

composite nature of the previously reported ANME-1 genome (Meyerdierks et al., 2010). We 
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combined our data with previous genomic and proteomic data of ANME-1 (Meyerdierks 

et al., 2010; Stokke et al., 2012) and showed that central metabolic features such as enzymes 

of carbon fixation, methanogenesis and redox complexes are common among ANME-1 while 

they are also shared with the ANME-2 clade and with methanogens (Wang et al., 2014). Like 

previous studies, we could not identify a gene encoding the Mer protein (Meyerdierks et al., 

2010; Stokke et al., 2011) but could also not convincingly confirm the Mer bypass in meso-

and thermophilic ANME-1. Instead, we confirmed, the first by Stokke and colleagues (2012) 

proposed, modified reverse methanogenesis pathway: the Mer protein is presumably replaced 

by MetFV that catalyzes an analogous reaction and usually occurs in non-methanogenic 

organisms, mainly in bacteria. We showed expression of this protein in meso- and 

thermophilic ANME-1 to levels similar to other enzymes of the methanogenesis pathway, 

indicating its involvement in this reaction sequence. The same enzyme was also detected in 

the other ANME-1 datasets (Meyerdierks et al., 2010; Stokke et al., 2012). A utilization of 

MetFV contrasts the hypothesis of a bypass (Meyerdierks et al., 2010) and would allow direct 

reversal of the methanogenesis pathway without the production of intermediates. In future, 

biochemical studies are needed to approve an involvement of the MetFV enzyme in reverse 

methanogenesis as well as to show its subunit composition (e.g. formation of a complex with 

HdrABC as previously recognized (Bertsch et al., 2015)).  

The tight association with bacterial partner and the absence of any potential alternative 

growth substrates indicates that ANME-1 is an obligate syntrophic metabolizer. In support of 

this, we did not find genes for canonical sulfate reduction, hydrogenases or any methanogenic 

activity (Chapter V) which could support a partner-independent lifestyle of ANME-1. This is 

in contrast with the proposal of ANME operating as a methanogen (see Chapter IV). Instead 

ANME-1 and also ANME-2 tend to contain and express c-type cytochromes which may 

support a syntrophic relationship in which ANME directly donates methane-derived electrons 

(as outlined above and in Chapter IV and V; Meyerdierks et al., 2010; Wang et al., 2014; 

McGlynn et al., 2015). Supposed this to prove true, ANME would constitute the first 

archaeon and next to Geobacter spp. (Rotaru et al., 2014, 2015) the only other organism 

presently proposed to participate in direct interspecies electron transfer as donating partner. 

While G. metallireducens was shown to form conductive pili, possibly purposing direct 

electron transfer, the production of similar conductive structures by ANME remains open. In 

this respect, we detected an incomplete set of flagella genes in the meso- and thermophilic 

ANME-1 and observed high expression of flagellins and putative flagellins (Chapter IV). As 

the archaeal flagellum, the archaellum, structurally and evolutionary resembles a bacterial 
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type IV pilus (Albers et al., 2015), we consider it as a candidate for an extracellular structure 

of ANME with potential importance in interspecies interaction. 

We provided a first insight into the common metabolic potential of ANME-1 members; 

however the present dataset of ANME-1 is still very limited with only three genomes 

representing a large group. Future work should attempt to obtain genomic data from various 

ANME for broader comparative studies to eventually allow drawing general conclusions 

concerning the metabolic versatility of ANME and their differences to methanogens.  

6.4. Metabolic capabilities of organisms in AOM enrichments  

The core archaeal and bacterial members of AOM consortia are phylogenetically classified 

into few but considerably diverse clades. This indicates potential variability in their metabolic 

capabilities. Chapter V addressed the microbial composition of different AOM enrichments 

and compared their metabolic capabilities. The three investigated sediment-free AOM 

enrichments represent different temperature regimes of growth, 20, 37 or 50/60°C, and were 

dominated by ANME-2c/Seep-SRB-2, ANME-1/Seep-SRB-2 and ANME-1/HotSeep-1, 

respectively. We performed physiological experiments targeting previously addressed topics: 

the nature of carbon assimilation (Wegener et al., 2008; Kellermann et al., 2012), the 

hypothesis of methanogenic activity in ANME (Lloyd et al., 2011) and sulfur metabolism in 

the bacterial partners (Milucka et al., 2012). 

We showed that the investigated enrichments predominantly assimilated inorganic carbon, 

which confirms previous findings (Wegener et al., 2008; Kellermann et al., 2012) and 

describes both partners of the AOM consortium as autotrophs. Carbon assimilation activity 

required the presence of methane, which shows that methane is the primary energy source on 

which both partner of the consortium depend and is in line with earlier studies by Wegener 

and colleagues (2008).  

With respect to methanogenic metabolism, we showed that in the tested AOM 

enrichments, only the addition of methylated compounds promotes methanogenesis, by 

rapidly enriching an initially small community of methylotrophic methanogens of the genera 

Methanococcoides and Methanohalophilus. We however did not observe methylotrophic 

methanogenesis in the thermophilic enrichments, which we explained by the absence of these 

non-thermophilic organisms after long-term exposure to high temperatures (50-60°C). Our 

results clearly contrast earlier reports of ANME-1 operating also as a methanogen (Bertram 

et al., 2013). We hypothesize that in AOM enrichments and naturally in zones of AOM 
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activity methylotrophic methanogens may thrive from low amounts of methylated side 

products of the AOM process. 

We further showed initiation of alternative sulfur metabolism in the investigated 

enrichments. In the enrichments at 37 and 50/60°C supply of hydrogen and sulfate resulted in 

the enrichment of members of the minor community or of HotSeep-1, respectively. 

Seep-SRB-2 was not enriched with hydrogen, coinciding with the absence of hydrogen-

dependent sulfate reduction in the other Seep-SRB-2-dominated enrichment at 20°C. This is 

in agreement with previous physiologic studies on cold-adapted AOM consortia (Nauhaus 

et al., 2005), which also showed a lack of hydrogen metabolism in the partner bacteria. The 

absence of hydrogenotrophic growth in Seep-SRB-2 further suggests that interspecies 

hydrogen transfer is not relevant in Seep-SRB-2-dominated consortia, and is in line with the 

absence of hydrogenase genes in ANME-1 and ANME-2 (Wang et al., 2014; Chapter IV). In 

the low temperature (20 and 37°C), but not in the thermophilic enrichments we showed 

sulfur-disproportionating activity. We cultured two novel sulfur-disproportionating bacteria 

which we found to be unique with respect to their capability to sustain sulfur 

disproportionation under sulfide concentrations up to 7 mM, a level were the energy gain is 

lowered to a minimum of −10 kJ per mol
−1

. For one of the isolates, which we classified as 

closest relative of the Seep-SRB-2 cluster (93% sequence similarity), we also showed growth 

by hydrogenotrophic sulfate reduction. This phylogenetic proximity of Seep-SRB-2 to an 

organism with the capability of hydrogen metabolism and sulfur disproportionation may 

indicate that those traits were present in a common ancestor and were lost in Seep-SRB-2 as a 

result of adaptation to a syntrophic lifestyle with ANME. Based on the absence of sulfur 

disproportionation by Seep-SRB-2 and HotSeep-1, we suggest that zero-valent sulfur transfer 

is not important in these consortia types, which is in clear contrast to findings from 

ANME-2a/DSS consortia (Milucka et al., 2012).  

Altogether our results suggest that the organisms constituting the here investigated AOM 

consortia have limited metabolic versatility: ANME are autotrophic methane oxidizers and 

bacterial partner are autotrophic sulfate reducers. Their syntrophic lifestyle may not be based 

on a molecular intermediate such as hydrogen or sulfur and may involve the direct exchange 

of electrons (outlined above and in Chapter II). Hydrogenotrophic growth is a feature clearly 

contrasting HotSeep-1 from Seep-SRB-2 and possibly other bacterial partner. The small 

community of organisms not directly involved in AOM can be activated by alternative 

substrates also after long-term enrichment under AOM conditions. We have shown that those 

community members carry out processes such as methanogenesis or alternative sulfur 
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metabolism; understanding their functioning in AOM enrichments and at sites of AOM 

activity awaits further attention.  

6.5. Perspectives for future research on AOM 

This thesis presented novel insights into the metabolic capabilities and genomic profiles of 

AOM organisms and their interspecies interaction, which have expanded our understanding of 

AOM as a syntrophic process. At the same time the new perspectives encourage to more in 

depth analysis. Based on the presented work the following future tasks are formulated. 

The understanding of syntrophy in AOM continues to be a major interest of AOM 

research. AOM consortia are phylogenetically and morphologically diverse and so are likely 

their mechanisms of interaction. The recently proposed models of direct electron transfer via 

pili and/or cytochromes were developed from the study of specific types of consortia. Hence 

our knowledge is still too limited to allow general statements. Therefore, in future different 

AOM consortia types, i.e. constituting diverse combinations of ANME and partner bacteria, 

should be systematically analyzed applying a standardized set of methodology such as high 

resolution TEM imaging, cytochrome redox staining and targeted gene and gene expression 

analyses. The results from such a comparative approach could help in formulating generalized 

hypothesis concerning the syntrophy strategies across consortia types or determine factors that 

influence which syntrophy strategy is used; for instance, is the formation of pili linked the 

distance of cells. 

For thermophilic ANME-1/HotSeep-1 consortia pili are proposed to serve a crucial role in 

direct electron transfer and pili formation was attributed to HotSeep-1 (Chapter II). To verify 

that the in TAOM consortia observed structures are bacterial pili the in situ detection of PilA 

is a critical task. This could be facilitated by developing and applying immunogold labeling 

with an antibody targeting the HotSeep-1 PilA protein on thermophilic AOM consortia thin 

sections for subsequent visualization by TEM. The identification of the filamentous structures 

observed as pili would be a major step forward; however, a final proof concerning the 

conductive nature of the pili would still remain. Conductivity measurements have previously 

revealed the conductive properties of whole consortia (Summers et al., 2010) and specific pili 

produced by Geobacter spp. (Malvankar et al., 2014). In future similar measurements should 

be attempted in the thermophilic AOM consortia and specifically target the nanowire-like cell 

connections. To investigate the role of pili-associated cytochromes in electron transfer, these 



Chapter VI 

216 

cytochromes should be visualized for instance via redox staining or also via immunogold 

labeling with cytochrome targeting antibodies.  

With HotSeep-1 a bacterial partner is now cultivated independently; however, a still lasting 

aim is the partner-independent cultivation of ANME. With respect to the here described 

potential of thermophilic ANME-1 to grow by solely expelling electrons, it is tempting to 

reconsider potentiostat cultivation approaches. In such a set up ANME-1 would utilize a 

poised electrode as terminal electron acceptor omitting the need for a bacterial partner. 

Although all previous attempts to grow ANME using an electrode as electron sink were 

unsuccessful, conditions may have not been optimal or the tested organisms were not capable 

of direct electron transfer. 

The enrichment-based work presented in this thesis has shown that deep insights into the 

physiology of organisms can be obtained from in vitro enrichments. We were able to sustain 

and grow “unculturable” AOM consortia at high enrichment degree for microbiological 

investigations as well as metagenomic and metatranscriptomic studies. The MPI Bremen 

currently holds probably the largest collection of AOM consortia enrichments from a range of 

habitats. Chapter V provided an overview of the different types of consortia available in those 

cultures and an estimate of their enrichment degree (based on relative sequence abundance). 

Metagenome sequencing of those enrichments and targeted assembly of the prominent taxa 

presents a promising approach to extend the number and diversity of available genomes from 

AOM organisms for comparative analysis. Together with metatranscriptome sequencing gene 

expression patterns for selected genes such as pilA and cytochromes or mer and met could be 

compared across ANME types and partner bacteria. Such a comparative analysis of an 

extended set of genomes would enable addressing the question of metabolic diversity and 

uniqueness of ANME and their partner bacteria more explicit. Indeed, it would also be the 

basis to perform comparative analysis of syntrophic strategies on the gene and genome level 

to possibly generalize the interspecies interaction concepts developed recently.  
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6.6. Concluding remarks 

The research summarized in this thesis has focused on the physiology and genomic potential 

of anaerobic methane-oxidizing archaea and their partner bacteria. It has provided the first 

highly complete genomes of a bacterial partner and two ANME-1 subtypes which will be the 

basis for future comparative genomic approaches. We confirmed in our studies that ANME-1 

is a chemoorganoautotroph that likely employs a modified reverse methanogenesis pathway 

for methane oxidation. We identified HotSeep-1 as a novel chemolithoautotrophic sulfate 

reducer that, when not grown in syntrophy with ANME, uses hydrogen as sole electron 

source. For the syntrophy of ANME-1/HotSeep-1 in thermophilic AOM, we proposed a direct 

electron exchange via conductive nanowires which likely involve bacterial type IV pili and 

c-type cytochromes of both partners. This expands on the conceivable archaeal-bacterial 

interactions in AOM and also extends the principle of direct interspecies electron transfer in 

the microbial world, which still is largely unexplored. In this respect, the work combined in 

this thesis has contributed to advance our understanding of the physiology of AOM and its 

syntrophic nature. Likewise new questions arised and the illustrated new perspectives show 

that there remain many more pieces to be assembled to resolve the AOM puzzle in all its 

detail.  
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