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The Lena River is one of the Iargest-rlvers in the Arctic and has the largest delta. The mean 1) Subflow processes i 5
annual runoff volume of the Lena River from 1935 to 2014 was about 539 km3. Water mass . . o 19 10
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s Laptev Sea and the Arctic Ocean as a whole. Observational data available for the Lena River solid boundaries? ™ .
4 | suggest an on-going change in climate and biological factors over the last 50 years. Given the The mean discharge rate for the Lena River for the period from 1935 to 2011, measured at main- .. -
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According to numerous recent estimates, the Lena River supplies its delta with 20.7 to 21.4 mInt Of  tbakine 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0  PPEC
suspended material, as measured at Kusur GS (Holmes et al., 2002; Hasholt et al., 2005). Following

- . | _ L . _ , The Lena River bed profile, area of GS Stolb, main channel, August, [m].
iy the inter-annual variability of the river flow, the annual suspended sediment varies from 16.6 t0 (1. jicture is taken from Bolshivanov et al., 2013,

26.2 min t (Korotaev, 2012).

3) Counting of heat fluxes from the river bed (thickness of the active layer and its geomorphologic characteristics are unknown)

The climate of central Yakutia allows around 8.0 m of bed material (silty sands) to be frozen during the wintertime (Tananaeyv, 2013). Given estimates should
be reduced to about 2.5 m for the Lena Delta region due to generally coarser alluvium and higher winter temperatures. In high-energy environments,
model provides first necessary adjacent to the midstream, with normally coarser bed material grain sizes, the frozen state of the alluvium cannot be retained throughout the summer

step for the further modeling D S5 3= season due to lesser ice content and higher bed mobility. In this case, seasonal freeze is replaced by seasonal thaw, which penetrates the bedforms to a
efforts in the area. It also gives an  1otal suspended Matter (TSM), g m=, late summer, 2011. The depth of 1.6 to 2 m.

input for the larger scale models image is provided by G. Heim; EhV|sat-MERIS. 4) Lack of channels topography data

resolving hydrodynamics of more | | ‘ . : :
than tvgven{_y myain lena River | ‘:, ok ] 5) Complex geomorphological structure of the delta region
~ " The Lena Delta is subdivided into three geomorphological types of the terraced

el .4 | working on the hydrodynamics

" \] model for the Lena Delta region. In
frame of the current work
available hydrological information
for the Lena River lower reaches

‘,_ was collected, analyzed and used

N || for the model verification.
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Main freshwater channels produce large-scale buoyant outflows which can be easily shifted to the wind driven state due to 72.5 e freshwater channels during the low water season
A their large Kelvin number e Buoyancy-driven plume propagation speed is on average between 10 and 20 cm/s depending on 1s ]
the channel ® Winds with a magnitude more then 6 m/s can shift the plume to a wind-driven state and reverse the buoyant °
N outflows from all main freshwater channels ® Persistent westward winds can cause significant plume propagation from the 715 0 Out'ook
)( ’ Trofimovskaya and Bykovskaya channels to the north toward the continental slope area ®Plume from Olenekskaya and . ]
_ Tumatskaya.channels can bg modified rpuch fa§ter than thg width of the. pIu.me frgm Trofimovskaya and Bykovskaya channels _ Two the most interesting tasks for the nearest future are detailed analy5|s of tidal
e Downweling favorable winds (associated with a cyclonic atmospheric circulation) strengthen the down-shelf buoyancy- 08T T T T T T T T T T 1 . . . L .
driven flows from all main channels ® Tides in the area contribute to mixing by adding up to 0.015 m2/s to the vertical lon wave transformation and tides-river competition in the mouth area of the Lena
diffusivity in some areas, but their role remains relatively minor east of the Lena Delta (except for its vicinity) ® The residual Reconstructed bathymetry for the Lena delta region, [m]. The negative values indicate River.
circulation associated with tides significantly contributes to the eastward plume propagation along the northern part of the the topography data above see level, the asterisks show the location of the stations used
delta, where it reaches about 2 cm/s. for validation of the tidal dynamics
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