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Abstract6

Stability and convergence of the modified EVP implementation of the visco-7

plastic sea ice rheology by Bouillon et al., Ocean Modell., 2013, is analyzed on8

B- and C-grids. It is shown that the implementation on a B-grid is less restrictive9

with respect to stability requirements than on a C-grid. On C-grids convergence10

is sensitive to the discretization of the viscosities. We suggest to adaptively11

vary the parameters of pseudotime subcycling of the modified EVP scheme12

in time and space to satisfy local stability constraints. This new approach13

generally improves the convergence of the modified EVP scheme and hence its14

numerical efficiency. The performance of the new “adaptive EVP” approach is15

illustrated in a series of experiments with the sea ice component of the MIT16

general circulation model (MITgcm) that is formulated on a C-grid.17
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1. Introduction21

The viscous-plastic (VP) rheology (Hibler III, 1979), connecting sea ice de-22

formation rates with ice stresses, forms the basis of most climate sea-ice models.23

The resulting set of equations of ice dynamics is very stiff and thus calls for the24
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design of efficient solution methods to avoid the restriction to very small time25

steps in standard explicit methods. Partial linearization allows the stiff part26

of the problem to be treated implicitly, but requires iterative solvers (Zhang27

and Hibler, 1997). Although this linearization lifts the time step restriction, it28

requires many (Picard) iterations to recover the full nonlinear solution. Tra-29

ditionally only a few Picard iterations are made and convergence is sacrificed30

(Lemieux and Tremblay, 2009). This motivated the development of fully non-31

linear Jacobian-free Newton-Krylov (JFNK) solvers (Lemieux et al., 2010, 2012,32

Losch et al., 2014). They converge faster than previous methods but still remain33

an expensive solution.34

The elastic-viscous-plastic (EVP) method is an alternative to implicit meth-35

ods. It relaxes the time step limitation of the explicit VP method by introduc-36

ing an additional (artificial, not physically motivated) elastic term to the stress37

equations. This allows a fully explicit time stepping scheme with much larger38

time steps than possible for the VP method (Hunke and Dukowicz, 1997, Hunke,39

2001), but still requires subcycling within the external time step commonly set40

by the ocean model. The effects of the additional elasticity term, however, are41

reported to lead to noticeable differences in the deformation field, and result42

in solutions with smaller viscosities and weaker ice (e.g., Lemieux et al., 2012,43

Losch et al., 2010, Losch and Danilov, 2012, Bouillon et al., 2013).44

In many cases, these effects are linked to the violation of local stability limits45

(analogous to the Courant number constraint for advection) associated with the46

explicit time stepping scheme of the subcycling process (Hunke and Dukowicz,47

1997, Hunke, 2001). Their most frequent manifestation is grid-scale noise in the48

ice velocity derivatives and hence in ice viscosities, in particular, on meshes with49

fine or variable resolution (Losch and Danilov, 2012) (the numerical code may50

remain stable and simulate smooth fields of ice concentration and thickness). In51

an attempt to improve the performance of the EVP method, a modification of52

the time-discrete model was proposed by adding an inertial time stepping term53

to the momentum balance (Lemieux et al., 2012). This mEVP (modified EVP)54

method was reformulated by Bouillon et al. (2013) as a “pseudotime” iterative55
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scheme. By construction, it should lead to solutions that are identical to those56

of the VP method provided the scheme is stable and runs to convergence. The57

analysis of mEVP for a simplified one-dimensional (1D) case suggests that the58

stability is defined by a single parameter that depends on the resolution, the59

time step, the ice viscosity, and on the relaxation parameters of the pseudotime60

stepping (Bouillon et al., 2013, Kimmritz et al., 2015),.61

Although the 1D analysis is expected to be valid at least qualitatively in62

two dimensions (2D), there are a few aspects that are not covered by the 1D63

analysis: the velocity and stress divergence vectors are not collinear in 2D;64

velocities are staggered in space (on a C-grid) but are collocated on a B-grid,65

so that on a C-grid one works with normal velocity components rather than the66

full velocity vector (as on the B-grid); on C-grids the components of the strain67

rate tensor and the stress components are not collocated. These aspects affect68

the convergence properties of the method. Several C-grid implementations have69

been suggested in literature (e.g. Bouillon et al., 2013, Lemieux et al., 2012,70

Losch et al., 2010).71

This work extends the analysis of Kimmritz et al. (2015) by exploring the72

impact of space discretizations on the stability properties of the mEVP method.73

Motivated by this analysis we propose a new adaptive EVP implementation74

(aEVP). In this scheme the parameters of the pseudotime stepping are locally75

adjusted in each pseudotime subcycle in order to ensure stability. In simple76

experiments we demonstrate that this scheme leads to a significant improvement77

of the convergence properties.78

The article is organized as follows: In Section 2 we briefly review the gov-79

erning equations, the mEVP scheme as formulated in Bouillon et al. (2013) and80

its discretization on B- and C-grids. We continue with the stability analysis81

of the linearized 2D equations in Section 3, and introduce the aEVP method82

and explore its stability properties in Section 4. In Section 5, we illustrate83

our results in experiments performed with the sea ice component of an ocean84

general circulation model (MITgcm, see the source code at http://mitgcm.org).85

Conclusions and outlook are given in Section 6.86
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2. Model description87

The horizontal momentum balance of sea ice is written as88

m(∂t + fk×)u = aτ − Cdaρo(u− uo)|u− uo|+ F−mg∇H. (1)89

Here m is the ice (plus snow) mass per unit area, f is the Coriolis parameter and90

k the vertical unit vector, a the ice concentration, u and uo the ice and ocean91

velocities, ρo is the ocean water density, τ the wind stress, H the sea surface92

elevation, g the acceleration due to gravity and Fl = ∂σkl/∂xk the divergence of93

the internal stress tensor σkl (with indices k, l denoting x1 and x2 directions).94

We follow Bouillon et al. (2013) in writing the VP constitutive law as95

σkl(u) =
P

2(∆ + ∆min)

[
(ε̇d −∆)δkl +

1

e2
(2ε̇kl − ε̇dδkl)

]
, (2)96

with97

ε̇kl =
1

2
(∂kul + ∂luk) , ∆ =

(
ε̇2d +

1

e2
ε̇2s

)1/2

. (3)98

The stress tensor σ(u) is symmetric, i.e. σ12(u) = σ21(u). The term ε̇d = ε̇kk99

describes the divergence, and ε̇s = ((ε̇11 − ε̇22)2 + 4ε̇212)1/2 is the shear. The100

parameter e = 2 is the ratio of the major axes of the elliptic yield curve. Note101

that the use of the replacement pressure, (∆/(∆ + ∆min))P (Hibler III and102

Ip, 1995) in the formulation of the VP constitutive law (2) ensures that the103

stress state is on an elliptic yield curve even when ∆ . ∆min. The ice strength104

P is parameterized as P = hP ∗e−c
∗(1−a), where h is the mean thickness of105

the grid cell, and the constants P ∗ and c∗ are set to P ∗ = 27500 Nm−2 and106

c∗ = 20. For future reference we introduce the bulk and shear viscosities ζ =107

0.5P/(∆ + ∆min) and η = ζ/e2.108

2.1. The mEVP scheme as a pseudotime iterative scheme109

The difficulty in integrating (1) is the stiff character of the stress term, which110

requires prohibitively small time steps in an explicit time stepping scheme. The111

traditional approach is either implicit (Zhang and Hibler, 1997) where viscosities112

are estimated at the previous nonlinear iteration and several iterations are made,113
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or explicit, through the EVP formulation (Hunke and Dukowicz, 1997, Hunke114

and Lipscomb, 2008) where adding a pseudo-elastic term reduces the time step115

limitations. A discussion of the convergence issues can be found, for instance,116

in Bouillon et al. (2013), Kimmritz et al. (2015) and is not repeated here.117

The suggestion by Bouillon et al. (2013) is equivalent, up to details of treating118

the Coriolis and the ice-ocean drag terms, to formulating the mEVP method as:119

σp+1 − σp =
1

α

(
σ(up)− σp

)
, (4)120

up+1 − up =
1

β

(∆t

m
∇ · σp+1 +

∆t

m
Rp+1/2 + un − up

)
. (5)121

122

In (5), R sums all the terms in the momentum equation except for the rheol-123

ogy and the time derivative, ∆t is the external time step of the sea ice model124

commonly set by the ocean model, the index n labels the time levels of the125

model time, and the index p is that of pseudotime (subcycling step number).126

The Coriolis term in Rp+1/2 is treated implicitly in our B-grid implementation,127

but is explicit on the C-grid, and the ice-ocean stress term is linearly-implicit128

(Cdρo|uo − up|(uo − up+1)). The term σ(up) in (4) implies that the stresses129

are estimated by (2) based on the velocity of iteration p, and σp is the variable130

of the pseudotime iteration. The relaxation parameters α and β in (4) and (5)131

are chosen to satisfy stability constraints, see Bouillon et al. (2013), Kimmritz132

et al. (2015). They replace the terms 2T/∆te and (β∗/m)(∆t/∆te), where T133

is the elastic damping time scale and ∆te the subcycling time step of standard134

EVP formulation; the parameter β∗ was introduced in Lemieux et al. (2012). If135

(4) and (5) are iterated to convergence, their left hand sides can be set to zero136

leaving the VP solution:137

m

∆t

(
un+1 − un

)
= ∇ · σ(un+1) + R∗, (6)138

with R∗ = limp→∞Rp+1/2 and un+1 = limp→∞ up. While one may introduce a139

convergence criterion to determine the number of iteration steps, historically, the140

actual number of pseudotime iterations N is selected experimentally to ensure141

the accuracy needed. The new velocity un+1 at time step n+ 1 is estimated at142
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the last pseudotime step p = N . The initial values for p = 1 are taken from the143

previous time step n.144

2.2. Spatial discretizations145

We consider discretizations on Arakawa B- and C- grids that are commonly146

used in sea-ice models. The positions of variables on these grids are depicted in147

Figure 1. Note, that in this section (i, j) is used as mesh indices. For simplicity

variables B-grid C-grid

scalars c c

velocities (u, v) z (u,v)

ε̇kk, σkk c c

ζ, η in bulk stress definition c c

ε̇12, σ12 c z

η in shear stress definition c z

Figure 1: On the left hand side the location of the cell points are sketched: c is the cell

center (square symbol), z a vertex (circle), u and v the velocity points on a C-grid. All

points in the dashed box are indexed with the same index pair (i, j). The table on the right

hand side displays the location of the variables on B- and C-grids. Scalar quantities are ice

concentration, ice mass, ice strength and sea surface elevation.

148

we use Cartesian coordinates and uniform grids with cell widths ∆x1 and ∆x2.149

The complete discretization on general orthogonal curvilinear grids can be found150

in Bouillon et al. (2009) and Losch et al. (2010). For convenience we introduce151

the notation152

δ1φi,j = φi,j − φi−1,j , δ2φi,j = φi,j − φi,j−1,153

φi,j
1

= (φi,j + φi+1,j)/2, φi,j
2

= (φi,j + φi,j+1)/2154
155

for a quantity φ at a cell with index (i, j). An expression of the form φi,j
1,2

156

defines the successive application of both directional averaging operators on φ.157

Note, that the location of the discretized derivatives depends on the respective158

grid arrangement of variables.159
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The strain rates on a B-grid are given by160

(ε̇11)ij = δ1(u1)i+1,j
2
∆x−11 , (ε̇22)ij = δ2(u2)i,j+1

1
∆x−12 ,161

(ε̇12)ij =
1

2

(
δ2(u1)i,j+1

1
∆x−12 + δ1(u2)i+1,j

2
∆x−11

)
,162

163

u1 and u2 denote the first and the second velocity component, respectively. On164

C-grid, the definition of the strain rates is the same as on the B-grid but without165

the averaging step. In the B-grid arrangement, the divergence of the stress166

tensor, which contributes as a forcing in the momentum balance, is reconstructed167

on nodes as (k = 1, 2 for the two sea ice momentum equations)168

((∇ · σ)k)i,j = δ1(σ1k)i,j−1
2
∆x−11 + δ2(σk2)i−1,j

1
∆x−12 .169

On a C-grid, the vector quality of the divergence is lost. Instead it is given on170

u and v points by171

((∇ · σ)1)i,j = δ1(σ11)i,j∆x
−1
1 + δ2(σ12)i,j+1∆x−12 ,172

((∇ · σ)2)i,j = δ1(σ12)i+1,j∆x
−1
1 + δ2(σ22)i,j+1∆x−12 .173

174

In the B-grid framework all derivatives include averaging but are collocated and175

share the same stencil. There is no immediate averaging of velocity derivatives176

for C-grid discretizations. While this results in a smaller stencil, the tensor177

components and derivatives are defined at different locations. For this reason178

we still need averaging for the determination of ∆ and hence for computing the179

viscosities η and ζ.180

Further steps in the B-grid arrangement are straightforward. On C-grids,181

there is some freedom in computing the viscosities. More precisely, since the182

bulk and shear stresses are defined at different locations, we also need to de-183

fine viscosities on these different locations. We consider two options. One is184

introduced in Bouillon et al. (2013), the other one is the current default imple-185

mentation in the sea ice component of the MITgcm (Losch et al., 2010, see the186

source code at http://mitgcm.org).187

The discretization of ∆ on cell centers coincides in both cases; the con-188

tributing square of the shear strain rate is formulated as a weighted average of189
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its adjacent nodal values. Since we treat ∆x1 and ∆x2 as constants, it reduces190

to (ε̇212)
12

. A formulation on more general grids can be found in Bouillon et al.191

(2013). The definition of the nodal shear viscosity differs in the two cases: While192

in Bouillon et al. (2013) it is given as the average values of the adjacent cells,193

the MITgcm counterpart aims to keep the stencil of the single contributions as194

small as possible. Denoting the former approach as C1 and the latter as C2 the195

shear viscosities at nodal points are given as196

(C1) ηi−1,j−1
12 (C2) Pi−1,j−1

12
/
(
2e2(∆z

ij + ∆min)
)

197

with nodal value198

∆z
ij =

(
(ε̇11 + ε̇22)2i−1,j−1

12
+ e−2

(
(ε̇11 − ε̇22)2i−1,j−1

12
+ 4(ε̇12)2ij

))1/2
.199

In an attempt to circumvent the ambiguity in the definition of the viscosities,200

we also considered an approach that first reconstructs full velocities to B-grid201

locations, then computes stresses and their divergence on B-grid and projects the202

result to the C-grid locations. Its excessive averaging and lack of commutability203

of derivatives, accompanied by unfavorable mathematical properties and very204

poor stability, however, forced us to discard it.205

3. Stability analysis206

We begin with generalizing the linear analysis of Kimmritz et al. (2015) to207

two dimensions. We will see that despite added complexity and the fact that208

the vectors of velocity and stress divergence are not collinear, the stability still209

depends on parameters that are similar to that of the 1D case and that the210

C-grid discretization is less stable than B-grid discretization. Similar to the211

1D analysis we will assume that P and ∆ = ∆min are constant, and drop un212

and Rp+1/2 (under these assumptions C1 and C2 are similar). In order to add213

stability to the scheme, we take the last term σp in (4) and the last term up in214
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(5) implicitly:215

σp+1
kl =

α

α+ 1
σpkl +

ζ

α+ 1

(
(1− e−2)∇ · upδkl + 2e−2ε̇pkl

)
, (7)216

up+1 =
β

β + 1
up +

(
1

β + 1

∆t

m

)
∇ · σp+1 . (8)217

218

For the linear analysis we focus on a single Fourier harmonic in space219

(σp(x),up(x))T = vpe
ikx (9)220

with (σp(x),up(x)) = (σp11(x), σp12(x), σp22(x), up1(x), up2(x)) and vector vp ∈ C5.221

After inserting expression (9) in equations (7) and (8) they reduce to a system222

of five equations for the components of vp. In matrix form, they read223

vp+1 = Avp224

with the 5 by 5 matrix A that corresponds to the operators on the right hand225

side of (7) and (8) and also incorporates the dependence on the wave vector226

k. The related iterative scheme converges if vp decays as p tends to infinity.227

Introducing the amplification factor λ as vp+1 = λvp, we see that such a solution228

is only possible if λ is an eigenvalue of the matrix A (with the eigenvector vp).229

There are five complex-valued solutions λi. The formal stability condition of230

the discrete equations is |λi| ≤ 1 for all i = 1...5. But, in analogy to the 1D case,231

we argue that the more restrictive condition, |λi| < 1 and |ϕi| � 1, where ϕi is232

the phase of λi, has to be imposed due to the nonlinearity of the full equations233

(Kimmritz et al., 2015). Because of the fifth order of the characteristic equation,234

we will explore the behavior of its roots numerically.235

Using the notation236

dσ =
α

α+ 1
, du =

ζ

α+ 1
, cσ =

1

β + 1

∆t

m
, cu =

β

β + 1
.237

238

the matrix A can be written as239
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A =



dσ 0 0 e1ψx1 e2ψx2

0 dσ 0 e4ψx2
e4ψx1

0 0 dσ e2ψx1
e1ψx2

cσdσψx1 cσdσψx2 0 a1 e3ψx1x2

0 cσdσψx1 cσdσψx2 e3ψx1x2 a2


, (10)240

241

where e1 = du(1 + e−2), e2 = du(1 − e−2), e3 = cσdu, e4 = due
−2, and al =242

cu+cσdu
(
(1 + e−2)ψxlxl

+ e−2ψxl∗xl∗

)
with l ∈ {1, 2}, l∗ = 1 for l = 2 and vice243

versa. On a B-grid, the remaining terms (stemming from derivatives) take the244

form245

ψxl
= 2i sin(0.5kl∆xl) cos(0.5kl∗∆xl∗)/∆xl,246

ψxlxl
= (cos(kl∆xl) cos(kl∗∆xl∗) + cos(kl∆xl)− cos(kl∗∆xl∗)− 1) /∆x2l∗ ,247

ψx1x2 = − (sin(k1∆x1) sin(k2∆x2)) /(∆x1 ∆x2).248
249

Averaging, intrinsic to the derivatives on a B-grid, leads to additional cosine250

multipliers, so that derivatives always depend on both components of the wave251

number. In contrast, on a C-grid the derivatives only depend on the wave252

numbers related to their directions:253

ψxl
= 2i sin(0.5kl∆xl)/∆xl,254

ψxlxl
= 2 (cos(kl∆xl)− 1) /∆x2l ,255

ψx1x2
= −4 (sin(0.5k1∆x1) sin(0.5k2∆x2)) /(∆x1 ∆x2) .256

257

Setting either k1 or k2 to zero reduces the system to the 1D case where B- and258

C-grids coincide. Since we assumed a constant value for ∆, there is no difference259

between the two implementations (C1 and C2) on the C-grid.260

3.1. General considerations261

Throughout this section we use ∆x = ∆x1 = ∆x2. Since the strongest262

pseudotime step limitations are expected at the largest resolved wave numbers263

we choose264

(k1, k2) ∈
{
π∆x−1 (cosφ, sinφ)

∣∣∣φ ∈ [0, 1] · 2π
}
. (11)265
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We set ∆x = 105 m, ∆t = 3600 s, a = 1, m = 1 m, ∆ = 2·10−7 s−1, and α = β.266

Figure 2 plots the eigenvalues on a B-grid and on a C-grid for α = β ∈ {140, 500}267

and various angles φ between the horizontal waves (see also (11)). In the plots268

we additionally depicted the unit circle in order to highlight the magnitudes and269

phases of the eigenvalues. In agreement with Kimmritz et al. (2015), both the270

magnitudes of the phases ϕ and the magnitudes |λ| are controlled by α and β.271

The larger α and β, the closer are the eigenvalues to the stable region close to272

1. There is always an eigenvalue with zero phase, which corresponds to motions

Figure 2: Eigenvalues of the system matrix A for the B- and the C-grid for α = β = 140

(graphs (a) and (b)) and α = β = 500 (graphs (c) and (d)). The wave numbers (k1, k2) are

given by equation (11) with angle φ varying between 0 and π/4 with increments of 0.005. The

grey circle denotes the unit circle around the origin. In the stable cases, the differences of the

eigenvalues from the unit circles are 1/α, see also Table 1. For α = β = 140 on C grid, the

magnitudes of the eigenvalues, |λ|, exceed 1 for φ > 0.154π.

273

that are little affected by the sea ice stresses. The other four eigenvalues appear274

in complex conjugate pairs if the solution is stable (they may become real-valued275

for larger ∆ or smaller wave numbers). The maximum phase is larger for the276

eigenvalues on the C-grid indicating that the C-grid implementation is more277

susceptible to instability than the B-grid discretization. We assume that the278

additional averaging on the B-grid improves the stability of the scheme. For279

instance, the case α = β = 140 is unstable on the C-grid, but stable on the280
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B-grid. At the onset of instability, two complex valued eigenvalues coincide at281

-1 and diverge from this point along the real axis for increasing angles φ. The282

eigenvalues in a stable situation have magnitudes of α/(1+α) < 1 (Table 1). In283

the numerical analysis, we observed eigenvalues with magnitudes of α/(1 + α)284

and β/(1 + β) for α 6= β.

α = β = 140 α = β = 500

max{|λ|} max{ϕ} max{|λ|} max{ϕ}

B-grid 0.993(∗) 0.69π 0.998(∗) 0.16π

C-grid 2.638 π 0.998(∗) 0.20π

Table 1: Eigenvalues for α = β ∈ {140, 500} with maximum absolute value or phase on a

B-grid and on a C-grid as depicted in Figure 2. The symbol (∗) indicates, that all eigenvalues

of the 5 times 5 matrix have the same magnitude (α/(1 + α)).

285

Figure 3 presents the dependence of the maximum phase of the eigenvalues286

on the governing parameters for α = β = 250. There is only a weak sensitivity287

of max{ϕ} on the ice mass m (not shown). Lower values of ∆, higher resolution288

in space, and higher ice concentrations lead to larger phases in the eigenvalues289

and thus to a less stable system in agreement with previous stability analyses290

(Kimmritz et al., 2015). For very fine meshes it is important to note that291

increasing the mesh resolution while scaling the time resolution at the same292

rate (∆t ∼ ∆x) makes the scheme unstable (Fig. 3(c)), but when the time step293

is reduced proportionally to the square of the spatial resolution (∆t ∼ ∆x2),294

the scheme remains stable (Fig. 3(f)) in agreement with the stability constraint295

derived in Kimmritz et al. (2015). Reduced grid spacing ∆x with constant296

time step ∆t (Fig. 3(d)), which is a typical situation for models with locally297

refined meshes, leads to lower stability. Thus, the graphs in Figure 3 indicate298

a proper (i.e. stability preserving) scaling of ∆t for mesh refinements or for299

meshes with strongly varying resolution. In all cases, the phase is slightly larger300

on the C-grid than on the B-grid.301
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Figure 3: Dependence of the maximum phase of the eigenvalues (larger phase implies less

stability) on ∆ (a), on ice concentration a (b), on ∆t, which scales at the same rate as ∆x

with initial (∆t,∆x) = (3600 s, 105 m) (c), on ∆x with fixed ∆t (d), on ∆t with constant

∆x (e) and ∆t which scales with ∆x2 with initial (∆t,∆x) = (3600 s, 105 m) (f) on a B-grid

(black line) and on a C-grid (grey dashed line). For small ice concentrations a, the phase is

small, because the ice strength P is small.

4. The adaptive EVP method302

The choice of parameters α and β is the key for providing stability of the303

solution. Based on the 1D analysis, Kimmritz et al. (2015) proposed to select α304

and β so that αβ � γ, where γ = k2P∆t/(2∆m), with k2 < (π/∆x)2, governs305

stability. The regimes that are challenging for stability of the iterative process306

are those when γ is large and thus controls the phase (frequency) of the pseudo-307

time iteration. The results shown in Figure 3 and additional computations (not308

shown) suggest that in 2D the largest phase is controlled by the same parameter309

γ for a fixed wave vector direction as in the 1D case; Figure 2 also indicates310

that the 2D character of the problem implies some additional dependence on311

the wave vector direction.312

Keeping α and β sufficiently large to provide stability has the downside that313
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the speed of convergence is slowed down and a large number of pseudotime314

steps N is required (N > α, β) to reach convergence. In practice, very large315

α and β are only required in regions where viscosities (P/2∆) are large or the316

mesh resolution is high, while keeping them large outside of these regions only317

deteriorates convergence. A solution to this dilemma is making α and β variable318

in space and time, which is possible because mEVP, as opposed to the standard319

EVP approach, fully detaches α and β from the external time stepping scheme.320

We now introduce an approach which makes use of this possibility.321

Motivated by the fact that γ = k2P∆t/(2∆m) controls stability, we write it322

as323

γ = ζ
c

Ac

∆t

m
324

and require that αβ � γ. Here, Ac denotes the area of the local 2D grid cell325

and constant c is a numerical factor such that the term c/Ac accounts for the326

contribution due to the eigenvalue k2 of the Laplacian operator, see Kimmritz327

et al. (2015), which has the upper limit of π2/Ac. While this implies an upper328

bound of π2 for c, c can be much smaller if ice remains smooth on the grid329

scale. In practice, the value of c depends on forcing, geometry of boundaries330

and on resolution and has to be selected experimentally. In most cases, when331

the solution is stable, there is no grid-scale noise so that c can be smaller than332

π2 by an order of magnitude. On finer meshes the geometrical complexity of333

solutions may be locally increased (e.g. Losch et al., 2014), which may require334

using c closer to its upper bound.335

In order to satisfy the stability requirement, we choose336

α = β = (c̃γ)1/2 (12)337

with the empirical scaling factor c̃. It should be sufficiently large to preserve338

stability, but just large enough to ensure convergence as fast as possible. The339

parameters c and c̃ can easily be combined into a single parameter, but we keep340

them separate here to emphasize their origin.341

For instance, with c = (0.5π)2 and c̃ = 4, the phases of the eigenvalues,342

independently of the magnitudes of ∆, ∆t or ∆x, reach values of about 0.86π343
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on a C-grid and of 0.71π on a B-grid. Since the mean ice thickness enters344

both ice mass m and ice strength P , it has no effect on stability. Lowering the345

ice concentrations leads to lower maximum phases of the eigenvalues. This is346

due to the small exponential factor in the ice strength P for ice concentrations347

much smaller than 1. This factor makes γ small, so that it does not govern the348

behavior of the eigenvalues because the contributions from the internal stress349

also become small with small ice concentrations. Since α−1 and β−1 play the350

role of the subcycling time steps (in units of ∆t), α and β should be bounded351

from below to ensure a sufficient accuracy of the subcycling. This adaptive352

approach thus guarantees stability of the iterative scheme independent of the353

problem parameters.354

In this approach, places where α and β are large because of large values355

of γ will be characterized by slower convergence, but will remain stable. We356

suggest to select the number of pseudotime steps N = const so as to provide the357

convergence over a dominant fraction of the domain (where γ is moderate). The358

convergence in local regions with high α and β will be sacrificed in favor of faster359

code performance. It may still be recovered over several external time steps. It360

is also expected that places with high α and β are those where ice velocities are361

small, so that incurring errors in the ice distribution are not necessarily large.362

If this approach is adopted, N has to be selected experimentally.363

Finally, we would like to point out that the eigenvalue analysis revealed (not364

shown), that setting α 6= β by splitting γ in constituent multipliers generally365

requires an individual scaling of α and β if the resolution in time or space is366

varied. We do not consider this case here.367

So far we were guided by the results of the linear analysis. We turn to368

numerical experiments to study the behavior of the adaptive EVP method in369

the nonlinear case.370
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5. Numerical experiments371

In this section we explore the convergence of the full sea ice momentum372

equation on B- and C-grids. We will demonstrate that the discretization details373

of the viscosities on a C-grid influences the convergence of the mEVP method374

to the extent that it even may lose convergence. We will also demonstrate that375

the adaptive approach generally leads to improved convergence compared to376

simulations with constant α and β.377

5.1. Experimental setup378

The simple model configuration with a Lx1 × Lx2 = 1280 km × 1280 km379

domain and a Cartesian grid with a constant grid size of 16 km follows that of380

Hunke (2001), but without topography in the model interior. The sea ice is381

driven by the ocean currents with the velocity (in m/s)382

u0 = 0.1(2x2 − x2,min)/Lx2
v0 = −0.1(2x1 − x1,min)/Lx1

383

and wind stress384

τ = Caρaua|ua|385

with atmospheric drag coefficient Ca = 2.25 · 10−3, air density ρa and wind386

velocity (in m/s)387

ua = 5 + (sin(2πt/T )− 3) sin(2πx1/Lx1
) sin(πx2/Lx2

) ,388

va = 5 + (sin(2πt/T )− 3) sin(2πx2/Lx2
) sin(πx1/Lx1

) ,389
390

with T = 4 days. Initially, the ice is 2 m thick and the ice concentration391

increases linearly from 0 in the west to 1 in the east, so that the mean ice392

thickness h varies from 0 to 2 m. The mean wind pushes the ice into the393

northeast corner where it gradually piles up until it becomes sufficiently thick394

to be stopped. We will use ∆min = 2 · 10−9 s−1 (Hibler III, 1979).395

5.2. Convergence of B- and C-grid discretizations of the mEVP method396

We start with an examination of convergence and stability of the mEVP397

scheme on B- and C-grids. It suffices to consider the first external time level398
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(Kimmritz et al., 2015). Recall the C1 and C2 discretizations of the shear399

viscosities at nodal points. In the C1 case, the nodal shear viscosity is the400

average of the shear viscosities defined at adjacent cells; in the C2 case, it is401

computed with fewest possible averages of the contributing variables. Figure 4402

plots the residuals:403 ∑
i,j

α2|σp+1
ij − σpij |2

α2|σ2
ij − σ1

ij |2
+
∑
i,j

β2|up+1
ij − upij |2

β2|u2
ij − u1

ij |2

1/2

,404

of the subcycling at the first time level for B-, C1- and C2-grid discretizations.405

We weighted the single contributions in the definition of the residual by the406

inverse of the first residuals of the subcycling in order to put each of the con-407

tributions on equal footing. Convergence within numerical working precision is

Figure 4: Residuals of the first time level of the full nonlinear problem for the B-, the C1-

and the C2-grid discretization, and for different choices of α = β ((a) α = β = 250, (b)

α = β = 500).

408

reached for α = β = 250 after 0.75 ·104 subcycling steps only in the B-grid case,409

and for α = β = 500 after 1.5 · 104 subcycling steps for the B-grid discretization410

and the C1-grid case. The C2-grid discretization does not converge in any case.411

(Note that Lemieux and Tremblay (2009) also needed O(104) nonlinear steps in412

their Picard iteration.) We cannot give a rigorous explanation for this behavior,413

but we hypothesize that the viscosity computation in the C2-case prevents the414

discrete analogue of (2) to be satisfied exactly. For the remaining schemes we415

recover the expected behavior (see also Kimmritz et al., 2015): higher values of416

α and β guarantee stability but slow down the speed of convergence. In agree-417

ment with our analysis above, the stability constraints appear to be stricter for418
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the C1-discretization than for the B-grid discretization. However, if the C1-419

grid scheme converges, its convergence rate is only marginally slower than the420

convergence rate of the B-grid scheme.421

5.3. Convergence of B- and C-grid discretizations of the aEVP method422

In Figure 5 we compare the convergence rates of the aEVP approach with α423

and β computed by (12) to the mEVP scheme (Bouillon et al., 2013, Kimmritz424

et al., 2015) with fixed α = β = 500. The parameters for the aEVP scheme are425

set to c = (0.01π)2, c̃ = 4, and (α, β) ≥ 5. Note, that we set c to a very small426

value. This implies, that we deal with scales that are two orders of magnitude427

larger than the grid scale and thus consider basin scale. It can only reflect the428

fact that within the first time step there is still no detail in the velocity field and429

thus allows us to use this small value. On later time levels we expect a larger430

variety of scales in the velocity field, which requires larger values for c.

Figure 5: Residuals in the subcycling on the first time level for different discretizations. Graph

(a) plots the entire convergence behavior, graph (b) is a zoom into the first 500 subcycling

steps.

431

As in the mEVP case, the B-grid and the C1-grid discretizations lead to432

convergence, but the C2-case does not converge. Convergence in the C2-case is433

also not gained for different settings of c and c̃ (not shown). The convergence of434

the adaptive approach for the B- and the C1-grid case is faster than for mEVP435

by a factor of 3, but the final residual for the C1-grid is slightly larger than for436

the mEVP scheme. As in practice the affordable number of subcycling steps437

is probably 500 or less (Kimmritz et al., 2015), we concentrate on the residual438
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development over the first 500 sybcycling steps in Figure 5 (b). Compared to439

the mEVP approach we see a reduction in the residual of more than one order440

of magnitude in the convergent cases. Even for the C2-case the residuals are441

smaller for aEVP. In agreement with our theoretical analysis, there are more442

oscillations in the residuals for the C1-grid case than for the B-grid case.443

Errors may accumulate over finite time intervals. We simulate the ice evo-444

lution over one month with N = 500 subcycling steps and examine the perfor-445

mance of the aEVP scheme implemented now in the MITgcm with the C1-grid446

arrangement. Because of the oscillatory decrease of the residuals at the first447

time level we use a larger stabilizing parameter c = (0.5π)2. In the beginning448

of the subcycling at time level 1440 the residuals in the momentum and in the449

stress equations of the aEVP scheme are almost an order of magnitude smaller450

than the ones of the mEVP scheme with α = β = 500 (Figure 6 (a)). The resid-451

uals of the momentum equations in both schemes decrease at a similar rate in452

both schemes. In the subcycling of the mEVP scheme the residuals of the stress453

equations converge with a rate, which is similar to the rate of the momentum454

equations. The residual of the stress equations in the aEVP scheme increases455

in the first 20 subcycling steps, which might be explained by the adaptation of456

the α field to the updated fields on the new time level. After this ’initial’ phase457

the residual in the stress equations decreases at an increased rate, such that458

at the end of the subcycling the residual of the stress equations in the aEVP459

sheme is about 1.5 orders smaller than the residual of the stress equations in the460

mEVP scheme. At the end of the subcycling at time level 1440, α (and thus β)461

is very small (α = 5) in the large region of weak ice (Figure 6 (b)). Kimmritz462

et al. (2015) demonstrated that the number of subcycling steps to reach full463

convergence for the given example is of the order of NEV P = 40α. Thus, we464

can presume, that the scheme reached full convergence in those regions with465

N = 500 subcycling steps. However, since α−1 and β−1 define the pseudotime466

step in units of ∆t, too small values may lead to a loss of accuracy of the pseu-467

dotime iterations. Thus we recommend to always impose lower bounds for α468

and β.469
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Figure 6: (a) Residual development for the subcycling at time level 1440 of the aEVP scheme

with c = (0.5π)2 and c̃ = 4, and the mEVP scheme with α = β = 500. The residuals in the

momentum equations (res(mom)) are given by (
∑

ij β
2
ij |up+1−up|2)1/2, the residuals in the

stress equations (res(stress)) are computed as (
∑

ij α
2
ij |σp+1 − σp|2)1/2. (b) The α field at

the end of the subcycling at time level 1440 of the aEVP scheme with 500 subcycling steps.

Beside sufficient accuracy, the aEVP scheme should guarantee smoothness470

of the solution. According to Kimmritz et al. (2015), the corresponding mEVP471

scheme with α = β = 250 shows noise in the divergence field. Figure 6 indicates472

that in the aEVP scheme large values of α are only used in a small region in the473

lower right corner of the domain where the ice is strong. Outside this region, α474

ranges between 200 and 300 over the area with ice concentrations between 0.8475

and 1.476

To evaluate the aEVP scheme we use a converged VP solution determined477

with the JFNK solver of the MITgcm (Losch et al., 2014) with a C1-grid dis-478

cretization and a residual reduction of order 10−9 in each time step as reference479

solution, and also consider solutions of the mEVP scheme with α = β = 500480

to illustrate the improvements through adaptivity. We note that the solutions481

of the mEVP scheme with α = β = 500 and N = 20000 (full convergence)482

coincide with the solutions determined with the JFNK solver, but N as large as483

this would be too expensive for practical applications (climate simulations). To484

examine the effect of the lower bounds of α and β in the adaptive scheme with485

N = 500, 300 and 200 subcycling steps, we explore the cases (α, β) ≥ 5 and486

(α, β) ≥ 50. In Figure 7 we present the deviations in the divergence field from487
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the reference solution after one month of integration. We note, that the results488

in the ∆ field, the ice concentration and ice thickness are of similar quality (not489

shown). The aEVP and mEVP schemes have been run with N = 500, 300 and490

200 subcycling steps (columns from left to right). The black lines in the graphs491

mark the boundary with ice concentration of 0.01. The regions left of them492

correspond to open water. The errors seen there are of little relevance and will493

not be discussed.494

Compared to the mEVP solution with N = 500 subcycling steps, any of the495

aEVP solutions leads to a remarkable reduction in the errors of the adaptive496

scheme even for the case of N = 200 subcycling steps. According to Figure 7497

the aEVP scheme shows virtually no errors in the area covered with ice for498

N = 500. The errors increase only slightly for N = 300 and even for the case499

of N = 200 they remain small and are much smaller than the errors for mEVP.500

For N = 200, the residuals of the aEVP scheme in regions with strong ice501

show noisy behavior for the lower bound for α and β of 5 (graphs (a) – (c)). This502

noise vanishes when we increase the lower bound to 50 (graphs (d) – (f)). We503

relate the emergence of noise in the first case to an excessively large pseudotime504

step and hence reduced pseudotime iteration accuracy. These errors accumulate505

already in the early stage of the simulation. A lower bound substantially larger506

than 50, however, is not advisable as it may have adverse effects on the conver-507

gence in large parts of the ice covered regions thus jeopardizing the benefits of508

the aEVP scheme.509

6. Conclusion and Outlook510

The present work has two main results: First, the modified EVP scheme511

(Bouillon et al., 2013) is less stable on a C-grid, than on a B-grid, and con-512

vergence of the scheme on a C-grid is sensitive to the implementation of the513

viscosities. Second, we introduced the new adaptive EVP scheme, which locally514

respects stability constraints as derived in (Kimmritz et al., 2015), and shows515

improved convergence properties while guaranteeing stability in regions with516
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higher stability constraints.517

The main advantage of the mEVP implementation (Bouillon et al., 2013)518

of the commonly used viscous-plastic rheology over the traditional EVP imple-519

mentation (Hunke and Dukowicz, 1997) is the decoupling of the parameters of520

the subcycling from the external time stepping. The mEVP is formulated as a521

pseudotime solver of ice dynamics with the VP rheology. Convergent solutions522

can only be obtained if the iterative process is numerically stable. In this paper523

we elucidated the sensitivity of the convergence of the mEVP approach to the524

detail of numerical discretization. An elementary eigenvalue analysis revealed525

that the mEVP implementation on a B-grid is more stable than on a C-grid.526

If both schemes are stable and converge, their convergence rates are compara-527

ble. The convergence on C-grids, however, is sensitive to the implementation of528

the viscosities. We considered two versions of implementation that have been529

suggested in literature; one of them (C2) does not converge to the VP solution530

and is always contaminated by noise, while the other (C1) does so under stable531

conditions. The lack of convergence for the C2 implementation might be related532

to its lack of energy consistency (Bouillon et al., 2013). A rigorous explanation533

for this behavior is still missing, but we hope that this result on its own provides534

an important message to modellers.535

In our earlier work we showed that, on the one hand the mEVP parameters536

α and β need to be sufficiently large to ensure stability. They define the fre-537

quency of the numerical oscillations. The requirement γ/(αβ) � 1 limits the538

frequency of these oscillations to sufficiently low values to be well represented539

by the pseudotime iterations. On the other hand, large values of α and β ne-540

cessitate a large number of subcycling steps to reach convergence, which makes541

the scheme very expensive for practical applications (long climate simulations).542

Emphasizing the dependence of γ on the mesh resolution we pointed out that543

the tendency to use finer meshes in large-scale ocean modelling implies larger544

values of γ, hence larger values for α, β and N . This would increase the com-545

putational cost of sea ice codes further. This argument is valid for any change546

in the model parameters that effects an increase in γ.547
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The main point of the present study is the new adaptive implementation548

of the mEVP approach. Instead of being constant, the parameters α and β549

are locally adjusted at each pseudotime step (12). The (constant) number of550

iterations N is selected experimentally so as to provide reasonable accuracy551

everywhere in the ice covered domain.552

By choosing α and β adaptively we guarantee global stability. Since the553

adaptive α and β are relatively low in wide areas of the ice covered domain,554

convergence in those regions is improved with respect to the mEVP method.555

Our test experiments reveal a substantial error reduction in the aEVP solutions556

compared to the mEVP solutions even for smaller N . This is a big gain in terms557

of computational costs. In preliminary tests, 500 subcycling steps already raised558

the cost of the sea ice component to about 50% of the ocean model, which is559

undesirably large. In a next step, the aEVP approach has to be applied to a560

realistic scenario in order to test the overall performance and to learn about561

admissible N . This will be the subject of a companion paper.562

The aEVP approach can be especially useful for models that are based on563

locally refined meshes, as it guarantees stability in the most refined areas. It564

will also lead to advantages in areas where the ice is weak or of relatively low565

concentration by reducing α and β and hence improving convergence there.566

The new adaptive approach can be further augmented in several ways. The567

version described here still contains parameters that have to be selected exper-568

imentally, yet they can be estimated at run time. For instance, the factor c569

can be assessed through the local smoothness of the velocity field. The other570

question is the optimal choice of N based on the information of the distribution571

of α and β. While it is difficult to change N during the subcycling, it is possible572

to select different N at different external time steps. These opportunities will573

be explored in future work.574

In closing, we like to point out that there are other recently published sea575

ice rheologies that also involve elasticity, such as the elastic plastic anisotropic576

rheology (Tsamados et al., 2013) or the elasto brittle approach (Girard et al.,577

2009, 2011, Bouillon and Rampal, 2015). If the appropriate schemes are solved578
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explicitly through pseudotime stepping, a stability analysis similar to ours or to579

Kimmritz et al. (2015) may serve as a basis for designing an approach similar580

to the aEVP.581

S. Bouillon and P. Rampal. Presentation of the dynamical core of582

neXtSIM, a new sea ice model. Ocean Modelling, 91:23–37, 2015. doi:583

http://dx.doi.org/10.1016/j.ocemod.2015.04.005.584

S. Bouillon, M. A. Morales Maqueda, V. Legat, and T. Fichefet. An elastic-585

viscous-plastic sea ice model formulated on arakawa b and c grids. Ocean586

Modelling, 27:174–184, 2009.587

S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic588

method revisited. Ocean Modelling, 71:2–12, 2013.589

L. Girard, J. Weiss, J. M. Molines, B. Barnier, and S. Bouillon. Evaluation of590

high-resolution sea ice models on the basis of statistical and scaling properties591

of Arctic sea ice drift and deformation. Journal of Geophysical Research:592

Oceans, 114(C8), 2009.593

L. Girard, S. Bouillon, J. Weiss, D. Amitrano, T. Fichefet, and V. Legat. A new594

modeling framework for sea-ice mechanics based on elasto-brittle rheology.595

Annals of Glaciology, 52(57):123–132, 2011.596

W. D. Hibler III. A Dynamic Thermodynamic Sea Ice Model. J. Phys.597

Oceanogr., 9:815–846, 1979.598

W. D. Hibler III and C. F. Ip. The effect of sea ice rheology on Arctic buoy drift.599

J. P.Dempsey and Y. D. S.Rajapakse (eds.) ASME AMD, 207, Ice Mechanics:600

255–263, 1995.601

E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Lineariza-602

tion issues. J. Comp. Phys., 170:18–38, 2001.603

E.C. Hunke and J.K. Dukowicz. An Elastic-Viscous-Plastic model for sea ice604

dynamics. J. Phys. Oceanogr., 27:1849–1867, 1997.605

24



E.C. Hunke and W.H. Lipscomb. CICE: The Los Alamos sea ice model docu-606

mentation and software users manual. Tech. Rep. T-3 Fluid Dynamics Group,607

Los Alamos National Laboratory, Los Alamos NM 87545, 2008.608

M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified609

elastic-viscous-plastic method for solving the sea ice momentum equation. J.610

Comp. Phys., 296:90–100, 2015.611

J.-F. Lemieux and B. Tremblay. Numerical convergence of viscousplastic sea ice612

models. J. Geophys. Res., 114, C05009, 2009.613

J.-F. Lemieux, B. Tremblay, J. Sedlác̆ek, P. Tupper, St. Thomas, D. Huard, and614

J.-P. Auclair. Improving the numerical convergence of viscous-plastic sea ice615

models with the jacobian-free newtonkrylov method. J. Comp. Phys., 229(8):616

2840–2852, 2010. doi: http://dx.doi.org/10.1016/j.jcp.2009.12.011.617

J.-F. Lemieux, D. Knoll, B. Tremblay, D.M. Holland, and M. Losch. A com-618

parison of the Jacobian-free Newton-Krylov method and the EVP model for619

solving the sea ice momentum equation with a viscous-plastic formulation: a620

serial algorithm study. J. Comp. Phys., 231(17):5926–5944, 2012.621

M. Losch and S. Danilov. On solving the momentum equations of dynamic sea622

ice models with implicit solvers and the elasticviscousplastic technique. Ocean623

Modelling, 41:42–52, 2012.624

M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill. On the for-625

mulation of sea-ice models. Part 1: Effects of different solver implementations626

and parameterizations. Ocean Modelling, 3(1-2):129–144, 2010.627

M. Losch, A. Fuchs, J.-F. Lemieux, and A. Vanselow. A parallel Jacobian-free628

NewtonKrylov solver for a coupled sea ice-ocean model. J. Comp. Phys., 257,629

Part A(0):901–911, 2014.630

M. Tsamados, D. L. Feltham, and A. V. Wilchinsky. Impact of a new anisotropic631

rheology on simulations of arctic sea ice. J. Geophys. Res.: Oceans, 118(1):632

91–107, 2013. doi: 10.1029/2012JC007990.633

25



J. Zhang and W.D Hibler. On an efficient numerical method for modeling sea634

ice dynamics. J. Geophys. Res., 102:8691–8702, 1997.635

26



Figure 7: Differences in the divergence field between the reference solution and the aEVP

solution with the lower bound (α, β) > 5 for (a) N = 500, (b) N = 300 and (c) N = 200.

Graphs (d)–(f): Same as (a)–(c) with the lower bound (α, β) > 50. Graphs (g)–(i): Differences

in the divergence field between the reference solution and the mEVP solution with α = β = 500

and (g) N = 500, (h) N = 300 and (i) N = 200. The black lines are the isolines of ice

concentration for a = 0.01. All of these runs use the C1-grid formulation.
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