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Abstract. The functional relevance of oxygen transport
by hemocyanin of the Antarctic octopodMegaleledone se-
noi and of the eurythermal cuttlefishSepia officinaliswas
analyzed by continuous and simultaneous recordings of
changes in pH and hemocyanin oxygen saturation in whole
blood at various temperatures. These data were compared to
literature data on other temperate and cold-water cephalo-
pods (octopods and giant squid).

In S. officinalis, the oxygen affinity of hemocyanin
changed atDP50/°C 5 0.12 kPa (pH 7.4) with increasing
temperatures; this is similar to observations in temperate
octopods. InM. senoi,thermal sensitivity was much smaller
(,0.01 kPa, pH 7.2). Furthermore,M. senoihemocyanin
displayed one of the highest levels of oxygen affinity
(P50 , 1 kPa, pH 7.6, 0 °C) found so far in cephalopods
and a rather low cooperativity (n50 5 1.4 at 0 °C). The pH
sensitivity of oxygen binding (D log P50/D pH) increased
with increasing temperature in both the cuttlefish and the
Antarctic octopod. At lowPO2 (1.0 kPa) and pH (7.2), the
presence of a large venous oxygen reserve (43% saturation)
insensitive to pH reflects reduced pH sensitivity and high
oxygen affinity in M. senoi hemocyanin at 0 °C. InS.
officinalis, this reserve was 19% at pH 7.4, 20 °C, and 1.7
kPa O2, a level still higher than in squid.

These findings suggest that the lower metabolic rate of
octopods and cuttlefish compared to squid is reflected in less
pH-dependent oxygen transport. Results of the hemocyanin
analysis for the Antarctic octopod were similar to those
reported forVampyroteuthis—an extremely high oxygen
affinity supporting a very low metabolic rate. In contrast to
findings in cold-adapted giant squid, the minimized thermal
sensitivity of oxygen transport in Antarctic octopods will

reduce metabolic scope and thereby contribute to their
stenothermality.

Introduction

Cephalopods are found throughout the seas of the world,
from warm tropical waters to polar oceans (Roperet al.,
1984). Representatives of this group, especially squids, usu-
ally display the highest metabolic rates among marine in-
vertebrates, even higher than those of fishes of similar size
and mode of life (Webber and O’Dor, 1985; O’Dor and
Webber, 1986). Oxygen deliveryvia the blood is maxi-
mized to cover metabolic requirements (Po¨rtner, 1994).
However, the capacity of their blood pigment, hemocyanin,
for carrying oxygen is constrained by the low concentration
of an extracellular pigment. This limitation is due to the
unfavorable increase in colloidal osmotic pressure and
blood viscosity at high pigment concentrations (Mangum,
1983, 1990). Although cephalopods, in accordance with
their high rate of oxygen consumption, display the highest
hemocyanin concentrations in the animal kingdom, the level
of bound oxygen in squid (up to 3 mmol l21; Brix et al.,
1989) remains below the 4–5 mmol l21 of active fishes
(Urich, 1990). Therefore, the hearts of squids pump large
volumes of blood (Wellset al.,1988; Shadwicket al.,1990)
and the tissues extract most of the oxygen (Po¨rtner, 1994).
Compared to that of squids, the oxygen-binding capacity of
octopod blood is somewhat reduced, ranging between 0.6
and 1.6 mmol l21, depending on hemocyanin levels
(Senozanet al., 1988; Brix et al., 1989).

In most cephalopods, cooperativity and temperature- and
pH-dependent changes in affinity are the only means of
modulating hemocyanin function and adjusting oxygen
transport (e.g.,Brix et al., 1989; Mangum, 1990; Po¨rtner,
1990). Low-molecular-weight organic substances that con-
tribute to blood pigment function in vertebrates or crusta-
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ceans are not found in this group. In consequence, ex-
tremely large Bohr shifts (D log P50/DpH , 21; Bridges,
1994) and very high levels of pH-dependent cooperativity
are common (Miller, 1985; Po¨rtner, 1990). Binding of CO2
together with O2 in arterial blood has been suggested to
support pigment function on the venous side in sepioid
species (Brixet al., 1981), where both O2 and CO2 are
released, and this CO2 helps to exploit the large Bohr effect.
In squid, supplementary oxygen uptakevia the skin sup-
ports the excessive oxygen demand and provides the excess
CO2 required for the Bohr effect to function (Po¨rtner, 1994).

In some cephalopods, an increase in ambient temperature
has a large effect on oxygen transport by hemocyanin; this
effect is reflected by an increase in cooperativity and a fall
in oxygen affinity (Brixet al.,1989, 1994; Mangum, 1990).
If a rise in metabolic rate with temperature is supported by
an adequate rise inP50, the species should be able to live at
a broader range of temperatures than a species in whichP50

remains constant or in which the change inP50 is too large.
For example, the high thermal sensitivity of the oxygen
affinity of hemocyanin in the giant squidArchiteuthis mona-
chussuggests that arterial saturation becomes impossible at
high temperatures (Brix, 1983). This question has gained
general importance since comparative studies in Antarctic
and temperate fish and invertebrates (including cephalo-
pods; Po¨rtner and Zielinski, 1998) revealed that the limits of
thermal tolerance are characterized by oxygen limitation,
owing to the inability of circulation or ventilation to provide
sufficient oxygen at extreme temperatures (for review, see
Pörtner et al., 2000). Comparison of hemocyanin oxygen
binding in cephalopods of different metabolic rates and
from various latitudes should show how hemocyanin oxy-
gen transport has adapted to different temperature regimes
at various levels of metabolic activity and how blood pig-
ment function contributes to the oxygen limitation of ther-
mal tolerance.

These questions are especially interesting for an under-
standing of physiological adaptations to life in Antarctica.
Here the marine environment is characterized by very stable
water temperatures that are close to freezing (Clarke, 1988).
Under these conditions more oxygen is physically dis-
solved, thereby facilitating oxygen uptake and supply to
tissues. At the same time metabolic rate is reduced at lower
temperatures, with the consequence that in some species
blood pigments may be less important (for hemocyanin, see
Mauro and Mangum, 1982b; Burnettet al., 1988). Some
Antarctic fishes, the icefishes (Channichtyidae) have even
lost their respiratory pigments (Ruud, 1954). The question
arises as to whether the importance of blood pigment func-
tion is also reduced in Antarctic cephalopods.

Live specimens of the octopodMegaleledone senoibe-
came available during a recent expedition to Antarctica with
the RVPolarstern.This species is found in the indo-atlantic
sector of the Antarctic Ocean (Taki, 1961; Kubodera and

Okutani, 1986, 1994). In our study we investigated oxygen
binding to the hemocyanin of this stenothermal Antarctic
octopod by using a technique that allows continuous and
simultaneous recordings of blood pH and oxygenation and
the construction of diagrams depicting changes in oxygen
saturation with pH (pH/saturation diagrams; Po¨rtner, 1990).
Such an approach is most suitable for cephalopod blood
owing to the extremely large pH dependence of oxygen
binding (see above). It avoids the use of artificial buffers
that may lead to a change in oxygen-binding properties
(Pörtner, 1990; Brixet al., 1994). At the same time, the
amount of blood required is reduced such that more sophis-
ticated data can be collected from the very few animals
accessible in remote environments like the Antarctic. The
oxygen-binding properties ofM. senoi hemocyanin were
compared with those from other eurythermal and stenother-
mal cephalopods. For eurythermal octopods some literature
data were available. Temperature effects on oxygen binding
were studied experimentally in the cuttlefishSepia officina-
lis to complement the data set available in the literature
(Lykkeboeet al., 1980; Johansenet al., 1982a). To some
extent, cuttlefish display a mode of life similar to that of
octopods. Like octopods, they live close to the bottom of the
sea (von Boletzky, 1983), but they have a larger scope for
activity and metabolism, which might influence the thermal
adaptation of hemocyanin function.

Materials and Methods

Animals

Antarctic octopods (Megaleledone senoi,up to 9 kg body
weight) were caught in November 1996 north of Elephant
Island, Antarctica, during expedition ANT XIV/2 of the RV
Polarstern.The animals were collected from bottom trawls.
Samples were taken immediately after capture.

Cuttlefish (Sepia officinalis,470 to 960 g body weight)
were obtained from the Marine Biomedical Institute of the
University of Texas, Galveston, Texas, where this species
has been bred and grown for several consecutive genera-
tions. They were kept at a salinity of 35‰ at temperatures
of 20 to 22 °C.

Sampling procedure

Animals were anesthetized by transferring them into sea-
water containing 2% ethanol (v/v). The animals were then
removed from the seawater and the mantle was opened by a
ventral incision. Blood was collected from the vena cava,
the systemic heart, and the gill hearts. Blood samples from
all animals were pooled, frozen, and stored for up to one
year at close to220 °C until utilized forin vitro studies of
oxygen binding.
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Analysis of oxygen binding

Oxygen-binding characteristics of cephalopod hemocya-
nin were studied using a specially constructed cuvette, built
by Hellma GmbH & Co. (Mu¨lheim, Germany; Fig. 1). The
cuvette consisted of an upper and a lower compartment
connected by two shafts (1.5 and 2 mm in diameter) in the
left and right periphery of the cuvette, as well as a central
compartment between the shafts, where blood formed a thin
layer of only 0.45 mm. Stirring bars operating in the upper
and lower compartments ensured continuous exchange of
blood between all compartments and thus uniform mixture
of the blood. Oxygen saturation was monitored continu-
ously by using a diode array spectrophotometer with fiber
optics (X-dap, IKS Optoelektronik Meßgera¨te GmbH,
Waldbronn, Germany) to measure absorbance at 345 nm
through the thin layer. Blood samples were equilibrated by
introducing humidified gas mixtures through a hole in the
lid of the cuvette. Gas mixtures of variablePO2 (between
1.0 and 20.0 kPa) were prepared from pure O2, CO2, and N2

by gas-mixing pumps (type 2M303/a-F, Wo¨sthoff, Bochum,
Germany); complete deoxygenation occurred under pure
N2. Blood pH was varied by changingPCO2 (between 0.09
and 1.01 kPa) or by replacing small volumes (,10 ml per 2
ml of blood) of supernatant plasma after ultracentrifugation
(1 h at 120,0003 g; Beckman Airfuge, Beckman Instru-
ments, Inc., Fullerton, CA) with fixed acid (1 mol l21 HCl)
or base (2 mol l21 NaOH; Morris et al., 1985; Po¨rtner,
1990). Changes in blood pH during oxygenation and deox-
ygenation of hemocyanin were measured continuously by
using a needle pH electrode (long micro needle electrode
#811, Diamond General Corp., Ann Arbor, MI) that was
introduced into one of the shaftsvia a second hole in the lid.

Total CO2 was analyzed at 0 °C in 50-ml blood samples of
M. senoi; the gas chromatography method of Lenfant and
Aucutt (1966) modified after Boutilieret al. (1985) was
used. Measurements of oxygen-binding properties were car-
ried out at 0, 5, and 10 °C for samples ofM. senoiand at 0,
10, and 20 °C for samples ofS. officinalis; 10 °C was
chosen since this temperature can be reached in the northern
part ofSepia’sdistribution range (Isemer and Hasse, 1985).

Graphical analysis and calculations

Hemocyanin concentrations were measured photometri-
cally and calculated using the extinction coefficients of
Nickerson and van Holde (1971). Oxygen capacity was
estimated using the molecular weights for octopods and
Sepiaas compiled by Miller (1994) and the assumption that
there are 70 O2-binding sites per hemocyanin molecule in
octopods and 80 inSepia.For the evaluation of hemocyanin
oxygen saturation, constant absorbance levels in the range
of the highest values ofPO2 and pH were set to 100%
saturation. Changes in hemocyanin oxygenation and pH
were plotted in a pH/saturation diagram according to Po¨rt-
ner (1990). The resulting oxygen-binding curves represent
isobars delineating the change in oxygenation with pH at
constantPO2. The points of intersection of the oxygen
isobars with the line of half saturation quantifyP50, because
it depends on pH. TheseP50 and pH values were used to
evaluate the Bohr coefficient,D log P50/DpH by linear
regression analysis. For comparison, and owing to the pres-
ence of a large pH-insensitive oxygen reserve at low tem-
peratures, the coefficientD log P80/DpH was evaluated
following the same procedure. The Haldane coefficient
(DHCO3

2/DHcyO2) was evaluated from the vertical dis-
tance between buffer lines in a pH/bicarbonate diagram (as
used by Brixet al.,1981). To assess whether oxygen-linked
CO2 binding to the hemocyanin occurs (Lykkeboeet al.,
1980), “measured” and calculated apparent bicarbonate lev-
els were compared. Apparent “bicarbonate” (the sum of
HCO3

2 and CO3
22 levels) was calculated from measured

CO2 concentrations (CCO2) using the appliedPCO2 and the
measured pH according to the formula

@HCO3
2# 5 CCO2 2 aPCO2 (1)

wherea is the solubility of CO2. For comparison, bicarbon-
ate levels were also calculated according to equation (1)
with CCO2 values derived from the Henderson-Hasselbalch
equation:

CCO2 5 PCO2 z ~a z 10pH2pK- 1 a! (2)

a and pK- were calculated according to Heisler (1986).
Along each isobar in the pH/saturation diagram, values of

saturationS depend on pH values and thePO2 of the isobar.
The pH/saturation diagram allows comparison ofS and log
PO2 with P50 at the same pH (5pH50). This leads to an

Figure 1. Cuvette used for the measurement of oxygen-binding prop-
erties. Dashed areas show the compartments of the cuvette filled with
blood. Absorbance was measured through a thin layer, 0.45-mm thick, in
the center part of the cuvette.
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analysis of cooperativity at a specific pH. If this is done in
the range of saturationS between 0.4 and 0.6, the analysis
leads to an estimate of Hill coefficients (n50) according to

log~S/1 2 S! 5 n50~log PO2 2 log P50! (3)

wherePO2 is thePO2 of the isobar,S results fromPO2 at a
specific pH (pH50), andP50 is thePO2 for S 5 0.5 at the
same pH (Po¨rtner, 1990).

Results

The concentration of hemocyanin in native blood (he-
molymph) was 93 g l21 for Megaleledone senoiand

142 g l21 for Sepia officinalis.This is equivalent to a
maximum level of hemocyanin-bound oxygen of 1.86
mmol O2 l21 in the octopod and of 2.84 mmol l21 in
Sepia.For M. senoihemocyanin, the highest pH sensi-
tivity of oxygen binding was found at 10 °C, as indicated
by maximum slopesDS/DpH (Fig. 2). Lower tempera-
tures resulted in a somewhat decreased pH sensitivity of
oxygen affinity, with a maximum ofDS/DpH 5 13% per
pH unit at 10 °C, compared to a maximum of 10% per pH
unit at 0 °C. Saturation at 0 °C did not fall below 43%
even at low pH (6.4 and 6.6) and lowPO2 (1 kPa). At 10
°C, saturation dropped to a minimum of 32% at the same

Figure 2. Continuous analysis of the relationships between oxygen binding, pH, andPO2 in whole blood of
the Antarctic octopodMegaleledone senoiat temperatures between 0 and 10 °C (S5 saturation; points were
chosen at regular intervals from the continuous recordings).
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PO2. Intermediate values of pH sensitivity and maximum
unloading were found at 5 °C.

A large Bohr coefficient of22.33 was found at 10 °C,
similar to the coefficientD log P80/D pH (Table 1).The
experimental evaluation of the Bohr coefficient was not
possible at lower temperatures due to the fact that pH-
dependent saturation did not drop below 50% at most partial
pressures of oxygen. An extrapolation of binding data to
very low partial pressures of oxygen revealed a Bohr coef-
ficient of approximately20.9 at 0 °C, below the level ofD
log P80/DpH. Furthermore, oxygen affinity (P50) at pH 7.2
changed only atDP50/°C , 0.01 kPa, from 0.98 kPa at 0 °C
to 1.10 kPa at 10 °C (Table 1).

For S. officinalishemocyanin, pH sensitivity was high at
20 °C, reaching a maximumDS/DpH of 41% per pH unit
(Fig. 3). Especially in the pH range between 7.4 and 7.8,
very small pH changes were sufficient to cause maximal
unloading of oxygen, down to 19% saturation. The pH
sensitivity at 20 °C was higher than found forM. senoiat all
temperatures. As inM. senoi,lower temperatures decreased
the pH sensitivity of oxygen binding with a decreased Bohr
factor and level ofD log P80/DpH (Table 1) and an increase
in the pH-insensitive reserve at the samePO2. At 0 °C,
DS/DpH reached a maximal value of only 7% per pH unit.
Oxygen saturation remained above 50% at all investigated
partial pressures of oxygen and values of pH. At pH 7.4,
oxygen affinity fell fromP50 5 5.3 kPa at 10 °C toP50 5
6.5 kPa at 20 °C (DP50/°C 5 0.12 kPa, Table 1).

The change in cooperativity with pH and temperature for
S. officinalisis shown in Figure 4. At 20 °C, the largest Hill
coefficient (n50) of 5.9 was found at a pH (7.48) where pH
sensitivity (DS/DpH) was also high. A decrease in temper-
ature to 10 °C resulted in a decrease of the maximal Hill
coefficient to n50 5 4.6 (pH 7.29). The maximum was

shifted to lower pH. In contrast to cuttlefish,M. sensoihad
much lower Hill coefficients (Table 1). At 0 °C,n50 was 1.4
(pH 7.43), and it varied between 1.0 (pH 6.83) and 1.4 (pH
7.31) at 10 °C. No clear maximum could be found.

Analysis of total CO2 in M. senoiblood during variations
of PO2 and PCO2 yields the buffer lines depicted in the
pH/bicarbonate diagram (Fig. 5). The position of the buffer
line shifts between oxygenated and deoxygenated blood
according to the quantity of H1 bound by the pigment. The
vertical distance between the buffer lines yields the Haldane
coefficient (DHCO3

2/DHcyO2). For M. senoihemocyanin
at 0 °C, the Haldane coefficient rose with falling pH (Table
1). The calculated apparent bicarbonate levels for oxygen-
ated and deoxygenated blood diverge only slightly from the
measured values, suggesting that O2-linked CO2 binding
does not exist (Fig. 5). The non-bicarbonate buffer value
(bNB) of 4.25 mmol l21 pH units21 of M. senoiblood at 0
°C is in the same range as in the squidsIllex illecebrosus
and Loligo pealei (5.0 and 5.8 mmol l21 pH units21, re-
spectively; Po¨rtner, 1990).

Discussion

At the low temperatures of Antarctica icefishes rely ex-
clusively on the transport of oxygen that is physically dis-
solved in the blood (see Introduction). The presence of
hemocyanin-bound oxygen inMegaleledone senoiblood at
levels similar to those seen in squids and temperate octo-
pods (cf. Brix et al., 1989) suggests that oxygen transport
via hemocyanin is as important in this Antarctic species as
in temperate and warm-water cephalopods. In contrast to
Antarctic fishes, the unchanged requirement for blood oxy-
gen transport in Antarctic cephalopods may be related to the

Table 1

Oxygen affinity (P50), Bohr, Haldane, and Hill coefficients evaluated for the hemocyanins of the Antarctic octopodMegaleledone senoiand of the
cuttlefishSepia officinalisat different temperatures

Temperature (°C) P50 (kPa)
Bohr coefficient
(D log P50/DpH) (D log P80/DpH)

Haldane coefficient
(DHCO3

2/DHcyO2)
Hill coefficient

(n50)

Megaleledone senoi
0 0.98 (pH 7.2) ' 20.9 21.51 0.66 (pH 6.2) 1.4 (pH 7.43)

0.50 (pH 6.8)
0.39 (pH 7.2)

5 ND 21.46 ND 1.5 (pH 7.24)
1.0 (pH 7.31)

10 1.10 (pH 7.2) 22.33 22.13 ND 1.26 0.1
(pH 6.83–7.31;
n 5 6)

Sepia officinalis
10 5.3 (pH 7.4) 20.99 21.44 4.6 (pH 7.29)
20 6.5 (pH 7.4) 21.33 21.94 5.9 (pH 7.48)

P50, Haldane, and Hill coefficients are valid for the pH values given in brackets. ND, not determined; HcyO2, concentration of oxygenated hemocyanin.
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low level of capillarization of cephalopod musculature com-
pared to fish muscles (Boneet al., 1981).

In cephalopods, pH and temperature are most important
factors in the regulation of hemocyanin oxygen transport
(Brix et al., 1989; Bridges, 1994; Po¨rtner, 1994). The tem-
perature dependence ofP50 varies greatly between species.
For example, the oxygen affinity of the hemocyanin of giant
squid (Architeuthis monachus) decreases atDP50/DT 5
1.89 kPa perdegree Celsius (pH 7.4), while a value of only
0.20 kPa/°C (pH 7.4) was found for the octopodOctopus
vulgaris (calculated after Brixet al., 1989). A lower value
of DP50/DT 5 0.10 kPa/°C (pH 7.4) was found for the

octopodEledone cirrhosa(calculated after Bridges, 1994);
this was similar to the value of 0.12 kPa/°C (pH 7.4)
calculated forSepia officinalishemocyanin in the present
study. In eurythermal cephalopods likeSepia officinalis,
Octopus vulgaris,or Eledone cirrhosaand in some squids,
a moderate rise inP50 with temperature occurs (cf. Brix et
al., 1994). In this way capillaryPO2 is maintained (“buf-
fered”) at progressively higher levels, which are required for
elevated diffusive oxygen flux to mitochondria during in-
creased rates of oxygen consumption. Such changes inP50

with temperature allowS. officinalisto be distributed over a
wide range, from the Mediterranean to the North Sea (von

Figure 3. Depiction of oxygen-binding properties ofSepia officinalishemocyanin at temperatures between
0 and 20 °C in a pH/saturation diagram. Each line indicates an oxygen isobar and shows the changes in oxygen
binding depending on pH (S5 saturation; points were chosen at regular intervals from the continuous
recordings).
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Boletzky, 1983). In contrast, the extreme thermal sensitivity
of P50 seen in giant squid may eliminate oxygen transport
by hemocyanin and contribute to the heat intolerance of
these animals (Brix, 1983). The very small adjustments of
P50 found in M. senoi hemocyanin (DP50/DT 5 0.01
kPa/°C, pH 7.2) may also be detrimental, because when
temperature rises, bloodPO2 will be held at levels too low
to adequately support an increase in metabolic rate. In
consequence, Antarctic octopods likeM. senoi are very
stenothermal (Po¨rtner and Zielinski, 1998).

For S. officinalisthe greatest pH sensitivity (Fig. 3) at 20
°C was found in the range ofin vivo blood pH (7.4–7.8 at
17–19 °C; Johansenet al., 1982a). The same phenomenon
occurs in squid (Po¨rtner, 1990). The fact that the oxygen
transport system responds to even small changes in extra-
cellular acid-base status is consistent with the pH-dependent
PO2 buffer function of the hemocyanin (Po¨rtner, 1994). This
is not surprising, because cephalopods regulate primarily
extracellular, not intracellular, acid-base balance (Po¨rtner,
1994).

The blood pH of the Antarctic octopod is not known.
Assuming that blood pH followsa-stat predictions (Reeves,
1972) and is high in the cold, as seen inLoligo pealeiblood
in vitro (Howell and Gilbert, 1976), thein vivopH range for
M. senoiis between pH 7.7 and 7.9 at 0 °C. With the highest
pH sensitivity in this pH range, oxygen unloading would
occur at very low oxygen tensions (,1 kPa), supporting
only very low metabolic rates (Fig. 2). AP50 below 1 kPa
(pH 7.6; 0 °C) reflects one of the highest oxygen affinities
reported so far for cephalopods. This value is close to the
P50 of 0.47 to 0.55 kPa evaluated for the cold-water vam-
pire squidVampyroteuthis infernalis(5 °C; Seibelet al.,
1999). These findings suggest thatM. senoidisplays a low
metabolic rate similar to that of the Antarctic octopod
Pareledone charcoti(0.3 mmol g21 h21 at 0 °C and about
50 g body weight; H. O. Po¨rtner, T. Hirse, V. Wegewitz,

unpubl. data, 15 times lower than similar sizedS. officinalis
at 17 °C, 4.4mmol g21 h21, Johansenet al.,1982b) or even
lower and close to the 0.1mmol g21 h21 measured at 5 °C
in the deep-sea squidVampyroteuthis infernalis(Seibelet
al., 1997).

The Bohr coefficient evaluated for both investigated
cephalopod species dropped when temperature decreased.
This result is similar to findings in the crustaceansCancer
magisterandCancer anthonyi(Burnettet al.,1988) and in
the octopodEledone cirrhosa(Bridges, 1994). InS. offici-
nalis,D log P50/DpH decreased moderately, from21.33 at
20 °C to20.99 at 10 °C (Table 1). InM. senoi,the Bohr
coefficient fell drastically, from an extremely high value of
22.33 at 10 °C to a much smaller value evaluated by
extrapolation to be20.9 at 0 °C (Table 1). The Bohr factor
in the vampire squid was found to be even lower (20.22;
Seibel et al., 1999). These results indicate that the Bohr
effect becomes less important at low temperature and low
metabolic rate.

A mechanism of oxygen-linked CO2 binding has been
proposed forSepiahemocyanin, which transports both O2

and CO2 to the tissues. The CO2 produced in metabolism
and the CO2 released during deoxygenation would elicit a
drop in pH, as required for the large Bohr effect (, 21.0)
to function normally (Lykkeboeet al., 1980; Brix et al.,
1981). No oxygen-linked CO2 transport was found inM.
senoi (Fig. 5). At 0 °C, the estimated Bohr coefficient of
D log P50/DpH ' 20.9 would reflect normal function of
the Bohr effect, whereas the extremely high Bohr coefficient
at 10 °C would be counterproductive for oxygen transport,

Figure 5. pH/bicarbonate diagram for whole blood ofMegaleledone
senoi.Experimental buffer lines of oxygenated and deoxygenated blood
match those derived from calculated apparent bicarbonate levels (broken
lines; see text).

Figure 4. Hill coefficients (n50) of Sepia officinalishemocyanin de-
pending on pH and temperature.
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a finding consistent with the stenothermality of Antarctic
animals.

A reduced pH sensitivity of hemocyanin oxygen binding
in M. senoiand other octopods compared toS. officinalis
and squids is reflected in the magnitude of the pH-indepen-
dent venous reserve, which rises as temperature falls (Figs.
2, 3). This reserve represents the amount of oxygen that
remains bound to the respiratory pigment at constantPO2,
even when pH falls to very low values. Comparison of this
venous reserve for several cephalopod species at normal
environmental temperatures and lowPO2 shows that it is
below 5% (at 1.7 kPa) for the squidIllex illecebrosus(15
°C; Pörtner, 1990), 19% (at 1.7 kPa) forS. officinalis(20
°C; this study), and 43% (at 1 kPa) for the Antarctic octopod
M. senoi(0 °C; this study). A value of below 10% results for
the hemocyanin of the octopodOctopus dofleini(at 1.7 kPa
and 20 °C; Po¨rtner, 1990; calculated after Miller and Man-
gum, 1988); however, thein vivo value may be higher for
this species because it lives at lower temperatures. The high
pH sensitivity of squid hemocyanins maximizes the release
of oxygen in the tissues and supports their high metabolic
rate (Po¨rtner, 1990, 1994). Sepioids and, even more so,
octopods display a less active life style with lower meta-
bolic rates (for example: Houlihanet al.,1982; Webber and
O’Dor, 1985, 1986; Finkeet al.,1996; Seibelet al.,1997).
A low-activity mode of life may eliminate the necessity to
maximize pH-dependent oxygen transport to the extent seen
in squids.

With falling pH, the pH-independent venous reserve in-
creased and was reached at higherPO2 (88% at pH 6.8, 20
kPa O2, and 0 °C inM. senoi,or 40% at pH 6.8, 20 kPa O2,
and 20 °C inS. officinalis). At normoxic PO2 (20 kPa O2)
and low pH, this resembles a Root effect (Bridges, 1994)
but at the same time, further pH sensitivity (the Bohr effect)
is eliminated and deoxygenation depends exclusively on
PO2 (Figs. 2 and 3).

The cooperativity of respiratory pigments is characterized
by the Hill coefficient (n50). In S. officinalisat 20 °C (Fig.
4) and in the squidsIllex illecebrosusandLoligo vulgaris,
the highest cooperativity correlates with the highest pH
sensitivity of oxygen binding (DS/DpH) in the range ofin
vivo pH (Pörtner, 1990). Here maximal deoxygenation oc-
curs at minimal pH change (Po¨rtner, 1990, 1994). A de-
crease in temperature caused the maximal Hill coefficient of
S. officinalishemocyanin to drop fromn50 5 5.9 at 20 °C
to n50 5 4.6 at 10 °C. At the same time, maximum
cooperativity was shifted to lower pH values, whenin vivo
pH should rise according toa-stat predictions (Reeves,
1972). A similar temperature dependence of the Hill coef-
ficient was found for several crustaceans (Mauro and Man-
gum, 1982a,b). As with the Bohr effect, the progressive
mismatch between the pH range of maximum cooperativity
and the actual blood pH suggests that cooperativity becomes
less important in oxygen transport at lower temperatures.

Accordingly, a low cooperativity ofn50 5 1.4 was found
for M. senoi,at 0 °C (Table 1) and ofn50 5 2.2 for the
vampire squid (Seibelet al., 1999). Surprisingly, cooperat-
ivity did not increase with temperature inM. senoihemo-
cyanin.

The question arises as to why thermal sensitivity is so low
in M. senoihemocyanin but so high in the blood pigment of
cold-adapted giant squid (cf. Brix, 1983). A high value of
DP50 °C21 reflects a high heat of oxygenation (cf. Brix et
al., 1994) or Arrhenius activation energy. Giant squid prob-
ably display higher metabolic rates and thus must maintain
P50 levels higher than those ofM. senoi.A high heat of
oxygenation may be required for settingP50 values high at
low temperature as in giant squid. In that respect the low
thermal sensitivity of hemocyanin in the Antarctic octopod
is again in accordance with the low metabolic rate of this
group.

In summary, the pH sensitivity of oxygen binding in
cephalopod hemocyanins is adjusted to metabolic rate. The
pH-insensitive oxygen reserve in hemocyanin was largest in
M. senoiand intermediate inS. officinalis,if compared to
squids (this study and Po¨rtner, 1990). Furthermore, the Bohr
effect is reduced and the pH-insensitive oxygen reserve
rises during cooling, suggesting that pH sensitivity falls in
the cold. The temperature dependence of the Bohr factor is
less pronounced in the eurythermalS. officinalis,which
would, together with an appropriate change inP50, ensure a
supply of oxygen at changing temperatures. InM. senoi,a
high oxygen affinity of hemocyanin, a moderately high
Bohr coefficient, and a low cooperativity at 0 °C cause
blood PO2 to be maintained (“buffered”) at low values
matching a low rate of oxygen consumption. In this species
the low thermal sensitivity of oxygen affinity prevents an
upward shift of the bufferedPO2 at higher temperatures,
suggesting that oxygen transfer to tissues may become
limiting when oxygen demand rises. This observation is in
contrast to the findings in giant squid, where arterial oxygen
uptake is hampered by an excessive drop in oxygen affinity,
thereby limiting heat tolerance (Brix, 1983). Accordingly,
hemocyanin function probably contributes to an oxygen
limitation of heat tolerance that sets in early and character-
izes thermal tolerance in Antarctic octopods (Po¨rtner and
Zielinski, 1998) and probably also in giant squid.

Acknowledgments

The authors thank Iris Hardewig and Boris Klein for
sampling hemolymph fromMegaleledone senoiduring the
expedition with RVPolarstern.The technical and logistical
help by the staff of the Marine Biomedical Institute is
gratefully acknowledged. Supported by grants of the Deut-
sche Forschungsgemeinschaft to H.O. Po¨rtner (Po 278).

74 S. ZIELINSKI ET AL.



Literature Cited

Bone, Q., A. Pulsford, and A. D. Chubb. 1981. Squid mantle muscle.
J. Mar. Biol. Assoc. UK61: 327–342.

Boutilier, R. G., G. K. Iwama, T. A. Heming, and D. J. Randall. 1985.
The apparent pK of carbonic acid in rainbow trout blood plasma
between 5 and 15 °C.Respir. Physiol.61: 237–254.

Bridges, C. R. 1994. Bohr and Root effects in cephalopod haemocya-
nins—paradox or pressure inSepia officinalis?Pp. 121–130 inPhysi-
ology of Cephalopod Molluscs—Lifestyle and Performance Adapta-
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Finke, E., H. O. Pörtner, P. G. Lee, and D. M. Webber. 1996. Squid
(Lolliguncula brevis) life in shallow waters: oxygen limitation of
metabolism and swimming performance.J. Exp. Biol.199: 911–921.

Heisler, N. 1986. Buffering and transmembrane ion transfer processes.
Pp. 3–47 inAcid-Base Regulation in Animals,N. Heisler, ed. Elsevier,
Amsterdam.

Houlihan, D. G., A. J. Innes, M. J. Wells, and J. Wells. 1982. Oxygen
consumption and blood gases ofOctopus vulgarisin hypoxic condi-
tions.J. Comp. Physiol.148: 35–40.

Howell, B. J., and D. L. Gilbert. 1976. pH-temperature dependence of
the hemolymph of the squid,Loligo pealei. Comp. Biochem. Physiol.
55A: 287–289.

Isemer, H. J., and L. Hasse. 1985. The Bunker Climate Atlas of the
North Atlantic Ocean. Vol I: Observations.Springer Verlag, Berlin.
218 pp.

Johansen, K., O. Brix, and G. Lykkeboe. 1982a. Blood gas transport in
the cephalopod,Sepia officinalis. J. Exp. Biol.99: 331–338.

Johansen, K., O. Brix, S. Kornerup, and G. Lykkeboe. 1982b. Factors
affecting O2 uptake in the cuttlefish,Sepia officinalis. J. Mar. Biol.
Assoc. UK62: 187–191.

Kubodera, T., and T. Okutani. 1986. New and rare cephalopods from
the Antarctic waters.Mem. Natl. Inst. Polar Res., Spec. Issue44:
129–143.

Kubodera, T., and T. Okutani. 1994. Eledonine octopods from the
Southern Ocean: systematics and distribution. InSouthern Ocean
Cephalopods: Life Cycles and Populations,P. G. Rodhouse, U. Piat-
kowski and C. C. Lu, eds.Antarct. Sci.6: 205–214.

Lenfant, C., and C. Aucutt. 1966. Measurement of blood gases by gas
chromatography.Respir. Physiol.1: 398–407.

Lykkeboe, G., O. Brix, and K. Johansen. 1980. Oxygen-linked CO2
binding independent of pH in cephalopod blood.Nature287:330–331.

Mangum, C. P. 1983. Oxygen transport in the blood. Pp. 373–429 in
The Biology of Crustacea,Vol. 3, L. H. Mantel, ed. Academic Press,
New York.

Mangum, C. P. 1990. Gas transport in the blood. Pp. 443–468 inSquid
as Experimental Animals,D. L. Gilbert, E. J. Adelman, Jr., and J. M.
Arnold, eds. Plenum, New York.

Mauro, N. A., and C. P. Mangum. 1982a. The role of the blood in the
temperature dependence of oxidative metabolism in decapod crusta-
ceans. I. Intraspecific responses to seasonal differences in temperature.
J. Exp. Zool.219: 179–188.

Mauro, N. A., and C. P. Mangum. 1982b. The role of the blood in the
temperature dependence of oxidative metabolism in decapod crusta-
ceans. II. Interspecific adaptations to latitudinal changes.J. Exp. Zool.
219: 189–195.

Miller, K. I. 1985. Oxygen equilibria ofOctopus dofleinihemocyanin.
Biochemistry24: 4582–4586.

Miller, K. I. 1994. Cephalopod hemocyanins. A review of structure and
function. Pp. 101–120 inPhysiology of Cephalopod Molluscs—Life-
style and Performance Adaptations,H. O. Pörtner, R. K. O’Dor, and D.
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H. O. Pörtner, R. K. O’Dor, and D. MacMillan, eds. Gordon and
Breach, Basel.
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