Bacterial community succession and metabolism during the early stages of POC degradation in the Western Arctic Ocean


Contact
ian.salter [ at ] awi.de

Abstract

Marine bacterial community structure and function have been observed to shift during fluctuating environmental conditions, suggesting that distinct members of the community adapt to the abundance and composition of available nutrients and carbon. We measured changes in bacterial diversity and metabolic response of natural microbial consortia during early degradation of complex sources of particulate organic carbon (POC) in polar waters. The bacterial populations were representative of spatially disconnected communities, having been collected from the chlorophyll maximum and bottom waters of the Bering Strait and Chukchi Sea, respectively. Shifts in community composition, nitrogen assimilation and proteomic expression of the free-living Arctic bacteria were followed in ten-day, parallel incubation experiments with natural and isotopically labeled algal amendments under near in situ conditions. Based upon 16S rRNA gene sequencing and detailed biochemical composition, we are examining if initial bacterial community structure and succession impact early POC degradation kinetics. Additionally, we are investigating if there are phylogenetic niches for metabolic function driving POC degradation by western arctic marine bacteria.



Item Type
Conference (Poster)
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
Not peer-reviewed
Publication Status
Published
Event Details
2014 Ocean Sciences Meeting 2014, 23 Feb 2014 - 28 Feb 2014.
Eprint ID
40450
Cite as
Mikan, M. , Salter, I. , Nunn, B. L. and Harvey, H. R. (2014): Bacterial community succession and metabolism during the early stages of POC degradation in the Western Arctic Ocean , 2014 Ocean Sciences Meeting 2014, 23 February 2014 - 28 February 2014 .


Share

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item