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Abstract. Fram Strait is the main gateway for sea ice ex-

port out of the Arctic Ocean, and therefore observations there

give insight into the composition and properties of Arctic

sea ice in general and how it varies over time. A data set

of ground-based and airborne electromagnetic ice thickness

measurements collected during summer between 2001 and

2012 is presented here, including long transects well into the

southern part of the Transpolar Drift obtained using fixed-

wing aircrafts. The primary source of the surveyed sea ice

leaving Fram Strait is the Laptev Sea and its age has de-

creased from 3 to 2 years between 1990 and 2012. The thick-

ness data consistently also show a general thinning of sea

ice for the last decade, with a decrease in modal thickness

of second year and multiyear ice, and a decrease in mean

thickness and fraction of ice thicker than 3 m. Local melt-

ing in the strait was investigated in two surveys performed

in the downstream direction, showing a decrease in sea ice

thickness of 0.19 m degree−1 latitude south of 81◦ N. Further

north variability in ice thickness is more related to differ-

ences in age and deformation. The thickness observations

were combined with ice area export estimates to calculate

summer volume fluxes of sea ice. While satellite data show

that monthly ice area export had positive trends since 1980

(10.9 × 103 km2 decade−1), the summer (July and August)

ice area export is low with high uncertainties. The average

volume export amounts to 16.78 km3. Naturally, the volume

flux estimates are limited to the period when airborne thick-

ness surveys are available. Nevertheless, we could show that

the combination of satellite data and airborne observations

can be used to determine volume fluxes through Fram Strait

and as such, can be used to bridge the lack of satellite-based

sea ice thickness information in summer.

1 Introduction

Arctic sea ice extent and thickness have undergone dra-

matic changes in the past decades: summer sea ice extent

has declined at a rate of approximately 12.7 %decade−1 over

the satellite record (Meier et al., 2014; Comiso and Hall,

2014, 1978–present) and its mean thickness has decreased by

0.58 ± 0.07 mdecade−1 over the period 2000–2012 (Lindsay

and Schweiger, 2015). The thinning of sea ice is accompa-

nied by an increase of ice drift velocity (Spreen et al., 2011),

deformation (Rampal et al., 2009; Martin et al., 2014) and

a decrease of net ice growth rates (Holland et al., 2010). Cli-

mate model simulations indicate that ice extent and thick-

ness will further decline through the 21st century in response

to atmospheric greenhouse gas increases (Stroeve and Notz ,

2015). The mass balance of Arctic sea ice is therefore deter-

mined not only by changes in the energy balance of the cou-

pled ice–ocean–atmosphere system but also by the increas-

ing influence of dynamic effects. One aspect of the mass bal-

ance of Arctic sea ice are changes of ice volume export rates

through Fram Strait, the major sea ice outflow gate of the

Arctic. These strongly impact ocean processes further south.
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Trends in southern Fram Strait sea ice thickness were pre-

viously investigated by Hansen et al. (2013) and Renner et al.

(2014). Based on a 21 year long time series (1990–2011) ob-

tained from moored sonar, Hansen et al. (2013) showed that

the ice thickness at 79◦ N decreased from an annual mean of

3.0 m during the 1990s to 2.2 m during 2008–2011. Renner

et al. (2014) reported an even more pronounced thinning of

Fram Strait ice cover. According to in situ and airborne ob-

servations carried out at the end of the melt season, ice thick-

ness decreased by over 50 % during 2003–2012. The first aim

of this paper is to complement those recent findings by means

of a data set of electromagnetic (EM) ice thickness observa-

tions carried out during summer in northern Fram Strait and

the southern part of the Nansen Basin. Measurements were

obtained in the months of July and August of 2001, 2004 and

2010–2012 during two cruises of the German ice-breaker RV

Polarstern and three airborne campaigns with the German

DC3-T research aircraft Polar 5. An investigation of back-

trajectories of surveyed sea ice using satellite-based sea ice

motion data will allow us to examine the connection between

thickness variability, ice age and source area.

A second objective of this paper is to investigate across-

and along-Fram Strait gradients in sea ice thickness. Ac-

cording to ULS observations of Hansen et al. (2013), the ice

thickness distribution in Fram Strait is characterized by a gra-

dient from thicker ice in the west to thinner ice in the east.

The high interannual and seasonal variability of this gradi-

ent is related to the thickness and age of ice that enters Fram

Strait. Both vary substantially since ice originates from dif-

ferent regions and had a different dynamic and thermody-

namic history on its way through the Arctic Ocean (Raben-

stein et al., 2010). The long operating distance of Polar 5

enabled us to obtain the first continuous ice thickness mea-

surements across, but also along Fram Strait. Below, we com-

pare across-strait gradients obtained from Polar 5 surveys

to gradients observed further south by Renner et al. (2014)

and Hansen et al. (2013). Surveys performed in the down-

stream direction are used to investigate local melt, associated

with atmospheric and oceanic processes acting on southward

drifting sea ice.

A third objective of this paper is to use the presented

EM measurements together with satellite-based area flux es-

timates to calculate volume outflows for the periods when

thickness surveys where made. Whether sea ice volume loss

through Fram Strait accelerates is currently under discussion.

Following Smedsrud et al. (2011), the decrease in Fram Strait

ice thickness is accompanied by an increase in ice area export

out of Fram Strait. Those authors used geostrophic winds de-

rived from reanalysis data to calculate the ice area export be-

tween Spitsbergen and Greenland and found it to be about

25 % larger than during the 1960s. In contrast, other studies

(Kwok, 2009; Kwok et al., 2013) did not observe any sig-

nificant trend in ice area export for the past decades. Only

a few studies exist that quantify Fram Strait volume fluxes

using satellite data directly. By combining sea ice concentra-

tion and drift from passive microwave satellites and thickness

derived from ICESat laser altimetry, Spreen et al. (2009) de-

termined the sea ice volume flux in the Fram Strait region

for 11, one month long ICESat observation periods in spring

and late autumn. However, volume flux estimates with thick-

ness information obtained from altimeter satellites missions

such as ICESat or CryoSat-2 are restricted to the period be-

tween October and April. Hence, little is known about sea

ice volume fluxes through Fram Strait in the summer months.

An approximation of sea ice volume flux during summer by

means of AEM thickness observations and satellite drift and

concentration data is the first of its kind. These estimates

shall improve the understanding of interannual variability in

summer sea ice outflow and complement existing winter vol-

ume flux calculations.

2 Data

2.1 EM ice thickness measurements

EM ice thickness measurements utilize the contrast of elec-

trical conductivity between sea water and sea ice to deter-

mine the distance of the instrument to the ice–water interface

(Haas et al., 2009). In 2001 during the RV Polarstern cruise

(ARK-XVII/2), only ground-based EM (GEM) data were ob-

tained using an instrument (Geonics EM31Mk2) pulled on

a sledge across the ice (Haas, 2004). With GEM measure-

ments, the distance to the ice–water interface corresponds

to the ice plus snow thickness (hereafter referred to as EM

ice thickness). After 2001, measurements were made with

an airborne EM (AEM) system towed 12 to 20 m above the

ice surface. Here, the distance to the uppermost snow sur-

face is determined with a laser altimeter. The ice plus snow

thickness is then calculated as the difference between the

laser and EM derived distance (Haas et al., 2009). In 2004,

AEM measurements were conducted with a helicopter oper-

ated from RV Polarstern (cruise ARK-XX/2) along triangu-

lar flight tracks with a side length of 40 to 80 km (Haas et al.,

2008). In 2010, 2011 and 2012 AEM surveys were conducted

with the Polar 5 aircraft during the TIFAX (Thick Ice Feed-

ing Arctic Export) campaigns operating from the Danish Sta-

tion Nord in Nord-East Greenland (Haas et al., 2010). These

airplane surveys allow the acquisition of hundreds of kilo-

meters of data along straight flight lines. An overview of the

flight tracks surveyed during the individual field campaigns

is given in Fig. 1.

The accuracy of the EM measurements is of the order of

±0.1 m over level sea ice (Pfaffling et al., 2007). However,

the maximum thickness of pressure ridges can be underes-

timated by as much as 50 %. The underestimation of peak

pressure ridge thickness is a result of footprint smoothing, an

effect that is mass-conserving for mean thickness values on

the kilometer scale (Lindsay and Schweiger, 2015; Mahoney

et al., 2014). The thickness PDFs for all profiles presented in
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Figure 1. Overview of all EM ice thickness measurements obtained in the Fram Strait region during two cruises with the German ice-breaker

RV Polarstern (August 2001 and 2004) and three surveys with the research aircraft Polar 5 (August 2010 and 2011, July 2012). The color

coding of the EM profiles corresponds to the mean ice thickness of 10 km sections. The light red shaded area marks the area of interest with

the data acquisitions used in this analysis. Ice concentration from the date of the first flight of each campaign, is plotted in the background

going from 0 % ice concentration in black to 100 % in white. The thick red line in the left panel indicates the meridional and zonal gates

through which satellite-derived ice area fluxes were calculated.

this paper were calculated from histograms with a bin width

of 0.1 m. The most frequently occurring ice thickness, the

mode of the distribution, represents level ice thickness and is

the result of winter accretion and summer ablation. Because

ridge thicknesses are in general underestimated in AEM data,

the mode is most representative of the ice thickness PDF. The

fraction of dynamically deformed ice is represented by the

length and the shape of the tail of the thickness distribution.

In this study, the fraction of ice thicker than 3 m is used to

give a relative estimate of the amount of deformed ice. The

mean thickness is used to quantify the overall decline in sea

ice thickness. Note that before calculating mean and modal

thickness from the PDFs, thin ice (less than 0.15 m) and open

water were excluded from the analysis. For the investigation

of across and along Fram Strait thickness gradients, PDFs,

mean and mode were calculated over a 25 km distance for

meridional profiles (along Fram Strait) and zonal profiles

(across Fram Strait). The distance is equivalent to the spacing

between ULS observations of Hansen et al. (2013) at 79◦ N.

Since per definition EM ice thickness measurements in-

clude the snow layer, interannual changes in ice thickness

may not be solely related to changes in ice thickness, but also

to changes in snow cover. During the presented EM surveys

no snow measurements were made, except during the RV Po-

larstern cruises in 2001 and 2004, where a mean snow or

weathered ice thickness of 0.07–0.1 m was observed. There-

fore, and due to the general snow climatology of Arctic sea

ice where snow completely melts in June and July leaving

the ice surface bare in August and September (Maykut and

Untersteiner, 1971; Warren et al., 1999), we assume a 0.1 m

thick layer of weathered ice or snow to contribute to the to-

tal ice thickness. This assumption is also supported by snow

or weathered layer observations in Fram Strait during the

months of August and September by Renner et al. (2014).

Variations may be due to episodic, short-lasting events of

new snow accumulation which typically melt within a few

days during July and August. Below we assume the unknown

interannual variability of snow thickness to be equivalent to

the averaged snow thickness uncertainty on multi-year ice for

July and August (± 5.0 cm) provided by Warren et al. (1999).

The examination of interannual changes in the sea ice

cover over a certain area requires continuous and overlapping

measurements. Despite shortcomings due to logistical and

meteorological challenges of air- and shipborne campaigns

in the Arctic, we consider our data set to be sufficiently ho-

mogeneous with respect to its temporal and spatial coverage.

Nevertheless, to ensure a maximum degree of consistency

and to limit bias due to warm Atlantic Water (Beszczynska-

Moeller et al., 2012), only flights obtained between 82 and

85◦ N and 13◦ W and 20◦ E were selected (compare the red

shaded area in Fig. 1). A summary of the survey flights ob-

tained during individual campaigns is presented in Table 1

together with survey dates and length of EM-profiles. In ad-

dition, the modal and mean ice thickness, as well as fraction

of ice ≥ 3 m and the open-water fraction are given.

2.2 Satellite data

The interpretation of EM thickness measurements in a larger

spatial context requires information about the age, drift his-

tory and source areas of the surveyed ice. Below we describe

the data set that was used to determine age and drift trajecto-

ries. In addition, we present the approach to quantify ice area

fluxes through Fram Strait.

www.the-cryosphere.net/10/523/2016/ The Cryosphere, 10, 523–534, 2016
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Table 1. The table summarizes for the area of interest and individual campaigns the dates of observations, platform, total profile length, the

ice thickness (mode and mean ±SE), as well as the fraction of ice thicker than 3 m and the open-water fraction along profiles.

Ice thickness

Campaign Platform Dates of Total profile Modal/Mean Fraction of Open-water

data takes length (km) ±SE (m) ice ≥ 3 m (%) fraction (%)

ARK-XVII/2, 2001 RV Polarstern 8–21 Aug 2001 50 2.0/2.58 ± 1.1 26 –

(Haas, 2004)

ARK-XX/2, 2004 RV Polarstern 2–4, 6–12, 14 Aug 2004 2270 2.2/2.59 ± 1.3 29 1.5

(Haas et al., 2008)

TIFAX 2010 Polar 5 19 and 22 Aug 2010 500 1.7/1.81 ± 0.8 8 4.7

(Haas et al., 2010)

TIFAX 2011 Polar 5 2 and 4 Aug 2011 660 1.6/1.89 ± 1.1 10 10.5

TIFAX 2012 Polar 5 19 and 21 Jul 2012 890 1.4/2.17 ± 1.4 15 3

2.2.1 Sea ice concentration

Sea ice concentration data used in this study are obtained

from the National Snow and Ice Data Center (NSIDC).

The data set was derived using measurements from the

Scanning Multichannel Microwave Radiometer (SMMR)

aboard the Nimbus-7 satellite, from the Special Sensor

Microwave/Imager (SSM/I) on the -F8, -F11 and -F13

satellites of the Defense Meteorological Satellite Program

(DMSP), and from Microwave Imager/Sounder (SSMIS)

aboard DMSP-F17. Sea ice concentration was calculated

based on the Bootstrap algorithm (Comiso, 2000). Data are

available on a daily basis at 25km×25km spatial resolution.

2.2.2 Sea ice drift

Passive-microwave retrieved ice drift products are provided

by different institutions and have been widely used in sea ice

studies and for model assimilation (e.g., Miller et al., 2006;

Kwok, 2009; Spreen et al., 2011; Sumata et al., 2014). In this

study, two different sets of ice drift products were used:

The first data set, Polar Pathfinder Sea Ice Motion Vectors

(Version 2), was chosen because of its year-round availabil-

ity. Below it is used to estimate transport rates out of Fram

Strait, and to calculate ice drift trajectories during summer

months from June to August. The Polar Pathfinder Sea Ice

Motion product provided by the NSIDC contains daily grid-

ded fields of sea ice motion on a 25 km Equal Area Scal-

able Earth grid (EASE) for the period between 1978 to 2012

(Fowler et al., 2013). The motion vectors (hereafter referred

to as NSIDC) are obtained from a variety of satellite-based

sensors such as the SMMR, SSM/I, AMSR-E and Advanced

Very High Resolution Radiometer (AVHRR, only until 2004)

and buoy observations from the International Arctic Buoy

Program (IABP). In addition NCEP/NCAR winds are used

as an ice drift estimator (1% of wind speed, 20◦ turning an-

gle) when no other data are available, which can happen more

often during summer months. A description of the data set

and the sea ice motion retrieval algorithm can be found in

Fowler et al. (2013). According to the authors, the uncer-

tainty of the drift product is 1.0 cms−1. However, with the

progress of summer melting season, the error increases. By

using SAR-based ice drift as a reference, Sumata et al. (2015)

estimated the uncertainties to range from 1.0 to 2.0 cms−1

between May and July, depending on drift speed and ice con-

centration.

In addition to NSIDC drift data, the tracking routine as de-

scribed in Sect. 2.2.3 makes use of a second data set: sea ice

motion provided by the Center for Satellite Exploitation and

Research (CERSAT) at the Institut Francais de Recherche

pour d’Exploitation de la Mer (IFREMER). Since a substan-

tial part of Fram Strait sea ice originates from the Laptev

Sea (Rigor and Colony, 1997), the calculation of drift trajec-

tories requires a drift data set with good performance on the

Siberian shelf. Following Rozman et al. (2011) and Krumpen

et al. (2013), a comparison of different drift products with

high-resolution satellite and in situ drift data in the Laptev

Sea have shown that the CERSAT motion data has the high-

est accuracy in this region (less than 1.0 cms−1). Hence, the

ice drift data provided by CERSAT were used in the tracking

approach, bridged with NSIDC data during summer months.

The motion fields (hereafter referred to as CERSAT) are

based on a combination of drift vectors estimated from scat-

terometer (SeaWinds/QuikSCAT and ASCAT/MetOp) and

radiometer (SSM/I) data (Girard-Ardhuin and Ezraty , 2012).

They are available with a grid size of 62.5 km, using time

intervals of 3 days for the period between September and

May (1991 to present). Following Sumata et al. (2014), dif-

ferences between low-resolution motion products are small

for high ice concentration areas like the Transpolar Drift and

the Laptev Sea during winter. We therefore believe the bias

that may arise from blending two different motion data sets

to be small, too.

2.2.3 Sea ice pathways and source areas

To determine drift trajectories and source areas of sampled

sea ice we tracked the surveyed ice backward over a period of

The Cryosphere, 10, 523–534, 2016 www.the-cryosphere.net/10/523/2016/
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4 years using NSIDC and CERSAT ice drift and NSIDC ice

concentration products. A specific ice area is tracked back-

wards until: (a) the ice reaches a position next to a coast-

line, (b) the ice concentration at a specific location reaches

a threshold value of ≤ 15 % when ice parcels are considered

lost, or (c) the tracking time exceeds 4 years.

2.2.4 Ice age

Sea ice age information was obtained from the drift–age

model of Maslanik et al. (2011). Ice age is retrieved by track-

ing sea ice from the formation until the melt or export using

NSIDC ice concentration and drift data. The age information

provided for each grid cell is the age of the oldest tracer par-

cel that exists in the grid cell. The data set is available on

a 25km × 25km grid with a temporal resolution of 1 week

for the period between January 1990 and August 2013. For

more details we refer to Maslanik et al. (2011).

2.2.5 Ice area flux across Fram Strait

In Sect. 3.4 we relate recent changes observed in Fram Strait

ice thickness to satellite-based estimates of ice area flux. Ice

area flux estimates out of Fram Strait are calculated using

NSIDC motion estimates together with NSIDC ice concen-

tration information. Flux estimates are made along a zonal

gate positioned at 82◦ N between 12◦ W and 20◦ E, and

a meridional gate that connects the eastern end of the zonal

gate with Spitsbergen (80.6◦ N, 20◦ E, compare Fig. 1). The

ice area flux at the gates is the integral of the product be-

tween the meridional (V ) and zonal (U ) ice drift and ice

concentration. In the following, ice area flux across Fram

Strait is referred to as the sum of the meridional and zonal

ice fluxes. A positive (negative) sign refers to an export out

of (import into) the Arctic Ocean. Transport (flux) rates are

given in km2 day−1 or month−1. After removing the seasonal

cycle, trends were calculated by linear regression, and sig-

nificance at the 95 % confidence level (p) was determined

with Student’s t test. The corresponding uncertainties of ice

area fluxes are calculated as the integral of the product be-

tween NSIDC drift uncertainties provided by Fowler et al.

(2013) and Sumata et al. (2015) and ice concentration. Fol-

lowing Fowler et al. (2013), we assume the uncertainty of ice

drift velocity to be within the range of 1.0 cms−1 during win-

ter months (October–April). During summer months (May–

September), uncertainty estimates provided by Sumata et al.

(2015) are applied ranging from 1.0–2.0 cms−1, depending

on ice drift velocity and ice concentration. Additional bias

may arise from uncertainties in sea ice concentration data

during summer months. Following Ivanova et al. (2014), the

accuracy of sea ice concentration algorithms is lower during

summer due to the presence of melt ponds, wind-roughened

open-water areas and higher atmospheric humidity. The au-

thors reported differences in sea ice concentration among

11 algorithms of up to 8 % in September. Assuming the de-

viation among algorithms to be a valid measure for the po-

tential bias associated with the NDISC Bootstrap algorithm,

results in an additional area flux uncertainty of ± 4 % during

summer months.

3 Results and discussion

3.1 Fram Strait sea ice thickness, source area and age

To investigate pathways and source areas of the surveyed ice,

we used the location of the survey lines as starting points for

the backtracking algorithm. Figure 2 shows the trajectories of

ice surveyed in the area of interest between 2001 and 2012.

The analysis shows that the largest fraction of the ice orig-

inated in the Laptev Sea. It took approximately 2–3 years

of drift with the Transpolar Drift until the ice was exported

through Fram Strait. In contrast, the ice surveyed in 2010

west of the 0◦ meridian mostly originated from the Beaufort

Gyre.

Figure 3 compares the age of oldest ice (source: Maslanik

et al., 2011) covered by EM measurements with the aver-

age age of oldest sea ice exiting through the meridional and

zonal flux gates in summer (July–September). The time se-

ries shows a consistent decrease of the age of old Fram Strait

sea ice at a rate of 0.6 years per decade. This result is sig-

nificant at the 95 % confidence level. The average age of the

surveyed old ice between 2001 and 2012 is 2.56 years. The

youngest ice was observed in 2012 (2.1 years), and the oldest

ice was observed in 2004 (3.3 years). The surveyed ice had

a slightly higher mean ice age than all ice of Fram Strait com-

bined. However, the differences are within the standard devi-

ation (SE) and therefore in reasonable agreement. The good

agreement indicates that EM observations are representative

for a larger Fram Strait area.

Figure 4 summarizes EM thickness data obtained between

2001 and 2012. Owing to the rather limited number of cam-

paigns and the snapshot character of the surveys a trend anal-

ysis of the time series may be of limited value. Neverthe-

less, given the overlapping study regions and seasons and the

large lengths of surveys, the EM data provide evidence of

a changing Fram Strait sea ice cover that stands out of the

interannual variability and bias that may arise from year to

year varying snow cover (± 5.0 cm, Warren et al., 1999). Ac-

cording to Fig. 4 the modal ice thickness has decreased over

the past 11 years, with a distinct reduction in ice thickness af-

ter 2004, when the mode dropped by 36 % from 2.2 m (2004)

to 1.4 m (2012). Similar observations were made in 2007 at

the North Pole by Haas et al. (2008). The interannual vari-

ability in modal thickness can be explained to some degree

by different age compositions. For instance, the higher modal

thickness in 2004 is likely the consequence of predominantly

older ice (compare Figs. 2 and 3). However, there is no ev-

idence of a change in age composition of surveyed ice to-

wards younger ice that could explain the overall decline in

www.the-cryosphere.net/10/523/2016/ The Cryosphere, 10, 523–534, 2016
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Aug. 2001 Aug. 2004 Aug. 2011 Jul. 2012Aug. 2010

Figure 2. Backtracking of sampled sea ice using a combination of ice drift and concentration information. The start points of the trajectories

(gray lines) are equivalent to the positions where EM measurements were obtained during the individual years. The black dots correspond to

the position of particles on 21 September, when first-year ice becomes second-year ice, and second-year ice becomes multiyear ice.

1990 1995 2000 2005 2010

1

2

3

5

4

6

Figure 3. Comparison of age of sea ice covered by EM measure-

ments and mean summer ice age in Fram Strait obtained from

Maslanik et al. (2011): the black line represents the average July–

September ice age along the meridional and zonal gates through

which satellite-derived ice area fluxes were calculated (compare red

line in Fig. 1). A trend line is added (dashed black line). The age

of sea ice covered by EM measurements between 2001 and 2012 is

indicated by orange circles. The gray shaded area and dashed bars

correspond to the standard deviation of ice age for satellite and ob-

servational data, respectively.

ice thickness. In fact, the length of pathways and age of sur-

veyed ice in 2010 and 2012 does not differ much from 2001,

but the modal thickness is significantly lower. Therefore, we

assume that the decline in modal thickness observed in Fram

Strait rather reflects the thinning of second-year and multi-

year ice in the Laptev Sea (source area) and Transpolar Drift

than decreasing age. The decrease in modal thickness is ac-

companied by a decrease in ridged ice (fraction of ice thicker

than 3 m). Note that in 2001 and 2004, the fraction of de-

formed ice is twice as high as in 2010, 2011 or 2012. Similar

to the modal ice thickness, some of the interannual variability

may be related to a varying age composition, but the overall

decline is independent of ice age. Hence, the reduction of the

deformed ice fraction points to a reduction in the deforma-

tion history in source areas and along pathways, mainly in the

Laptev Sea and along the Transpolar Drift, which is in agree-

ment with findings of Hansen et al. (2013, 2014). Following

the authors, the decrease can be associated with changes in

wind stress or a loss in perennial ice (decrease in ice age),

since younger ice likely contains less consolidated pressure

ridges. Another important factor that could explain the ob-

served decrease in deformation is ocean heat, since melt rate

is thickness dependent and an increase in ocean heat affects

ridges much more than surrounding level ice. The decrease

in ice extent (Meier et al., 2014), and the speed-up of ice drift

along the pathways with the associated increase in lead frac-

tion (Rampal et al., 2009) leads to an increased heat uptake

which could in turn result in enhanced melt of deformed ice.

The shrinking tail of the ice thickness distribution as well as

the decrease in modal ice thickness is also reflected in the

mean thickness. Figure 4 shows that during the past 11 years

the mean thickness dropped by 16 % from 2.58 m in 2001

to 2.17 m in 2012. A slight increase in mean thickness takes

place after 2010. The increase is related to an increase in

the fraction of deformed ice between 2010 and 2012. This

is in agreement with Hansen et al. (2014) who estimate that

the contribution of thick, deformed ice towards the mean ice

thickness is decreasing from about 70 % in 2001 to about

50 % in 2011.

The comparison of AEM- and GEM-based observations

may introduce an additional uncertainty and must be limited

to a comparable range of the thickness distribution. Although

GEM data were obtained on a daily basis at representative lo-

cations along the ship track, the ground-based thickness sur-

veys of 2001 are limited to large floes and predominantly

level ice thick enough to walk on. In addition, the footprint

of ground-based measurements is smaller than the footprint

of airborne surveys which reduces footprint smoothing of

pressure ridges. However, thickness distributions obtained by

both methods in the same region have very similar shapes and

modes (e.g., Haas et al., 2006, 2008, their Fig. 3), warranting

their combination for this study. To further ensure compat-

ibility with the AEM thicknesses, the GEM data have been
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Figure 4. Mean (gray) plus standard deviation (black lines) and

modal (black circles) EM ice thickness (ice plus snow (0.1 m) thick-

ness) obtained in the Fram Strait region between 2001 and 2012 (left

axis). The fraction of ice thicker than 3 m (right axis) is represented

by orange circles. The locations of the performed survey flights is

shown in Fig. 1.
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Figure 5. Comparison of mean (upper panel) and modal (lower

panel) EM ice thicknesses (ice plus snow thickness) as obtained

by ULS (source: Hansen et al., 2013), GEM (source: Renner

et al., 2014) and GEM/AEM measurements in Fram Strait area.

Gray/red triangles represent average August/July ULS measure-

ments. The blue rectangles correspond to GEM measurements car-

ried out between end of August and September. Black dots repre-

sent AEM/GEM measurements obtained during two cruises with

RV Polarstern (August 2001 and 2004) and three surveys with the

research aircraft Polar 5 (August 2010 and 2011, July 2012).

regridded to the sampling interval of the airborne data and

ice thinner than 0.15 m and open water has been excluded

from the analysis of the AEM measurements (see Sect. 2.1).

For our study we assume that mean thicknesses obtained with

both method are comparable as well. We base this assump-

tion on the high number of available GEM surveys and the

general exclusion of thin ice thicknesses from the AEM data,

which will be vastly underrepresented in the GEM data.

3.2 Comparison to other observations

In Fig. 5 we compare our thickness measurements with thick-

ness estimates made by Renner et al. (2014) and Hansen et al.

(2013). By means of moored upward looking sonar (ULS)

positioned between 79◦ N, 7◦ W and 79◦ N, 3◦ W, Hansen

et al. (2013) reconstructed a time series of sea ice thick-

ness over 21 years (1990–2011). To enable a comparison

with our observations, ULS thickness estimates in Fig. 5 are

averaged August measurements, except for 2012 where av-

eraged July measurements are used. Ice thickness measure-

ments taken from Renner et al. (2014) were obtained with

a GEM during cruises with RV Lance (Norwegian Polar In-

stitute). Measurements cover the width of Fram Strait along

approximately 79◦ N in September between 2003 and 2012.

For details about data processing and handling we refer to

Renner et al. (2014) and Hansen et al. (2013). A decrease in

both, modal and mean thickness with a distinct reduction af-

ter 2004 is visible in all three data sets. According to the ULS

observations, the mean and modal thickness in August is de-

creasing by 0.65 m and 0.41 mdecade−1 between 1990 and

2012. GEM observations indicate an even more pronounced

thinning of Fram Strait ice cover. A direct comparison of our

observations with ULS- and GEM-based data is however dif-

ficult. In contrast to the AEM data, the ULS measurements

consist of monthly averaged records obtained at single points

located approximately 300 km further south. Nevertheless,

despite the different locations the agreement between ULS

and AEM data for August 2010 and 2011 and July 2012 is

high. This indicates that a few but long AEM profiles pro-

vide representative information on ice thickness distribution

even in areas of highly variable ice age and thickness com-

position such as Fram Strait. For the last 3 years, the agree-

ment between AEM data and GEM measurements obtained

by Renner et al. (2014) is high, too. Nevertheless, taking into

account that GEM measurements by Renner et al. (2014)

were obtained approximately 1 month later (September), one

would expect the GEM thickness measurements to be lower

than ULS and AEM data. According to Renner et al. (2014),

the positive offset is likely related to the absence of thin ice

classes in the observations and preferential sampling of the

survey sites.

3.3 Along- and across-strait thickness gradients

The thinning due to atmospheric and oceanographic pro-

cesses on southward-moving sea ice was investigated during

two ice thickness surveys performed in the downstream di-

rection. Figure 6a shows AEM profiles that were made on

4 August 2011 and 21 July 2012. The first profile started at

81◦ N, 0◦ E and covers a distance of 290 km (south to 79◦ N,

10◦ W).

According to aerial photos taken during the flight, the

ice cover was rather homogeneous. Likewise, there is no

gradient in ice concentration along the profile or changes

www.the-cryosphere.net/10/523/2016/ The Cryosphere, 10, 523–534, 2016



530 T. Krumpen et al.: Fram Strait sea ice thickness and summer export

Figure 6. Across- and along- Fram Strait thickness gradients: (a) Along-strait flights made in August 2011 and 2012 between 10◦ W and

0◦ E. (b): Across-strait flights made in 2010 (at 81◦ N) and 2012 (at 82◦ N). Gray rectangles correspond to the mean thickness with standard

deviation (black solid lines), whereas black circles indicate modal thickness. The corresponding trend lines are plotted on top.

in the frequency of open-water occurrence. The high spa-

tial variability in mean thickness makes an identification of

a thickness gradient impossible. However, the modal thick-

ness shows a continuous decrease of 0.19 mdegree−1 lati-

tude. The decrease in modal thickness is likely associated

with oceanographic and atmospheric processes acting on the

pack ice while drifting south: differences in net short- and

longwave radiation and the presence of warm Atlantic wa-

ter may lead to enhanced surface and bottom melt that could

explain the observed gradient. A thinning of 0.38 m implies

a heat flux of 16 Wm−2. In principle, one could quantify

the contribution of warm Atlantic water to sea ice melt via

the determination of the atmospheric radiative fluxes and

the transit time of sea ice between 81◦ N, 0◦ E and 79◦ N,

10◦ W. For example, using the backtracking approach as de-

scribed in Sect. 2.2.3, we estimated the transit time of sea

ice to be around 80 days. However, an exact determina-

tion of the transit time using low-resolution drift products

is difficult, since their reliability is significantly reduced in

the southern Fram Strait. In addition, atmospheric reanaly-

sis products show large differences in radiative fluxes: the

NCEP-based difference in net radiation between 81◦ N, 0◦ E

and 79◦ N,10◦ W amounts to 12 Wm−2 for a transit time of

80 days. The difference in radiative fluxes based on ERA-

Interim data is much smaller (2.5 Wm−2). Hence, an exact

determination of oceanographic and atmospheric processes

contributing to the observed gradient remains elusive with-

out additional observations.

In 2012, a second 170 km long flight in the upstream di-

rection was performed. Measurements were a continuation

of the transect made in 2011 and started at 80.5◦ N. The

ice cover was again rather homogeneous with a few leads.

According to Fig. 2 ice was formed in the western Laptev

Sea and transported via the Transpolar Drift towards Fram

Strait. The absence of a gradient in modal thickness indicates

that enhanced bottom or surface melt due to atmospheric or

oceanographic processes is limited to areas south of ≈ 80◦ N.

The ice thickness gradient across Fram Strait was inves-

tigated during two flights in 2010 (22 August) and 2012

(21 July). The long operating distance of Polar 5 enabled

us to obtain the first continuous profiles over closed ice

pack north of 81◦ N. The across-strait ice thickness profile

is presented in Fig. 6b. Both transects show a negative trend

in modal (0.02 m and 0.04 mdegree−1 longitude) and mean

(0.03 m and 0.11 mdegree−1 longitude) ice thickness from

West to East. The gradient in mean thickness is thereby more

pronounced than the gradient in modal thickness. For sea

ice at this latitude or higher, one can assume the impact of

oceanographic and atmospheric processes on the ice cover

to be smaller. This assumption is supported by the absence

of a gradient in modal ice thickness for sea ice upstream

of 80.5◦ N discussed above. Hence, we assume the observed

gradient to be mainly associated with differences in age and

deformation of ice provided by the Transpolar Drift system.

A comparison to Fig. 2 reveals that the ice that enters Fram

Strait west of the prime meridian is indeed older and there-

fore most likely thicker than ice that enters through the east-

ern section. Note that the good agreement between the length

of pathways and observed thickness gives us confidence in

the performance of the tracking approach.

Earlier quantifications of across-strait gradients were

made by Hansen et al. (2013) and Renner et al. (2014) ap-

proximately 300 km further south at 79◦ N. Their estimates

are based on interpolations between single-point upward-

looking sonar measurements and on merged EM profiles

obtained during different days. For this position, the au-

thors reported a decline in across-strait modal thickness of
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Figure 7. Monthly ice area export (given in ×103 km2) across Fram Strait. The black line presents area fluxes calculated from NSIDC drift

and concentration information across the meridional and zonal gates (compare Fig. 1). In gray, the corresponding uncertainty estimates are

given. The blue and red lines indicate monthly sea ice area transports across 79◦ N, 15◦ W and 79◦ N, 5◦ E based on SAR images (Kloster

and Sandven, 2011) and based on SLP gradients (Smedsrud et al., 2011), respectively. Trend lines for individual flux estimates are plotted

on top.

Figure 8. July (black) and August (red) ice area export across Fram

Strait (given in ×103 km2), plotted on top of the corresponding un-

certainty estimates (gray and light red). Area fluxes were calculated

from NSIDC drift and concentration data. The associated volume

flux for the years where EM measurements are available is calcu-

lated as the product of NSIDC area flux estimates (August) and EM

mean thickness (black dots, right axis). The error bars indicate un-

certainties of volume estimates. Note that for 2012, where AEM

measurements were made 1 month earlier, area transport rates for

July were used.

−0.1 to −0.3 mdegree−1 longitude (Renner et al., 2014) and

−0.23 mdegree−1 longitude (Hansen et al., 2013).

3.4 Summer sea ice area and volume fluxes

To quantify whether coupled sea ice ocean models are ca-

pable of reproducing Fram Strait sea ice volume fluxes cor-

rectly, validation data are required. Using satellite data, the

volume flux in Fram Strait can be described as the prod-

uct of southward-directed sea ice motion, concentration and

mean thickness. Information on ice drift and concentration is

available on a year-round basis. However, the availability of

satellite-based thickness data from ICESat or CryoSat-2 are

restricted to winter months, which is why ice volume flux es-

timates for summer periods are scarce. In the following, we

will therefore use the presented EM measurements together

with satellite-based area flux estimates to calculate volume

outflows for the periods when thickness surveys were made.

Because of its year-round availability, ice area flux out of

Fram Strait is calculated using NSIDC motion estimates to-

gether with NSIDC ice concentration information. Figure 7

shows the monthly ice area export across Fram Strait from

1980 to 2012 (black line) together with the associated un-

certainty estimates (gray). Note that the area flux is the sum

of meridional and zonal components, with a positive sign re-

ferring to ice export, and a negative sign indicating ice im-

port into the Arctic (see Sect. 2.2.5). The average monthly

ice area flux amounts to 46 × 103 km2 with a standard devi-

ation of 38×103 km2 and an uncertainty of ± 18 × 103 km2.

The monthly ice export shows a pronounced seasonal cy-

cle with lowest fluxes in July and August and highest ex-

port rates between December and March. During summer,

flux rates are significantly lower and can become even neg-

ative, such that ice is being imported from southern Fram

Strait. The pronounced seasonal cycle and much of the in-

terannual variability of ice area export are associated with

changes in SLP gradients across the gate, because gradients

are generally lower during summer months and higher dur-

ing winter. In addition, sea ice concentration in Fram Strait is

lower during summer months, which leads to reduced export

rates between July and September. The reduced drift speed

and ice concentration during summer (May–September) also

results in higher uncertainties (± 19 × 103 km2). Likewise,

during winter months, when average drift speed and ice

concentration are higher, the uncertainty of area flux esti-

mates is lower (October–April, ± 14 × 103 km2). Overall we

find a positive trend in monthly Fram Strait area flux of

10.9×103 km2 decade−1. The trend is significant at the 99 %

confidence level. Following Smedsrud et al. (2011) the in-

crease in ice export is the consequence of a positive trend in

the local pressure gradient, related to intensification of cy-

clones over the Nordic Seas. According to that study the sea

ice area export has increased by about 25 % since the 1960s.

The increase in ice export occurred mostly during winter and

is directly connected to higher southward ice drift velocities,

due to stronger geostrophic winds. In contrast, other studies
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(Kwok, 2009; Kwok et al., 2013) did not observe any signif-

icant trend in ice area export for the past decades.

The area export for July, August and September accounts

for only 6.2 % of the annual fluxes. The months with the

lowest net contributions are July and August (1.4 %). Ice

area export rates for both months are shown together with

associated uncertainty estimates in Fig. 8 (black and red

lines). The net sea ice export during July and August is

positive, but estimates show considerable interannual vari-

ability with the highest rates occurring in August of 1994,

2006 and 2010 and lowest in 1981 and 1998. The aver-

age August ice area flux amounts to 4.3 × 103 km2 with

a standard deviation (SE) of 19 × 103 km2 and an uncer-

tainty of ±21 × 103 km2. The average July ice flux is a bit

lower (3.8×103 km2
± 13 × 103 km2) with higher uncertain-

ties (±24 × 103 km2). Note that there is a positive trend

in the August and July ice export of 5.5 × 103 and 2.3 ×

103 km2 decade−1, respectively. The trend is however not sta-

tistically significant.

The associated volume fluxes for the years where

GEM/AEM measurements are available (Fig. 8) is calculated

as the product of area flux and mean GEM/AEM thickness

minus the snow thickness assumptions we made for August.

The uncertainty of volume fluxes is the product of area flux

uncertainties and mean ice thickness plus the snow thick-

ness uncertainty (±5.0 cm). For 2012, where AEM measure-

ments were made 1 month earlier, area transport rates for

July (black line) were used. Given the low area export in

July and August, the volume transport is low, too. For the

investigated months, the average volume export amounts to

16.78 km3 with highest rates in August 2010 (61.25 km3) and

lowest in August 2001 (−15.35 km3). The average uncer-

tainty amounts to ±44.48 km3.

The reliability of volume flux depends as well on the ac-

curacy of sea ice motion information in summer as on the

available ice and snow thickness information. An additional

bias of ± 4 % may arise from uncertainties in sea ice concen-

tration during summer months. This error is however difficult

to account for, since we expect it to vary with the presence of

thin ice and melt ponds, atmospheric water vapor and water-

surface roughening by wind (Ivanova et al., 2014). Assuming

that the sea ice thickness PDFs are accurate, and uncertain-

ties related to interannual variability in snow cover are small

(±5 cm), the biggest error in volume flux estimates arises

from sea ice motion information. Due to the lack of sea ice

motion observations obtained from drifting buoys in Fram

Strait during summer months, we cannot evaluate the uncer-

tainty of satellite-based sea ice motion information directly.

Nevertheless, recent studies of Sumata et al. (2014, 2015) in-

dicate that NSIDC ice motion information suffer from a gen-

eral underestimation of drift during summer months and

a generally reduced accuracy in the narrow Fram Strait. In

particular, low drift velocities and ice concentration result in

errors of up to 2.0 cms−1. In this study we apply the uncer-

tainty estimates provided by Sumata et al. (2015) for differ-

ent drift speeds and ice concentration to evaluate reliability

of our flux calculations. As an additional quality control we

compare our results with area flux estimates from Kloster

and Sandven (2011) and Smedsrud et al. (2011) (Fig. 7, red

and gray line). Area flux calculations of Kloster and Sand-

ven (2011) are based on ice concentration data and man-

ually derived ice motion information from ENVISAT SAR

images. SAR WideSwath image pairs were captured 3 days

apart with uninterrupted year-round coverage from Febru-

ary 2004 to December 2011. Estimates were made across

79◦ N, 15◦ W and 79◦ N, 5◦ E. Note that at 79◦ N Fram Strait

is relatively narrow and therefore only a limited number of

images are needed to cover the entire passage. According to

the authors, the monthly mean export uncertainties amount

to 5 %. Smedsrud et al. (2011) used the pressure differ-

ence (NCEP/NCAR reanalysis data) between 79◦ N, 25◦ W

and 79◦ N, 5◦ E together with SAR-based flux estimates of

Kloster and Sandven (2011) to estimate the linear regression

between geostrophic winds, sea ice drift speed and ice area

export. The linear relationship was then used to reconstruct

ice area export based on pressure differences for the period

between 1957 and 2010. A direct comparison of our area

flux estimates with the findings of Smedsrud et al. (2011)

and Kloster and Sandven (2011) is difficult, because area flux

estimates are based on different methods and were made at

different latitude gates. However, a comparison of our find-

ings with area export estimates of others reveals that the trend

in NSIDC export rates is much higher (37.6 %decade−1 for

the period 1980–2012) than the trend found by Kloster and

Sandven (2011) (22.2 %decade−1 for the period 2004–2011,

compare Fig. 7) or the trend reported by Smedsrud et al.

(2011) (4.7 %decade−1 for the period 1980–2010), and in

contrast to Kwok (2009) and Kwok et al. (2013), who did

not observe any significant trend in ice area export for the

past decades. A discussion on causes of differences in ob-

served trends is beyond the scope of this paper. Nevertheless,

despite large differences in observed trends the concordance

between our findings and estimates of Kloster and Sandven

(2011) and Smedsrud et al. (2011) gives us confidence in

our results. The agreement in seasonal variability indicates

that there is a relative consistency between area fluxes: the

correlation coefficient (r) between NSIDC-based estimates

and computations of Smedsrud et al. (2011) is 0.79 and be-

tween NSIDC area flux and SAR-based estimates 0.80. The

agreement between SAR-, and SLP-based export rates are of

the same order (r = 0.82). A comparison of absolute fluxes

for the periods where NSIDC, NCEP/NCAR reanalysis data

and SAR-based estimates are available (2004–2010) shows

that our estimates are approximately 18 and 20 % lower than

estimates of Smedsrud et al. (2011) and Kloster and Sand-

ven (2011). If the intercomparison is limited to summer

months only (July–September), NSIDC-based export rates

are within the range of SAR-based estimates (27 × 103 km2

vs. 28 × 103 km2), whereas computations based on pressure

differences are higher (53 × 103 km2).
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4 Conclusions

We present a data set of ground-based and airborne electro-

magnetic (EM) ice thickness measurements covering Fram

Strait and the southern part of the Transpolar Drift in sum-

mer between 2001 and 2012. The data set adds to existing

ice thickness information, with the addition of long transects

that can only be obtained by fixed-wing aircrafts.

An investigation of pathways and source areas of surveyed

sea ice shows that the largest fraction of ice has been formed

in the Laptev Sea. The average age of ice covered by EM

measurements is between 2.1 and 3.3 years. Keeping lim-

itations of the rather short and irregular-spaced time series

in mind, the EM data provide evidence of a changing Fram

Strait sea ice cover. As seen also in other, independent data

sets, the observed decrease in modal thickness between 2001

and 2012 likely reflects a thinning of second-year and multi-

year ice cover leaving the Arctic Basin through Fram Strait.

The decrease in modal thickness is accompanied by a de-

crease in mean thickness and fraction of ice thicker than 3 m.

The thinning effect of atmospheric and oceanographic pro-

cesses on southward-moving sea ice was investigated during

two ice thickness surveys performed in the downstream di-

rection. A decrease in modal thickness of 0.19 mdegree−1

latitude south of 81◦ N is likely associated with atmospheric

and oceanic processes, leading to enhanced surface and bot-

tom melt. Further north, the variability in ice thickness is

more likely related to differences in age and deformation of

ice.

Together with satellite-based area flux estimates, we used

our thickness measurements to calculate volume fluxes dur-

ing summer months and associated uncertainties. Ice area

flux estimates are performed using satellite-based ice con-

centration and drift data. In agreement with Smedsrud et al.

(2011) we find a significant positive trend in monthly Fram

Strait area flux. The summer (July and August) ice area ex-

port is low compared to the annual values with high uncer-

tainties. For the investigated months, the average volume ex-

port amounts to 16.78 km3 with highest rates in August 2010

(61.25 km3) and lowest in August 2001 (−15.35 km3). Nat-

urally, the volume flux estimates are limited to the period

when airborne thickness surveys are available. Nevertheless,

we could show that the combination of satellite data and air-

borne observations can be used to determine volume fluxes

through Fram Strait and as such, be used to bridge the lack

of satellite-based sea ice thickness information in summer.

Therefore, airborne thickness surveys in Fram Strait should

be continued and extended in the future.
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