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Abstract 

 

Records of biogenic opal and barium were measured in sediment cores at the 

Antarctic continental margin in the area of the Weddell, Lazarev and Cosmonaut 

seas. These records provide a qualitative and quantitative tool to estimate changes in 

paleoproductivity over the last 400 ka. The stratigraphy of the investigated cores is 

calibrated to a lithostratigraphy, adjusted to a stable isotope record from the eastern 

Weddell Sea, which is supported by a Th-dating method. We present evidence that 

interglacial productivity along the Antarctic continental margin is twice as high 

compared to subantarctic sites near South Orkney. A glacial/interglacial pattern 

with high productivity during peak warm stages can be observed back to 400 ka. 

High interglacial productivity is linked to a reduced sea ice coverage, which is 

regulated by the heat flux introduced by North Atlantic Deep Water (NADW) to the 

Antarctic Ocean. Generally, good correlations between the barium and opal records 

of the sediment cores indicate that dissolution of opal in the water column and the 

sediment does not obscure the surface productivity signal. Therefore, in this area 

biogenic opal in combination with other proxies, can be used for paleoproductivity 

estimates. Paleoproductivity is also assessed quantitatively from the barium record 

using the approaches of Dymond et al. (1992) and Francois et al. (1995). 

Paleoproductivity rates obtained by both methods show a good correspondence. In 

peak warm stages higher values are computed with the approach of Dymond et al. 

(1992). However, both methods provide values, which are representative of a high-

productivity area. They are drastically reduced during glacial times. The extent and 

duration of sea ice coverage and the persistence of coastal polynyas is considered to 

be of primary importance in controlling the flux of biogenic material to sediments of 

the Antarctic continental margin. 

 

 

 

Introduction 

 

Today, variations in orbital parameters are known to induce cyclic climatic 

variations (Imbrie et al., 1984, 1989). They are the forcing mechanism for the complex 

interaction between oceanographic, glaciologic and productivity processes which 

control sedimentation and lead to specific sedimentation facies in the ocean. Gas 

inclusions in Antarctic and Greenland ice cores show that CO2-variations in general 

correlate to the Late Quaternary climatic changes (Barnola et al., 1987; Lorius et al., 

1990). It is assumed that the atmospheric CO2-reduction during glacials is directly 
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connected to an increase in ocean surface productivity (e.g. Lyle et al., 1988; 

Sarnthein et al. 1988) and changes in ocean circulation. Productivity in polar regions, 

esp. in the Southern Ocean has been discussed controversially (Kumar et al., 1995;  

Mortlock et al., 1991). Investigations in the Antarctic Ocean show that glacial 

productivity was lower than in interglacials (Charles and Fairbanks, 1990; Charles et 

al., 1991; Mortlock et al., 1991). There is evidence that changes in paleoproductivity 

south and north of the Polar Frontal Zone were contrary (e.g. Nürnberg, 1995). Also 

high northern latidudes show higher productivity in interglacials and lower 

productivity in glacials ( Subba Rao and Platt, 1984; Stein and Stax, 1991; Schubert, 

1995). 

Marine productivity is in general dependant on light, temperature, nutrients and 

oceanographic circulation and is linked to variations in atmospheric CO2. Production 

of organic matter in the ocean´s surface waters, the export to deeper water columns 

and the sedimentation on the seafloor (Broecker and Peng, 1982) removes CO2 from 

surface waters. Due to equilibrium between the CO2-content of the atmosphere and 

the CO2-content of the oceans, a change in the oceans productivity forces a change in 

the atmospheric CO2-concentration. Thus the marine paleoproductivity record 

provides a useful tool to reconstruct the Earth´s climate system. 

The Southern Ocean is considered to be one of the highly productive areas of the 

world ocean (Van Bennekom et al., 1988; Shimmield et al., 1994) and plays an 

important role for the silica cycle (Demaster, 1981; Ledfort-Hoffmann et al., 1986). 

Silica is a key nutrient in the marine environment and is utilized by diatoms, 

radiolaria, silicous sponges and silicoflagellates to build up frustules. Antarctic and 

subantarctic waters are enriched in dissolved silica and may support up to one third 

of the global biogenic production. As much as 75 % of the modern global 

accumulation of biogenic silica (opal) takes place in this region (Queguiner et al., 

1991), which is documented in the occurrence of a circumantarctic biosiliceous belt 

(Demaster, 1981) underlying the highly productive surface waters of the Polar Front 

between 50° - 55 °S. However, there is evidence that the Antarctic continental margin 

is also characterized by a high flux of organic material to the sea floor (Mackensen et 

al., 1990; Bathmann et al., 1992; Wefer and Fischer, 1991). In contrast to the Polar 

Frontal Area, where biogenic sediments prevail, the sediments of the Antarctic 

continental margin receive a considerable amount of terrigenous material. 

In this study we determined biogenic silica (opal) in 6 cores from the Antarctic 

continental margin (Fig. 1) as a qualitative proxy of ocean surface paleoproductivity. 

However, factors controlling biogenic silica preservation, such as dissolution of 

siliceous particles in the water column, at the sediment/water interface and within 

the sediment, make it very difficult to relate opal accumulation quantitatively to opal 

production in surface waters. Generally, opal preservation is influenced by the flux 
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of opal to the sea floor, the mass accumulation rate of the sediment, the silica content 

of bottom waters, the structure of frustules (species selective dissolution) and the 

amount of trace elements in the opal (e.g. Al). Only few estimates of biogenic silica 

production rates have been made for the Southern Ocean, and these are restricted to 

the Pacific sector of the Antarctic Circumpolar Current (ACC) and the marginal ice 

zone of the Ross Sea (e.g. Nelson and Gordon, 1982; Nelson et al., 1991). 

To cross-check the results from the opal analysis and support paleoceanographic 

interpretations, we used the biogenic barium record in deep sea sediments as 

another independant paleoproductivity proxy. The sedimentary barium content 

allows the calculation of absolute paleoproductivity rates (Dymond et al., 1992; 

Shimmield, 1992; Shimmield et al., 1994; Gingele and Dahmke, 1994; Bonn et al., 1994; 

Nürnberg, 1995; Bonn, 1995; Francois et al., 1995). Biogenic barium (Ba(excess)) is a 

widely used tracer to estimate variations of paleoproductivity in marine sediments 

(Schmitz, 1987; Stroobants et al., 1991; Dymond et al., 1992; Gingele and Dahmke, 

1994). It´s concentration can be assessed by applying normative techniques to total 

barium concentrations of the sediment (Fig. 2). The mechanism leading to the 

paleoproductivity signal is the precipitation of barite in reducing microenvironments 

within settling diatom frustules (Bishop, 1988). Nevertheless, barite is present in non-

diatom dominated assemblages (Stroobants et al., 1991) although the contents are 

lower.  

Organic carbon (TOC) and carbonate have also been used as proxies of past changes 

in ocean paleoproductivity (Müller and Suess, 1979; Sarnthein et al., 1988; Charles et 

al., 1991), although these parameters are prone to degradation and dissolution. 

The biogenic barium contents were assessed for three cores and used to compute 

paleoproductivity rates, which can be compared to the opal record and to 

measurements of productivity of the surface waters of the respective areas. 

Our results are based on investigations of the late Quaternary deposits from the 

eastern Weddell, Lazarev and Cosmonaut seas. Similar records of opal and barium, 

measured on "Polarstern" cores (Shimmield et al., 1994; Frank et al., 1995) were found 

in sediments of the Antarctic continental margin between South Orkney and 

Gunnerus Ridge, covering nearly a third of the Antarctic coast line. Special emphasis 

in the interpretations is given to the environmental changes due to sea ice coverage 

and their influence on the paleoproductivity in response to the pronounced 

Quaternary climatic cycles covering the last 400 ka. 

 

 

Oceanographic setting 

 

The Weddell Gyre, a large, clockwise-rotating cyclone located south of the Antarctic 
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Circumpolar Current (ACC) is the most important oceanographic feature of the 

Weddell Sea region (Carmack and Foster, 1975, 1977; Deacon, 1979; Foldvik et al., 

1985; Gordon et al., 1981). The gyre extends northeastward from the Antarctic 

Peninsula to 20 ˚E or 30 ˚E (Orsi et al., 1993). The Weddell Gyre entrains heat and salt 

from the ACC and carries them to the Antarctic continental shelves, where highly 

saline deep and bottom waters are produced by freeze-out processes. The Weddell 

and Lazarev Seas are composed of the following major water masses: Cold Weddell 

Sea Bottom Water (WSBW) prevails near the bottom in the deep ocean and can be 

distinguished from the slightly warmer Antarctic Bottom Water (AABW). Above the 

bottom water resides the Weddell Deep Water (WDW). Overlying the WDW is the 

Winter Water (WW), which is modified in summer by heating and melting of sea ice. 

The mixing of warm WDW and WW produces the Modified Weddell Deep Water 

(MWDW) (Foldvik et al., 1985; Foster and Carmack, 1976). Although North Atlantic 

Deep Water (NADW) only penetrates to the Polar Front at intermediate water 

depths, where it is incorporated into the ACC, it is a heat source for the Antarctic 

Ocean waters and consequently influences the formation of sea ice (HODDELL, 1993). 

Sea ice coverage in the Southern Ocean is crucial for a variety of physical and 

biological processes. Today an ice cover of 85 % or greater exist over a period of 

several month during the winter, thus effectively diminishing heat and gas exchange 

between the ocean and the atmosphere. Ice cover also reduces the amount of 

sunlight in the photic zone, which is believed to be the key factor for high latitude 

productivity (CLARKE and ACKLEY, 1984). However, polynyas exist during the 

winter as revealed by satellite images (GLOERSEN et al., 1992). The annual Antarctic 

ice transgression is the largest of any region on Earth and has profound influence on 

the biological production and flux of particulate matter to the sea floor (FIScHER et al., 

1988). 

 

 

Sample collection and analytical methods 

 

Six gravity cores recovered during RV "Polarstern" expeditions at the Antarctic 

continental margin in the Weddell, Lazarev and Cosmonaut seas between 50 ˚W and 

35 ˚E (Fig. 1) were used in this study (FÜTTERER, 1987); MILLER and OERTER, 1990; 

FÜTTERER, 1989; FÜTTERER and SCHREMS, 1991; BATHMANN et al., 1992). The 

lithology, texture, amount of ice rafted debris (IRD), grain size distribution and the 

carbonate and the organic carbon contents were determined by using standard 

procedures described in GROBE (1986). The sediment cores consisted mainly of sandy 

or silty muds with varying amounts of opal, carbonate and terrigenous matter. In 

general grain sizes decrease with distance from the continent. 
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All six sediment cores along the Antarctic continental margin were analysed for opal 

to reveal qualitative changes in paleoproductivity during the last 400 ka. 

Geochemical analyses yielding downcore profiles of Ba, Al and Ti were performed 

on three of these cores. The stratigraphical approach and the analytical procedures 

for opal and barium are described in detail in the following section. 

 

Stratigraphy 

The stratigraphy of the cores discussed in this paper is based on the stable oxygen 

isotope record of two cores from Atka Bay, which was generated from benthic 

(Epistominella exigua) as well as planktonic foraminfera species (Neogloboquadrina 

pachyderma) (MACKENSEN et al., 1989; GROBE et al., 1990, GROBE and MACKENSEN, 

1992). These are the only 18O records of the Antarctic continental margin which 

could be correlated with the global isotope stratigraphy so far. 

The interpretation of the isotopic data in the other cores remains difficult because of 

strong diagenetic alterations (GROBE et al., 1990) or low carbonate content. Because of 

these problems we used a lithostratigraphy as a tool for correlating the late 

Pleistocene sediments. The comparison of the isotopic record of PS1388-3 with the 

lithological parameters and biogenous components has shown, that significant 

changes occur at distinct times of global climatic change (GROBE and MACKENSEN, 

1992). These prominent lithologic changes can be correlated with distinct isotopic 

events. The changes were found to be similar in all late Pleistocene sediments of the 

investigation area. In particular variations of the biogenic constituents can be 

correlated between cores and are synchronous within their resolution. In this way a 

lithostratigraphy was established for the cores, which is supported by the oxygen 

isotope record of PS1388-3. Additionally the record is supported by U/Th-dating. 

U/Th-dating was also supplied at core PS1575-1 (BREHME, 1992; FRANK et al., 1995) 

and confirms the lithostratigraphic correlations. 

 

Coarse fraction analysis. 

The percentage of radiolarians in the sand fraction allows a first and easy estimation 

of opal contents of the sediment and was determined by counting and classifying at 

least 400-600 grains per sample. Investigations of smear slides have shown that the 

occurrence of radiolarians can be correlated with the siliceous microfossil content in 

the silt fraction in general, such as diatoms and silicoflagellates (GROBE and KUHN, 

1987). Thus, the quantity of radiolaria could be used to predict the occurrence of 

silica in the sediments, because this parameter can easily be assessed and radiolaria 

are more resistant to dissolution. 
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Opal analysis 

 

For the determination of the opal content we used an automated leaching method 

after DEMASTER (1981) and MÜLLER and SCHNEIDER (1993). This method involves 

the extraction of biogenic silica by concentrated 1M NaOH. The concentration of the 

dissolved silica is assessed by molybdate-blue spectrophotometry. The continuous 

absorbance versus time plot is evaluated according to the extrapolation procedure of 

DEMASTER (1981). The precision of this technique is better than 0.5 % based on 

replicate measurements of silicon standard solutions. The relative precision of the 

automated leaching method is better than 2 % for pure opal and opal-rich samples 

and 4-10 % for samples with less than 10 % biogenic opal, respectively (MÜLLER and 

SCHNEIDER, 1993). The threshold of 1-2 % in the cores is probably an artefact of a 

partial leaching of clay minerals. 

 

Barium analysis 

Multielement analysis was performed with XRF technique including Ba, Al and Ti 

measurements with a Phillips PW1400-device. The analytical precision was 5 % rel. 

error margin for trace elements and 2 % rel. error margin for major elements. Since 

only biogenic barium, derived from discrete barite particles, which are associated 

with decaying organic matter (DEHAIRS et al., 1980; DYMOND et al., 1992) yields 

information on the flux of organic material to the seafloor, barium from other sources 

must be accounted for. Investigations in different sedimentary environments (e.g. 

DYMOND et al., 1992; GINGELE and DAHMKE, 1994; SHIMMIELD et al., 1994; 

STROOBANTS et al., 1991) show that detrital barium from terrigenous matter is most 

important, while the input of barium as a constituent of carbonate or biogenic silica 

can be neglected. A normative approach is commonly used to distinguish between 

detrital barium and "bio"-barium (DYMOND et al., 1992; GINGELE and DAHMKE, 1994). 

However, the barium content of terrigenous matter is highly variable, varying 

between 200 and 1000 ppm (DYMOND et al., 1992). Three different approaches were 

tested in order to minimize the normative uncertainties. First the terrigenous fraction 

of the core was calculated by subtracting opal and carbonate and a trace amount of 

400 ppm was assumed for this fraction (GINGELE and DAHMKE, 1994). The resulting 

concentration of detrital barium was subtracted from total barium concentrations 

(equation 1). Second a barium/aluminium-ratio of 0.0067, which was assessed for 

pure terrigenous sediments of the southern Weddell Sea (Nürnberg, 1995) was used 

for detrital correction, following the calculation of DYMOND et al. (1992) (equation 2). 

Recent investigations in the Pacific Ocean have shown that Al might also be of 
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biogenic origin and that Ti is more appropriate to represent the terrigenous fraction 

of the sediment (MURRAY et al., 1993). Even there is no indication for biogenic Al 

from Al/Ti-ratios in the sediments, which are well within a terrigenous range 

(MURRAY et al., 1993) a normative approach with Ti was also carried out. A Ba/Ti-

ratio of 0.126 (TUREKIAN and WEDEPOHL, 1961) was used to calculate a normative 

Ba(excess) content (equation 3). 

 

(1) Ba(excess) = Ba(total) - (400 x TF/100) 

 

(2) Ba(excess) = Ba(total) - (Al x Ba/Alalusilicate) 

 

(3) Ba(excess) = Ba(total) - (Ti x Ba/Tialusilicate) 

 

The calculations of a normative Ba(excess) content are based on the assumption that 

the composition of the terrigenous material in respect to the barium content 

remained constant in time and space. 

Ba(excess) contents obtained by all three approaches vary within a narrow margin 

(Fig. 2), with the exception of core PS1648-1. In this core Ti-values are extremely 

high, due to a titanomagnetite source rock in the hinterland (TESSENSOHN, 1979) 

which subdues Ba(excess) below zero. Therefore Ti should not be used for normative 

purposes in this case. This example shows that normative approaches have to be 

applied carefully, where the provenance of the detrital source changes. For further 

calculations Al was used to obtain Ba(excess) contents (equation 2). 

 

Accumulation rates 

Accumulation rates were computed for opal and Ba(excess) following the calculations 

of VAN ANDEL et al. (1975), THIEDE et al. (1982) and MÜLLER and SUESS (1979), based 

on integrated sedimentation rates and dry bulk density measurements. 

Accumulation rates for Ba(excess) were derived from normative Ba(excess) 

concentrations obtained by equation 2. The calculation of accumulation rates is a 

prerequisite for the estimation of absolute paleoproductivity rates following the 

approach of DYMOND et al. (1992). Although accumulation rates provide an import 

time and dilution control, they are also a source of possible artefacts, which may lead 

to misinterpretations of records. The key factors in the computation of accumulation 

rates are the linear sedimentation rates. Depending on the available stratigraphy 

they may be integrated over highly variable time intervals like a complete isotope 

stage, several stages or a substage, thus leading to accumulation rates, which 

resemble mainly the sedimentation rate pattern. It has been shown that sequences 
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deeper than 5 m below the surface are increasingly compressed by the coring 

procedure (MELLES, 1991). Therefore an apparent reduction of sedimentation rates is 

most likely artificial. 

 

 

Results and Discussion 

 

Biogenic sediment constituents and productivity proxies 

In general, opal concentrations measured by the leaching method mirror the 

downcore record of radiolarians in the coarse fraction of all six cores (Fig. 3). 

Biogenic opal is enriched in five horizons, which correspond to the peak warm 

events of the interglacial stages 1, 5, 7, 9, 11, (Fig. 3). Concentrations rarely drop 

below a threshold of 2 % in glacial stages and reach 5 to 45 % in peak warm times, 

thus producing a distinct glacial/interglacial pattern. The highest interglacial values 

of 20-45 % are found in core PS1821-6 from the Cosmonaut Sea followed by the cores 

from the continental slope of the Lazarev Sea (PS2038-2) and Weddell Sea (PS1375-3, 

PS1648-1). At site PS1575-1 near South Orkney interglacial opal values only reach 5-8 

%. The flux of biogenic silica to the seafloor and the preservation, which is a function 

of the sedimentation rate, are believed to be responsible for the observed differences 

in interglacial maxima. In cores with comparable sedimentation rates like PS1821-6, 

PS2038-2 and PS1375-3 interglacial opal values are controlled by the flux of biogenic 

silica produced in the photic zone. However, the influence of the sedimentation rate 

on opal contents is visible in cores from a confined area, underlying surface waters of 

the same productivity regime, but with different sedimentation rates like PS1506-1 

and PS1648-1. Situated only about 110 km further southwest at the same water depth 

on the continental slope PS1648-1 receives approximately twice as much terrigenous 

matter compared to PS1506-1, which results in a better preservation and a doubling 

of the interglacial opal maxima (Fig. 3). 

The low level of opal contents in glacial stages reflects both, terrigenous dilution and 

enhanced silica dissolution combined with a substantial decrease in siliceous 

primary productivity. We assume that although opal is susceptible to dissolution the 

downcore records represent siliceous primary productivity (MORTLOCK et al., 1991; 

SCHLÜTER, 1990). The opal records show enhanced biological productivity in the 

interglacials, indicating largely ice-free conditions during the summer month. The 

lack of opal in glacial stages is interpreted as a response to permanent sea ice 

coverage. As mentioned in the methods section the 2 % threshold is probably an 

artefact of the leaching method. Comparing the absolute opal values of the different 

sites and considering the preservation effect exerted by different sedimentation rates 
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a decrease from East to West can be observed. As a first approximation this is 

attributed to a decreasing surface productivity. However, this has to be tested on a 

second independant productivity proxy. Therefore three cores were chosen for 

barium analysis. 

Total barium contents in the cores vary from 600 ppm in the glacial sections to 2400 

ppm in the peak warm events of the interglacial stages. Since the terrigenous fraction 

of the cores with an average of 95 % and consequently the Al-concentration is rather 

constant the detrital correction subtracts a constant amount of 400-600 ppm from 

total barium contents. Therefore the resulting Ba(excess) downcore records mirror 

total barium contents on a lower level (Fig. 2). Ba(excess) contents closely resemble the 

opal records with constant low levels in glacial stages and sharp maxima in 

interglacial stages (Fig. 4). The highest values are again found at site PS1821-6 in the 

Cosmonaut Sea with 1500-2000 ppm followed by 1000-1500 ppm at site PS1648-1 in 

the Weddell Sea. Site PS1575-1 near South Orkney is characterized by 400-800 ppm 

Ba(excess) in interglacial stages (Fig. 4). This decrease in Ba(excess)-values from East to 

West is consistent with the observed trend in opal contents. However, 

inconsistencies exist in the downcore record of both paleoproductivity proxies. The 

interglacial Ba(excess)-peaks of stage 9 (PS1575-1, PS1648-1), substage 7.3 and stage 11 

(PS1821-6) are not adequately represented by opal maxima (Fig. 4), which is 

attributed to opal dissolution events in the sediment. 

Since barite is a highly refractive species it is regarded as more reliable than opal. In 

contrast to other common productivity proxies like organic carbon, carbonate and 

opal, which are greatly reduced in the water column and at the sediment/water 

interface by dissolution and degradation an average of 30 % of the Ba(excess) 

(dependant on the mass accumulation rate (MAR)) survives burial in the sediment 

(DYMOND et al., 1992; SHIMMIELD et al., 1994; STROOBANTS et al., 1991). However, 

barite can be mobilized in a highly anoxic environment, where sufficient organic 

matter leads to sulphate reduction in interstitial waters and destruction of the 

productivity signal (BRUMSACK, 1989; FALKNER et al., 1993; VON BREYMANN et al., 

1992). This can be ruled out in the cores because barite is very stable and hard to 

dissolve in deep sea sediments as long as sulphate is present in the pore waters 

(SHIMMIELD, 1992). TOC-contents are uniformly low and sulphate reduction 

detectable by the smell of H2S, is neglectable. 

Although the opal records suggest a reasonable correspondance with the Ba(excess)-

signal, a close comparison reveals that the phasing of the two parameters is different, 

with opal leading the Ba(excess) during deglaciation periods. This phenomenon, also 

observed in other cores from the Southern Ocean (SHIMMIELD et al., 1994), is 

particularly obvious in core PS1821-6 (Cosmonaut Sea) and little less obvious in core 

PS1648-1 (Weddell Sea). No phase lag between opal and barium values exists in core 
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PS1575-1 (South Orkney). The phase lag seems to be correlated with the intensity of 

the opal and barium signals. Since barium is regarded as more resistant to 

dissolution than opal, it is difficult to explain the lack of a barium peak, when opal 

values are already high at an initial deglaciation step. Three explanations for the 

observed phasing, are possible: 

(1) Firstly, a drastic increase in the input of organic matter during the onset of 

deglaciation could lead to a pore water profile, where sulphate is exhausted at a 

shallow depth and the barium peak moves upward by early diagenetic mobilization 

and precipitation while opal peaks remain at the same depth. However, to our 

knowledge no pore water profiles have been measured, where sulphate is depleted 

at less than one meter core depth, thus making this approach highly unlikely. It is 

also not supported by organic carbon contents, which are uniformly low.  

(2) Secondly, meltwater input during deglaciation phases reduces dissolved barium 

in surface waters and it´s incorporation into organic matter to such an extent, that the 

formation of barite particles is severely impeded thus leading to a lack of biogenic 

barium at an initial stage. This could explain the stronger phase lag in the southern 

cores compared to that from South Orkney. 

(3) However, we favour a third possibility, that explains the observed phasing of 

both proxies with the dilution of biogenic barium by rapid accumulation of siliceous 

matter. This also explains, why the strongest phasing is observed in PS1821-6, the 

core with the highest opal content. 

In the investigation area carbonate records exhibit characteristic downcore patterns, 

which are used to support the lithostratigraphic correlation. Values are generally 

below 10 %, with minima in glacial stages, rising in interglacials and dropping to 

near zero in peak warm times. The lack of carbonate in peak warm times is due to 

dissolution by increased levels of carbon dioxide, which results from the degradation 

of organic matter at the sediment water interface and within the sediment (EMERSON 

and BENDER, 1981; BROECKER and PENG, 1982). Thus, carbonate lows coincide with 

high productivity events indicated by opal and barium records. 

TOC-contents in the cores are uniformly low. TOC-values drop from a maximum of 

0.2-0.4 % to a residual level of 0.1-0.2 %, which stays constant throughout the rest of 

the core. Only site PS1821-6 shows a glacial-interglacial pattern, though on a very 

low level (0.1-0.2 %), which resembles the fluctuations observed in the opal and 

Ba(excess) record (Fig. 4). 

Accumulation rates of Ba(excess) and opal were computed from concentrations. 

Downcore records of both proxies clearly indicate a glacial-interglacial pattern with 

peaks in interglacial sections and lows in the glacial parts (Fig. 5).  

 

Paleoproductivity calculations 



 
12

Recently DYMOND et al. (1992) developed an algorithm to recalculate new production 

(pnew = export production) from the accumulation of biogenic barium (equation 4). 

This algorithm connects new production (Pnew), dissolved barium content of the 

water column (Ba), water depth (z) and particulate barium flux (FBa). The rain of 

biogenic barium or particulate barium flux was estimated from the mass 

accumulation rate of the sediment (MAR) and the Ba(excess) accumulation rate using 

the tentative relation found by DYMOND et al. (1992), (equation 5). The resulting 

preservation factors slightly exceed an average of 30 %, which was found to be the 

mean percentage of the Ba(excess)-flux surviving burial in the sediment (DYMOND et 

al., 1992). Based on these values, rates of new production were computed for the 

studied sites and paleoproductivity (PP) was estimated using the relation from 

BERGER et al. (1989), (equation 7). Dissolved barium in the water column increases 

from North to South in the South Atlantic from 50 nmol/kg near the equator to 100-

106 nmol/kg at the southernmost available GEOSECS-station at 60˚S (CHAN et al., 

1977; BROECKER and PENG, 1982). Situated up to 10 degrees further south the 

calculations for the studied sites were carried out with 110 nmol/kg thus accounting 

for possibly slightly higher barium contents at intermediate water depths. The same 

value was used for interglacial as well as glacial sections of the core. Though there 

are changes in NADW input to the Southern Ocean, there are no significant 

differences in Ba/Ca-ratios of benthic foraminifera (LEA and BOYLE, 1990), indicating 

a rather constant value of dissolved barium. The evaluation of additional sediment 

trap data enabled Francois et al. (1995) to simplify the quantitative approach of 

Dymond et al. (1992). They postulated that the flux of biogenic barium is rather 

independant from dissolved barium in the water column. The relationship between 

export production and flux of biogenic barium is thus described by a simplified 

power function (equation 6). 

 

(4) Pnew = (FBa 0.171 Ba2.218 z0.476-0.00478 Ba/2056)1.504 

 

(5) Ba(excess flux) = Ba(acc.)/0.209 log MAR-0.213 

 

(6) Pnew = 1.95 (Ba(excess flux))1.41  

 

(7) Pnew = PP2/400 - PP3/340.000 

 

In this study we used both approaches to compare the effects on paleoproductivity 

rates. Generally downcore records of Pnew- and paleoproductivity-values correlate 

nicely. However, in peak warm stages the approach of Dymond et al. (1992) yields 

30-40% higher values. Paleoproductivity rates calculated according to Dymond et al., 
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(1992) varied between 200-350 g C m-2 a-1 at site PS1821-6 and 150-230 g C m-2 a-1 at 

site PS1648-1 in interglacial stages. These values are comparable to rates from high 

productivity areas, e.g. upwelling systems off the west coasts of South America or 

Southwest Africa (BERGER et al., 1989). Site PS1575-1 near South Orkney only reached 

100-200 g C m-2 a-1 and is roughly consistent with estimations of global ocean surface 

productivity (BERGER et al., 1989). Direct measurements of primary production are 

scarce and highly variable in the investigation area. They are mostly determined 

during plankton blooms in the short Antarctic summer and the figures are difficult 

to extrapolate to a yearly production. Nevertheless, values of 400-1000 mg C m-2 d-1 

were measured at the continental margin of the Weddell Sea (GLEITZ et al., 1994), 

reaching 1500 mg C m-2 d-1 in ice-free areas. To compare these measurements, which 

were taken during a period from January to March with our estimations, we have to 

consider the time, which is available for production. Productivity from January to 

March was found to decrease towards March, when sea ice starts to form in the area 

(GLEITZ et al., 1994). Considering the data on sea ice coverage provided by satellite 

images (GLOERSEN et al., 1992), we assume an ice-free period of six month for the 

sites at the continental margin, which can be used for biological productivity. 

However, recent information from the Weddell Sea suggests that the incorporated 

phytoplankton acclimatizes well to the sea ice environment and primary production 

is sustained to some extent (GLEITZ and THOMAS, 1993). As suggested by satellite 

images (GLOERSEN et al., 1992) the productivity may be linked to the development 

and persistence of coastal polynyas, which do not close completely in winter (EICKEN 

and LANGE, 1989; SCHAREK, 1991). Proceeding on the assumption of a six month 

production period, we get a rough estimate of 80-230 g C m-2 a-1 for the Weddell Sea 

margin. On an average this is consistent with our calculations from the barium 

record at site PS1648-1 and confirms the rating of the Antarctic margin as a highly 

productive area. 

Paleoproductivity rates exceeding 250 g C m-2 a-1 are rarely found in the present 

ocean (Berger 1989). In our core material they occur in substage 5.5 of cores PS1575-1 

and PS1821-6. The extremely high rates may be an effect of integrating linear 

sedimentation rates over a substage and not an entire isotope stage. Integrating over 

the whole stage 5 would reduce paleoproductivity rates to the level of those in the 

other interglacial stages. 
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Paleoceanographic implications 

 

The Southern Ocean today is a mixing reservoir for incoming NADW and 

recirculated water from the Pacific and Indian Oceans. The contribution of the 

NADW to the CDW has changed during the climatic cycles, particularly when 

production of bottom water in the North Atlantic nearly ceased due to sea ice 

coverage (OPPO and FAIRBANKS, 1987). NADW is largely composed of upper ocean 

waters and thus in the North Atlantic is the most nutrient depleted deep water mass 

formed in the oceans today. In the South Atlantic it has still high 13C values 

(KROOPNICK, 1985), therefore, up to 50 % of the glacial/interglacial 13C amplitude 

in the Southern Ocean is due to changes in the contribution of NADW (OPPO et al., 

1990). Together with climate-controlled global changes between carbon reservoirs, 

changes in NADW input into the Southern Ocean are the most important reasons for 

the changes in 13C observed in high southern latitude cores. 

Variations in the relative flux of NADW to the Southern Ocean influence the 

properties of the CDW and surface water (CORLISS, 1982; CHARLES and FAIRBANKS, 

1990; HODDELL, 1993). Because NADW is a heat source for the Atlantic sector of the 

Antarctic Ocean waters, it consequently influences the formation of sea ice (HOWARD 

and PRELL, 1994). The amount of sea ice and additional snow coverage is crucial to 

the availability of light in surface waters, and hence is a main factor in controlling 

primary productivity. This is particularly important, because in Southern Ocean 

surface waters no nutrient limitation occurs between the Polar Front and the 

Antarctic Divergence (DEFELICE and WISE, 1981). Variations in productivity during 

climatic cycles correspond to the extent of sea ice in a similar way as during the 

recent seasonal processes, in which seasonal changes in sea ice coverage control 

productivity and thus biogenic silica flux. We infer this from sediment trap studies in 

the Antarctic Ocean (DUNBAR, 1984; WEFER et al., 1990). 

Our productivity calculations from the core top samples suggest that at least parts of 

the Antarctic continental margin today are areas of high productivity and must be 

accounted for estimations of mass balances of silica and barium. However, this does 

not seem to have any implications on the accumulation of organic carbon and 

carbonate. Carbon is effectively recycled prior to burial and remineralized in the 

water and at the sediment/water interface. 

The opal and barium records indicate that the cyclicity of primary production varies 

in response to the glacial/interglacial changes. The events of higher productivity 

during peak warm times, indicated by maxima in silica and biogenic barium content 

and intense bioturbation, and the variations of carbonate can be explained in terms 

of interaction of sea ice coverage, deep water convection and water masses. On the 
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Weddell Sea continental margin, the WDW appears to influence the depth range of 

lysocline and CCD (ANDERSON, 1975; MACKENSEN et al., 1990). However, the depth 

of the CCD depends on the properties of water masses and the productivity in 

surface waters as well. A high flux of organic matter increases the CO2 content in the 

interstitial waters and thus the solution of carbonate. During a climatic cycle the 

CCD oscillates between 4000 m and 2000 m. It reaches the shallowest water depth 

during the most intense productivity. 

Variations of atmospheric CO2 during Pleistocene climatic cycles were supposed to 

be controlled by Southern Ocean productivity, such that a more effective "biological 

pump mechanisms" during glacial times causes the Southern Ocean to be a sink for 

atmospheric CO2 (KEIR, 1988). Enhanced productivity during glacials should be 

caused by higher solar radiation and reduced circulation of surface waters 

(SUNDQUIST and BROECKER, 1985), or by increased atmospheric dust fallout which 

supplies iron to an iron-limited Antarctic surface water (MARTIN, 1990). On the other 

hand, a reduced consumption of nutrients was postulated because of the extensive 

sea ice coverage during glaciations (MIX and FAIRBANKS, 1985). This may result in an 

increasing amount of preformed nutrients in low latitudes which may enhance 

productivity there (SARNTHEIN et al., 1988). 

The glacial sediments analyzed in this study clearly indicate strongly reduced 

productivity and sedimentation rates during glaciations in high southern latitudes 

around the Antarctic continent. This evidence is consistent with other recent studies, 

indicating low productivity in the Southern Ocean during glacial times (LABEYRIE 

and DUPLESSY, 1985; MACKENSEN et al., 1989; GROBE et al., 1990; MORTLOCK et al., 

1991; GROBE and MACKENSEN, 1992). Estimates of sea ice distribution during the last 

glacial maximum show continuous ice coverage south of 60 °S (HAYS, 1978; COOKE 

and HAYS, 1982). During these times the availability of light in surface waters was 

strictly reduced by a snow covered sea ice, which will have been the most significant 

factor limiting productivity in the Antarctic Ocean. 

 

 

Conclusions 

 

These investigations of the productivity proxies biogenic silica and barium suggest, 

that the Antarctic continental margin is an area of high surface productivity. In spite 

of a seasonal ice cover productivity rates approach those known from upwelling 

areas off the west coasts of South America and South Africa. 

High paleoproductivity rates, comparable to recent ones were also computed for the 

previous interglacials 5, 7, 9 and 11. It can be concluded that the sea ice coverage, 

which is the limiting factor for the biological production today, was likewise reduced 
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during those periods. The sea ice coverage today is largely dependant on the heat 

transfer from NADW to subantarctic waters. 

Our results imply that this heat transfer was active during the interglacials 5, 7, 9 and 

11. Paleoproductivity was strongly reduced during glacials due to a permanent sea 

ice coverage. However, measurable quantities of opal and biogenic barium suggest 

that productivity did not cease completely. 

The comparison of the paleoproductivity proxies opal and biogenic barium shows 

that generally both - in contrast to carbonate and organic carbon - give qualitative 

evidence of glacial/interglacial productivity changes. However, minor differences 

occur. Opal is susceptible to dissolution in the water column, at the sediment/water 

interface and in the sediment. It´s preservation is supported by high opal fluxes and 

high sedimentation rates in general. Dissolution of opal may explain the lack of 

peaks of biogenic silica, where a high productivity is indicated by the barium record. 

Biogenic barium shows maxima in all interglacials throughout the cores investigated 

and is regarded as a reliable paleoproductivity proxy, also allowing the assessment 

of absolute paleoproductivity rates. We believe that the observed phasing between 

opal and barium records during deglaciation phases is an effect of dilution of the 

barium signal by rapid accumulation of biogenic silica. We suggest that it is 

neccessary in high latitudes to have a minimum of two independant 

paleoproductivity parameters in order to make reliable paleoenvironmental 

interpretations. 
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Table 1. Position and water depth of gravity cores. 
 
 
 
Core   Tool  Latitude (°)  Longitude (°)  Depth (m) 
 
PS1375-3    SL  72° 09,000 S  17° 06,000 W     1750 
 
PS1506-1    SL  68° 43,095 S  05° 50,098 W     2426 
 
PS1575-1    SL  62° 50,097 S  43° 20,013 W     3461 
 
PS1648-1    SL  69° 44,040 S  06° 31,048 W     2529 
 
PS1821-6    SL  67° 03,092 S  37° 28,083 E     4027 
 
PS2038-2    SL  69° 21,179 S  06° 17,101 E     1630 
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Figure 1: Area of investigation with positions of the studied sites.  
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Figure 2: The effects of different Ba/Al - and Ba/Ti-values on computing the detrital 
barium background (equation 1, 2, 3) from Ba (total)-values. 
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Figure 3: Downcore distributions of opal and radiolaria (shaded) can be correlated 
from core to core. 
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Figure 4: Lithology, downcore distribution of carbonate, organic carbon (TOC), opal 
and biogenic (excess) barium of cores PS1575-1, PS1648-1 and PS1821-6. 
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Figure 5: Sedimentation rate, accumulation rates of opal and barium(excess), export 
production (Pnew) and paleoproductivity (PP) of cores PS1575-1, PS1648-1 and 
PS1821-6. Mean sedimentation rates were calculated for the isotope stages and 
substages. Export production and paleoproductivity were computed according to 
Dymond et al. 1992 (squares) and Francois et al. 1995 (circles). 


