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We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon
(PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Ker-
guelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was
decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was
characterized by a late summer (February) maximum. This peak was concomitant with the highest sa-
tellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that ac-
counted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much
lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer
export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability
as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight
(SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same
methodology and found no significant difference in SNW between sites for a given species. However, the
SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bul-
loides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to
a low carbonate counter pump effect (�5%) compared to a previous study north of the PF (6–32%). We
suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a
dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a
predominance of polar species with lower SNW.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Southern Ocean is the largest high nutrient, low chlor-
ophyll (HNLC, Minas et al., 1986) area of the global ocean (Martin
et al., 1990; Minas and Minas, 1992). Downstream of Subantarctic
island plateaus, iron input from shelf sediments and glacial melt
water can alleviate iron limitation and support large scale and
long-lasting phytoplankton blooms (Blain et al., 2001, 2007; Pol-
lard et al., 2007; Tarling et al., 2012). These blooms are dominated
by diatoms (Armand et al., 2008; Korb et al., 2008; Quéguiner,
2013) that respond to high macronutrient concentrations, marked
turbulence, deep mixed layer depths and usually moderate light
embauville).
levels (Smetacek, 1985; Boyd, 2002; Strzepek et al., 2012). Diatom
blooms result in a major contribution of biogenic silica to bio-
mineral production of Southern Ocean waters, although biogenic
production of calcium carbonate by calcifying planktonic organ-
isms such as coccolithophores, foraminifers and pteropods can
also occur.

Although neglected for a long time, the presence of cocco-
lithophores in the Southern Ocean has been diagnosed based on
an increasing number of direct observations (Winter et al., 2014)
and the development of remote sensing methods (Balch et al.,
2005, 2011, 2014). Southern Ocean coccolithophore populations
are dominated by the cosmopolitan species Emiliania huxleyi
(Saavedra-Pellitero et al., 2014; Winter et al., 2014) that is thought
to be the major component of the “great calcite belt” observed in
the vicinity of the Subantarctic Front (SAF) and Polar Front (PF)
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(Balch et al., 2014). Several studies have reported modern planktic
foraminifer abundances and fluxes in the Southern Ocean from net
tows (Asioli and Langone, 1997; Mortyn and Charles, 2003; Ber-
gami et al., 2009; Meilland, 2015) and sediment traps (Donner and
Wefer, 1994; King and Howard, 2003; Northcote and Neil, 2005;
Salter et al., 2014). Foraminifer assemblages are characterized by a
southward dominance of polar species Neogloboquadrina pachy-
derma. In a review, Hunt et al., (2008) compiled pteropod abun-
dance in the Southern Ocean and reported a switch from a dom-
inance of Limacina retroversa australis north of the PF to Limacina
helicina antarctica south of the PF.

The presence of calcareous organisms has important implica-
tions not only for food web ecology of the Southern Ocean, but
also for the cycling of carbon between the atmospheric, oceanic,
and sedimentary reservoirs on various climatically relevant time-
scales. Two distinct carbon pumps operate to cycle carbon trough
these different reservoirs (Volk and Hoffert, 1985). The soft tissue
pump transfers particulate organic carbon (POC) originating from
photosynthetic production to the ocean interior and plays a key
role in the sequestration of atmospheric CO2 (Sarmiento et al.,
1988). The carbonate pump exports particulate inorganic carbon
(CaCO3, PIC) mainly as detrital calcareous shells (Volk and Hoffert,
1985). Calcification in the mixed layer decreases total alkalinity
(TA) and dissolved inorganic carbon (DIC) with a ratio 2:1 and acts
as a net source of CO2 to the atmosphere over a seasonal timescale
(Frankignoulle et al., 1994). If the PIC production is exported in the
deep ocean below the permanent thermocline, the net impact on
the atmospheric CO2 occurs at a much longer timescale corre-
sponding to the ocean mixing time (�1000 years, Zeebe, 2012).
This phenomenon is known as the “carbonate counter pump” ef-
fect. Additionally, it has been suggested that during the last gla-
ciation, lower PIC:POC export ratio due to increased organic car-
bon export may have contributed to higher dissolution of the
deep-ocean carbonate sediments, leading to a decrease in pCO2

compared to the interglacial periods (Archer and Maier-Reimer,
1994; Archer et al., 2000; Sigman and Boyle, 2000). Therefore the
PIC:POC ratio of exported particles is likely to have a significant
impact on the atmosphere-ocean CO2 fluxes from seasonal to
geological timescales (Matsumoto et al., 2002; Sarmiento et al.,
2002). More recently, in the Subantarctic Southern Ocean, the
strong response of calcifying organisms to natural iron fertilization
has been observed to increase the PIC:POC export ratio leading to a
strong carbonate counter pump, lowering the efficiency of CO2

sequestration by the biological carbon pump (Salter et al., 2014).
Understanding how calcifying communities drive the carbonate

counter pump requires a coupled description of the chemical
composition and biological properties of different vectors driving
CaCO3 export fluxes. Sediment trap studies provide a tractable
framework to link detailed analyses of the morphological and
physiological properties of exported calcareous particles (e.g.
species composition, test size and test weight) with seasonal and
annual geochemical budgets. In this context, the study by Salter
et al. (2014) quantified a carbonate counter pump effect account-
ing for 6–32% of measured POC fluxes with a notable contribution
from foraminifer species (mainly Globigerina bulloides and N. pa-
chyderma) in iron-fertilized waters downstream of the Crozet Is-
lands. Several studies have reported geochemical transitions in
particle stoichiometry across the Polar Front (Trull et al., 2001;
Honjo et al., 2008), highlighting the importance of regional
variability for a Southern Ocean carbonate counter pump that is
partly linked to the biogeography of calcareous organisms (Salter
et al., 2014).

The objectives of the present study are to (1) quantify the
magnitude of PIC export and the carbonate counter pump in an
iron fertilized area (the Kerguelen Plateau) south of the Polar Front
(Antarctic Zone, AAZ), (2) determine the relative contribution of
foraminifer and coccolithophores to total PIC export in this regime,
and (3) constrain the importance of species composition and test
characteristics (size and size-normalized weight) for foraminifer-
mediated PIC fluxes in iron fertilized blooms of the Southern
Ocean.
2. Materials and methods

2.1. Sediment trap deployment and environmental data

As part of the KEOPS2 project (Kerguelen Ocean and Plateau
compared study 2), a sediment trap (Technicap PPS3, 2.5 aspect
ratio) was moored for 11 months (21 October 2011 to 7 September
2012) at 289 m over the central Kerguelen Plateau (seafloor depth
527 m) at station A3 (50 °38.3 S–72 °02.6 E, Fig. 1a,b). The car-
rousel comprised 12 sampling cups (250 mL) containing 5% for-
malin hypersaline solution buffered with sodium tetraborate
(pH¼8). A detailed description of the sample processing and
particulate organic carbon (POC) analyses are provided in Re-
mbauville et al. (2015b). Briefly, swimmers (zooplanktonic or-
ganisms actively entering the trap) were manually removed,
samples were freeze-dried and the carbonate fraction was dis-
solved by the addition of acid before the organic carbon content
was measured with a CHN analyzer.

Station A3 is characterized by a recurrent and large phyto-
plankton bloom induced by natural iron fertilization coming from
the underlying plateau (Blain et al., 2007). Dissolved iron (dFe) is
delivered to the mixed layer through two processes: winter mixing
and entrainment of dFe from deeper waters and, to a less extend,
vertical diapycnal diffusion of dFe in summer (Bowie et al., 2015).
South of the Kerguelen Island, the polar front is permanent and
non motile (Park et al., 2014) and therefore does not impact se-
diment trap deployment location. At the A3 station, the circulation
is weak (o3 cm s�1) and primarily tidal-driven (Park et al., 2008).
Physical data acquired during the sediment trap deployment
suggest the record was not subject to major hydrodynamic biases
(Rembauville et al., 2015b), allowing a detailed and quantitative
discussion of the export fluxes.

Satellite-derived surface chlorophyll a and PIC concentration
(MODIS 8 days product, accessed at http://oceancolor.gsfc.nasa.
gov/cms/), and sea surface temperature (NOAA OISST, weakly
product, Reynolds et al., 2007) were extracted for a 100 km radius
around the trap location. Calcite saturation state was calculated in
the vicinity of the trap location with the CO2sys toolbox using
climatological fields of DIC and Alkalinity (GLODAP, Key et al.,
2004) and temperature, salinity, silicate and phosphate (World
Ocean Atlas 2013, Garcia et al., 2013). Constants recommended for
best practice were used (Dickson et al., 2007) as suggested by Orr
et al. (2015).

2.2. Calcium analyses in the bulk and fine fractions

For bulk particulate inorganic carbon analyses, 5 mg of freeze-
dried material was weighed (Sartorius MC 210 P balance) into
Teflon vials for the mineralization. 1 mL of 65% HNO3 was added
and samples were placed in an ultrasonication bath for 20 min.
Samples were then dried overnight at 130 °C. 0.5 mL of 65% HNO3

and 0.5 mL of 40% HF were added and samples were ultra-
sonicated a second time and dried overnight. The resulting residue
was dissolved in 10 mL of 0.1 N HNO3 and calcium content ana-
lyzed by inductively coupled plasma – optical emission spectro-
metry (ICP-OES, Perkin-Elmer Optima 2000). The efficiency of the
mineralization procedure was estimated using reference material
(GBW-07314) and was 496%.

For the fine fractions (20–63 mm ando20 mm) Ca analyses, the

http://oceancolor.gsfc.nasa.gov/cms/
http://oceancolor.gsfc.nasa.gov/cms/


Fig. 1. (a) Map showing the locations of the sediment trap deployments in the
Indian Sector of the Southern Ocean. Grey scale represents MODIS surface chlor-
ophyll a climatology. Arrows are climatological altimetry-derived surface geos-
trophic currents (AVISO product). Dashed lines denote the Subantarctic Front (SAF)
and Polar Front (PF). SAZ: Subantarctic Zone, PFZ: Polar Frontal Zone, AAZ: Ant-
arctic Zone. The 1000 m isobath is shown as a black contour line. (b) Section of
temperature (World Ocean Atlas 2013, grey scale) and calcite saturation state (black
isolines) along the 70°E meridian. (c) Same as (b) along the 55 °E meridian.
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original 1/8 split samples (Rembauville et al., 2015b) were further
split into 1/80 aliquots with a rotary wet-splitter (McLane WSD-
10) using purified water (Elix by Millipore purification system)
buffered with ammonia as a rinse solution. Coccoliths in sinking
particles captured in sediment trap samples may be contained in
faecal pellets and/or phytoplankton aggregates. To improve the
efficiency of size fraction separation by sieving it is necessary to
oxidize the samples to disaggregate particles and retrieve the
entire carbonate fine fraction (Bairbakhish et al., 1999; Broerse
et al., 2000; Ziveri et al., 2000; Stoll et al., 2007). The 1/80 aliquots
were placed in a 50 mL centrifugation tube for the oxidation steps
using a method adapted from Bairbakhish et al. (1999). Samples
were centrifuged (5000 rpm, 5 min) and the supernatant with-
drawn. Subsequently, 3 mL of Elix water buffered with ammonia,
3 mL of 5% NaClO and 1.5 mL of 30% H2O2 were added and the
samples were ultrasonicated for 10 s. Every 10 min, 2 mL of NaClO
were added and samples were ultrasonicated for 10 s. This cycle
was repeated for one hour. The oxidized aliquot was wet-sieved
over a 63 mm and a 20 mm mesh, and the two resulting size frac-
tions (20–63 mm ando20 mm) were filtered on polycarbonate
membranes (0.4 mm pore size, 47 mm diameter). Filters were dried
at 40 °C and the residue was leached in 10 mL 1% HNO3, ultra-
sonicated for 10 min and left 12 h at room temperature before the
Ca analysis. Ca concentration was analyzed by inductively coupled
plasma-atomic emission spectrometry (ICP-AES, Perkin Elmer,
Optima 4300DV). Overall accuracy amounted to better than 2%
based on replicate analysis.

For the qualitative analyses of the coccolithophore species
composition, samples were prepared in a similar way as for the
fine fraction Ca analysis (oxidation and sieving) and then filtered
on cellulose acetate membranes (Millipore, 0.45 mm pore size,
47 mm diameter). Filters were dried at 40 °C and observed under a
polarized microscope at 1200 magnification.

2.3. Foraminifer carbonate flux estimation

Foraminifer quantification, morphometric measurements and
weighing was performed following the methods outlined in Salter
et al. (2014). One 1/8 aliquot was sieved on a 63 mm mesh with tap
water and the 463 mm fraction was dried overnight (40 °C). Dried
particles were homogeneously placed on a glass tray. Images of the
entire 1/8 sample were acquired with a fully automated incident
light monocular microscope (Leica Z16 APO), and a motorized xy-
stage with a Lstep-PCI controller (Märzhäuser). High-resolution
images (1.4 mm�2 pixel�1) were taken with a color camera (SIS
CC12). Particle size (minimum test diameter, dmin) was auto-
matically analyzed using analySIS FIVE software (SIS/Olympus
with a MAS software add-in). Foraminifer species were manually
counted and classified into morpho-species following the taxo-
nomic concept of Hemleben et al. (1989). Eight species of planktic
foraminifer were identified: Neogloboquadrina pachyderma (left
coiling), Neogloboquadrina incompta (right coiling), Turborotalita
quinqueloba, Globigerinita uvula, Globigerinita glutinata, Globor-
otalia inflata, Globigerinoides ruber (sensu stricto) and Trilobatus
sacculifer (normal type). Only one empty shell of pteropod (Lima-
cina helicina) was found in the samples and therefore pteropod's
contribution to the passive carbonate flux was considered negli-
gible. However, numerous pteropods were found as swimmers
(distinguished by well preserved organic material) actively enter-
ing the trap in late summer (Rembauville et al., 2015b). Those
shells were withdrawn from the samples as they were considered
not to contribute to the passive flux. To determine size-weight
relationships, individuals of N. pachyderma (n¼23), N. incompta
(n¼10), T. quinqueloba (n¼60) were manually picked from sam-
ples representative of different flux conditions (spring, summer
and winter). Individuals were placed in aluminium cups and
weighed (Mettler Toledo XP2U, 0.1 μg precision). Samples were
acclimatized in the weighing room for at least 12 h before the
analysis. Once the test weight was determined, the minimal dia-
meter (dmin) of each individual was measured with the procedure
described above. Size-weight relationships (W¼a� dmin

b ) were
constructed by fitting linear regressions to log-transformed data
(Movellan et al., 2012). A species-specific relationship was devel-
oped for N. pachyderma, N. incompta and T. quinqueloba. For the
other species, an average size-weight relationship was calculated
by pooling the entire foraminifer dataset (n¼93). Parameters of
the size-weight relationships are given in Table 1. Foraminifer
carbonate flux was then calculated using the abundance and size
from the whole dataset and species or group-specific size-weight
relationships. We refer to the sum of foraminifer and fine fractions
(20–63 mm ando20 mm) PIC as “calculated PIC”.

2.4. Test size and size normalized weight comparison with assem-
blages from Crozet

Discrete measurements of the test size and weight of



Table 1
Parameters of the size-weight relationship (W (mg)¼a�dmin (mm)b) for the dif-
ferent foraminifer groups OR species considered. All the regressions are highly
significant (po0.01).

Species dmin range
(mm)

W range
(mg)

a b R2

N. pachyderma
(n¼23)

102–300 0.3–5.5 5.26�10�7 2.90 0.71

N. incompta (n¼10) 128–230 0.9–3.0 3.98�10�4 1.61 0.77
T. quinqueloba (n¼60) 132–340 0.3–4.9 3.54�10�9 3.85 0.71
Global (n¼93) 102–340 0.3–5.5 1.25�10�7 3.16 0.67

Fig. 2. (a) Satellite-derived surface chlorophyll a (black dots), particulate inorganic
carbon (PIC, white dots) and sea surface temperature (SST, black line) averaged in a
100 km radius around the trap located at the A3 station. (b) Particulate organic
carbon (POC) and bulk particulate inorganic carbon (PIC) fluxes from the A3 sedi-
ment trap.
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foraminifer individuals facilitate the calculation of size-normalized
weight (SNW), a commonly used descriptor of test density/thick-
ness (Bijma et al., 1999; Beer et al., 2010a; Marshall et al., 2013).
The SNWwas calculated for each individual by dividing the weight
by the minimum test diameter (SNW (mg mm�1)¼W/dmin). Given
the good relationship between area and minimum diameter, this
method is considered as an appropriate mean to characterize the
test density (Beer et al., 2010b). We compared the Kerguelen da-
taset (station A3, AAZ) with previously published size and weight
data using the same methodology from the Crozet Islands (Salter
et al., 2014). Stations M10 and M5 are located in the PFZ (Pollard
et al., 2007). Altimetry data suggest station M6 might be season-
ally influenced by a weakly marked Polar Front (Park et al., 1993;
Pollard et al., 2007), but the presence of a temperature minimum
layer (1.6 °C at 200 m) strongly supports its belonging to the AAZ
(Pollard et al., 2002; Planquette et al., 2007; Salter et al., 2014).
Statistical differences in minimum diameter (dmin) and size-nor-
malized weight (SNW) between the four study sites were tested
for three species independently (N. pachyderma, T. quinqueloba, G.
bulloides) using a non-parametric Kruskall-Wallis test. If the four
sites constituted significantly different groups, a post-hoc Tuckey
test was performed to identify which sites were significantly dif-
ferent from the others. If the four sites constituted a significantly
homogeneous group, the data from the four sites were pooled for
each species and differences between the three species were tes-
ted using a Kruskall-Wallis test followed by a Tuckey post-hoc test.
All tests were performed at a significance level of 5%.
3. Results

3.1. Seasonality of POC and bulk PIC fluxes

Surface chlorophyll a concentration displayed two peaks
(Fig. 2a). The major peak (2.5 mg L�1) occurred during spring at the
onset of thermal stratification (November 2011) and a second
moderate peak (1 mg L�1) in summer (January 2012). POC fluxes
were characterized by two short (o15 days) and intense
(�1.5 mmol m�2 d�1) export events lagging the chlorophyll a
peaks by one month. These two POC export events comprised
primarily Thalassiosira antarctica and Chaetoceros Hyalochaete
resting spores (Rembauville et al., 2015a).

The satellite-derived mixed layer PIC concentration displayed a
clear seasonal pattern (Fig. 2a) with moderate values in spring
(0.4 mmol L�1 in October/November 2011) and a strong increase in
summer to reach nearly 1 mmol L�1 in end January 2012. The PIC
concentration decreased gradually after this summer peak to reach
low values of 0.2 mmol L�1 in winter 2012. Total bulk PIC fluxes
displayed a similar seasonality as the surface satellite-derived PIC
concentration (Fig. 2b). A moderate peak of 33 mmol m�2 d�1 in
the first cup (21 October to 4 November 2011) was followed by
very low fluxes for the remainder of spring (o10mmol m�2 d�1).
PIC fluxes gradually increased in the summer to 30 mmol m�2 d�1
before a clear maximum in late summer (110–120 mmol m�2 d�1)
that persisted for one month (25 January to 22 February 2015).
Autumn and winter fluxes were very low (o12 mmol m�2 d�1).
Assuming negligible PIC flux out of the collecting period (corre-
sponding to the months of September and October characterized
by low chlorophyll a concentration), the annual PIC export was
low (6.6 mmol m�2 yr�1). The annually-integrated PIC:POC molar
ratio was equal to 0.07.

3.2. Seasonal dynamics of foraminifer and coccolith export fluxes

The seasonality of total foraminifer test flux closely followed
chlorophyll a dynamics (Fig. 3a). A major peak of 800 indiv.
m�2 d�1 was observed in spring. In December, when surface
chlorophyll a concentrations were low, the total foraminifer flux
was very low (15 indiv. m�2 d�1). During the second surface
chlorophyll a increase (January to mid-February), the total for-
aminifer flux increased again to reach values of 450–550 indiv.
m�2 d�1. Foraminifer flux was very low in autumn (30 indiv.
m�2 d�1) and negligible in winter. There was no major seasonal
change in the foraminifer assemblage throughout the year. At an
annual scale, 4 species dominated (495%) the foraminifer flux.
The community assemblage was dominated by T. quinqueloba
(31.8%), closely followed by N. pachyderma (30.8%) with lower
contributions of N. incompta (18%) and G. uvula (15.3%) (Table 2).

Total and fine fractions (20–63 mm and o20 mm) PIC fluxes are
presented in Fig. 3c. The 20–63 mm fine fraction displayed very low
fluxes (o15 mmol m�2 d�1) throughout the year with maximum
in February 2012. The fine fraction o20 mm fluxes followed a si-
milar seasonal pattern as total PIC fluxes. Spring and summer
(October to mid-January) were characterized by low fluxes with
values o25 mmol m�2 d�1 and peaked to the highest values
�100 mmol m�2 d�1 in late summer (February). In autumn and
winter, the PIC fine fraction o20 mm fluxes were o15 m
mol m�2 d�1.



Fig. 3. (a) Numerical test fluxes of planktic foraminifers recorded by the sediment
trap at the A3 station. (b) Corresponding foraminifer PIC fluxes. (c) Fine fractions
PIC fluxes (20–63 mm – grey dots, o20 mm-black dots), and bulk PIC flux (circles).

Table 2
Relative contribution of foraminifer species to the annual numerical export and
annual foraminifer PIC. Relative contribution of foraminifers and fine fractions
(o63 mm) to the calculated annual PIC export.

Species/group Numerical for-
aminifer flux (%)

Foraminifer PIC
(%)

Calculated PIC
(%)

N. pachyderma 30.8 22.6 3.3
N. incompta 18.0 11.9 1.8
T. quinqueloba 31.8 32.8 4.9
G. uvula 15.3 3.4 0.5
Other foraminifer
species

4.1 10.3 1.4

Foraminifer
fragments

19.0 2.8

Total foraminifers 14.8
o63 mm 85.2
20–63 mm 10
o20 mm 75.2

Fig. 4. Relationship between the measured bulk PIC flux and the calculated PIC flux
(sum of the foraminifer, the 20–63 mm and the o20 mm fine fractions PIC fluxes).
Dashed line denotes the 1:1 relationship. The equation of the regression performed
on the raw data is given.
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3.3. Relative contribution of foraminifers and coccoliths to carbonate
export

The individual size-weight relationships were considered suf-
ficiently reliable to calculate the contribution of each foraminifer
species to the PIC export (all fits were highly significant, R240.66,
Table 1). The total foraminifer-mediated PIC export showed a
seasonality comparable to the surface chlorophyll a with a strong
peak in early spring (18 mmol m�2 d�1 in October 2011) and a
secondary increase in late summer (11 mmol m�2 d�1 in Januray
2011). Fluxes were much lower the remainder of the year (o5 m
mol m�2 d�1).The relative contribution of each foraminifer spe-
cies/group to the total foraminifer PIC and the calculated PIC an-
nual flux is reported in Table 2. The relative contribution of the
major foraminifer species to the total foraminifer PIC fluxes was
comparable to their contribution to numerical fluxes, and a no-
table fraction (19%) of foraminifer PIC was exported as unclassified
test fragments. T. quinqueloba displayed the highest contribution
to the calculated PIC (4.9%), followed by N. pachyderma (3.3%) and
N. incompta (1.8%). The contribution of G. uvula was very low
(0.5%). Microscopic observations of the fine size fractions after the
organic oxidation step revealed the absence of juvenile for-
aminifers and calcareous dinophytes in the 20–63 mm size fraction
and the presence of coccoliths aggregated to diatom frustules and
unidentified CaCO3 fragments. Therefore, the o20 mm fine frac-
tion represents a slight underestimation of coccolith calcite fluxes
(Ziveri et al., 2007). The total contribution of foraminifer tests to
the annual calculated PIC export was 14.8%. Conversely, the con-
tribution of the coccolith fine fractions (o20 mm and 20–63 mm)
to the annual calculated PIC flux was high (85.2%), primarily due to
their major contribution in the late summer export peak.

The relationship between the bulk and calculated PIC flux is
presented in Fig. 4. Data points are close to the 1:1 relationship. A
highly significant linear correlation (Pearson, n¼12, po0.01) ex-
isted between the bulk and calculated PIC. Regression suggested a
slope close to 1 (0.94, R2¼0.99) and the annual calculated PIC
export (6.5 mmol m�2) was very close to the annual bulk PIC flux
measured (6.6 mmol m�2). These statistics ensure the analytical
method was robust and the partitioning of PIC fluxes among the
quantified biological vectors accounted for the majority of total PIC
measured in the samples.

3.4. Foraminifer test size and SNW comparison with Crozet



Fig. 5. Probability histogram of size distribution for three major species collected by the sediment traps at Crozet (M5, M6 and M10) and Kerguelen (A3): (a) Neoglobo-
quadrina pachyderma, (b) Turborotalita quinqueloba and (c) Globigerina bulloides. Grey lines represent data from sediment traps located north of the Polar Front (PF) and black
lines south of the PF.
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assemblages

Probability histograms of size distribution at each site for N.
pachyderma, T. quinqueloba and G. bulloides are presented in
Figs. 5a, b and c, respectively. All the density functions displayed
quasi-unimodal distributions. For N. pachyderma, dmin was sig-
nificantly higher in the AAZ (M6 and A3 sites, 195739 mm,
mean7standard deviation) than the PFZ (M5 and M10 sites,
151730 mm). For T. quinqueloba, dmin was significantly higher at
A3 (206751 mm) than at the three other sites (M5, M10 and M6,
167729 mm) that constituted a significantly homogeneous group.
Only 5 g. bulloides were observed at A3 and therefore were not
taken into account in the analysis. For G. bulloides, dmin was sig-
nificantly homogeneous at the three Crozet sites (M5, M10 and
M6, 244765 mm).

Boxplots of SNW are presented for the three species in Fig. 6.
For each species, there was no significant difference in SNW
among sites. Therefore, the data from all the sites were pooled by
species. Each species SNW constituted a significantly homo-
geneous group different from the two others. G. bulloides SNW
(31714�10�3 mg mm�1, mean7standard deviation) was sig-
nificantly higher than N. pachyderma SNW (18711�10�3 m
g mm�1) that was also significantly higher than T. quinqueloba
SNW (1074�10�3 mg mm�1) (Fig. 6).
Fig. 6. Box-and-whisker plots representation of size-normalized weight for three major
(A3): (a) Neogloboquadrina pachyderma, (b) Turborotalita quinqueloba, (c) Globigerina bull
the median. Whiskers extend from the quartiles to values comprised within a 1.5 inter-q
upper quartile (dashed lines) calculated by grouping all samples for a given species.
4. Discussion

4.1. Foraminifer test flux amplitude and seasonality

We observed moderate planktic foraminifer test fluxes of 500–
1000 indiv. m�2 d�1 despite high primary production levels in this
naturally iron-fertilized area. The low test fluxes we report over
the central Kerguelen Plateau, and the dominance of N. pachy-
derma and T. quinqueloba are consistent with the general decrease
in flux from the SAZ to the AAZ that goes with a switch from a
mixture of subpolar and polar water species to a dominance of the
two aforementioned species. Donner and Wefer (1994) reported
very low fluxes (�50 indiv. m�2 d�1) in the Northern Weddell Sea
and Bransfield Strait (AAZ) whereas fluxes where much higher at
the Maud Rise (�1�103 indiv. m�2 d�1) where N. pachyderma
dominated the community assemblage, followed by T. quinqueloba.
King and Howard (2003) reported foraminifer export fluxes south
of Tasmania with highest numerical fluxes of �1�104 indiv.
m�2 d�1 in the SAZ very close to the SAF and lower values (4�103

indiv. m�2 d�1) in the PFZ. The transition from SAZ to PFZ was
associated with a switch from temperate species to a dominance of
N. pachyderma and T. quinqueloba. South of New Zealand, North-
cote and Neil (2005) described fluxes of 5�103 indiv. m�2 d�1

with a major contribution of G. inflata in the SAZ. In the PFZ North
of the Crozet Islands, foraminifer numerical export fluxes were
species collected by the sediment traps at Crozet (M5, M6 and M10) and Kerguelen
oides. Box extends from the lower to upper quartile values of the data, with a line at
uartile distance. Black lines in the background are median (full line) and lower and
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�1�104 indiv. m�2 d�1 and mostly represented by N. pachy-
derma with a notable contribution of the larger temperate species
G. bulloides and G. inflata (Salter et al., 2014).

The seasonal dynamics of foraminifer test export flux at station
A3 was characterized by two peaks in spring and summer closely
related with surface chlorophyll a concentration, but were not
particularly associated with SST dynamics. Jonkers and Kučera
(2015) have analyzed the phenology of foraminifer export fluxes at
global scale and demonstrated that a group composed of tempe-
rate and cold water species (comprising N. pachyderma, N. in-
compta and T. quinqueloba) displayed two export peaks in spring
and summer. Our results are highly consistent with this general
scheme and support the close link between primary production
(assessed from surface chlorophyll a) and foraminifer production
(Hemleben et al., 1989; Klaas, 2001; Schiebel et al., 2001; Kur-
oyanagi and Kawahata, 2004; Lombard et al., 2011) and sub-
sequent export (Schiebel, 2002). At Crozet (M5 and M10 sites in
PFZ) foraminifer test export occurred in one continuous event in
summer from January to March (Salter et al., 2014) when SST was
generally highest (48 °C) and chlorophyll a concentration was
low (0.5 mg L�1, Salter et al., 2012). This strongly contrasts with the
close link we observe between the chlorophyll a concentration and
the foraminifer test export at A3. However, the comparison of flux
seasonality must be treated with caution because of the different
sediment trap deployment depths (289 m at A3 versus 42500 m
for the M5 and M10 sites), increasing water depth might dampen
seasonal particle flux signal. Our results from a shallow sediment
trap at A3 suggest that food availability might be the major con-
trolling factor for low temperature communities of the AAZ.

4.2. Foraminifer test size and SNW distribution

The calculation of the calcite saturation state is strongly de-
pendent on the input variables of DIC and Alkalinity (a 1% change
in one of these variables can drive a 10% change in saturations
state, Orr et al., 2015). Given this uncertainty, the climatological
field suggests that all of the sediment trap deployments around
Crozet and Kerguelen were located in waters oversaturated with
respect to CO3

2� with a calcite saturation state 41 (Fig. 1b,c).
Therefore it is unlikely that seawater carbonate chemistry has
strongly affected test weight and size through dissolution during
particle sinking. However, test dissolution would lead to an un-
derestimation of the weight in the sediment trap material and
therefore the SNW should be considered as a lower estimate
compared to living individuals.

The compilation of the large dataset generated with the auto-
mated microscope from Crozet and Kerguelen samples revealed
that location relative to the Polar Front had a significant impact on
the size of N. pachyderma with smaller individuals in the PFZ
(Fig. 5). This pattern was not evident for T. quinqueloba and G.
bulloides. When food is not limiting, temperature is presumed a
fundamental factor influencing foraminifer growth rate at the
species level (Lombard et al., 2009). An explanation of the Berg-
mann's rule (larger individuals in colder environments) in plank-
ton is that lower growth rate due to lower temperature leads to
larger individuals at sexual maturity (von Bertalanffy, 1960; At-
kinson, 1994). Under this hypothesis, colder SST south of the Polar
Front might explain larger individuals of N. pachyderma at M6 and
A3 sites. However the fact that Crozet communities of T quinque-
loba and G. bulloides have a significantly homogeneous size in the
PFZ and AAZ suggests that temperature is not the only factor at
play and that population dynamics (Schiebel et al., 1997) and the
availability of prey (Schmidt et al., 2004) as well as genetic di-
versity within a given morphospecies (Weiner et al., 2015) might
also constrain planktonic foraminifer size.

SNW was originally considered as a proxy for [CO3
2�]
(Lohmann, 1995; Bijma et al., 1999; Broecker and Clark, 2001;
Barker and Elderfield, 2002; Bijma et al., 2002). Additionally, the
comparison of foraminifer tests from modern sediment traps
samples and Holocene sediments demonstrated the impact of
ocean acidification and the lowering of [CO3

2�] on the reduction
of the test weight at high southern latitudes (Moy et al., 2009).
However, there is a growing number of observations suggesting
that the relationship between the SNW and the [CO3

2�] is not
homogeneous among foraminifer species (Beer et al., 2010a;
Meilland, 2015), and the relationship is more robust for certain
species than for others (Marshall et al., 2013). Our results show
that for a given species, SNW is not statistically different regarding
the hydrography but that SNW varies significantly between the
dominant species N. pachyderma, T. quinqueloba and G. bulloides.
This suggests that ecological conditions other than the carbon
chemistry of ambient seawater at long (Weinkauf et al., 2013) and
short time scale (de Villiers, 2004; Marshall et al., 2013), and
species physiological characteristics and metabolism might be
responsible for the three-fold SNW increase between T. quinque-
loba and G. bulloides. This has potentially important implications
for the carbon pumps because it implies that planktic foraminifer
community composition together with the magnitude of the nu-
merical flux (number of individuals) plays a role in the for-
aminifer-mediated PIC flux.

4.3. Seasonality and magnitude of the coccolith fine fraction export

The sediment trap record represents the first annual record of
coccolith calcite export south of the Polar Front. Over the central
Kerguelen Plateau, we observe a clear decoupling between the two
chlorophyll a peaks (November and January) and the coccolith fine
fraction (o20 mm) export peak (February). The algorithm used to
calculate PIC concentration based on satellite remote sensing re-
flectance is associated with a root mean square error (RMSE) of
1.2 mmol L�1 (Balch et al., 2005). The maximum satellite-derived
PIC concentration we report is �1 mmol L�1 which is lower than
the RMSE. Additionally, the sunlight penetration depth con-
straining satellite data is o20 m in such a productive area (Gor-
don and McCluney, 1975), preventing the detection of subsurface
features. For this reason, we only consider the satellite-derived PIC
as qualitative date product. The uncertainty on satellite-derived
PIC concentration, the shallow sediment trap depth (289 m) and
the sampling temporal resolution (15 days) prevent a robust cal-
culation of coccolith sinking speed or turnover time. However, the
satellite-derived PIC concentration displays a clear seasonal signal
tightly coupled to the coccolith fine fraction export. This result
suggests that the algorithm used to derive coccolithophore pre-
sence from satellite data (Gordon et al., 2001; Balch et al., 2005) is
sensitive, if not quantitative, over the central Kerguelen Plateau.

Historical observations suggest a diatom to coccolithophore
succession from spring to summer in various locations of the
global ocean (Margalef, 1978; Holligan et al., 1983; Lochte et al.,
1993; Ziveri et al., 1995; Thunell et al., 1996; Ziveri and Thunell,
2000; Schiebel et al., 2011). Using satellite hyperspectral mea-
surements and the PhytoDOAS method, Sadeghi et al. (2012) built
a climatology of coccolithophore biomass in the Southern Atlantic.
They reported a recurrent coccolithophore bloom in February/
March, in good agreement with our measurement of maximum
fine fraction (o20 mm) export flux in February. Sadeghi et al.
(2012) highlighted the importance of SST maxima for the origi-
nation of a coccolithophore bloom in the high latitude ocean. Si-
milarly, we report the highest coccolith calcite export flux during
the period of highest SST (�5 °C), in agreement with the hy-
pothesis of a temperature control on the coccolithophore bloom.
More recently, Hopkins et al. (2015) used satellite-derived PIC as a
proxy of coccolithophore biomass and concluded to a co-



M. Rembauville et al. / Deep-Sea Research I 111 (2016) 91–10198
occurrence of chlorophyll a and coccolithophore peaks in the
Southern Ocean. The results at large spatial and temporal scales
differ somewhat from the uncoupling we observe at our specific
location. Such differences may be attributed to inter-annual
variability in the seasonality of chlorophyll a concentrations and/
or the timing of coccolithophore production.

The qualitative microscopic observation of the o20 mm and
20–63 mm fractions indicate that Emiliania huxleyi represents
495% of the coccolithophores assemblage with a minor con-
tribution of Helicosphaera carteri. This finding is consistent with
previous observations of a strict dominance of E. huxleyi with low
abundances south of the PF (Saavedra-Pellitero et al., 2014; Winter
et al., 2014). E. huxleyi is reported to bloom in waters with gen-
erally low silicic acid concentration resulting by its consumption
by diatoms (Holligan et al., 1983; Townsend et al., 1994; Tyrrell and
Merico, 2004). Additionally, this species has been shown to be
tolerant to low iron concentration (Brand et al., 1983; Sunda and
Huntsman, 1995; Muggli and Harrison, 1997; Findlay and Gir-
audeau, 2000; Holligan et al., 2010). In January, the silicic acid
concentration at the station A3 reaches o2 mmol L�1 (Mosseri
et al., 2008) and iron concentration is �0.1 nmol L�1 (Blain et al.,
2008). Moreover, the high nitrate, phosphate and ammonium
concentrations (Mosseri et al., 2008) and the highest SST in late
summer might be favorable conditions for a E. huxleyi bloom.
Nevertheless, despite the summer stratification, the SST of 5 °C is
still in the lower end of the thermal niche of E. huxleyi (1–31 °C,
McIntyre et al., 1970). This temperature is likely to result in rela-
tively low growth rate (Fisher and Honjo, 1989; Fielding, 2013).
This may explain why the magnitude of the bloom is weak and
corresponds to low surface chlorophyll a concentration at this
period of the season. This weak coccolithophore bloom drives
most (85.2%) of the annual PIC export that appears very low
(6.6 mmol m�2 y�1) compared to coccolith fine fraction export
from the temperate ocean (0.2–0.8 mol m�2 y�1, Ziveri et al.,
2007).

4.4. Southern Ocean carbonate counter pump affected by different
planktonic calcifying organisms

The annually-integrated PIC:POC export ratio of 0.07 (mol:mol)
is close to the mean ratio for the global ocean (0.0670.03, Sar-
miento et al., 2002) and appears much lower than the ratio found
in sediment traps of the PFZ and the SAZ (�1, from a data com-
pilation by Salter et al., 2014). The annual POC export
(98.2 mmol m�2 yr�1, Rembauville et al., 2015b) and the annual
PIC export (6.6 mmol m�2 yr�1) at station A3 allow us to estimate
the strength of the carbonate counter pump: the reduction of the
CO2 drawdown by the biological pump due to the CO2 production
during the calcification process in the mixed layer (Frankignoulle
et al., 1994; Zeebe, 2012; Salter et al., 2014). As the trap depth
(289 m) was close to the winter mixed layer depth (220 m in this
region of the Southern Ocean (Park et al., 1998; de Boyer Montégut
et al., 2004), POC fluxes were not corrected for attenuation with
depth. The carbonate counter pump effect (CCpump, %) was calcu-
lated from the annual fluxes as CCpump¼(PICflux�Ψ)/POCflux

�100.Ψ is the mole of CO2 emitted by mole of CO3
2� precipitated

during the calcification process and ranges 0.7–0.8 for seawater at
5 °C and a pCO2 of 300–400 matm (Frankignoulle et al., 1994). The
calculation leads to a CCpump of 4.7–5.4% at station A3. This value is
consistent with the previously reported value at the M6 site also
located in the AAZ (1–4%) and is significantly lower that the values
in the PFZ at the M5 and M10 sites (6–32%) reported in Salter et al.
(2014).

In the PFZ downstream Crozet, foraminifers were significant
contributors to the production and export of PIC (30–50%), with a
lower contribution of coccoliths (20%) and pteropods (5%, Salter
et al., 2014). Conversely, foraminifers are minor contributors over
the central Kerguelen plateau in the AAZ (o15%, Table 2). The
similarity of the CCpump between the M6 and A3 sites in the AAZ
supports the idea that the position of productivity relative to the
Polar Front (Salter et al., 2014) exerts a major control on the
magnitude of the CCpump through two processes: (1) changes in
the relative abundance of heterotrophic calcifiers foraminifers/
pteropods to autotrophic coccolithophores, and (2) a change in the
contribution of foraminifer species with different SNWs.

During the last two million years the glaciations have been
characterized by lower CO2 concentration in the atmosphere that
has been explained by a combination of both biology (strength-
ening of the biological pump) and physics of the Southern Ocean
(Sigman and Boyle, 2000; Kohfeld et al., 2005; Robinson et al.,
2005; Martínez-Botí et al., 2015). The higher efficiency of the
biological pump was likely linked to higher deposition of eolian
iron and more complete utilization of nutrients at high latitudes
(Mahowald et al., 2006; Martínez-García et al., 2014). Our results
from naturally fertilized Southern Ocean blooms suggest that the
magnitude of the associated carbonate counter pump (Salter et al.,
2014) depends not only on the dominant calcifying planktonic
organisms (foraminifers versus coccolithophores), but also on the
species assemblage that responds to the increase in primary
production.
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