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1 Zusammenfassung/Summary 

1.1 Zusammenfassung 

Arktische Ökosysteme sind dem Klimawandel eher ausgesetzt als andere Ökosysteme, da die 

Erwärmung der Arktis bis zu drei Mal schneller abläuft als der globale Durchschnitt 

(Wassman et al. 2008). In Folge der globalen Erwärmung nahm das Mehrjahreseis der 

zentralen Arktis in den letzten Jahrzehnten deutlich ab und Einjahreseis dominierte die 

Eisbedeckung mit einer durchschnittlichen Dicke von weniger als einem Meter 

(Boetius et al. 2013). Das in der Schicht zwischen dem Eis und der Wassersäule lebende 

Zooplankton stellt einen wichtigen trophischen Link zwischen dem Meereis und dem 

pelagischen Nahrungsnetz dar. Somit führt das Schmelzen des Meereises zu einem 

Habitatverlust für Eis-assoziierte Arten, welcher auch einen Einfluss auf das pelagische 

Nahrungsnetz nehmen kann. Das Ziel dieser Arbeit war die Untersuchung der pelagischen 

Zooplanktongemeinschaft im Eurasischen Becken nach einem historischen Meereisminimum 

im Spätsommer 2012. 

Alle Proben für diese Arbeit wurden während der Polarstern Expedition ARK XXVII/ 3 

“IceArc” vom 2. August bis 7. Oktober 2012 genommen. Die Probennahme erfolgte mit 

einem multiple closing net (MultiNet, Midi type, HYDROBIOS Kiel). Zooplanktonproben 

von neun Stationen, davon vier im Nansen Becken und fünf im Amundsen Becken, sowie 

zwei Tiefenschichten (0 – 50 m und 50 – 200 m) wurden analysiert, um horizontale und 

vertikale Verteilungsmuster zu untersuchen. Zusätzlich wurde in der Nähe jeder MultiNet 

Station eine Vielzahl an Umweltparametern (Temperatur, Salinität, Eiseigenschaften) 

gemessen um herauszufinden, welche Parameter die Verteilung der Zooplankton-

gemeinschaften am meisten beeinflussen. 

Insgesamt wurden 30 Taxa in den Proben aus dem Eurasischen Becken identifiziert. Die 

Artenanzahl, Artenzusammensetzung und Abundanz der Zooplanktongemeinschaften 

veränderten sich hauptsächtlich mit der Wassertiefe. So stieg die Artenanzahl signifikant von 

der 0 – 50 m Wasserschicht zur 50 – 200 m Wasserschicht an. Dagegen nahmen die 

Abundanzen mit der Tiefe signifikant ab und variierten zwischen 307 und 1606 Ind. m
-
³ in der 

0 – 50 m Wasserschicht und zwischen 95 und 208 Ind. m
-
³ in der 50 – 200 m Wasserschicht. 

Weder hinsichtlich der Artenanzahl noch der Abundanz konnten signifikante Unterschiede 

zwischen dem Nansen Becken und dem Amundsen Becken festgestellt werden. 
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Die Zooplanktongemeinschaft wurde von Copepoden dominiert, während Nicht-Copepoden 

eine untergeordnete Rolle spielten. In beiden Tiefenschichten sowie in beiden Becken waren 

Oithona spp., Corycaeus spp. und Clausocalanidae die Arten mit der größten Abundanz. Die 

Nicht-Copepoden Foraminifera, Chaetognatha und Appendicularia machten den 

bedeutendsten Anteil in der 0- 50 m Tiefenschicht sowie im Nansen Becken aus. In der 

50-200 m Tiefenschicht und im Amundsen Becken kamen Foraminifera, Ostracoda und 

Chatognatha am häufigsten vor. 

Calanus spp. bildeten in beiden Tiefenschichten und in beiden Becken weniger als 8 % 

der Zooplanktongemeinschaft. Für Calanus hyperboreus, Calanus glacialis und 

Calanus finmarchicus konnte eine signifikante Abnahme der Abundanzen mit zunehmender 

Tiefe beobachtet werden. C. finmarchicus war in der 0 – 50 m Schicht die häufigste Calanus 

Art, während sie in der 50 – 200 m Schicht die geringste Abundanz zeigte. C. glacialis zeigte 

eine gegenteilige Verteilung und war in der oberen Schicht am geringsten und in der unteren 

Schicht am häufigsten von allen drei Calanus Arten vertreten. Beim Vergleich der beiden 

Becken war keine signifikante räumliche Verteilung der Calanus spp. Abundanzen zu 

erkennen. Adulte Weibchen und das Copepodidstadium V waren von allen drei Calanus 

Arten die am häufigsten vorkommenden Stadien. Da an den meisten Stationen junge 

Entwicklungsstadien der drei Calanus Arten gefunden wurden, kann von einer erfolgreichen 

Fortpflanzung im Eurasischen Becken ausgegangen werden. 

Die Ergebnisse dieser Arbeit wurden mit den Ergebnissen von David et al. (2015) verglichen. 

David et al. (2015) nahm während der Expedition ARK XXVII/ 3 Proben mit dem 

Surface and Under-Ice Trawl (SUIT), um die unter dem Eis lebende Zooplankton-

gemeinschaft des Eurasischen Beckens zu untersuchen. Die Analyse der MultiNet Daten 

dieser Arbeit lieferte im Vergleich zur Analyse der SUIT Daten von David et al. (2015) 

unterschiedliche Ergebnisse, insbesondere bei Betrachtung der Artenzusammensetzung. 

David et al (2015) erkannte ein von herbivoren Arten dominiertes Nansen Becken und ein von 

carnivoren Arten dominiertes Amundsen Becken. In der vorliegenden Arbeit konnten diese 

Beobachtungen für das pelagische Zooplankton nicht bestätigt werden, da herbivore Arten in 

beiden Becken dominierten. Das konstante Vorkommen von C. finmarchicus in allen 

MultiNet Proben auf der einen Seite und deren Abwesenheit in den SUIT Proben (abgesehen 

von einer Station) auf der anderen Seite, deutet auf eine Migration in die oberen 

Wasserschichten mit Meidung der 0-2 m Oberflächenschicht hin. Die These einer nördlichen 

Verschiebung des Vorkommens atlantischer Arten wie C. finmarchicus aufgrund einer 
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verstärkten atlantischen Einströmung in den Arktischen Ozean konnte in dieser Arbeit weder 

gestützt noch entkräftet werden. 

Verglichen mit anderen MultiNet Studien im Bereich des Eurasischen Beckens waren keine 

bedeutenden Veränderungen in der Artenzusammensetzung, Biodiversität und Abundanz der 

Zooplanktongemeinschaft erkennbar. In der Zukunft sind Langzeituntersuchungen mit einem 

standardisierten und vergleichbaren Beprobungssystem die Grundvoraussetzung, um 

Veränderungen der arktischen Biodiversität und der arktischen Ökosysteme zu untersuchen 

und um herauszufinden, ob diese Veränderungen mit dem Klimawandel zusammenhängen. 
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1.2 Summary 

Arctic ecosystems are exposed to climate-driven changes much sooner than other ecosystems, 

since Arctic warming is about three times faster than the global rates (Wassmann et al. 2008). 

In the central Arctic, multi-year ice has been largely decreased during the last decades as a 

result of melting by atmospheric heating. In 2012 a historical minimum in sea ice extent has 

been recorded. First-year ice was dominating with an average thickness of less than one meter 

(Boetius et al. 2013). Zooplankton that is dwelling in the ice-water interface layer and feeding 

on sea ice algae constitutes an important trophic link between the sea ice and the pelagic food 

web. Thus, the loss of sea ice causes a loss of habitat for ice related species which the pelagic 

food web depends on. This study aimed to investigate the pelagic zooplankton community in 

the Eurasian Basin in late summer 2012 after a historical sea ice minimum. 

All samples for this study were taken during the Polarstern expedition ARK XXVII/ 3 

“IceArc” from August 2
nd

 to October 7
th

, 2012. Sampling was conducted with a multiple 

closing net (MultiNet, Midi type, HYDROBIOS Kiel). Zooplankton specimens of nine 

stations (four in Nansen Basin and five in Amundsen Basin) and two depth layers (0 – 50 m 

and 50 – 200 m) were classified to investigate horizontal and vertical patterns of zooplankton 

distributions. To identify environmental variables that structure the zooplankton communities 

a large set of physical data was recorded near all sampling stations. 

In total 30 taxa were found in the Eurasian Basin during this study. Depth was the most 

important factor in structuring the zooplankton community. The number of taxa increased 

significantly with depth and ranged from 12 to 21 taxa in the 0 – 50 m water layer and from 

16 to 24 taxa in the 50 – 200 m water layer. The zooplankton abundance decreased 

significantly with depth and ranged from 307 to 1606 ind. m
-
³ in the upper water layer and 

from 95 to 208 ind. m
-
³ in the deeper water layer. Spatial differences between Nansen Basin 

and Amundsen Basin were not significant for the number of taxa and the zooplankton 

abundance during this study. 

Copepods clearly dominated the zooplankton community in terms of species number and 

abundances while non-copepods played only a minor role. Oithona spp., Corycaeus spp., and 

Clausocalanidae were the most abundant taxa of copepods in both depth layers and both 

basins. Foraminifera, Chaetognatha, and Appendicularia were the most abundant taxa of  

non-copepods in the 0 – 50 m depth layer and in the Nansen Basin whereas Foraminifera, 

Ostracoda, and Chaetognatha were the most abundant taxa in the 50 – 200 m depth layer and 

in the Amundsen Basin. 
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Calanus spp. represented <8 % of the zooplankton community in every depth layer and every 

basin. Abundances of Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus 

revealed significant vertical patterns as abundances of all three species decreased with depth. 

C. finmarchicus dominated the Calanus spp. community in the 0 – 50 m water layer, but in 

the 50 – 200 m water layer it was the least abundant. C. glacialis were highest in the deeper 

water layer, but lowest in the upper water layer. There was no significant spatial pattern for 

Calanus spp. concerning the distribution in Nansen Basin and Amundsen Basin. 

Adult females and the copepodid stage V were the most abundant developmental stages of all 

three Calanus species. The presence of young developmental stages of all Calanus species 

suggested successful reproduction at most of the stations for C. hyperboreus, C. glacialis, and 

C. finmarchicus. 

The results of this study were compared with the study of David et al. (2015) who used the 

newly developed Surface and Under-Ice Trawl (SUIT) during the ARK XXVII/ 3 “IceArc” 

expedition to investigate the under-ice zooplankton community. The analysis of the MultiNet 

samples for this study and the SUIT samples for the study of David et al. (2015) delivered 

different results especially with regard to the composition of the zooplankton community. 

David et al. (2015) reported a herbivorous Nansen Basin regime and a carnivorous 

Amundsen Basin regime for the under-ice community in the Eurasian Basin. These findings 

could not be confirmed for the zooplankton community of the pelagial within this study, since 

herbivores prevailed in abundances in both basins. The constantly presence of 

C. finmarchicus in all MultiNet samples, but absence in the SUIT samples (except of one 

station) showed that C. finmarchicus migrated to the upper water layers, but avoided the 

0-2 m surface layer. A northward migration of the North Atlantic species C. finmarchicus due 

to an increased Atlantic inflow into the Arctic Ocean could neither be confirmed nor rejected 

within this study. 

In comparison to previous investigations in the Eurasian Basin, no drastic changes in species 

composition, biodiversity, and abundances of the zooplankton community were evident. 

In the future long-term monitoring programmes with a standardized sampling design are a key 

requirement to reveal changes in the Arctic biodiversity and ecosystem structure and to 

investigate if these changes are associated with the climate change. 
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2 Introduction 

The Arctic Ocean is a closed ocean basin which is almost entirely surrounded by land. Its only 

deep gateway to the world oceans (Greenland Sea and Norwegian Sea) is the Fram Strait 

between Spitzbergen and Greenland. With depths up to 2.6 km and a width of 600 km 

the Fram Strait is by far deeper and wider than the other gateways Bering Strait, 

Barents Sea Opening, or channels in the Canadian Arctic Archipelago. The deep central 

region of the Arctic Ocean is separated by the Lomonosov Ridge into two major basins, the 

Eurasian Basin and the Canadian Basin. The Eurasian Basin, in turn, is divided by the 

Gakkel Ridge into two basins named Nansen Basin and Amundsen Basin. 

The Arctic Ocean comprises three major water masses: Polar water, Atlantic water, and 

Arctic water. The Nansen Basin is most directly influenced by the inflow of Atlantic water 

(Mumm 1993), because along its southwestern side it borders the Fram Strait. Atlantic water 

(S> 34.5 PSU, T= 0.5 - 1°C, Auel and Hagen 2002) is carried northward through eastern 

Fram Strait with the West Spitsbergen Current. When entering the Nansen Basin, the 

Atlantic water flows beneath the Polar surface water (Carmack 1990) and follows the 

Eurasian continental slope as a counter clockwise boundary current. The Atlantic layer can be 

detected throughout the Arctic Ocean in 200 – 600 m depth below a pronounced halocline 

(Auel and Hagen 2002). In turn, the Polar surface water (S< 34.4 PSU, T< 0°C, 

Carmack 1990) moves southwestward across the Nansen Basin in the upper 50 m towards 

western Fram Strait where it flows into the East Greenland Current. 

The history of zooplankton research in the central Arctic began with Nansen’s Fram 

expedition (1879 - 1899). During the first 80 years of zooplankton research, the organisms 

were collected from drifting ice platforms or ships frozen in the ice. Within this period of 

sporadic data collection, basic knowledge on the major parameters and seasonal dynamics of 

the zooplankton communities of the Arctic Ocean were obtained. In the last three decades, 

biological observations in the Arctic Ocean have increased markedly (Kosobokova, Hopcroft, 

Hirche 2010). Due to ice-breakers that can reach even permanently ice-covered regions 

large-scale and efficient sampling can be accomplished nowadays, albeit with major logistical 

effort (Mumm et al. 1998). The interdisciplinary research brought a breakthrough in 

understanding of relationships between the structure of pelagic communities with 

hydrographic processes and environmental factors (Kosobokova and Hirche 2009). 

Zooplankton developed sophisticated life history strategies to survive and reproduce in a 

pelagic realm characterized by frigid temperatures, a perennial or seasonal sea ice cover, 
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limiting nutrients in the surface layer, and an extremely pulsed cycle of primary production 

(Conover and Huntley 1991; Darnis et al. 2012). Being the major consumers of primary 

production (Kosobokova, Hopcroft, Hirche 2010), zooplankton species are an important 

component in the Arctic food web since they link primary production with higher trophic 

levels. The Arctic Ocean hosts two zooplankton communities: an autochthonous community 

and an allochthonous community of Atlantic origin (Kososbokova and Hirche 2000). 

Sub-Arctic and boreal North Atlantic zooplankton species are transported through the 

Norwegian and Greenland Seas towards the Fram Strait and from there into the Arctic Ocean 

(Kosobokova and Hirche 2009). The different zooplankton communities are dominated by 

different copepod species. There are three Calanus species in the Arctic Ocean: 

Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus. They resemble each 

other morphologically, but differ in body size, reproductive strategy, life cycle, and origin. 

While C. hyperboreus and C. glacialis are considered to be of true Arctic origin, 

C. finmarchicus is a boreal North Atlantic species (Conover 1988; Auel and Hagen 2002; 

Hirche and Kosobokova 2007). Large copepod species are key drivers of the transfer of 

energy through the Arctic marine ecosystem due to their high-energy lipid compounds and 

essential fatty acids (Darnis et al. 2012). The three main Calanus species migrate from the 

upper water masses to deeper layers for overwintering (Hirche 1991) which results in a shift 

of zooplankton composition in the surface layer from dominance of large copepods to 

dominance of small-sized zooplankton (Hansen, Nielsen, Levinsen 1999). Unlike the large 

Calanus spp., small copepods (e.g., Oithona spp.) mostly stay active during the long Arctic 

winter (Madsen, Nielsen, Hansen 2008) and do not perform extensive vertical migration in the 

Arctic (Fortier et al. 2001). 

The extreme climate in the Arctic Ocean, e.g., strong seasonality in light regime and 

sea ice cover or the advection of waters from adjacent seas has shaped unique marine 

ecosystems (Kosobokova et al. 1998). During the sea ice maximum from February until 

March, the whole Arctic Ocean is covered by sea ice whereas the Arctic sea ice minimum is 

reached in September. The ice is forming a substrate on which primary production can be 

concentrated. This condition contrasts to the generally diluted nutritions prevailing in the 

pelagial and makes the under-ice zone a suitable place for ice-associated and pelagic species 

(Conover and Huntley 1991). Ice-associated species are organisms that complete their entire 

life cycle within the sea ice or spend only part of their life cycle associated with the ice 

(Melnikov and Kulikov 1980). The ice-associated fauna plays a key role in transmitting 

carbon from sea ice algae into the pelagic and benthic food webs (David et al. 2015). 
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How pelagic zooplankton communities use the under-ice habitat is sparsely explored until 

today. The determination of the trophic link between the sea ice and the water column in the 

Arctic Ocean will be helpful for a better evaluation of the effects of continuous ice melting on 

the Arctic ecosystem. Zooplankton species are expected to be the first showing a response to 

climate change because of their short life histories and their sensitivity to environmental 

changes (Hunt et al. 2013). If climate change is ongoing, model-based studies indicate a 

northward migration of Atlantic species like C. finmarchicus with an increased inflow of 

Atlantic water into the Arctic Ocean (Richardson 2008). C. hyperboreus and C. glacialis have 

higher nutritional values than C. finmarchicus (Kosobokova and Hirche 2000). Thus, a 

replacement of C. hyperboreus and C. glacialis by C. finmarchicus would cause changes in 

the zooplankton community of the Arctic Ocean and effect the pelagic food web structure. 

An indication for drastic changes of the Arctic Ocean in response to climate forcing was the 

decline of the sea-ice extent to a historical minimum in September 2012. The aim of this 

study was to provide a basin-wide inventory of zooplankton fauna in the Eurasian Ocean out 

of multiple closing net (MultiNet) samples collected from August to September 2012 during 

the ARK XXVII/ 3 “Ice Arc” expedition of Polarstern. 

Specific objectives were as follows:  

1) Describing the faunal composition and abundance of zooplankton in the two Eurasian 

basins (Nansen Basin and Amundsen Basin) 

2) Analysing the patterns of vertical and horizontal distribution of zooplankton in these two 

basins 

3) Investigating the association of the zooplankton communities with environmental 

variables (e.g., temperature, salinity, sea ice properties, chlorophyll a) 

Another focus of this thesis was to compare the results from the MultiNet with a dataset from 

the Surface and Under-Ice Trawl (SUIT) provided by David et al. (2015), especially in order 

to analyze the spatial distribution patterns of the three Calanus species: C. finmarchicus, 

C. glacialis, and C. hyperboreus in ice-covered waters. 



3 Methods 

 9  

3 Methods 

3.1 Sample collection 

All samples for this study were taken during the Polarstern expedition ARK XXVII/ 3 

“IceArc” from August 2
nd

 to October 7
th

, 2012. The material was collected at nine stations 

between 82°N – 89°N and 17°E – 131°E (Fig. 1). Four stations were located in the 

Nansen Basin (stations 226, 243, 261, and 386) and five in the Amundsen Basin 

(stations 279, 328, 337, 351, and 367). 

 

Fig. 1: Multiple closing net sampling stations during the expedition ARK XXVII/ 3 of Polarstern; 

number codes refer to station identifiers 

In order to investigate the pelagic zooplankton communities in the Eurasian Basin, 

a multiple closing net (MultiNet, Midi type, HYDROBIOS Kiel) was used. This sampling 

system is equipped with a series of nets which can be opened and closed sequentially on 

command, e.g., in different water depths. The MultiNet used for this study had a net opening 

of 0.25 m² and was equipped with five nets, each of it with 150 µm mesh size. 
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A flowmeter installed in the opening of the net measured the filtered water volume for each 

net and depth range, respectively. 

Zooplankton was collected from vertical hauls in five depth ranges (0 – 50 m, 50 – 200 m, 

200 – 500 m, 500 – 1000 m, 1000 – 1500 m). Immediately after catch, the samples were 

preserved in a 4 % formaldehyde/seawater solution and buffered with hexamethylene-

tetramine. The samples were stored at room temperature for later analysis of species 

composition, abundances, and distribution patterns in the laboratories of the 

Alfred-Wegener-Institute. For this study, samples of the two depth layers 0-50 m and 

50-200 m from all nine stations were analyzed. 

A large set of physical data was recorded with a Conductivity Temperature Depth rosette 

(CTD) near every MultiNet station (Tab. 1, Tab. 2). The CTD (Seabird SBE9+) was equipped 

with a seafloor altimeter (Benthos), a fluorometer (Wetlabs FLRTD), a dissolved oxygen 

sensor (SBE 43), and a transmissometer (Wetlabs C-Star). Boetius et al. (2013) provided 

details of the CTD sampling procedures. Data are available online in the PANGAEA database 

(Rabe et al. 2012). Modal CTD ice thickness (Tab. 4) was estimated from environmental 

sensors attached to the SUIT, including a CTD and an altimeter. Pressure data from the CTD 

and the distance to the sea ice estimated by the altimeter were used to derive ice thickness  

(for details see David et al. 2015). Ice concentrations (Tab. 4) were derived from grid cell 

ice coverage data of the SIC (AMSR2) satellite and were downloaded from the sea ice portal 

of the University of Bremen (http://www.meereisportal.de/de/datenportal.html). 

Tab. 1: Sampling dates, stations and positions for the MultiNet in the Eurasian Basin during the 

ARK XXVII/ 3 expedition of Polarstern 

 

  

Date Time Station No. Gear

Position 

Latitude

Position 

Longitude Depth [m]

09.08.2012 17:08 PS80/226-1 MN 84° 1.600'N 31° 13.810'E 4010.6

16.08.2012 09:30 PS80/243-1 MN 83° 54.930'N 75° 57.860'E 3420.0

21.08.2012 15:32 PS80/261-1 MN 82° 56.650'N 109° 53.160'E 3597.9

25.08.2012 21:55 PS80/279-1 MN 82° 53.060'N 129° 57.880'E 4166.0

05.09.2012 06:59 PS80/328-1 MN 81° 53.310'N 130° 49.140'E 4035.4

07.09.2012 12:25 PS80/337-1 MN 85° 5.560'N 122° 16.650'E 4356.2

18.09.2012 20:59 PS80/351-1 MN 87° 55.940'N 61° 0.110'E 4381.6

23.09.2012 01:30 PS80/367-1 MN 88° 47.390'N 56° 33.310'E 4376.1

28.09.2012 15:48 PS80/386-1 MN 84° 22.170'N 17° 30.670'E 3785.8

http://www.meereisportal.de/de/datenportal.html
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Tab. 2: Sampling dates, stations and positions for the Conductivity Temperature Depth probe (CTD) in 

the Eurasian Basin during the ARK XXVII/ 3 expedition of Polarstern 

 

3.2 Species identification 

For analyzing the species composition and distribution patterns, all MultiNet samples were 

split into an aliquot of at least ¼ using a plankton splitter (Motoda 1959). In case of very 

abundant species, the sample was split into an aliquot of up to 1/265 of the total catch. 

Representative subsamples were analyzed to a minimum of 30 individuals of each taxon. 

Zooplankton was sorted in a Bogorov plate and identified under a binocular (LEICA MZ125) 

with 8x to 100x magnification. Individuals were identified according to most recent taxonomy 

(Razouls et al. 2005-2012; http://copepodes.obs-banyuls.fr/en/). All copepods were 

determined to genus or species level, except of the copepods belonging to the family 

Clausocalanidae. 

For bigger copepods (e.g., Calanus spp., Paraeuchaeta spp., Metridia spp.), the copepodid 

stages were determined. Copepod nauplii were separated by Oithona nauplii and Calanus 

nauplii, respectively, but no species level was identified. The individuals of Calanus spp. 

were selected for more detailed investigations. Prosome length measurements were used to 

distinguish between Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus 

according to Madsen, Nielsen, Hansen (2001) (Tab. 9). All non-copepod organisms 

(Ostracoda, Polychaeta, Chaetognatha etc.) were determined to phylum or class level due to 

time restrictions. Abundances [ind. m
-3

] were calculated
 
for all taxa based on data from the 

flowmeter. 

 

Date Time Station No. Gear

Position 

Latitude

Position 

Longitude Depth [m]

09.08.2012 19:25 PS80/227-1 CTD/RO 84°1.460'N 31°13.660'E 4011.2

16.08.2012 11:25 PS80/245-1 CTD/RO 83°55.140'N 75°58.890'E 3420.1

22.08.2012 05:14 PS80/263-1 CTD/RO 83°4.730'N 110°8.990'E 3606.4

26.08.2012 04:19 PS80/280-1 CTD/RO 82°53.380'N 129°48.680'E 4173.1

05.09.2012 10:44 PS80/329-1 CTD/RO 81°52.550'N 130°52.650'E 4032.2

07.09.2012 09:44 PS80/336-1 CTD/RO 85°5.660'N 122°15.970'E 4355.4

19.09.2012 01:52 PS80/353-1 CTD/RO 87°55.520'N 60°58.070'E 4383.6

22.09.2012 20:25 PS80/365-1 CTD/RO 88°48.180'N 57°2.950'E 4374.5

28.09.2012 18:07 PS80/387-1 CTD/RO 84°22.070'N 17°31.510'E 3897.2

http://copepodes.obs-banyuls.fr/en/
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3.3 Length measurements of Calanus spp. 

The three species: Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus are 

morphologically similar (Hirche 1997) and are usually separated by differences in 

prosome length (PL) (Hirche et al. 1994; Madsen, Nielsen, Hansen 2001). During this study, 

stages, prosome, and urosome lengths of 1002 individuals from the 0 – 50 m depth range and 

706 individuals from the 50 – 200 m depth range were analyzed. As these individuals came 

from different sample aliquots (at least ¼ of the total catch), the length measurements were 

extrapolated to the actual amount. That is why altogether 5736 length measurements 

represented the size-frequency distribution of the 0 – 50 m water layer and 1868 length 

measurements represented the size-frequency distribution of the 50 – 200 m water layer. 

 

Fig. 2: Prosome and urosome of a calanoid copepod (Calanus spp.) 

For prosome length measurements specimens of all developmental stages were measured 

from the tip of the cephalosome to the distal lateral end of the last thoracic segment (Fig. 2). 
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Measurements were conducted with a stereo microscope (LEICA M205C) and the lens 

PLANAPO 0.63x. For prosome and urosome measurements, the LEICA Application SUITE 

Version 4.4.0 software was used. Length frequency diagrams were constructed in 

R version 3.1.1 for all five copepodid stages (CI – CV) and adult females (AF). The 

individuals were separated into species by the PL distributions within each developmental 

stage using the software R version 3.1.1. Therefore, data were compared with the prosome 

length distributions published by Madsen, Nielsen, Hansen (2001) (Tab. 9). 

3.4 Data analysis 

3.4.1 Diversity indices 

Several diversity indices were calculated to obtain a quantitative estimate of biological 

variability for each station and depth range. In general, three types of indices can be 

distinguished: 

Species richness indices as a measure for the total number of species in a community. 

However, a complete inventory of all species present at a certain location is an almost 

unachievable goal in practical applications (Magurran and McGill 2011).  

Species richness    , the total number of species identified in a sample, is among the simplest 

descriptors of community structure (Magurran and McGill 2011). This measure strongly 

depends on sampling size and effort. 

Species richness:     total number of species 

 

Margalef’s index is a species richness index which tries to account for this problem. This 

index represents the number of species present in a sample or community in relation to the 

total abundance. Despite the attempt to correct for sample size, this index is strongly 

influenced by sampling effort (Magurran 2006) which may cause problems when studies with 

different sampling designs are compared. 

Margalef’s index:    
     

     
    (Eq 1) 

    total abundance of the sample  

Diversity indices are a function of both richness and evenness, with less even communities 

being less diverse (Magurran and McGill 2011). 

In order to take abundances and relative proportions of different species into account, 

Simpson and Shannon indices are commonly used as a measure of species diversity 

(Magurran 2006; Magurran and McGill 2011). 
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The Simpson index (Simpson 1949) gives the probability that two individuals, which are 

taken randomly from a sample, are not representing the same species. 

Simpson diversity index:         
         

       
  

       (Eq 2) 

       
         

       
  

    

      abundance of a single species     

Since N increases with a decreasing number of species, 1-l obtains small values in datasets of 

high diversity and large values in datasets of low diversity. The Simpson index is a 

dominance index because it gives more weight to common or dominant species. 

Like the Simpson diversity index, the Shannon diversity index (Shannon 1948) accounts for 

both abundance and evenness of the species present in a sample. 

Shannon diversity index:          
 
                        (Eq 3) 

     
  

 
  

  
 
     

The Shannon index represents the share of a species   compared to the total abundance of a 

sample ( ). Here, a high value of    would be a representative of a diverse and equally 

distributed community and lower values represent a less diverse community. 

Evenness indices are a measurement of how different the abundances of the species in a 

community are from each other. Perfect evenness is reached in a community where all species 

have the same abundance. Since all natural communities are uneven, evenness is a relative 

statement (Magurran and McGill 2011). 

The Shannon evenness index (Pielou 1969) measures the evenness of a community and can be 

easily calculated by dividing the value of    with       which is equal to       

(   total number of species). 

Shannon evenness index:    
  

     
  (Eq 4) 

Shannon evenness ranges from 0 - 1, with      indicating a complete evenness in a 

community or sample. This index is useful especially when communities with different 

species numbers shall be compared. 

All indices were compared with the species richness-, diversity-, and evenness indices 

published by Kosobokova, Hopcroft, Hirche (2010) (Tab. 10). 
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3.4.2 Cluster analysis and Non-Metric Multidimensional Scaling (NMDS) 

Cluster analysis and Non-Metric Multidimensional Scaling (NMDS) (Kruskal 1964) were 

used to estimate and visualize the similarities of the zooplankton community among the nine 

stations across the two depth layers 0 – 50 m and 50 – 200 m. Cluster analysis and NMDS 

were explored using the PRIMER-E 6
®
 software package (Clarke and Gorley 2006). 

Similarity clusters were produced by using abundance averages for each station and 

depth range. Extreme outliers were removed from the dataset in order to not falsify the result. 

The abundance data were power transformed (4
th

 root), Bray-Curtis similarity 

(Bray and Curtis 1957) was calculated between all samples and then projected onto 

two-dimensional (2D) plots. The performance of the Cluster and NMDS plot was appraised 

with Shepard plots and stress values (Legendre and Legendre 2012). The two-dimensional 

plots show the samples in such a way that their faunistic similarities are reflected in a 

hierarchical array. In contrast to PCA, this form of analysis deals better with 

raw data matrices which contain predominantly “0”, such as abundance matrices 

(Lozán and Kausch 2007). 

3.4.3  Statistical analysis 

The software R version 3.1.1 was used for statistical analysis. For data which were not 

normally distributed a non-parametric test was performed. The Mann-Whitney U test was 

used to assess the statistical difference of diversity indices and species abundances (Mann and 

Whitney 1947). For all procedures the significance level α was set to 0.05. The obtained 

values of the Mann-Whitney U test express the significance of the differences among the 

results. If p < 0.05, the differences among the results were significant. To visualize significant 

patterns boxplots were generated in R version 3.1.1. 
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4 Results 

4.1 Environmental conditions  

During the ARKXXVII/ 3 expedition, station 226 was the first MultiNet station where 

zooplankton was sampled (August 9
th

, 2012) and station 386 was the last station 

(September 28
th

, 2012). In the following, all tables of MultiNet stations are not arranged 

according to their date of sampling, but according to their associated basin 

(Nansen Basin: 226, 243, 261, and 386; Amundsen Basin: 279, 328, 337, 351, and 367). 

Polar surface water (S< 34.4 PSU, T< 0°C, Carmack 1990) was present at all nine stations in 

the upper 50 m of the water column (Tab. 3, Fig. 3). Whereas water temperature was 

relatively similar (-1.59 to -1.79°C) in the upper 50 meters of all nine stations, salinity was the 

more varying parameter (31.87 to 33.86 PSU). The opposite was true for the deeper water 

layer (50 – 200 m) where temperature was the most varying parameter (+1.25 to -1.64°C) and 

salinity was more similar between the stations (33.99 to 34.73 PSU). The deeper water layer 

of six stations was characterized by Polar surface water and of three stations (station 226, 243, 

and 386) by Atlantic water (S> 34.5 PSU, T= 0.5 – 1°C, Auel and Hagen 2002). In the 

Nansen Basin averaged salinities and temperatures were slightly higher than in the 

Amundsen Basin (Tab. 3). Especially station 328, which was located in the Amundsen Basin 

and thus far away from the Atlantic inflow through Fram Strait was characterized by low 

salinities (31.87 PSU and 33.99 PSU) and relatively low temperatures (-1.6 and -1.52°C) in 

both depth layers (Tab. 3). In terms of oxygen and chlorophyll a concentrations, the upper 

water layer (0 – 50 m) showed slightly higher concentrations than the deeper water layer 

(50-200m) (Tab. 3, Fig. 3). The stations 351 and 367 had highest oxygen concentrations in the 

0 – 50 m depth layer (Tab. 3, Fig. 3). Highest chlorophyll a concentrations were reached in 

the 0-50 m depth layer of the stations 243 and 337 (Tab. 3, Fig. 3). There were no differences 

between Nansen Basin and Amundsen Basin concerning oxygen and chlorophyll a 

concentration, respectively (Tab. 3). The mixed layer depth (15 - 33 m) differed not as much 

in temperatures between Amundsen Basin and Nansen Basin, but in salinities which were 

higher for Nansen Basin than for Amundsen Basin (Tab. 3). The mixed layer depth was on 

average 8 m deeper for stations in the Amundsen Basin (26 m) than for stations in the 

Nansen Basin (18 m). Deepest mixed layer depths could be found at the stations 351 and 367, 

both located in the Amundsen Basin (Tab. 3). The shallowest mixed layer depths could be 

detected at the stations 226 and 261 which were both located in the Nansen Basin (Tab. 3). 
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Tab. 3: Environmental parameters of all MultiNet stations 

 

 

During the ARK XXVII/ 3 expedition of Polarstern the sea ice coverage of the Arctic Ocean 

showed a marked decline from August to September 2012 (Fig. 4). Whereas the average 

ice coverage was slightly higher in the Nansen Basin than in the Amundsen Basin, the modal 

ice thickness was slightly lower in the Nansen Basin than in the Amundsen Basin (Tab. 4). 

The ice coverage was more than 95 % at most stations. Only at station 337 (91 %) and at 

station 328 (73 %) the ice coverage was lower (Tab. 4). Modal ice thickness ranged 

between 0.70 m and 1.40 m. Lowest values were reached at station 386 (0.7 m) and 

station 261 (0.75 m) which were both located in the Nansen Basin. The highest ice thickness 

was reached at the stations 367 (1.4 m) and 351 (1.38 m), both located in the Amundsen Basin 

(Tab. 4). 

Tab. 4: SIC (AMSR2) coincident grid cell ice coverage [%] and modal CTD ice thickness [m] for all 

MultiNet stations 

 

station latitude          longitude          

depth range  

[m]

salinity  

[PSU]

temperature  

[°C]

 O2       

[µmol l
-1

]

 chlorophyll a       

[mg m
-3

]

mixed layer      

depth (mld)                     

[m]

mld         

temperature        

[°C]

mld               

salinity     

[PSU]

 mld       

chlorophyll a       

[mg m
-3

]

PS80 / 226 84° 2'N 31° 1'E 0  - 50               33.86 -1.59 390.77 0.14 15 -1.53 33.36 0.10

50 - 200 34.64 0.64 328.39 0.14

PS80 / 243 83° 5'N 75° 6'E 0 - 50                    33.79 -1.59 372.01 0.16 18 -1.53 33.22 0.19

50 - 200 34.73 1.25 331.42 0.14

PS80 / 261 82° 6'N 109° 5E 0 - 50                    33.45 -1.72 394.73 0.14 15 -1.67                        33 0.14

50 - 200 34.11 -1.64 365.00 0.14

PS80  /386 84° 2'N 17° 3'E 0 - 50                    33.58 -1.72 393.48 0.14 22 -1.76 32.87 0.15

50 - 200 34.53 0.08 338.72 0.14

PS80 / 279 82° 5'N 129° 6'E 0 - 50                    32.04 -1.64 384.66 0.14 22 -1.58 31.27 0.16

50 - 200 34.36 -0.39 330.85 0.14

PS80 / 328 81° 5'N 130° 5'E 0 - 50                    31.87 -1.6 386.75 0.14 20 -1.53 30.77 0.3

50 - 200 33.99 -1.52 347.61 0.14

PS80 / 337 85° 6'N 122° 2'E 0 - 50                    31.91 -1.6 391.66 0.15 25 -1.52 31.11 0.29

50 - 200 34.26 -0.6 338.89 0.14

PS80 / 351 87° 6'N 61° 0'E 0 - 50                    33.43 -1.78 399.58 0.14 30 -1.78 33.17 0.21

50 - 200 34.41 -0.35 332.18 0.14

PS80 / 367 88° 5'N 56° 3'E 0 - 50                    33.2 -1.79 408.02 0.14 34 -1.79 33.03 0.06

50 - 200 34.25 -0.7 338.76 0.14

33.01 -1.67 391.3 0.15

34.36 -0.36 339.09 0.14

34.09 -0.79 364.32 0.14 17.5 -1.62 33.15 0.15

33.37 -1.2 365.9 0.14 26.2 -1.64 31.87 0.2
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mean    0-50 m

mean Nansen Basin

mean Amundsen Basin

mean  50-200 m

station

ice coverage 

[%]

ice thickness 

[m]

PS 80 / 226 98 1.15

PS 80 / 243 98.5 1.14

PS 80 / 261 97.5 0.75

PS 80 / 386 100 0.70

PS 80 / 279 96.5 0.85

PS 80 / 328 73 n.v.

PS 80 / 337 91 1.05

PS 80 / 351 100 1.38

PS 80 / 367 100 1.40

mean Nansen Basin 98.5 0.94

mean Amundsen Basin 90.13 1.09
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Fig. 3: Profiles of temperature, salinity, O2, and chlorophyll a along the transect of the MutliNet stations; 

plot was produced by using Ocean Data View V 4.5.3; data were taken from closest CTD stations to the 

MutliNet stations 
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Fig. 4: Sea ice concentration for August and September 2012 (monthly mean) during the ARK XXVII/ 3 

expedition of Polarstern; data available at http://www.meereisportal.de/de/datenportal.html 

  

http://www.meereisportal.de/de/datenportal.html
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4.2 Zooplankton composition 

In total, 30 taxa were identified during this study (Tab. 6, App. Tab. 1). Among these taxa, 

18 copepod taxa were found while non-copepod species were represented by 12 taxa. 

Thirty percent of all identified taxa (7 copepod taxa and 2 non-copepod taxa) appeared at 

every station and both depth ranges (Tab. 6). 

Species richness was significant higher in the 50 – 200 m than in the 0 – 50 m water layer 

(W = 11, p-value < 0.05) (App. Fig. 3). At all nine sampling stations the total taxa number 

increased with depth (Tab. 5). With 25 taxa, the Nansen Basin was less diverse than the 

Amundsen Basin where 29 taxa could be found, but those differences were not significant. 

Species richness reached its maximum at station 337 (n = 28) which geographically belonged 

to Amundsen Basin and its minimum at station 243 (n = 19) which belonged to Nansen Basin. 

The total number of taxa at the remaining stations ranged between 20 and 24 (Tab. 5). 

The number of copepod taxa increased significantly with depth and ranged from 9 to 14 in the 

upper water layer (0 – 50 m) and from 11 to 16 in the deeper water layer (50 – 200 m). Station 

328 which was located in the Amundsen Basin showed a minimum in the mean share of 

copepod taxa to the total community with 60 %. Station 243 showed a peak in copepod mean 

share with 71 % and was located in the Nansen Basin (Tab. 5). All in all, there was a little but 

not significant difference in the mean share of copepod taxa between the Nansen Basin (68 %) 

and the Amundsen Basin (64 %). 

Tab. 5: Total number of taxa, and number and share of copepod taxa at all MultiNet stations 

 

In terms of presence or absence, most species had a wide horizontal and vertical range and 

only a few species were limited to one basin or one depth range. To study the possible effect 

station

total taxa 

number

depth range         

[m]

number of 

taxa 

number of copepod 

taxa

share of 

copepod taxa 

[%]

integrated share of 

copepod taxa        

[%]

PS80 / 226 21 0-50 12 9 75 67

50-200 21 13 62

PS80 / 243 19 0-50 15 11 73 71

50-200 16 11 69

PS80 / 261 23 0-50 18 11 61 66

50-200 17 12 71

PS80  / 386 20 0-50 12 9 75 69

50-200 20 13 65

PS80 / 279 22 0-50 17 10 59 62

50-200 20 13 65

PS80 / 328 23 0-50 18 10 56 60

50-200 22 14 64

PS80 / 337 28 0-50 21 14 67 67

50-200 24 16 67

PS80 / 351 24 0-50 14 9 64 66

50-200 21 14 67

PS80 / 367 22 0-50 15 9 60 64

50-200 21 14 67
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of varying water depths and varying basins on the presence of species, the relative frequency 

of occurrence was calculated for every taxon (Tab. 6). The most frequent taxa were 

Calanus spp., Calanus nauplii, Clausocalanoida, Metridia spp., Oithona spp., Corycaeus spp., 

Foraminifera, and Chaetognatha, which were present in each depth layer at all nine stations 

(Tab. 6). 

All in all, the number of present taxa increased with depth, thus more species inhabited the 

50 – 200 m depth layer than the 0 – 50 m depth layer. Of the 30 taxa found, 3 taxa were 

exclusively present in depths of more than 50 m (Scaphocalanus spp., Chiridius spp., and 

Radiolaria) and only one taxon (Centropages spp.) was exclusively found in the 0 – 50 m 

depth layer. Heterorhabdus spp. and Paraeuchaeta spp. showed clear preferences for the 

deeper water layer (50 – 200 m) where they were twice as present as in the upper water layer 

(0 – 50 m) (Tab. 6). Similar preferences showed Siphonophora. By contrast, Cirripedia and 

Appendicularia occurred most notably in the 0 – 50 m depth layer. With regard to basin 

preferences, some taxa had a higher presence in the Amundsen Basin than in the 

Nansen Basin, such as Temora spp., Mormonilla spp., Heterorhabdus spp., Centropages spp., 

Appendicularia, Bryozoa, and Gastropoda (Tab. 6). The only taxon which occurred solely in 

the Nansen Basin was Cirripedia (Tab. 6). 

Tab. 6: Frequency of occurrence for every taxon in the 0-50 m and 50-200 m depth layer at all stations 

and at stations in the Nansen Basin and the Amundsen Basin 

 

frequency of occurence

all stations all stations Ammundsen stations Nansen stations Ammundsen stations Nansen stations

taxon 0 - 50 m 50  -200 m   0 - 50 m   0 - 50 m 50 - 200 m 50 - 200 m

Calanus spp. 100% 100% 100% 100% 100% 100%

Calanus hyperboreus 100% 100% 100% 100% 100% 100%

Calanus nauplii 100% 100% 100% 100% 100% 100%

Centropages spp. 11% 0% 20% 0% 0% 0%

Clausocalanidae 100% 100% 100% 100% 100% 100%

Chiridius spp. 0% 89% 0% 0% 100% 75%

Paraeuchaeta spp. 44% 100% 40% 50% 100% 100%

Scaphocalanus spp. 0% 89% 0% 0% 100% 75%

Metridia spp. 100% 100% 100% 100% 100% 100%

Heterorhabdus spp. 22% 78% 40% 0% 100% 50%

Temora spp. 11% 11% 20% 0% 20% 0%

Mormonilla spp. 33% 11% 40% 25% 0% 25%

Oithona spp. 100% 100% 100% 100% 100% 100%

Oithona  nauplii 100% 89% 100% 100% 100% 75%

Oncaea 44% 78% 40% 50% 100% 50%

Corycaeus spp. 100% 100% 100% 100% 100% 100%

Microsetella spp. 33% 67% 20% 50% 80% 50%

Tisbe spp. 22% 22% 20% 25% 20% 25%

Foraminifera 100% 100% 100% 100% 100% 100%

Radiolaria 0% 44% 0% 0% 40% 50%

Bryozoa 0% 11% 0% 0% 20% 0%

Cnidaria 33% 33% 60% 0% 60% 0%

Siphonophorae 11% 67% 20% 0% 80% 50%

Gastropoda 0% 22% 0% 0% 40% 0%

Polychaeta 67% 100% 100% 25% 100% 100%

Ostracoda 67% 100% 80% 50% 100% 100%

Cirripedia 11% 0% 0% 25% 0% 0%

Amphipoda 89% 67% 100% 75% 60% 75%

Appendicularia 78% 44% 100% 50% 40% 50%

Chaetognatha 100% 100% 100% 100% 100% 100%
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4.3 Vertical and horizontal distribution of the zooplankton community 

For the abundances of zooplankton in the Eurasian Basin depth dependent patterns were 

apparent. The upper 0 – 50 m water layer was more abundant than the 50 – 200 m water layer 

(W = 81, p-value <0.05) (App. Fig. 2). At all stations zooplankton abundances decreased from 

the 0 – 50 m water layer to the 50 – 200 m layer (Tab. 7, Fig. 5). Zooplankton abundance of 

the upper water layer ranged from 307 to 1606 ind. m
-3

 and was on average 800 ind. m
-3

. 

Zooplankton abundance of the 50 – 200 m depth layer ranged from 96 to 208 ind. m
-3

 and was 

on average 148 ind. m
-3

 (Tab. 7). 

Highest depth-integrated (0 – 200 m) abundance of zooplankton was found at station 328 

(857 ind. m
-3

) and lowest abundance at station 351 (201 ind. m
-3

), both stations were located 

in the Amundsen Basin (Tab. 7, Fig. 5). 

When comparing the two Eurasian Basins with regard to zooplankton abundances, only small, 

but no significant differences between Nansen Basin and Amundsen Basin were apparent. 

With an average of 485 ind. m
-3

, Nansen Basin was little more abundant than 

Amundsen Basin with 465 ind. m
-3 

(Tab. 7). 

Tab. 7: Abundances [ind m
-3

] and percentual shares of the zooplankton-, the copepod-, and the 

non-copepod community in both depth layers (0-50 m & 50-200 m) at all MultiNet stations 

 

station depth range [m]

zooplankton 

abundance    

[ind. m
-
³]

non-copepod 

abundance      

[ind. m
-
³]

copepod 

abundance      

[ind. m
-
³]

share of 

copepod 

abundance 

[%]

depth-integrated 

zooplankton 

abundance            

[ind. m
-
³]

depth-integrated      

non-copepod 

abundance      

[ind. m
-
³]

depth-integrated 

copepod 

abundance     [ind. 

m
-
³]

depth-integrated 

share of copepod 

abundance        

[%]

PS80 / 226 0-50 697 119 578 83 422 71 350 83

50-200 146 24 122 84

PS80 / 243 0-50 736 116 619 84 461 69 392 85

50-200 186 21 166 89

PS80 / 261 0-50 458 168 289 63 282 100 182 65

50-200 106 31 75 71

PS80  / 386 0-50 1355 13 1342 99 776 12 764 98

50-200 198 12 186 94

PS80 / 279 0-50 718 71 647 90 450 45 406 90

50-200 183 19 164 90

PS80 / 328 0-50 1606 128 1478 92 857 72 785 92

50-200 107 17 91 85

PS80 / 337 0-50 436 105 331 76 322 84 238 74

50-200 208 64 144 69

PS80 / 351 0-50 307 81 226 74 201 49 152 76

50-200 96 17 78 82

PS80 / 367 0-50 887 58 829 93 494 35 459 93

50-200 101 12 89 88

800 95 704 88

148 24 124 84

485 63 422 87

465 57 408 88mean Amundsen Basin 
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Fig. 5: Abundances [ind m
-3

] and percentual shares of the zooplankton (copepod & non-copepod) 

community in two depth layers (0-50 m & 50-200 m) of all MutliNet stations; nomenclature of 

samples: “station_depth range” (“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 

 

4.3.1 Vertical and horizontal distribution of the copepod community 

Over the entire study area, zooplankton abundance was clearly dominated by copepods. 

Mean shares of copepods to the zooplankton community ranged between 65 % and 98 % for 

all nine sampling stations (Tab. 7). Averaged copepod abundance decreased considerably 

from 704 ind. m
-3

 in the upper water layer (0 – 50 m) to only 124 ind. m
-3

 in the deeper 
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water layer (50 – 200 m) (Tab. 7). This depth dependent pattern in copepod abundance was 

verified by a Mann-Whitney U test (W = 81, p-value < 0.05) (App. Fig. 2). The copepod 

community in the Eurasian Basin consisted of eighteen taxa. The rank order of averaged 

abundances over the 0 – 50 m depth layer for taxonomical categories of copepods revealed 

that Oithona spp., Corycaeus spp., Clausocalanidae, Calanus nauplii, and Oithona nauplii 

were the five most common groups, constituting 92 % of the copepod community in this 

depth layer (Fig. 6, App. Tab. 3). The deeper water layer (50 - 200 m) was dominated by 

specimens of Clausocalanoida, Oithona spp., Corycaeus spp., Metridia spp., and Calanus spp. 

which represented 93 % of the copepod community in this depth layer (Fig. 6, App. Tab. 3). 

The average depth distributions of the two water layers revealed that individuals of Oithona 

spp. dominated the upper 50 m with an average share of 57 % and specimens of the 

Clausocalanidae family dominated the 50 – 200 m water layer with an average share of 46 % 

(Fig. 6, App. Tab. 3). All of these numerically most important taxa decreased to the deeper 

water layer in abundances, especially Calanus spp., Calanus nauplii, Oithona spp., and 

Oithona nauplii (App. Tab. 3). In contrast, Heterorhabdus spp., Temora spp., and 

Paraeuchaeta spp. increased to the deeper water layer whereas Chiridius spp. and 

Scaphocalanus spp. were only found in the 50 – 200 m depth layer, but all of the latter five 

taxa showed very low abundances and represented only 0.1 % of the 0 – 50 m copepod 

community and only 2 % of the 50 – 200 m copepod community (App. Tab. 3). 

Amundsen Basin and Nansen Basin had the same most abundant taxa: Oithona spp., 

Clausocalanidae, Corycaeus spp., Calanus nauplii, and Oithona nauplii, which constituted 

88 % in Nansen Basin and 94 % in Amundsen Basin (Fig. 6, App. Tab. 3). Two copepod taxa 

were exclusively present in Amundsen Basin (Centropages spp. and Temora spp.), but both 

with low abundances. Some taxa increased in abundances from Nansen Basin to 

Amundsen Basin and some taxa decreased, but mean abundances of copepods differed not 

significantly between the two basins (422.15 and 407.77 ind. m
-3

) (Fig. 6, App. Tab. 3). 

By taking a look at particular variations of single stations and copepod taxa, it becomes 

obvious that the stations 328_0 and 386_0 stand out as they had highest total copepod 

abundances of all stations with 1478.22 ind. m
-3

 and 1341.50 ind. m
-3

, respectively (Fig. 6, 

App. Tab. 3). Both stations plus station 367_0 had also the highest abundances of 

Oithona spp. specimens of all stations (Fig. 6, App. Tab. 3). 
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Fig. 6: Abundances [ind m
-3

] and percentual shares of the copepod community in two depth layers 

(0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: “station_depth range” 

(“_0”= 0-50 m depth range & “_50” = 50-200 m depth range) 

Oithona spp., Oithona nauplii, Calanus hyperboreus, and Calanus nauplii had highest 

abundances in the 0 – 50 m water layer and also high contributions to the copepod 

community, whereas in the 50 – 200 m water layer abundances were much lower and so was 

the contribution to the copepod community (Fig. 6, App. Tab. 3). 

Species of the family Clausocalanidae showed distinct patterns as their abundances were 

always relatively high and on average the same in both depth layers, but their share of the 

copepod community increased immensely to the deeper water layer, since total abundance of 

the copepod community decreased in this layer (Fig. 6, App. Tab. 3). 
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Some taxa showed marked outliers at single stations like C. hyperboreus at station 226_0, 

Calanus spp. at station 243_0, Paraeuchaeta spp. at station 243_50, Metridia spp. and 

Chiridius spp. at station 328_50 (Fig. 6, App. Tab. 3). 

4.3.2 Vertical and horizontal distribution of the non-copepod community 

Non-copepod taxa had a mean share of 2 to 25 % to the whole zooplankton community, since 

their total abundances were always very low with 12 to 168 ind. m
-3 

(Tab. 7). Similar to the 

copepod taxa, also mean abundances of non-copepod taxa decreased significantly with depth 

from 95 ind. m
-3 

in
 
the 0 – 50 m depth layer to 24 ind. m

-3
 in the 50 – 200 m depth layer 

(W = 73, p-value < 0.05) (Tab. 7, Fig. 7). 

Twelve identified taxa constituted the non-copepod part of the zooplankton community. 

Foraminifera, Appendicularia, Chaetognatha, Ostracoda, and Amphipoda represented the five 

most abundant taxa in the upper 50 m where they contributed to 99 % of the non-copepod 

community (Fig. 7, App. Tab. 4). The rank order of averaged abundances in the deeper water 

layer (50 – 200 m) for non-copepods revealed that Foraminifera, Chaetognatha, Ostracoda, 

Polychaeta, and Amphipoda were the five most common groups representing 97 % of the 

non-copepod community in this depth layer (App. Tab. 4). The vertical distribution of 

abundances showed that Foraminifera dominated both depth layers with an average share of 

86 % to the upper 50 m and 59 % to the 50 – 200 m depth layer (Fig. 7, App. Tab. 4). 

Chaetognatha were the second most important taxon which showed similar mean abundances 

for both depth layers, but increased in its share to the non-copepod community with depth 

from 4 % in the upper to 16 % in the deeper water layer (Fig. 7, App. Tab. 4). Polychaeta and 

Ostracoda increased only slightly in mean abundances with depth, but had a markedly higher 

share to the non-copepod community in the deeper water layer, since mean abundance of the 

non-copepod community decreased with depth (Fig. 7, App. Tab. 4). Appendicularia was a 

dominant taxon in the upper 50 m with a mean share of 7 % to the non-copepod community, 

but decreased to 0.05 % in the deeper water layer (Fig. 7, App. Tab. 4). 

Except of one group, Nansen Basin and Amundsen Basin had the same most abundant taxa. 

Foraminifera, Appendicularia, Chaetognatha, Ostracoda, and Amphipoda represented the five 

most abundant taxa of the Nansen Basin with a share of 99 % to the non-copepod community, 

whereas Foraminifera, Chaetognatha, Ostracoda, Appendicularia, and Polychaeta were the 

five most important taxa of the Amundsen Basin and contributed 97 % to the whole 

non-copepod community (Fig. 7, App. Tab. 4). 
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All in all, the Nansen Basin had a slightly higher mean abundance for non-copepods with 

63.02 ind. m
-3

 than the Amundsen Basin with 57.07 ind. m
-3

, but the differences were not 

significantly (Tab. 7). 

 

 

Fig. 7: Abundances [ind m
-3

] and percentual shares of the non-copepod community in two depth layers 

(0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: “station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 

Particular variations of non-copepod taxa at single stations revealed that the stations 261_0 

and 386_0 stand out as they had highest (168.31 ind. m
-3

) and lowest (13.00 ind. m
-3

) 

non-copepod abundances in the upper 0 – 50 m water layer, respectively (Tab. 7, Fig. 7).  
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Furthermore there was a constant decrease of the non-copepod abundance along the transect 

beginning with the southernmost station 328_0 and ending with the last station 386_0 in the 

Amundsen Basin (Tab. 7, Fig. 7).  

In the deeper water layer (50 – 200 m), station 337_50 had the highest abundance with 63.95 

ind. m
-3

 (Tab. 7, Fig. 7). Some taxa showed marked outliers at single stations like Radiolaria 

at the stations 226_50 and 351_50, Polychaeta, Ostracoda, and Cnidaria at station 279_50, 

Amphipoda, Ostracoda, Polychaeta, and Siphonophora at station 328_50 (Fig. 7). 

4.4 Diversity metrics 

Several diversity indices were calculated to investigate biodiversity patterns of the high Arctic 

zooplankton community. 

At every station species richness was higher in the 50 – 200 m water layer than in the 0-50 m 

water layer, except of station 261 in Nansen Basin. With an average of 20.22 species, the 

deeper water layer (50 – 200 m) was richer than the upper water layer (0 – 50 m) with an 

average of 15.78 species (W = 11, p-value < 0.05) (Tab. 8, App. Fig. 3). The Amundsen Basin 

had an average of 19.30 species and the Nansen Basin an average of 16.38 species (Tab. 8), 

but the difference was not significant. 

The same pattern was true for Margalef’s indices, which indicated also a difference between 

the upper water layer (1.53 to 3.29) and the deeper water layer (2.87 to 4.49) as it was for 

each station higher for the deeper water layer (W = 1, p-value <0.05) (Tab. 8, App. Fig. 3). 

No significant differences of Margalef’s indices could be found between the Amundsen Basin 

and the Nansen Basin. 

When looking at the average values of the Simpson diversity, no clear pattern was obvious, as 

it was on average similar for the 0 – 50 m depth layer (0.67) and the 50 – 200 m 

depth layer (0.69) and only somewhat higher for the Amundsen Basin (0.71) than for the 

Nansen Basin (0.64), but not significantly higher. Nevertheless, the stations 261 and 386 

showed immense differences in Simpson diversity indices between the upper water layer and 

the deeper water layer (Tab. 8). 

Shannon diversity values were on average higher for the 50 – 200 m water layer than for the 

0 – 50 m water layer and also higher for Amundsen Basin than for Nansen Basin, but the 

Mann-Whitney U test showed no significance for those differences (Tab. 8). Nevertheless, the 

stations 386 and 367 showed high differences in Shannon diversity indices for different depth 

layers (Tab. 8). 
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The evenness ranged from 0.12 to 0.35 (Tab. 8). There was no difference in averaged 

evenness between the Amundsen Basin and the Nansen Basin (both 0.29). Concerning the 

difference between the depth layers, Shannon evenness showed the same pattern like 

Shannon diversity. The deeper water layer was more even (0.3) than the upper water 

layer (0.28) but also here the difference was not significant. Highest differences in evenness 

indices between the two depth ranges could be noticed at the stations 386 and 367 which were 

the last MutliNet stations of the ARKXXVII/ 3 cruise of Polarstern (Tab. 8). 

In summary, diversity metrics indicated that the community of the deeper water layer was 

richer, but not more divers neither more even than the upper water layer (Tab. 8, App. Fig. 3). 

No significant differences could be found for richness, diversity, and evenness between the 

Nansen Basin and the Amundsen Basin. 

Tab. 8: Species richness, diversity, and evenness (± standard deviation) for two depth layers 

(0-50 m & 50-200 m) of all MultiNet stations 

 

  

station

depth        

range            

[m]

PS80 / 226 0-50 12 697.21 ± 47.76 1.68 0.83 ± 0.01 0.87 ± 0.06 0.35

50-200 21 146.15 ± 12.65 4.01 0.75 ± 0.04 0.92 ± 0.05 0.30

PS80 / 243 0-50 15 735.56 ± 52.71 2.12 0.82 ± 0.02 0.89 ± 0.05 0.33

50-200 16 186.39 ± 16.91 2.87 0.73 ± 0.04 0.82 ± 0.05 0.30

PS80 / 261 0-50 18 457.54 ± 33.62 2.78 0.77 ± 0.02 1.00 ± 0.05 0.35

50-200 17 106.32 ± 8.48 3.43 0.18 ± 0.12 0.88 ± 0.05 0.31

PS80 / 386 0-50 12 1354.50 ± 209.56 1.53 0.27 ± 0.14 0.30 ± 0.02 0.12

50-200 20 197.63 ± 17.30 3.59 0.75 ± 0.03 0.77 ± 0.05 0.26

PS80 / 279 0-50 17 717.69 ± 73.54 2.43 0.63 ± 0.06 0.82 ± 0.05 0.29

50-200 20 183.23 ± 19.00 3.65 0.64 ± 0.06 0.85 ± 0.04 0.28

PS80 / 328 0-50 18 1606.00 ± 133.79 2.30 0.71 ± 0.03 0.93 ± 0.06 0.32

50-200 22 107.45 ± 7.59 4.49 0.79 ± 0.02 1.09 ± 0.05 0.35

PS80 / 337 0-50 21 435.84 ± 36.04 3.29 0.77 ± 0.03 0.85 ± 0.05 0.28

50-200 24 207.83 ± 15.44 4.31 0.81 ± 0.02 0.89 ± 0.05 0.28

PS80 / 351 0-50 14 307.00 ± 24.78 2.27 0.78 ± 0.02 0.77 ± 0.06 0.29

50-200 21 95.58 ± 7.45 4.39 0.78 ± 0.02 0.97 ± 0.05 0.32

PS80 / 367 0-50 15 887.00 ± 118.79 2.06 0.45 ± 0.10 0.49 ± 0.03 0.18

50-200 21 100.70 ± 8.20 4.34 0.78 ± 0.02 0.80 ± 0.05 0.26

15.78 ± 2.99 799.82 ± 99.12 2.27 ± 0.53 0.67 ± 0.06 0.77 ± 0.05 0.28 ± 0.08

20.22 ± 2.44 147.92 ± 13.20 3.90 ± 0.55 0.69 ± 0.05 0.89 ± 0.05 0.30 ± 0.03

16.38 ± 3.34 485.16 ± 79.75 2.75 ± 0.91 0.64 ± 0.07 0.81 ± 0.05 0.29 ± 0.07

19.30 ± 3.20 464.83 ± 64.24 3.35 ± 0.98 0.71 ± 0.05 0.85 ± 0.05 0.29 ± 0.04
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4.5 Community analysis 

Community analysis was performed in order to detect similarities in taxa composition and 

abundances among the stations of the Eurasian Basin. The comparison of all 18 samples by 

cluster analysis showed two clearly separated clusters (Fig. 8), one for the upper water layer 

(0 – 50 m) and one for the deeper water layer (50 – 200 m). Thus, the cluster analysis revealed 

strongest similarities in species composition and abundances between samples of the same 

depth interval (Fig. 8). 

Cluster 1 has a similarity level of about 77 % and consists of samples from the 50 – 200 m 

water layer. On a similarity level of about 75 %, cluster 2 consists of all samples from the 

0-50 m water layer and is divided into two sub clusters (Fig. 8). One of the sub clusters is 

composed of the three stations 351_0, 226_0, and 386_0 and the other sub cluster includes all 

remaining stations of the upper water layer (Fig. 8). 

 

 

Fig. 8: Cluster analysis of two depth layers (0-50 m & 50-200 m) of all MutliNet stations; analysis based on 

Bray Curtis similarity of fourth root transformed data; nomenclature of samples: ”station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 
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The Non-Metric Multidimensional Scaling (NMDS) confirmed the results of the 

cluster analysis, since a clear depth dependent pattern was evident (Fig. 9). 

Samples of the same depth range are grouped on the left and on the right side of the plot, 

respectively (Fig. 9). Since samples of the Nansen Basin and the Amundsen Basin of the 

0-50 m water layer are randomly distributed over the left side of the plot, no spatial pattern 

was evident. In the 50 – 200 m water layer, a gradual separation is apparent, since samples of 

the Nansen Basin and samples of the Amundsen Basin are grouped together (Fig. 9). 

Nevertheless, vertical changes in species composition and abundances were more pronounced 

than regional differences between the two Eurasian basins. The 2D stress value is 0.09 which 

indicates that the MDS results are in good ordination (Fig. 9). 

Both procedures, cluster analysis and NMDS, grouped the samples according to their 

depth range and revealed that samples from the same depth range were more similar to each 

other than samples from the same stations (Fig. 8, Fig. 9). 

 

 

Fig. 9: Non-Metric Multidimensional Scaling for two depth layers (0-50 m & 50-200 m) of all MutliNet 

stations; analysis based on Bray Curtis similarity of fourth root transformed data; nomenclature of 

samples: ”station_depth range” (“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 
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4.6 Selected copepod taxa: Calanus species 

During the ARK XXVII/ 3 expedition of Polarstern, Calanus species played only a moderate 

role in the copepod community with regard to abundances which ranged from 2.81 to 

123.56 ind. m
-3

, and with regard to their contribution to the copepod community which ranged 

from 2 to 20 % (App. Tab. 3). Highest abundances of the Calanus species were almost always 

found in the 0 – 50 m depth layer, especially at station 243 and lowest abundances in the 

50-200 m depth layer, especially at station 351 (Fig. 6, App. Tab. 3). 

4.6.1 Species identification of selected Calanus species 

Based on prosome length measurements, size-frequency distributions for all five 

copepodid stages (CI-CV) as well as for adult females (AF) were obtained to distinguish the 

three morphologically similar species: Calanus hyperboreus, Calanus glacialis, and 

Calanus finmarchicus. During this study, five adult male (AM) individuals of Calanus spp. 

were found (three of them at station 279), but were not implied in further analyses due to the 

low number of individuals obtained. In total, 5736 measurements from the 0 – 50 m 

water layer and 1868 measurements from the 50 – 200 m water layer were analyzed. 

As all three species differ in their size, a trimodal distribution of the size-frequencies was 

expected. However, the histograms of the size-frequency distributions are overlapping and 

show no clear trimodal distribution, which would allow to identify the Calanus spp. 

individuals to species level (Fig. 10). Hence, the results of a previous study were used 

(Madsen, Nielsen, Hansen 2001) to distinguish C. hyperboreus, C. glacialis, and 

C. finmarchicus by comparing the prosome lengths of this study with published prosome 

lengths from Madsen, Nielsen, Hansen (2001) (Tab. 9). 
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Fig. 10: Size-frequency distributions for the prosome lengths of developmental stages of Calanus spp. for 

the 0-50 m and the 50-200 m depth layer 

0 - 50 m depth 50 - 200 m depth

length [mm] length [mm]

length [mm] length [mm]

length [mm] length [mm]

length [mm] length [mm]

length [mm] length [mm]

length [mm]
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4.6.2 Abundances and stage compositions of selected Calanus species 

Prosome length reference data from Madsen, Nielsen, Hansen (2001) were used to distinguish 

between the three main Calanus species: Calanus hyperboreus, Calanus glacialis, and 

Calanus finmarchicus (Tab. 9). In total, 5736 measurements from the 0 – 50 m depth layer 

were analyzed including 904 CI, 1012 CII, 600 CIII, 656 CIV, 1484 CV, and 1080 AF stages. 

From the 50 – 200 m depth layer, 1868 measurements were analyzed including 92 CII, 132 

CIII, 132 CIV, 496 CV, and 1016 AF stages. Based on the analysis of the prosome length 

measurements, abundances [ind. m
-3

] for all developmental stages (CI-CV & AF) of every 

species were calculated (App. Tab. 6). 

Tab. 9: Reference data for the prosome length distribution of Calanus spp. provided by 

Madsen, Nielsen, Hansen (2001) 

 

Mean abundances of the three Calanus species were significantly higher in the 0-50 m water 

layer than in the 50-200 m water layer (W = 79; p < 0.05) (Fig. 11, App. Tab. 6, App. Fig. 4). 

Abundances of the C. hyperboreus, C. glacialis, and C. finmarchicus populations revealed the 

dominance of C. finmarchicus in the 0 – 50 m water layer with a mean abundance of 

20.86 ind. m
-3

, but in the 50 – 200 m water layer it was the least abundant with 1.34 ind. m
-3 

(App. Tab. 6). As opposed to this, mean abundance of C. glacialis were lowest in the upper 

water layer (14.93 ind. m
-3

), but highest in the deeper water layer (2.50 ind. m
-3

) 

(App. Tab. 6). The average abundances of C. hyperboreus were for each depth layer 

in-between the abundances of the other two species (App. Tab. 6). 

The copepod C. hyperboreus dominated the Calanus spp. population at the stations 226, 386, 

and 351 in both depth layers, while C. glacialis contributed considerably to the Calanus spp. 

community at station 279 and C. finmarchicus at station 243 (Fig. 11). Whereas the 0-50 m 

depth layer of the stations 261, 328, and 367 were dominated by C. finmarchicus, the 

50-200 m depth layer at these stations was dominated by C. glacialis (Fig. 11). 

stage Calanus hyperboreus Calanus glacialis Calanus finmarchicus

AF ≥4.5 ≥3.0 <4.5 <3.0

CV ≥3.9 ≥2.7 <3.9 <2.7

CIV ≥2.925 ≥2.0 <2.925 <2.0

CIII ≥1.975 ≥1.475 <1.975 <1.475

CII ≥1.4 ≥1.2 <1.4 <1.2

CI ≥0.975 ≥0.75 <0.975 <0.775
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Mean abundances of C. hyperboreus and C. finmarchicus decreased from the Nansen Basin to 

the Amundsen Basin, but the opposite was true for C. glacialis which increased slightly in 

mean abundance from the Nansen Basin to the Amundsen Basin. However, for all three 

Calanus species no significant regional pattern was evident concerning the distribution in the 

two Eurasian basins (App. Tab. 6). 

 

 

Fig. 11: Abundances [ind m
-3

] and percentual shares of the three Calanus species in two depth layers 

(0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: “station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 

For all three Calanus species, mean abundances of each developmental stage (CI - CV and 

AF) decreased from the 0 – 50 m depth layer to the 50 – 200 m depth layer (App. Tab. 6). 

Late developmental stages (CIV - AF) dominated the Calanus spp. communities in 
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mean abundances over all nine stations and depth ranges (Fig. 12, App. Tab. 6). Thus, 

CV was the most abundant stage of C. finmarchicus in both depth layers and had a share 

of 35 % (0-50 m) and 46 % (50 – 200 m) to the total C. finmarchicus community (Fig. 12, 

App. Tab. 6). Adult females (AF) were instead the most abundant stage of C. glacialis in both 

depth layers with contributions of 32 % (0 – 50 m) and 74 % (50 – 200 m) to the C. glacialis 

community (Fig. 12, App. Tab. 6). For C. hyperboreus the most abundant stage changed with 

depth from CV, which represented 23 % of the C. hyperboreus community in the 0-50 m 

water layer, to AF, which represented 40 % of the C. hyperboreus community in the 

50-200 m water layer (Fig. 12, App. Tab. 6). 

With abundances up to 60 ind. m
-3

, young developmental stages (CI - CII) were almost 

restricted to the 0 – 50 m depth layer, as CI was not present at all and abundances of CII and 

CIII did not exceed 2 in. m
-3

 in the 50 – 200 m depth layer (Fig. 12, App. Tab. 6). 

C. finmarchicus showed highest mean abundances of CI – CIII of all Calanus species in the 

upper water layer, but presence was limited to five stations. Young developmental stages of 

C. glacialis were present at nearly every station (8 stations) of the 0 – 50 m water layer, but 

showed lowest mean abundances. The values for presence and mean abundances of 

CI-CIII stages of C. hyperboreus were in-between the values for the other two species 

(Fig. 12, App. Tab. 6). 

C. finmarchicus was present with all developmental stages at station 367, C. glacialis at 

station 386, and C. hyperboreus occured at stations 279 and 386 with all stages (Fig. 12, 

App. Tab. 6). Station 243 was the station with the least presence of developmental stages as 

only the late stages CIV; CV, and AF were found for the three Calanus species (Fig. 12). 

In terms of spatial patterns, mean abundances of late developmental stages (CIV - AF) of 

C. finmarchicus decreased whereas young developmental stages (CI – CIII) increased from 

the Nansen Basin to the Amundsen Basin (App. Tab. 6). The stages CV and AF of 

C. glacialis increased from the Nansen Basin to the Amundsen Basin whereas all other stages 

(CI - CIV) decreased in mean abundances. All stages of C. hyperboreus decreased from the 

Nansen Basin to the Amundsen Basin, except of stage CI which increased (App. Tab. 6). 

Nevertheless, the difference in abundances between the two basins were for none of the 

developmental stages significant. 
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Fig. 12: Abundances [ind. m
-3

] of the developmental stages (CI-CV & AF) of Calanus hyperboreus, 

Calanus glacialis, and Calanus finmarchicus in two depth layers (0-50 m & 50-200 m) of all 

MutliNet stations; note that y-axes are not uniformly scaled; nomenclature of samples: 

“station_depth range” (“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 

  

0

10

20

30

40

50

60

70

80

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calanus hyperboreus

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin

0

1

2

3

4

5

6

7

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calanus hyperboreus

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin

0

10

20

30

40

50

60

70

80

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calanus glacialis

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin

0

10

20

30

40

50

60

70

80

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calanus finmarchicus

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin

0

1

2

3

4

5

6

7

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calamus glacialis

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin

0

1

2

3

4

5

6

7

a
b

u
n

d
a

n
c
e
s 

[i
n

d
. 

m
-3

]

station and depth range [m]

Calanus finmarchicus

CI

CII

CIII

CIV

CV

AF

Nansen Basin Amundsen Basin



5 Discussion 

 38  

5 Discussion 

5.1 Vertical and horizontal distribution of the zooplankton community across the 

Eurasian Basin 

All 30 taxa which were identified in the MultiNet samples from the ARK XXVII/ 3 

expedition have been reported from earlier investigations of the central Arctic Ocean 

(Kosobokova and Hirche 2000; Kosobokva, Hopcroft and Hirche 2010). According to 

Mumm (1993), a total of 158 mesozooplankton species is recorded from the central 

Arctic Ocean. Of those 158 species, 97 are known to occur in the Eurasian Basin from which 

copepods make up the largest fraction (Mumm 1993). This study agrees with the observations 

from Mumm (1993) as copepods also clearly dominated the zooplankton community at all 

stations. The reason for the relatively low taxa number (30) of this study is that identification 

of the taxa was mostly done to genus level for copepods and not further than to order level 

for non-copepods due to time restrictions. Determination to species level was only 

realized for the three Calanus species (Calanus hyperboreus, Calanus glacialis, and 

Calanus finmarchicus). Thus, the actual species number of this study ought to be much closer 

to the indications of Mumm (1991) for the Nansen Basin or of Mumm (1993) for the 

Eurasian Basin. A second important aspect for the relatively low taxa number in this study 

may be the analyzed depth range of 0 to 200 m. Typical vertical distribution ranges of 

zooplankton and an overall increase of diversity with depth are facts which structure the 

zooplankton community in all Arctic Ocean basins (Mumm et al. 1998, Kosobokova and 

Hirche 2000). Mumm (1991) sampled the upper 500 m of the water column and had lower 

values of species richness than Richter (1994) where samples of more than 500 m depth were 

taken. In the study of Richter (1994) waters of 500-1000 m depth were found to be especially 

rich in species numbers. Even for this study, the species richness was increasing from the 

0-50 m water layer to the 50 – 200 m water layer and can be assumed to further increase if 

samples from deeper waters were analyzed. 

The composition of the zooplankton community did not change fundamentally across the 

stations of the ARK XXVII/ 3 expedition of Polarstern. Eight of the 30 identified taxa (27%) 

were present at every station in both depth layers. This is in good relation to Mumm (1991) 

where one third of all taxa were present at all MultiNet stations of the Nansen Basin. 
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Copepods clearly dominated the zooplankton community not only with regard to taxa 

numbers, but also with regard to abundances. The numerical importance of copepods in the 

Arctic Ocean has already been pointed out in the earliest publications (Sars 1900; 

Grainger 1961; Mumm 1993; Thibault, Head and Wheeler 1999). Especially small copepods 

like Oithona spp., Clausocalanoida, and Corycaeus spp. showed high abundances across all 

stations of the ARK XXVII/ 3 expedition and represented together 68 % of the entire 

zooplankton community. This result is similar to the findings of Auel and Hagen (2002) and 

Kosobokova, Hopcroft, Hirche (2010) where small copepods also dominated the epipelagic 

zone (0 to 200 m) of the Arctic Ocean basins. Due to their high abundance, global distribution 

and year-round presence in the upper water masses, small copepods such as Oithona spp. 

play a key role for the structure and functioning of the Arctic pelagic food web 

(Svensen et al. 2011). However, their biomass is negligible compared to the large-bodied 

copepods (Hopcroft et al. 2005) like Calanus spp., Paraeuchaeta spp., and Metridia spp. 

which represented together 7 % of the total zooplankton community within this study. Thus, 

during the short time-frame when Calanus species are active in the surface waters, the 

contribution of Calanus species to the biomass is superior to that of the small coepepod taxa 

(Svensen et al. 2011). 

Depth was the major structuring element for zooplankton distribution in this study which 

coincides with the finding of Kosobokova, Hopcroft, Hirche (2010) for the Arctic Ocean. 

During the study of Kosobokova, Hopcroft, Hirche (2010) zooplankton diversity through the 

depths of the Arctic’s central basins was examined (Tab. 10). Species richness, diversity and 

evenness were increasing from the 0 – 50 m water layer to the 50 – 200 m water layer in 

Kosobokova’s publication and also during this study (Tab. 10). However, significant 

differences between the two depth layers could only be verified for the species richness 

(W = 11, p-value < 0.05) and for the Margalef’s index (W = 1, p-value <0.05) during this 

study. In contrast to species richness, the abundance of zooplankton was higher in the 0-50 m 

depth layer than in the 50 – 200 m depth layer (W = 81, p-vaule < 0.05). Already 

Brodsky (1957) determined that the highest abundance of zooplankton occurred in the 

uppermost 50 m and decreased with depth.  

Tab. 10: Species richness, diversity, and evenness for the two depth layers (0-50 m & 50-200 m) in the 

Eurasian Basin during this study and during the study of Kosobokova, Hopcroft, Hirche (2010) 

 

depth range 

[m]

S= 

species 

richness

N= 

Abundance 

[ind. m
-
³]

d= 

Margalef

's index

H'= 

Shannon 

index

J'= 

Shannon 

evenness

Kosobokova 

et al., 2010                  

S= species 

richness

Kosobokova   

et al., 2010               

N= Abundance 

[ind. m
-
³]

Kosobokova    

et al., 2010                   

d= Margalef's 

index

Kosobokova     

et al., 2010                

H'= Shannon 

index

Kosobokova     

et al., 2010                

J'= Shannon 

evenness

mean   0-50 15.78 799.82 2.27 0.77 0.28 25 1000 2.55 1.25 0.45

mean 50-200 20.22 147.92 3.9 0.89 0.3 32.5 350 3.25 1.75 0.55
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Most of the taxa which were determined during this study live in the epipelagic layer 

(0 to 200 m) and/or the mesopelagic layer (200 to 1000 m), but some species can also exist in 

depths of up to 3000 m (bathypelagic (B): 1000 to 3000 m). Depth preferences for many 

zooplankton species of the Eurasian Basin (and other Arctic basins) are provided in 

Kosobokova, Hopcroft, Hirche (2010). The most abundant taxon of this study was 

Oithona spp. which has a wide vertical range from the epipelagic (E) to the mesopelagic (M) 

zone. In this study Oithona spp. showed a strong preference for the 0 to 50 m depth layer 

which agrees with Longhurst (1985) and Kosobokova and Hirche (2000). The same is true for 

C. hyperboreus (E - B), C. glacialis (E - M), and C. finmarchicus (E - M). Furthermore, 

Calanus nauplii and Oithona nauplii were concentrated in the upper 50 m, which is in 

agreement with Fortier et al. (2001). Scaphocalanus spp. and Heterorhabdus spp. are 

normally deep-living taxa (M – B), but have their preferences in the transition layer between 

Arctic and Atlantic water (Kosobokova and Hirche 2000). In this study, both of them had a 

high frequency of occurrence and did mainly occur in the 50 – 200 m water layer, but with 

low abundances. Similar to the copepod species, most of the non-copepod species decreased 

in abundances from the 0 – 50 m depth layer to the 50 – 200 m depth layer. The most 

abundant taxon were Foraminifera which decreased rapidly in abundance to the deeper water 

layer (50 – 200 m), but still represented 10 % of the zooplankton community in both depths. 

Planktonic Foraminifera are considered to be major producers of carbonate as their shells are 

commonly made of calcium carbonate (CaCO3). Besides Foraminifera, Chaetognatha were 

the most frequent occurring non-copepod taxon during this study and had similar average 

abundances in both depth layers. According to other studies, Chaetognatha are widely 

distributed over water depths from the epipelagic to the bathypelagic, but single species have 

specific depth preferences (Longhurst 1985; Kosobokova, Hopcroft, Hirche 2010). 

The influence of depth in structuring the zooplankton community is also reflected in the 

results of the Cluster Analysis and Non-Metric Multidimensional Scaling (NMDS). In both 

procedures samples of the same depth range were grouped together. However, the NMDS 

showed also a gradual change in the zooplankton community between the Nansen Basin and 

the Amundsen Basin in the 50 – 200 m depth layer. Whereas taxa like Temora spp., 

Gastropoda, and Bryozoa occurred only in the Amundsen Basin, Mormonilla spp. was only 

present in the Nansen Basin, but these species represented less than 1 % of the zooplankton 

community of this depth layer. Oithona spp. and Clausocalanidae represented 65 % of the 

zooplankton community of the 50 – 200 m depth layer in the Nansen Basin, but only 58 % in 

the Amundsen Basin. Furthermore, Corycaeus spp. contributed 9 % to the zooplankton 
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community of the 50 – 200 m depth layer in the Nansen Basin, but increased to a contribution 

of 13 % in the Amundsen Basin. Nevertheless, the Cluster Analysis revealed that the 

communities of the 50 – 200 m depth layer still had a similarity level of 77 %. All in all, 

vertical changes in species composition and abundances were more pronounced than regional 

differences between the two Eurasian basins. 

Hydrography plays a prominent role in shaping the zooplankton distribution, especially the 

spreading of Atlantic water into the Arctic Ocean (Hirche and Mumm 1992; Kosobokova and 

Hirche 2000). Atlantic water which is transported through the Fram Strait into the Eurasian 

Basin flows beneath the Polar surface water in the 200 to 600 m depth layer 

(Auel and Hagen 2002) and transports boreal Atlantic species (e.g., C. finmarchicus) into the 

Eurasian Basin (Kosobokova and Hirche 2009). However, it may be that the analyzed depth 

range of 50 to 200 m of this study was not deep enough to reach the Atlantic water layer, but 

salinity and temperatures gave indications for Atlantic water (>34.5 PSU, 0 - 1°C, Auel and 

Hagen 2002) in the 50 – 200 m depth layer of the stations 386, 226, and 243. All of these 

stations were located near the Atlantic inflow of the Fram Strait, but particularly station 243 

was located near a convergent front induced by the Atlantic Water boundary current 

(Lalande et al. 2014). In addition to that, an episode of freezing conditions occurred prior to 

the time of sampling at station 243 and may have caused mixing due to haline convection 

during freezing (Lalande et al. 2014; David et al. 2015). The mixing of water masses could 

have added nutrients from the Atlantic inflow to the upper water layer, explaining the higher 

chlorophyll a concentrations at station 243. Furthermore, station 243 had the highest 

abundance of the Atlantic species C. finmarchicus whereas the stations 226 and 386 were 

dominated by C. hyperboreus. Nevertheless, C. finmarchicus occurred at every station in both 

depth layers. Already Mumm et al. (1998) reported that species like C. finmarchicus follow 

the boundary current of the Atlantic water eastward and spread throughout the Arctic Ocean. 

Thus, C. finmarchicus can occur in low densities in all Arctic basins (Mumm et al. 1998). An 

increased portion of Atlantic fauna was also observed at recirculating branches of the Atlantic 

inflow along the Gakkel Ridge (Hirche and Mumm 1992). All these findings support the 

widespread occurrence of C. finmarchicus during this study and the fact that individuals were 

also present at the northernmost station (station 367) and at the southernmost station 

(station 328), both located in the Amundsen Basin. Auel and Hagen (2002) reported 

Oithona spp. and Clausocalanidae being the most abundant copepods in the Atlantic layer. 

This coincides with the findings of this study, where Oithona spp. and Clausocalanidae were 

also the most abundant species in the 50 – 200 m water layer of the three stations with 
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Atlantic influence. However, variations in the intensity of the Atlantic inflow, changes in ice 

concentration or ice thickness, and surface water movement due to strong winds are physical 

factors that may influence the drifting routes of zooplankton organisms in the Arctic Ocean. 

Zooplankton is not distributed evenly throughout the Eurasian Basin. Studies in the Nansen 

Basin revealed a sharp decline in zooplankton abundance and increase in species richness at a 

frontal zone at 83°N (Mumm 1991; Carsten and Wefer 1992; Hirche and Mumm 1992; 

Kosobokova and Hirche 2009). At this deep-reaching hydrographic front, physical 

characteristics of water masses change abruptly from those representative of the Fram Strait to 

those more typical for the central Arctic Ocean (Kosokova and Hirche 2009). During this 

study, four stations were located in the Nansen Basin and one of them, station 261, was 

almost located at the 83°N front. Indeed, taxa number was highest and abundance was lowest 

directly at station 261. According to Carstens and Wefer (1992), the latitudinal boundary at 

83°N divides the Foraminifera community into two distinct provinces: north and south. In the 

southern area, the concentrations of planktonic Foraminifera are highest and individuals 

prefer depths around 100 m. In the north of 83°N they have their maximum abundance in the 

upper 50 m, where the water is colder and fresher. In this study, Foraminifera showed highest 

abundances at station 261 which was located nearly to the assumed position of front at 83°N. 

There was no station which was located more southerly in the Nansen Basin than station 261, 

but all of the farther north located stations showed lower abundance for Foraminifera. 

Moreover, at all stations abundances of Foraminifera were highest in the 0 - 50 m water layer. 

Thus, the findings of Carstens and Wefer (1992) from the Nansen Basin match with the 

findings of this study. 

The highest abundances of zooplankton and copepods only were found at station 328 in the 

Amundsen Basin. This may be, because station 328 was not only the southernmost station 

(81.5°N), but also the station with the lowest ice concentration (73 %). In contrast to that, 

lowest abundances of zooplankton and copepods only were found at station 351 which was 

one of the northernmost stations with an ice concentration of 100 %. However, not only 

physical conditions of the habitat, but also food, predators, and time are dimensions that 

influence the horizontal and vertical distribution of zooplankton and limit the comparability of 

results from different stations. Seasonal vertical migration, which is typical for many polar 

zooplankton organisms, may influence the drifting routes of zooplankton organisms in the 

Arctic Ocean. Seasonal migrations of small copepods (e.g., Oithona spp.) were described 

already by Kosobokova (1980) and Mumm (1993). Factors that determine the vertical ascent 

and descent could be the avoidance of predators or the reduction of metabolic costs by 
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migration into deeper waters of low temperature. Surviving, when there is not enough food as 

well as finding the food when it becomes available, requires adaptation to the seasonally 

limited nutritional environment. Thus, to shorten the relatively long tale of starving, most of 

the northern herbivores feed intensively during the Arctic summer and then sink into deeper 

waters where their development becomes arrested and their metabolism reduced (Conover and 

Huntley 1991). Also ontogenetic vertical migration is possible to synchronize reproduction 

and population growth with favorable environmental conditions. However, seasonal vertical 

migrations in the Arctic Ocean are usually limited to the upper 500 m (Kosobokova 1982) 

and are not as extensive as in subpolar and boreal seas such as the Greenland Sea 

(Mumm et al 1998). 

5.2 Distribution patterns of selected Calanus species 

The three Calanus species: Calanus hyperboreus, Calanus glacialis, and 

Calanus finmarchicus occurred at every station of the ARK XXVII/ 3 expedition. 

Calanus species were not the most abundant copepod species during this study, but they are 

known to be important components in the Arctic marine food web because of their high 

biomass and energy content (Diel 1991; Hirche 1991; Falk-Petersen et al. 2009). 

C. hyperboreus had highest abundances at the southern stations 226, 279, and 386 and lowest 

abundances at the northernmost stations 337, 351, and 367 of this study. This is untypical as 

C. hyperboreus is deemed to be of true Arctic origin (Grainger 1961) and is prevailing 

northern stations (85° - 90°N) in the Amundsen Basin in other studies (Mumm et al. 1998; 

Auel and Hagen 2002). Abundance of C. hyperboreus was lowest at station 261 which was 

located near the 83°N front. Moreover, there was no spatial pattern in abundances from east to 

west which coincides with the findings of Kosobokova and Hirche (2009). 

C. glacialis is also regarded as a species of true Arctic origin which presence is strongly 

associated with Arctic water (Hirche et al. 1994). In contrast to C. hyperboreus, C. glacialis is 

considered to be most abundant over the Eurasian shelves and along the continental slope and 

less abundant along the western transects of the Nansen Basin and in Atlantic waters 

(Kosobokova and Hirche 2009). This matches with the findings of this study as C. glacialis 

showed highest abundances at the stations 279 and 328 which were characterized by 

Arctic water. Lowest abundances were reached at the northernmost stations 351 and 367 and 

at station 243 which was the station most influenced by Atlantic water. Diel (1991) reported 

that C. glacialis dominates the polar domain of Fram Strait. In the present study C. glacialis 
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was relatively abundant in the upper water layer of the stations 226 and 386 which were 

located near Fram Strait and characterized by Polar surface water in the upper 50 m. 

C. finmarchicus is regarded as a boreal Atlantic species dominating the southern to central 

Nansen Basin where the Atlantic inflow is strongest and its population enters the 

Arctic Ocean (Auel and Hagen 2002). In this study, C. finmarchicus had the highest 

abundance at station 243 which was most influenced by Atlantic water from the Fram Strait. 

However, C. finmarchicus was also abundant at station 261 at the 83°N front and at the 

northernmost station 367, both characterized by Polar surface water. These findings are not 

consistent with the observations of other studies which indicate a drastic decrease of 

C. finmarchicus in direction to the central deep basins (Kosobokova and Hirche 2009; 

Kosobokova, Hopcroft, Hirche 2010). Nevertheless, there were also studies which support 

the finding that C. finmarchicus can occur in low densities in all Arctic basins 

(Mumm et al. 1998). 

5.3 Stage composition of selected Calanus species 

Seasonal ontogenetic migration is part of the life cycle of all three Calanus species and can 

influence not only the plankton community structure, but also the pelagic carbon flux 

(Madsen, Nielsen, Hansen 2001). 

Individuals of Calanus hyperboreus have a large plasticity in their life strategy  

(Falk - Petersen et al. 2008) as they can have 2- to 4-year life cycles in the Arctic Ocean and 

can survive longest without feeding (Arnkvaern, Daase, Eiane 2005; Kosobokova and 

Hirche 2009). Females store reserves for overwintering and reproduction by extensive feeding 

during summer so that their spawning during winter/early spring is fueled by internal 

lipid reserves independent of the first algal bloom in spring (Conover 1988; 

Falk-Petersen et al. 2008; Kosobokova and Hirche 2009). The eggs of C. hyperboreus 

develop rapidly to stage CIII or CIV during the spring bloom in the following summer 

(Falk-Petersen et al. 2008). Stages CIII-AF can be overwintering stages of C. hyperboreus 

(Hirche et al. 1994; Hirche 1997). The descent of these stages in late August into deeper water 

layers is the most occurring migration pattern (Hirche 1997; Madsen, Nielsen, Hansen 2001). 

During this study, most CIII-CV stages were found at station 226 which was the first station 

of the cruise in the beginning of August. At all other stations, the overwintering stages 

CIII-CV of C. hyperboreus were only present with much lower abundances. Furthermore, the 

integrated abundances of CIII-CV stages decreased clearly from August stations to September 

stations indicating the descent of the overwintering stages. Females of C. hyperboreus 
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occurred at every station, but were highest at the stations 226, 243, and 279 which were 

sampled in the beginning and the mid of August. In September, integrated abundances of 

females decreased and did not exceed 1 ind. m
-3

. Also here, descent of the overwintering stage 

AF to the deeper water layers (> 200m) could explain the decline of female abundances at 

September stations during the ARK XXVII/ 3 expedition of Polarstern. Young copepodid 

stages CI and CII were found at two stations in the Amundsen Basin. The first station was 279 

which was one of the southernmost stations and was sampled relatively late in the end of 

August. The second was station 386 which was the westernmost station and was sampled as 

the last station in the end of September. At both stations development from eggs to CI and CII 

stages may have already occurred until the end of August and September, respectively. 

Calanus glacialis has a shorter life cycle than C. hyperboreus. In very productive years only 

one year is needed and in less productive years two years are needed to complete the whole 

life cycle (Arnkvaern, Daase, Eiane 2005). Individuals in the Arctic Ocean have mostly a 

2-year life cycle (Arnkvaern, Daase, Eiane 2005). Females of C. glacialis use a combination 

of internal fat reserves and feeding on ice algae to maturate and reproduce before the bloom 

(Madsen, Nielsen, Hansen 2001). Thus, this species is more suitable for life in the high Arctic 

than C. finmarchicus, since the capability to reproduce successfully early in spring is 

independent of food supply from the Arctic phytoplankton spring bloom 

(Arnkvaern, Daase, Eiane 2005). Stages CIV-AF can be the overwintering stages of 

C. glacialis (Hirche et al. 1994; Madsen, Nielsen, Hansen 2001). During this study, stages of 

CIV-AF were most abundant at station 279 which is one of the easternmost stations of this 

study and was sampled at the end of August. The decrease in abundance of these stages from 

stations sampled in August to stations sampled in September is in good accordance to 

Madsen, Nielsen, Hansen (2001) who reported descent of overwintering stages from 

September onwards. Stages of AF and CV dominated the whole population of C. glacialis 

during this study. Station 386, which was the very last station of the expedition at the end of 

September, was the only station where all developmental stages of C. glacialis were found 

and had the highest abundance of young developmental stages (CI-CIII). There was a clear 

increase of young CI-CIII stages from August stations to September stations, indicating that at 

these stations eggs had already developed to young copepodites. 

Calanus finmarchicus was the most abundant Calanus species in this study. A 1-year life 

cycle is reported from Madsen, Nielsen, Hansen (2001). In contrast to C. hyperboreus and 

C. glacialis, individuals of this species depend on pelagic food supply to maintain 

maturation and egg production in order to spawn after the onset of the spring bloom 
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(Arnkvaern, Daase, Eiane 2005). C. finmarchicus is an expatriate in the Arctic Ocean as it is a 

boreal North Atlantic species. Expatriates are either unable to reproduce or unable to 

reproduce at sufficient rates to offset their mortality (Kosobokova, Hopcroft, Hirche 2010). 

Their distribution in the Arctic Ocean depends on the intensity of water advection and 

abundance of their population in the source area. Other factors structuring their distribution 

are life span and survival under Arctic conditions (Kosobokova, Hopcroft, Hirche 2010). 

The overwintering stages of C. finmarchicus can be stages of CIV-AF (Madsen, Nielsen, 

Hansen 2001; Arnkvaern, Daase, Eiane 2005). During this study, stages of CIV-AF were 

most abundant at station 243 which was the station mostly influenced by Atlantic water. 

Madsen, Nielsen, Hansen (2001) reported a descent of overwintering stages of 

C. finmarchicus to deeper waters and a new generation which is active in the surface waters. 

These findings coincide with this study as there was a decrease in abundance of CIV-AF 

stages and an increase of CI – CIII from the stations which were sampled in August to the 

stations which were sampled in September. Highest abundance of young developmental 

stages CI-CIII was reached at the southern- and easternmost station 328. Stage CV dominated 

the C. finmarchicus community over all stations which is in good accordance with the 

findings of Hirche et al. (1994) and Madsen, Nielsen, Hansen (2001). However, all 

developmental stages were only present at station 367 which was the northernmost station of 

the cruise at the end of September. 

The presence of the full range of developmental stages in this study coincides with other 

studies from other areas all over the Arctic Ocean (Kosobokova et al. 1998; Kosobokova and 

Hirche 2000). The presence of young developmental stages of all Calanus species suggests 

successful reproduction at most of the stations for C. hyperboreus, C. glacialis, and 

C. finmarchicus. 

In contrast to Kosobokova and Hirche (2000) there was no strong bias between (high) 

abundance of late developmental stages and (low) abundance of young copepodid stages in 

this study. Peak abundance of juvenile copepodites, representing the new generation, was in 

September for C. finmarchicus and C. glacialis and in the end of August and end of 

September for C. hyperboreus. 

Nevertheless, there is the possibility of an insufficient identification of the three 

Calanus species by using prosome length measurements. Although size limits used for 

C. glacialis and C. finmarchicus were in accordance with previous studies 

(Madsen, Nielsen, Hansen 2001; Arnkvaern, Daase, Eiane 2005; David et al. 2015), 
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these distinctions may not have been appropriate for the species of this study and could 

have caused an overestimation of C. finmarchicus and an underestimation of C. glacialis. 

For verifying the length-based identification of the Calanus species, subsamples could 

be taken for molecular analysis as this species differ in their mitochondrial rRNA 

(Bucklin, Frost, Kocher 1995). 

5.4 Comparison of the results from the MultiNet samples with the results from the 

SUIT samples of the ARK XXVII/ 3 “IceArc” expedition of Polarstern 

Similar to this study, the study of David et al. (2015) based on data which were taken during 

the ARK XXVII/ 3 expedition of Polarstern. Instead of the MultiNet David et al. (2015) used 

the Surface and Under-Ice Trawl (SUIT) to sample the under-ice fauna of the Eurasian Basin. 

The SUIT enables large-scale horizontal sampling of the 0 – 2 m surface water layer and can 

be used for sampling of zooplankton under the sea ice or in the open water. The aim of 

David et al. (2015) was to sample the under-ice fauna which includes ice-associated species 

that complete their entire life cycle within the sea ice or spend only part of their life cycle 

associated with the ice (Melnikov and Kulikov 1980). Ice-associated fauna is necessary for 

the functioning of the ecosystem as it transfers energy to higher trophic levels 

(Budge et al. 2008). The ice forms a suitable nursery for pelagic and benthic organisms since 

the mixed layer under the ice is usually more stable and primary production is more 

concentrated under the ice than in the open water (Conover and Huntley 1991). 

 David et al. (2015) reported two environmental regimes, broadly coherent with the 

Nansen Basin and Amundsen Basin for physical parameters and for the under-ice community. 

According to David et al. (2015), the Nansen Basin regime had higher salinity in the 0-2 m 

surface layer, higher ice concentration, higher ice thickness and higher nutrient concentrations 

than the Amundsen Basin regime. In contrast to that, the Amundsen Basin regime showed 

higher chlorophyll a concentrations in the 0-2 m surface layer than the Nansen Basin regime. 

Overall diversity indices of the under-ice fauna were slightly higher in the Amundsen Basin 

regime than in the Nansen Basin regime, but abundances were higher in the Nansen Basin 

regime (David et al. 2015). Similar patterns were found during this study, although there were 

no differences in chlorophyll a concentrations between the two basins and also differences in 

zooplankton abundance between the Nansen Basin and the Amundsen Basin were not 

significant. According to the under-ice community, David et al. (2015) found a more 

herbivorous fauna in the Nansen Basin regime and a more carnivorous fauna in the 

Amundsen Basin regime. These findings could not be confirmed within this study since 
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herbivores prevailed in abundances in both basins. Indeed, mean contributions of the 

carnivorous Corycaeus spp. increased from 7 % in Nansen Basin to 13 % in Amundsen Basin 

during the present study, but other carnivores like Chaetognatha did not change much in their 

abundance from the Nansen Basin to the Amundsen Basin and only represented <1 % of 

the zooplankton community in each basin. However, the Cluster Analysis and 

Non-Metric Multidimensional Scaling (NMDS) showed a gradual change in the zooplankton 

community between the Nansen Basin and the Amundsen Basin in the 50 – 200 m depth layer 

during this study, but differences could not be attributed to a herbivorous fauna in Nansen 

Basin and a carnivorous fauna in Amundsen Basin, respectively. In the samples of the SUIT, 

the contribution of copepods differed markedly between the two Eurasian basins. Copepods 

represented over 82 % of the mean abundance in the Nansen Basin regime, whereas 

Amphipoda played a dominant role in the Amundsen Basin regime and codominated the 

community with 43 %. In the present study, copepods represented 87 % of the zooplankton 

community in both basins and Amphipoda represented only 0.1 % in the Nansen Basin and 

0.2 % in the Amundsen Basin. The higher proportion of Amphipods in the SUIT samples is 

reasonable due to the better sampling efficiency of the SUIT for large species and the 

presence of ice Amphipods in the under-ice community. Within the copepod community, 

Calanus hyperboreus and Calanus glacialis were the most abundant species in the SUIT 

samples whereas small species like Oithona spp. and Clausocalanidae dominated the 

MultiNet samples. David et al. (2015) found a drastic decrease of adult (AF) Calanus spp. 

from the Nansen Basin regime to the Amundsen Basin regime and an increase of young 

Calanus spp. stages CI und CII. In contrast to that, abundances of AF, CII, and CI stages were 

slightly higher in the Amundsen Basin than in the Nansen Basin during this study. These 

findings support the assumption that descent of the overwintering stages to the deeper 

water layers was in the beginning at the September stations of the ARK XXVII/ 3 expedition. 

Calanus finmarchicus was only present at one station (station 248) in the SUIT samples. This 

station was located near station 243 of the MultiNet which was also dominated by 

C. finmarchicus. Mixing events which occurred prior to the sampling of station 243 could 

have added more nutrients to the upper water layer and favored increasing productivity and 

immigration of grazers (e.g., C. finmarchicus). The constantly presence of C. finmarchicus in 

all MultiNet samples, but absence in the SUIT samples (except of station 248) shows that 

C. finmarchicus migrated to the upper water layers, but avoided the 0 – 2 m surface layer. 
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Fig. 13: Abundances [ind. m
-3

] and percentual shares of the three Calanus species in the 0-2 m depth layer 

of seven SUIT stations and in the 0-200 m depth layer of seven MultiNet stations during the 

ARK XXVII/ 3 expedition of Polarstern; note: for better comparison only SUIT and 

MultiNet stations from similar locations were chosen 

The analysis of the MultiNet samples for this study and the SUIT samples for the study of 

David et al. (2015) delivered different results especially with regard to the composition of the 

zooplankton community. This may be for a variety of reasons. The first and one of the most 

important aspects is that both sampling gears differ in the method of sampling. The MultiNet 

is towed through the water in a vertical direction and is made to sample different depths, 
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the SUIT is made to remain on the water surface and is towed horizontally through the water 

to sample the upper two meters of the water column. As a guideline for catch efficiency it is 

indicated that the SUIT samples 4 % of the upper 50 m and only 1 % of the upper 100 m. 

Moreover the SUIT was equipped with a net of 300 µm mesh size, the MultiNet with a less 

coarse net of 150 µm mesh size. Thus, net avoidance of larger organisms may be lower, but 

underrepresentation of smaller individuals (e.g., Oithona spp., young copepodid stages) may 

be higher when sampling with the SUIT compared to the MultiNet. 

5.5 Methodological constraints 

There are several methodological constraints which may have occurred during the quantitative 

MultiNet sampling of zooplankton. In general, those net samplings can only give estimates of 

the numbers of taxa and individuals. Patchiness, escapement, and net avoidance of the 

zooplankton specimens can cause underestimation of the actual values (Mumm 1991; 

Richter 1994). Especially the common plankton nets with 150 to 200 µm mesh size 

underestimate significantly the small species of zooplankton (Mumm 1991; Galienne and 

Robins 2001). 

Zooplankton organisms are patchily distributed on a vertical and a horizontal scale which is 

due to physical processes (Mumm 1991). This patchiness causes up to 10-fold variations in 

individual numbers when sampling the same station in a row (Mumm 1991). During the 

ARK XXVII/ 3 expedition of Polarstern only one haul per station was carried out which was 

not enough for analyzing the small scale variability of the zooplankton community at one 

station. Nevertheless, this study could reveal clear tendencies concerning the variability of 

species composition and zooplankton abundances between the two depth layers and among 

stations that were influenced by different water masses. 

Net avoidance of zooplankton specimens is an important source of error and increases with 

decreasing mesh size, since fine gauzes clog more than coarse gauzes (Unesco 1968). 

Especially bigger individuals like adults of Chaetognatha and Paraeuchaeta spp., which are 

highly sensitive for movement stimuli, may not be caught quantitatively (Mumm 1991).Wires 

that are installed in front of the net opening for mounting and electricity can additionally 

intensify net avoidance (Mumm 1991). The MultiNet used for this study had a net opening of 

0.25 m² and several wires crossed in front of it. However, numbers of individuals and species 

of this study are comparable with many other studies that used the same net and mesh size 

(e.g., Kosobokova and Hirche 2009; Kosobokova, Hopcroft, Hirche 2010). 
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Another methodological constraint is the escapement of organisms through the mesh due to 

excessive filtration pressure (Skjoldal et al. 2013). About 50 % of the zooplankton organisms 

which have an equal width to the mesh size escape through the mesh (Skjoldal et al. 2013). 

The effect of towing speed is an additional loss due to escapement as it causes extrusion of 

small individuals (Skjoldal et al. 2013). According to Svensen et al. (2011), small copepods 

such as Oithona spp. are underestimated even with mesh sizes of 90 µm. Thus, although a 

mesh size of 150 µm was used for this study, an underrepresentation of small individuals 

(e.g., Oithona spp., Oithona nauplii, Calanus nauplii, Clausocalanidae, and Oncaea spp.) may 

still have occurred. Optimal sampling of a zooplankton community is always a compromise 

between mesh size and speed. Reducing the mesh size could improve the catch efficiency of 

smaller individuals, but would increase the avoidance of larger organisms. Increasing the 

towing speed could improve the catch efficiency of larger individuals, but would result in an 

increasing escapement of organisms through the mesh and extrusion of small individuals 

(Skjoldal et al. 2013). 

Because MultiNet samples can technically only be taken in the open water, zooplankton 

which is directly living under the ice was not or not quantitatively sampled. 

The time difference between the first and the last sampling sites could have biased the results 

as the last stations in the Amundsen Basin were characterized by autumn conditions compared 

to summer conditions of the first sampling stations in the Nansen Basin. Since only the upper 

200 meters of the water column were analyzed during this study, seasonal ontogenetic 

migration to the deeper water layers may have influenced the results. 

For advanced investigations of the zooplankton community, especially in terms of most 

important species of the food web, calculations of biomass would be necessary. Small 

zooplankton taxa like Oithona spp. and Clausocalanidae can be the most important taxa in 

terms of individual numbers like in this study, but big species like Calanus spp. are the most 

important ones when it comes to biomass. There are a lot of studies with biomass data 

for zooplankton species of the Arctic Ocean (e.g., Kosobokova and Hirche 2000; 

Kosobokova and Hirche 2009) that provide a good basis for data comparison. 
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6 Conclusions 

Copepods were by far the most important zooplankton group in this study since they 

contributed 88 % to the total zooplankton community in the 0 – 50 m depth layer and 84 % in 

the 50-200 m depth layer. Even when assuming underestimation of the small zooplankton 

species due to the sampling gear (MultiNet) zooplankton abundance was dominated by small 

copepods like Oithona spp., Corycaeus spp. and Clausocalanidae in both depth layers. 

Vertical changes in abundance and species composition were much more pronounced than 

regional differences between the basins. These finding is contrary to the finding of 

David et al. (2015) from the Surface and Under-Ice Trawl (SUIT) samples of the same 

expedition. It is likely that a seasonal trend defined the two regimes of Nansen Basin and 

Amundsen Basin in both studies. However, the two distinct regimes of the under-ice fauna for 

the Nansen Basin and the Amundsen Basin could not be confirmed for the fauna of the 

pelagial. Therefore it might reasonably be assumed that the findings of David et al. (2015) 

were mostly determined by the sea ice and are not reflected at the pelagial. 

Polar surface water and Atlantic water with their distinct physical characteristics 

(e.g., temperature, salinity) influenced the community structure and distribution in the central 

Arctic Ocean. The distribution of the Atlantic copepod Calanus finmarchicus reflected the 

hydrographic regime as it was most abundant at the station with the highest Atlantic influence 

(station 243). However, during this study C. finmarchicus was present at all stations in both 

depth layers, even at the stations which were not influenced by Atlantic water masses. The 

constantly presence of C. finmarchicus in all MultiNet samples, but absence in the 

SUIT samples (except of one station) showed that C. finmarchicus migrated to the upper 

water layers, but avoided the 0-2 m surface layer. 

In the future the central Arctic will be exposed to continuing environmental changes. 

Johannessen et al. (2002) predicted a reduction of the Arctic pack ice of 20 % during winter 

and 80 % during summer by the end of this century. Studies like the present one are important 

to improve the understanding of how the response of Arctic marine ecosystems to climate 

warming will alter Arctic biodiversity and food web structure. The determination of the 

trophic link between the sea ice and the water column in the Arctic Ocean will be helpful for a 

better assessment of the effects of continuing ice melting on the Arctic ecosystem. 
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Appendix 

App. Tab. 1: List of species for the MultiNet samples of the ARK XXVII/ 3 expedition of Polarstern 

 

  

Calanus finmarchicus Gunnerus, 1765

Calanus glacialis Jaschnov, 1955

Calanus hyperboreus Kroyer, 1838

Calanus nauplii

Centropages spp. Krøyer, 1849 

Clausocalanidae Giesbrecht, 1893 

Chiridius spp. Giesbrecht, 1893

Paraeuchaeta spp. Scott A., 1909

Scaphocalanus spp. Sars G.O., 1900

Metridia spp. Boeck, 1865

Heterorhabdus spp. Giesbrecht, 1898 

Temora spp. Baird, 1850

Mormonilla spp. Giesbrecht, 1891

Oithona spp. Baird, 1843 

Oithona  nauplii

Oncaea Philippi, 1843

Corycaeus spp. Dana, 1845 

Microsetella spp. Brady & Robertson D., 1873 

Tisbe spp. Lilljeborg, 1853

Foraminifera

Radiolaria Muller, 1858

Bryozoa

Cnidaria Verrill, 1865

Siphonophorae Eschscholtz, 1829

Gastropoda Cuvier, 1795

Polychaeta Grube, 1850

Ostracoda Latreille, 1802

Cirripedia Burmeister, 1834

Amphipoda Latreille, 1816

Appendicularia Fol, 1874

Chaetognatha
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App. Tab. 2: Presence and absence for every taxon in two depth layers (0-50 m & 50-200 m) of all 

MultiNet stations during the ARK XXVII/ 3 expedition of Polarstern 
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App. Tab. 3: Abundances [ind m
-3

] and percentual shares for all copepod taxa in the two depth layers 

(0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: “cruise/station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 
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App. Tab. 4: Abundances [ind m
-3

] and percentual shares for all non-copepod taxa in the two depth layers 

(0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: “cruise/station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 
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App. Fig. 1: Pooled abundances for all copepod and non-copepod taxa in the two depth layers (0-50 m & 

50-200 m) of all MutliNet stations; nomenclature of samples: “station_depth range” 

(“_0” = 0-50 m depth range & “_50” = 50-200 m depth range) 
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App. Fig. 2: Boxplots for significant differences in abundances between the two depth layers (0-50 m & 

50-200 m) for zooplankton, copepods, and non-copepods 
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App. Fig. 3: Boxplots for significant differences between the two depth layers for species richness and 

Margalef’s indices 
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App. Tab. 5: Presence and absence for developmental stages of Calanus hyperboreus, Calanus glacialis, 

and Calanus finmarchicus in the 0-200 m depth layer of all MultiNet stations during the ARK XXVII/ 3 

expedition of Polarstern 

 

  

Calanus hyperboreus AF CV CIV CIII CII CI

PS 80 / 226 x x x x

PS 80 / 243 x x

PS 80 / 261 x x x

PS 80 / 386 x x x x x x

PS 80 / 279 x x x x x x

PS 80 / 328 x x

PS 80 / 337 x x x x

PS 80 / 351 x x x x x

PS 80 / 367 x x

Calanus glacialis AF CV CIV CIII CII CI

PS 80 / 226 x x x x

PS 80 / 243 x x x

PS 80 / 261 x x x x x

PS 80 / 386 x x x x x x

PS 80 / 279 x x x x

PS 80 / 328 x x x x x

PS 80 / 337 x x x

PS 80 / 351 x x x x

PS 80 / 367 x x x x x

Calanus finmarchicus AF CV CIV CIII CII CI

PS 80 / 226 x x x

PS 80 / 243 x x x

PS 80 / 261 x x x x x

PS 80 / 386 x x x x x

PS 80 / 279 x x x x

PS 80 / 328 x x x x x

PS 80 / 337 x x x

PS 80 / 351 x x x

PS 80 / 367 x x x x x x
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App. Tab. 6: Abundances [ind m
-3

] and percentual shares of all developmental stages of 

Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus in the two depth 

layers (0-50 m & 50-200 m) of all MutliNet stations; nomenclature of samples: 

“cruise/station_depth range” (“_0” = 0-50 m depth range & “_50” = 50-200 m depth range); 

calculations based on published data of Madsen, Nielsen, Hansen (2001) 
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App. Fig. 4: Boxplots for significant differences in abundances [ind m
-3

] between the two depth layers for 

Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus 
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App. Tab. 7: Abundances [ind. m
-3

] for developmental stages of the three Calanus hyperboreus, 

Calanus glacialis, and Calanus finmarchicus of all SUIT stations during the ARK XXVII/ 3 

expedition of Polarstern; data were provided by Carmen David (Alfred-Wegener-Insitute) 

 

  

Calanus hyperboreus AF CV CIV CIII CII CI AF-CI

204 0,00 0,00 0,00 0,00 0,00 0,00 0,00

216 0,04 0,00 0,00 0,00 0,00 0,00 0,04

223 0,05 0,09 3,89 1,23 0,00 2,21 7,46

233 0,07 0,88 2,10 0,07 0,00 0,04 3,15

248 0,32 3,28 1,34 0,12 0,24 0,08 5,39

258 0,08 0,38 0,10 0,02 2,18 7,00 9,76

276 0,00 0,08 0,39 0,00 0,27 0,57 1,32

285 0,02 0,10 0,19 0,33 0,64 0,00 1,29

321 0,00 0,01 0,01 0,30 0,68 0,44 1,45

331 0,00 0,00 0,01 0,71 1,48 0,37 2,56

333 0,01 0,01 0,06 0,41 0,85 0,28 1,61

345 0,00 0,00 0,00 0,30 0,03 0,00 0,34

397 0,00 0,05 0,05 1,12 0,55 0,00 1,78

mean over all stations 0,05 0,37 0,63 0,36 0,53 0,84 2,78

Calanus glacialis AF CV CIV CIII CII CI AF-CI

204 0,49 24,62 3,38 28,48

216 0,01 0,02 0,00 0,04

223 0,23 1,32 0,41 1,96

233 3,15 8,41 1,02 12,57

248 4,01 23,27 3,24 30,53

258 1,81 2,14 0,20 4,15

276 0,88 0,26 0,04 1,18

285 0,41 1,79 0,02 2,22

321 0,01 0,17 0,00 0,18

331 0,03 0,12 0,01 0,15

333 0,20 0,28 0,02 0,50

345 0,04 0,05 0,09 0,18

397 0,20 0,91 0,02 1,12

mean over all stations 0,88 4,87 0,65 6,40

Calanus finmarchicus AF CV CIV CIII CII CI AF-CI

204 0,00 0,00 0,00

216 0,00 0,00 0,00

223 0,09 0,11 0,20

233 0,00 0,00 0,00

248 2,07 24,97 27,04

258 0,00 0,00 0,00

276 0,00 0,00 0,00

285 0,00 0,00 0,00

321 0,00 0,00 0,00

331 0,00 0,00 0,00

333 0,00 0,00 0,00

345 0,00 0,00 0,00

397 0,00 0,00 0,00

mean over all stations 0,17 1,93 2,10
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App. Tab. 8: Integrated Abundances [ind. m
-3

] for two developmental stages (adult females and 

copepodid stage V) of Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus of seven 

SUIT stations and seven MultiNet stations during the ARK XXVII/ 3 expedition of Polarstern; 

note: for better comparison only SUIT and MultiNet stations from similar locations were chosen 

 

 

abundance [ind. m
-3

]

SUIT AF-CV AF-CV AF-CV

station Calanus hyperboreus Calanus glacialis Calanus finmarchicus

223 0,14 1,55 0,20

248 3,61 27,28 27,04

258 0,46 3,95 0,00

397 0,05 1,11 0,00

276 0,08 1,14 0,00

321 0,02 0,18 0,00

345 0,00 0,09 0,00

abundance [ind. m
-3

]

MutliNet AF-CV AF-CV AF-CV

station Calanus hyperboreus Calanus glacialis Calanus finmarchicus

226 8,13 1,45 1,78

243 8,10 2,21 37,44

261 0,80 2,25 0,25

386 0,74 1,43 0,98

279 4,41 23,67 0,10

328 0,29 6,18 2,29

337 1,98 4,14 0,86


