Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone

<u>Ian Salter</u>*, Ralf Schiebel, Patrizia Ziveri, Aurore Movellan, Richard Lampitt, George Wolff *Alfred-Wegner-Institute for Polar and Marine Science, Bremerhaven, Germany

 $CaCO_3$ production in the surface and transport to depth increases atmospheric CO_2 .

On millenial time-scales CCP leads to shifts in the vertical distribution of TCO_2 and TA

INTRODUCTION AIMS METHODS RESULTS & DISCUSSION

Constrain the opposing effects of these counter-acting components of the biological carbon pump

Island-associated blooms in Southern Ocean

Iron-supply enhances ecosystem productivity and POC export

INTRODUCTION AIMS METHODS RESULTS & DISCUSSION

Pollard et al. 2009 Nature

[+Fe]-fertilized bloom to the North; [HNLC] to the south

Salter et al. 2012 Glob. Biogeo Cy.

POC fluxes enhanced by a factor of ~2-3 as a result of iron fertilization Driven by resting spore formation of *Eucampia antarctica* var *antarctica*

Ecological vectors of carbon and biogenic silicon export over the naturally fertilized Kerguelen Plateau

M. Rembauville¹, I. Salter^{1,2} and S. Blain¹

¹Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls-sur-mer, UPMC/CNRS, Banyuls-sur-mer, France ²Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Corresponding author: rembauville@obs-banyuls.fr

RESULTS & DISCUSSION

INTRODUCTION

AIMS

- Annual CaCO₃ fluxes were 7-10 times higher in [+Fe] regime

- Large excess CaCO₃ fluxes than excess POC fluxes : **POC:PIC ratio**

(1) How are CaCO₃ fluxes distributed across different calcifying groups?

(2) How significant is the carbonate counter pump for iron-fertilized sequestration of atmospheric CO_2 ?

(1) How are CaCO₃ fluxes distributed across different calcifying groups?

(2) How significant is the carbonate counter pump for iron-fertilized sequestration of atmospheric CO₂?

INTRODUCTION AIMS **METHODS** RESULTS & DISCUSSION

Coccolith

Foraminifer

Pteropods

Methods:

Coccolith-derived CaCO₃ - fine-fraction (< 20 um and 20-63 um) Ca (ICP-AES)

Pteropod species enumerated, removed and weighed with fragments

Foraminifera – automated image analysis (63-100 and >100 um) Manual species ID.

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Salter et al. 2014 Nat. Geosci.

Table I Excess fluxes resulting from from fertilization.								
	C _{org}	C _{inorg}	C _{inorg}	C _{inorg}	C _{inorg}			
	Total	Total	Foraminifer	Pteropod	≺20µm			
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0			
Increase [†]	~3	7-10	6-8	64-68	~9			

- Constant Second Constitution

*Excess fluxes in mmol m^{-2} yr⁻¹ calculated as [+Fe] – [HNLC] annual fluxes. [†]Factor increase, calculated as [+Fe]/[HNLC].

et 112

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Salter et al. 2014 Nat. Geosci.

Table I Excess fluxes resulting from from fertilization.								
	C _{org}	C _{inorg}	C _{inorg}	C _{inorg}	C _{inorg}			
	Total	Total	Foraminifer	Pteropod	≺20µm			
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0			
Increase [†]	~3	7-10	6-8	64-68	~9			

- Constant Second Constitution

*Excess fluxes in mmol m^{-2} yr⁻¹ calculated as [+Fe] – [HNLC] annual fluxes. [†]Factor increase, calculated as [+Fe]/[HNLC].

et 112

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Salter et al. 2014 Nat. Geosci.

Table T Excess fluxes resulting from Iron fertilization.							
	C _{org}	C _{inorg}	C _{inorg}	C _{inorg}	C _{inorg}		
	Total	Total	Foraminifer	Pteropod	≺20µm		
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0		
Increase [†]	~3	7-10	6-8	64-68	~9		

*Excess fluxes in mmol m^{-2} yr⁻¹ calculated as [+Fe] – [HNLC] annual fluxes. [†]Factor increase, calculated as [+Fe]/[HNLC].

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Excess PIC fluxes > excess POC fluxes in all fractions

Salter et al. 2014 Nat. Geosci.

SS HUAR	Jesuiti		on for enizati	
Corg	Cinorg	Cinorg	Cinorg	Cinor

Table 1 | Excess fluxes resulting from iron fertilization

	Total	Total	Foraminifer	Pteropod	<20 µm
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0
Increase [†]	~3	7-10	6-8	64-68	~9

*Excess fluxes in mmol m^{-2} yr⁻¹ calculated as [+Fe] – [HNLC] annual fluxes. [†]Factor increase, calculated as [+Fe]/[HNLC].

	Corg	Cinorg	Cinorg	Cinorg	Cinorg	
	Total	Total	Foraminifer	Pteropod	<20 µm	
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0	
Increase [†]	~3	7-10	6-8	64-68	~9	

*Excess fluxes in mmol m⁻² yr⁻¹ calculated as [+Fe] — [HNLC] annual fluxes. [†]Factor increase, calculated as [+Fe]/[HNLC].

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Foraminifer dominate CaCO₃flux (35-50%)

Largest relative difference in pteropod flux

Salter et al. 2014 Nat. Geosci.

Table 1 Excess fluxes resulting from iron fertilization.							
	C _{org}	C _{inorg}	C _{inorg}	C _{inorg}	C _{inorg}		
	Total	Total	Foraminifer	Pteropod	<20μm		
Excess fluxes*	24-27	39-57	13-19	1.9-2.0	6.9-7.0		
Increase [†]	~3	(7-10)	6-8	64-68	~9		
*Excess fluxes in mmol m ⁻² yr ⁻¹ calculated as [+Fe] – [HNLC] annual fluxes. [†] Factor increase, calculated as [+Fe]/[HNLC].							

N. Pachyderma dominate foram-CaCO₃ fraction

Larger species more important at iron fertilized site

Changes in foram-CaCO₃: (i) increase production (ii) assemblage shifts

(1) How are CaCO₃ fluxes distributed across different calcifying groups?

(2) How significant is the carbonate counter pump for iron-fertilized sequestration of atmospheric CO_2 ?

- 1. {[(gross CO₂ sink)-(net CO₂ sink)]/(gross CO₂ sink)}* 100
- 2. Gross CO₂ sink= (FPOC_{WML})
- 3. Net CO₂ sink = [(FPOC_{WML}) (FPIC_{WML} x Ψ)

Expressed as % reduction in deep-ocean CO₂ storage

```
CCP effect: 6-32% in [+Fe] region
1-4% in [HNLC] region
```


SAF transition from Si to CaCO₃ dominated production/export

Si:PIC ratios characteristic of PFZ

[+Fe] enhances CaCO₃ flux in PFZ

Foraminifer dominant CaCO₃ flux fraction

Effective CO₂ transfer by BCP may be reduced 10-30%

POC:PIC < 1 in Si:PIC>1 unique to polar frontal zone iron fertilization

Thank you for your attention

Further Acknowledgments

- Raymond Pollard (NOC)
- Richard Sanders (NOC)

Kohfeld et al. 2005 Science

LGM increases in export occurred in sub-antarctic zone

Increases in OC export were possibly accompanied by a strengthened carbonate counter pump

Decreased significance of BCP for regulating glacial Interglacial transitions in atmospheric CO₂

Martinez-Garcia et al. 2014 Science

INTRODUCTION AIMS METHODS RESULTS & DISCUSSION

Southern Ocean data-set compiled

Classified in relation to frontal position

Data Samue	Mooring	Frontal	Denth	POC:		ð BOC-BIC	Channel
Data Source	Name	Position	Deptn	PIC	ош	POC:PIC	Change
Trull et al. 2001	47-1000	SAF-STF	1060	1.2			
Trull et al. 2001	47-2000	SAF-STF	2050	0.8	990.0	-0.4	Decrease
Trull et al. 2001	54-800	PF-SAF	830	1.1			
Trull et al. 2001	54-1500	PF-SAF	1530	1.5	700.0	0.4	Increase
Fischer et al. 2000	PF-3	<pf< td=""><td>614</td><td>2.6</td><td></td><td></td><td></td></pf<>	614	2.6			
Fischer et al. 2002	PF-3	<pf< td=""><td>3196</td><td>5.1</td><td>2582.0</td><td>2.6</td><td>Increase</td></pf<>	3196	5.1	2582.0	2.6	Increase
Fischer et al. 2002	PF-5	<pf< td=""><td>654</td><td>3.0</td><td></td><td></td><td></td></pf<>	654	3.0			
Fischer et al. 2002	PF-5	<pf< td=""><td>3219</td><td>4.3</td><td>2565.0</td><td>1.3</td><td>Increase</td></pf<>	3219	4.3	2565.0	1.3	Increase
Fischer et al. 2002	PF-7	<pf< td=""><td>636</td><td>2.8</td><td></td><td></td><td></td></pf<>	636	2.8			
Fischer et al. 2002	PF- 7	<pf< td=""><td>3056</td><td>8.0</td><td>2420.0</td><td>5.3</td><td>Increase</td></pf<>	3056	8.0	2420.0	5.3	Increase
Fischer et al. 2002	PF-8	<pf< td=""><td>687</td><td>1.1</td><td></td><td></td><td></td></pf<>	687	1.1			
Fischer et al. 2002	PF-8	<pf< td=""><td>3110</td><td>1.7</td><td>2423.0</td><td>0.6</td><td>Increase</td></pf<>	3110	1.7	2423.0	0.6	Increase
Wefer et al. 1988	KG-1_500	<pf< td=""><td>494</td><td>3.0</td><td></td><td></td><td></td></pf<>	494	3.0			
Wefer et al. 1988	KG-1_1600	<pf< td=""><td>1588</td><td>1.0</td><td>1094.0</td><td>-1.9</td><td>Decrease</td></pf<>	1588	1.0	1094.0	-1.9	Decrease
Fischer et al. 2000;2002	BO-1	<pf< td=""><td>450</td><td>1.9</td><td></td><td></td><td></td></pf<>	450	1.9			
Fischer et al. 2000;2002	BO-1	<pf< td=""><td>2194</td><td>2.4</td><td>1744.0</td><td>0.5</td><td>Increase</td></pf<>	2194	2.4	1744.0	0.5	Increase
Fischer et al. 2000:2002	BO-1-2-3	< PF	456	2.0			
Fischer et al. 2000;2002	BO-1-2-3	<pf< td=""><td>2183</td><td>2.7</td><td>1727.0</td><td>0.7</td><td>Increase</td></pf<>	2183	2.7	1727.0	0.7	Increase

Fischer et al. 2000;2002	BO-5	<pf< th=""><th>515</th><th>6.4</th><th></th><th></th><th></th></pf<>	515	6.4			
Fischer et al. 2000;2002	BO-5	<pf< td=""><td>2251</td><td>6.5</td><td>1736.0</td><td>0.1</td><td>Increase</td></pf<>	2251	6.5	1736.0	0.1	Increase
Acconero et al. 2003	D-1996-180m	<pf< td=""><td>180</td><td>11.4</td><td></td><td></td><td></td></pf<>	180	11.4			
Acconero et al. 2003	D-1996-868m	<pf< td=""><td>868</td><td>16.4</td><td>688.0</td><td>5.0</td><td>Increase</td></pf<>	868	16.4	688.0	5.0	Increase
Dunbar et al. 1998	RSM-B	<pf< td=""><td>230</td><td>3.7</td><td></td><td></td><td></td></pf<>	230	3.7			
Dunbar et al. 1998	RSM-B	<pf< td=""><td>519</td><td>3.9</td><td>289.0</td><td>0.2</td><td>Increase</td></pf<>	519	3.9	289.0	0.2	Increase
Dunbar et al. 1998	RSM-C	<pf< td=""><td>230</td><td>1.6</td><td></td><td></td><td></td></pf<>	230	1.6			
Dunbar et al. 1998	RSM-C	<pf< td=""><td>493</td><td>7.6</td><td>263.0</td><td>6.0</td><td>Increase</td></pf<>	493	7.6	263.0	6.0	Increase
Langone et al. 2000	Mooring B	<pf< td=""><td>224</td><td>4.9</td><td></td><td></td><td></td></pf<>	224	4.9			
Langone et al. 2000	Mooring B	<pf< td=""><td>560</td><td>20.0</td><td>336.0</td><td>15.1</td><td>Increase</td></pf<>	560	20.0	336.0	15.1	Increase
Collier et al. 2000	AESOPS-7b	<pf< td=""><td>206</td><td>3.9</td><td></td><td></td><td></td></pf<>	206	3.9			
Collier et al. 2000	AESOPS-7b	<pf< td=""><td>481</td><td>3.7</td><td>275.0</td><td>-0.2</td><td>Decrease</td></pf<>	481	3.7	275.0	-0.2	Decrease
Tesi et al. 2012	O-1300	<pf< td=""><td>1300</td><td>5.0</td><td></td><td></td><td></td></pf<>	1300	5.0			
Tesi et al. 2012	O-3700	<pf< td=""><td>3700</td><td>6.1</td><td>2400.0</td><td>1.1</td><td>Increase</td></pf<>	3700	6.1	2400.0	1.1	Increase
Trequer et al. 1998	Antares-M2	PF-SAF	1300	1.5			
Treguere et al. 1998	Antares-M2	PF-SAF	4000	1.0	2700.0	-0.5	Decrease
Treguere et al. 1998	Antares-M3	<₽F	1300	11.0			
Trequer et al. 1998	Antares-M3	<pf< td=""><td>3500</td><td>5.3</td><td>2200.0</td><td>-5.7</td><td>Decrease</td></pf<>	3500	5.3	2200.0	-5.7	Decrease

POC:PIC CHANGES WITH DEPTH FROM MULTI-TRAP DEPTH MOORINGS

