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The Antarctic krill Euphausia superba experiences almost all marine photic environments throughout its life cycle.
Antarctic krill eggs hatch in the aphotic zone up to 1000 m depth and larvae develop on their way to the ocean
surface (development ascent) and are exposed to different quality (wavelength) and quantity (irradiance) of
light. Adults show a daily vertical migration pattern, moving downward during the day and upward during the
night within the top 200 m of the water column. Seawater acts as a potent chromatic filter and animals have
evolved different opsin photopigments to perceive photons of specific wavelengths. We have investigated the
transcriptome of E. superba and, using a candidate gene approach, we identified six novel opsins. Five are r-type
visual opsins: four middle-wavelength-sensitive (EsRh2, EsRh3, EsRh4 and EsRh5) and one long-wavelength-
sensitive (EsRh6). Moreover, we have identified a non-visual opsin, the EsPeropsin. All these newly identified
opsin genes were significantly expressed in compound eyes and brain, while only EsPeropsin and EsRh2 were
clearly detected also in the abdomen. A temporal modulation in the transcription of these novel opsins was
found, but statistically significant oscillations were only observed in EsRrh3 and EsPeropsin. Our results contribute
to the dissection of the complex photoreception system of E. superba, which enables this species to respond to the
daily and seasonal changes in irradiance and spectral composition in the Southern Ocean.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Solar light is a complex environmental signal characterized by daily
and seasonal changes in daylight, irradiance, wavelength composition,
direction and polarization (Björn, 2002). In the aquatic environment,
chemical and physical factors modulate the different properties of
light (Jerlov, 1968). The wavelength composition varies with depth:
longer wavelengths are absorbed rapidly, while shorter wavelengths
become predominant until the aphotic zone (Loew and McFarland,
1990). These variations are extreme at high latitudes where the
photoperiod changes from continuous daylight in summer to constant
darkness in winter.

The Antarctic krill Euphausia superba is a crustacean species with a
circumpolar distribution that is exposed to almost all marine photic
environments during its life cycle. E. superba have a long and complex
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larval development including three nauplius, three calyptopis and six
furcilia stages, before the metamorphosis into juvenile (Hempel and
Hempel, 1986). Eggs sink to deep oceanic layers up to 1000 m and
after hatching they start their developmental ascent (Marr 1962).
Nauplius stages are found in the aphotic zone below 250 m, whereas
the calyptopis I is the first feeding stage to enter to the photic zone.
Adults show a daily vertical migration pattern moving downward
during the day and upward during the night within the 200 m water
column, from photic to aphotic and vice versa (Godlewska, 1996;
Quetin and Ross, 1991).

To perceive photons of specific wavelengths animals have evolved
several types of opsin photopigments. Opsins are G-coupled protein
receptors localized to the membranes of photoreceptors. Phylogenetic
analysis has shown that opsins of bilaterians are grouped in three
major clades: c-opsin expressed in photoreceptors with a ciliary
morphology as vertebrate rods and cones; r-opsin expressed in photore-
ceptors with rhabdomericmorphology as the ommatidia of arthropods;
and Group 4 opsin containing relatively poorly characterized non-visual
opsin types from both chordates and invertebrates as peropsins and
neuropsin (opsin-5) (Porter et al., 2012). Recently, next-generation
sequencing technologies have increased significantly the available
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amount of transcriptomic and genomic data for several animal species.
Interestingly, crustacean species have genomes with a highly variable
number of opsin genes. For instance, transcriptome analysis of the
Ostracoda Skogsbergia lerneri and the Branchiura Argulus siamensis re-
vealed 8 opsin genes (Oakley and Huber, 2004; Sahoo et al., 2013). In
contrast, the genomes of the Stomatopoda Pseudosquilla ciliate and the
Cladocera Daphnia pulex encode 33 and 46 opsin genes, respectively
(Colbourne et al., 2011; Porter et al., 2013). The role of this large number
of opsins involved in visual and non-visual photoreception is still largely
unknown. However, we could speculate that adaptation to complex
marine and freshwater photic environments has occurred through an
increase of the number of opsin genes (Feuda et al., 2016; Liegertová
et al., 2015).

Given its phylogenetic position and its capacity to inhabit different
photic environments, we have investigated the transcriptome of the
Antarctic krill E. superba in order to identify novel opsin paralogues.
Previous investigations have identified three opsin genes in E. superba
(Porter et al., 2007; De Pittà et al., 2013). Here, adopting a qualitative
candidate gene approach,we analysed sequences froma de novo assem-
bled transcriptome of krill and we identified 6 novel opsins. Among
them five are r-type visual opsins. Crustacea visual pigments are
clustered in three main clades, related to their spectral sensitivity: long-
wavelength-sensitive (LWS), middle-wavelength-sensitive (MWS), and
short-wavelength/UV-sensitive (SWS/UVS) (Porter et al., 2007). We
found four MWS opsins named EsRh2, EsRh3, EsRh4 and EsRh5 and
one LWS opsin named EsRh6. In addition, we have identified a Peropsin
homologue. Peropsin is a non-visual opsin member of Group 4 opsins
previously described in vertebrates, Cephalochordata and Artropoda
and a retinal-photoisomerase activity has been proposed as its main
function (Sun et al., 1997; Koyanagi et al., 2002; Nagata et al., 2010;
Eriksson et al., 2013; Battelle et al., 2015, Lenz et al., 2014; Henze and
Oakley, 2015). Furthermore, using qPCR on RNA isolated from
compound eyes, brain and abdomen we detected the tissue expression
of the newly identified opsins. Finally, prompted by the different
expression levels observed among tissues, we investigated the daily
fluctuations of opsin mRNA expression in the head (brain, eye and
eyestalk) of krill sampled under natural conditions during the Antarctic
summer.

2. Material and methods

2.1. Specimen collection

For the tissue localization experiments Antarctic krill (E. superba)
were caught in East Antarctica (65° 31′ S, 141° 23′ E, 15 Jan. 2015)
during the voyage V2 14/15 with RSV Aurora Australis by oblique
hauls of several Rectangular Midwater Trawls, using a pelagic net
(RMT 8), in the upper 200 m of the water column. Immediately after
hauling, krill were transferred as quickly as possible into 200 L tanks
located in a temperature constant room at 0 °C and dim light. Every
day 50% of the water was substituted with fresh pre-chilled seawater
to ensure a continual turnover of food and nutrients. Twice a day,
dead animals and moults were removed from the tanks (Kawaguchi
et al., 2010). After arriving in Hobart, Tasmania (January 25, 2015),
krill were delivered directly to the Australian Antarctic Division (AAD)
aquarium and kept in a 1670 L holding tank. The holding tank was
connected to a 5000 L chilled sea water recirculation system. The sea
water was maintained at 0.5 °C and was recirculated every hour
through an array offiltration devices.Water qualitywasmonitored con-
tinuously. A detailed description of the holding tank system at the AAD
and of krill maintenance in the laboratory is described elsewhere (King
et al., 2003). Lightingwas provided by fluorescent tubes. A PC controlled
timer system was used to set a natural photoperiod corresponding
to that for the Southern Ocean (66°S at 30 m depth). Krill were fed
daily with an algal mixture consisting of the cultured pennate diatom
Phaeodactylum tricornutum (1.3 × 105 cells mL−1), the cultured
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flagellates Gemingera sp. (1.9 × 103 cells mL−1) and Pyramimonas
geldicola (4.9 × 103 cells mL−1), as well as Pavlova sp.
(2.8 × 104 cells mL−1), Isochrysis sp. (1.1 × 105 cells mL−1) and
Thalassiosira sp. (7.6 × 103 cells mL−1), which are concentrated bulk
feeds of instant algae mixed with seawater (Reed Mariculture, CA,
USA), and a commercial larval food (EZ-Larva mixed with seawater at
0.04 mL L−1). During sampling (February 26, 2015) the holding tank
was exposed to a light:dark regime of 24 h light and 0 h darkness
with a maximum of 100 lx light intensity at the surface of the tanks
during midday. Sampling was done around midday in the middle of
the light phase by catching krill randomly out of the holding tank.
Animals were dissected on a cooling element and three different tissues
(eyestalks, brain, and abdomen) were immediately transferred to RNA
stabilization solution (RNA-later, Life Technologies, CA, USA) for subse-
quent molecular analyses.

For the temporal expression analysis Antarctic krill were collected in
the Ross Sea (longitude: 167°28′81′′ E – 179°54′68′′ W, latitude 68°40′
54′′ S – 77°01′′81′′ S) in January 2004 during the XIX Italian Antarctic
Expedition with procedures described in Mazzotta et al. (2010). Adult
specimens were caught at different times throughout the 24-hour cycle
(local times: 01:00, 06:00, 10:00, 15:00, and 18:00) and stored at
−80 °C in RNA-later (Life Technologies, CA, USA). Specimens caught at
each time point were dissected and total RNA was extracted from the
head (including the brain and the compound eyes).

2.2. Screening of transcriptome for opsins

To identify new putative opsins we manually inspected a de novo
unpublished transcriptome of E. superba, provided by the Australian
Antarctic Division (Kingston, Tasmania). Total RNA extracted from
Calyptosis I and Furcilia V larval stages was used to produce the cDNA
libraries for massive sequencing. The Illumina reads were used for clus-
tering and de novo assembly using Trinity RNA-seq software (Grabherr
et al., 2011). We used the default k-mer size of 25 nt, we imposed a
minimum k-mer coverage of two and it enabled the Jaccard clipping
to mitigate falsely fused transcripts. After eliminating adapter
sequences and filtering out the low-quality reads, including too short
ones (20 nt) and repeats, a total of 223.193 contigs longer than 200 bp
were obtained. Assembled contigs ranged in size from 200 bp to
13.460 bp, with a median size of 328 bp. Each putative transcript was
searched locally against the NR database downloaded from the NCBI
FTP site on the 8.10.2015 by using Blast-N (against NCBI nucleotide
database) and Blast-X (against NCBI protein database and TrEMBL)
with an e-value cut-off of 1e-6 (De Pittà et al., 2013). The first five
matches from each search were grouped and priority was given to
Blast-N results. Alignments characterized by less than 50% of identity
or coverage were discarded, as they were considered poorly informa-
tive. All the putative transcripts resulting in at least an opsin description
among the first five high scoring pairs were chosen. Blast results were
manually inspected to select only the sequences unambiguously identi-
fied as putative opsins and not those encoding for others members of
the G protein-coupled receptors family.

2.3. Phylogenetic analysis

E. superba opsin cDNA sequences were converted into amino acid
sequences using the translate tool by ExPASy Proteomics (http://
www.expasy.org/tools/dna.html) and then aligned with other arthro-
pod opsin sequences obtained from UniProtKB (http://www.uniprot.
org) using ClustalW2 (Thompson et al., 1994). A phylogenetic tree
was generated using a neighbour-joining algorithm based on the
Jones-Taylor-Thornton (JTT) model (MEGA 5.0; Tamura et al., 2007).
Confidence in nodes was estimated by 1000 bootstrap replicates. A
pairwise deletion algorithm was also used to eliminate any alignment
gaps present in the sequence. The tree was rooted using the Homo
sapiens VIP receptor 1 as outgroup.
arctic krill Euphausia superba, Mar. Genomics (2016), http://dx.doi.org/
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2.4. Cloning and sequencing of E. superba opsins cDNA

To confirm the presence of E. superba opsins mRNA sequences
identified in the transcriptome, we cloned and sequenced the complete
coding sequences of EsRh2, EsRh3, EsRh4, EsRh5, EsRh6 and EsPeropsin.
The sequences were deposited in GenBank (acc. nos EsRh2: KU682720,
EsRh3: KU682721, EsRh4: KU682722, EsRh5: KU682723, ESRh6:
KU682724 and EsPeropsin: KU682725). First-strand cDNA was synthe-
sized from 1 μg of total RNA from head using the SuperScript™/First-
Strand cDNA Synthesis Kit (Invitrogen, CA, USA), according to theman-
ufacturer's instructions. The first strand cDNA was used as template for
PCRwith oligonucleotides designed on krill opsins sequences identified
in the transcriptome. The oligos used to obtain full-length opsin tran-
scripts are listed in Table 1 and the following programme was used:
94 °C for 2 min, followed by 40 cycles of 94 °C for 30 s, 60 °C for 30 s
and 72 °C for 1 min, with the addition of a final polymerization step at
72 °C for 7 min. All primers used to clone opsins were designed using
the Primer3 design tool (Untergasser et al., 2012). All the PCR
reactions were performed with high-fidelity DNA polymerases in
order to minimize PCR-induced errors. The PCR products were cloned
using StrataClone PCR Cloning Kit (Agilent Technologies, CA, USA).
Full-length E. superba opsins cDNA sequence were sequenced with a
modified Sanger dideoxy terminator cycle sequencing chemistry, the
ABI BigDye kit version 3.1, on an ABI 3730 48-capillary sequencer and
36 cm capillaries (BMR Genomics Sequencing Service, Italy).

2.5. Quantitative RT-PCR

Quantitative RT-PCR was used to localize the expression of opsins.
1 μg of total RNA from head, eye and abdomen of single specimens
was used to perform independent cDNA syntheses in a final volume of
20 μL, using a mix of random hexamers and oligodT and SuperScript II
reverse transcriptase (Life Technologies, CA, USA). Three biological
replicates were analysed. One μL aliquot of 1:4 diluted first-strand
cDNAwas PCR amplified in 10 μL volume using the SYBR Green chemis-
try according to the manufacturer's recommendations (SsoFast™
EvaGreen® supermix, Bio-Rad Laboratories, CA, USA) with a CFX
Connect Real-Time PCR Detection System (Bio-Rad Laboratories, CA,
USA). Thermal cycling conditions were as follows: 3 min denaturation
at 95 °C, followed by 40 cycles of a 5 s denaturation step at 95 °C and
an annealing-elongation step for 20 s at 60 °C. After amplification,
melting curve analysis to confirm the specificity of the amplicon was
performed from 60 to 95 °C, with increments of 0.5 °C 10 s−1. All
samples were run in triplicate. Gene-specific primers designed using
the Primer3 design tool (Untergasser et al., 2012) were used to amplify
fragments of 120–150 bp in length (Table 1). We verified the efficiency
of the primers by producing standard curves for all genes investigated.
Moreover, the dissociation curve was used to confirm the specificity of
the amplicon. The relative levels of each RNA were calculated by the
Table 1
Primers used for cloning and quantitative PCR.

Primers for cloning P

EsRh2 F: 5′-TGGTCAGAAGCTCTGCACTG-3′ F
R: 5′-TTTTCATGATTGCTGGGACA-3′ R

EsRh3 F: 5′-GTGGCACGAGGATCTCAAAT-3′ F
R: 5′-TGTTTGCTGGGTTATCATGC-3′ R

EsRh4 F: 5′-ATTGCCCATTGGTCATTCAT-3′ F
R: 5′-GCAGTGGTATCAACGCAGAG-3′ R

EsRh5 F: 5′-TGGCTAGCAGTCAACCAACA-3′ F
R: 5′-GGCCACAATGTTGCATTTTA-3′ R

EsRh6 F: 5′-GGAAGAGAGGATACGGACCA-3′ F
R: 5′-CCTGTTCCCTCAAATCTGGA-3′ R

EsPeropsin F: 5′-TGGATCCACTAGAAAAACAATGG-3′ F
R: 5′-TCGGCTTCTAGGCTATGTGG-3′ R

%: percentage of efficiency.
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2−ΔΔCT method (where CT is the cycle number at which the signal
reaches the threshold of detection) (Livak and Schmittgen, 2001). As
previously reported (Mazzotta et al., 2010; De Pittà et al., 2013), 18S
was used as housekeeping gene (QuantumRNA™ 18S Internal
Standards, Ambion, Austin, TX, USA). Each CT value used for these calcu-
lations is the mean of three replicates of the same reaction. To ascertain
that the apparent changes in the expression of opsins mRNA were not
artefacts of normalizing to the 18 s housekeeping gene, a control
experiment was conducted normalizing to another reference gene, the
ubiquitin carboxyl-terminal hydrolase 46 (USP46, ID Transcript: N18758
in Meyer et al., 2015; F: 5′-AAATCGTCAGAAACGGGCTA-3′, R: 5′-TTAG
CGGTTATGGAACATTACG-3′, Efficiency = 99.2%, R2 = 0.989). We used
USP46 as a reference gene based on a microarray experiments con-
ducted in our laboratory (data not shown). The expression levels of
USP46 were constant during a 24 h experiment in both LD and DD con-
ditions. Furthermore, we tested the reliability ofUSP46 as housekeeping
gene by using three independent algorithms: geNorm (Pattyn et al.,
2013), Bestkeeper (Pfaffl et al., 2004), and Normfinder (Andersen
et al., 2004). Nearly identical expression profiles were observed when
opsins transcript levels were normalized to 18 s or USP46 mRNA. This
method was also used to report on changes in expression of opsins in
krill heads (brain and eyes) collected at different time of day (01:00,
06:00, 10:00, 15:00, 18:00). Because datawere not normally distributed
(D'Agostino-Pearson normality test, p b 0.05), non-parametric Kruskal-
Wallis one-wayANOVA andDunn'smultiple comparison testwere used
to determine significant differences (P b 0.05) between groups
(GraphPad Prism 4.0, GraphPad Software, CA, USA). The RAIN non-
parametric test with the default settings (independent) was used to de-
tect rhythmicity in 24-h time series of opsins expression (Supplemen-
tary Table 1). This R package is capable of detecting both sawtooth-
shaped and sinusoidal rising and falling patterns (Thaben and
Westermark, 2014).We set the sampling interval to 1 h and the number
of replicates for each time point, using the argument named “measure.
sequence”, in order to detect the periodicity in our irregular time series.

2.6. Ethics statement

All animal work has been conducted according to relevant national
and international guidelines. Animals were collected both at the
Australian Antarctic Division (Hobart, Australia) and during the XIX
Italian Antarctic Expedition (2003–2004). Krill fishing was conducted
in accordance with the Convention for the Conservation of Antarctic
Marine Living Resources (CCAMLR, 1980) under permissions from the
Italian Scientific Commission for Antartica (CSA) and the Consortium
of Programma Nazionale di Ricerche in Antartide (PNRA, Project N.
2003/1.3 “Molecular neurogenetics of circadian rhythmicity in
E. superba”). Export of krill specimens from Australia to Italy was
made in accordance with the Department of the Environment,
Australian Government (registration number IT111A).
rimers for qPCR % R2

: 5′-TCATCATGGCAAACATCACA-3′ 106.4 0.997
: 5′-TGTGCCACATTGGATTGACT-3′
: 5′-GTGGCACGAGGATCTCAAAT-3′ 100.8 0.935
: 5′-GATGGAGGTTCCCTCTGGAT-3′
: 5′-GCTCATACACCTTCATAGTC-3′ 94.9 0.950
: 5′-CTCTTGACATTCATCTTCTC-3′
: 5′-TGGCTAGCAGTCAACCAACA-3′ 104.3 0.974
: 5′-GTTGTATCCCCCTTCGGAAC-3′
: 5′-ATTTGTGACTACAAAGAACC-3′ 107.5 0.997
: 5′-GAAAAGACACAGAAGTCATC-3′
: 5′-GCTATTACCAGAGCGCCAAG-3′ 102.7 0.999
: 5′-CCACAGCATACCATGACCAG-3′
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3. Results

3.1. Identification of opsin genes in the trascriptome of E. superba

Our screening of E. superba transcriptome for opsins resulted in 57
highly redundant contigs. Fifty-four contigs are members of the MWS
clade, the other 3 are dispersed among LWS and Group 4 opsin (1 and
2 contigs, respectively). The transcriptome did not contain SWS/UV
transcripts. In order to reduce this redundancy we have manually
clustered very similar sequences (N85% identity) obtaining 8 unique pu-
tative transcripts: 6 newly and 2 previously identified (Rh1a and Rh1b;
De Pittà et al., 2013) opsin genes. We successfully cloned sequences of
all the new opsin transcripts, which we named according to the clade
in which they are located in our phylogenetic analyses (MWS opsins:
EsRh2, EsRh3, EsRh4, EsRh5, LWS opsin: ESRh6 and EsPeropsin; Fig. 1).
One of the newly found opsins in the E. superba transcriptome is a
member of the Peropsin group. It has 48–49% of amino acid identity
with Chelicerata peropsins and 35–39%with deuterostome homologues
(Fig. 2).MWS opsins (ESRh2-Rh5) are N50% identical in their amino acid
sequences (Fig. 3). EsRh6 and EsPeropsin show 35–38% and 25–28% of
amino acid identity to MWS opsins, respectively.

All these novel opsins are predicted to be seven transmembrane
(TM) domain proteins and possess all the key elements necessary for
phototransduction (Gartner and Towner, 1995; Townson et al., 1998):
1) the lysine (K) responsible for covalent binding to the chromophore
through a Schiff's base interaction in the VIITM domain; 2) two
conserved cysteine (C) residues in the I and II extracellular domains,
responsible for disulphide linkage stabilization; 3) a glutamic acid
(E) to serve as Schiff's base counterion in the II extracellular domain;
4) a potential G-protein binding site (DRY) in the II intracellular
Fig. 1. Phylogenetic relationships of Euphausia superba opsins. Phylogenetic analysis of selected
whereas EsRh6 is a member of the LWS clade and EsPeropsin clusterizes with other peropsin o
bars indicate amino acid substitutions per site. LWS, long-wavelength sensitive; MWS, middle
vannamei: ABH00987; Neomysis americana: ABI48886; Neogonodactylus oerstedii: ACU00212
ADQ01810; Hemigrapsus sanguineus: Q25158; Uca vomeris: ACT31580; Uca pugilator Rh1: AD
kugenumaensis: BAG80984; Triops granaries: BAG80978; Cupiennius salei: CCP46949; Hasarius
receptor 1 Homo sapiens: P32241.
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domain; 5) the NPXXYmotif in the VIITMdomain, which is a highly con-
served motif among G-protein coupled receptors; 6) a HPR(K) motif in
the C-terminus, characteristic of opsins that activate the Gq/11 class of
GTP-binding proteins (Figs. 2 and 3). Furthermore, E. superba opsins
nested within MWS and LWS clade have two residues (Y and S in the
IIITM domain) functionally related to the long/middle-wavelength
spectral sensitivity (Chang et al., 1995) (Fig. 3).

3.2. Localization and temporal expression of E. superba opsin trascripts

To investigate the expression at the mRNA level of opsin genes in
different tissues of E. superba, we performed qPCR using RNA from dis-
sected brain, eye and abdomen (Fig. 4). The newly identified opsins
were all expressed, albeitwith somedifferences in the expression levels,
in compound eyes and brains, while only EsPeropsin and EsRh2 were
clearly detected in the abdomen (Fig. 4C).

As we had previously observed a daily variation of EsRh1a and
EsRh1b mRNA expression in the head of Antarctic krill collected under
natural conditions (De Pittà et al., 2013), we investigated the temporal
expression of the novel opsins detected in the E. superba transcriptome.
qPCRwas performed on specimens collected in the Ross Sea at different
times of the day (01:00, 06:00, 10:00, 15:00, and 18:00) during the
Antarctic summer (Mazzotta et al., 2010), when they were exposed
to an almost continuous 24 h photoperiod characterized by daily
variations in solar irradiance (Fig. 5). qPCR showed a general high
inter-individual variability in opsin levels, consistently with the fact
that no significant temporal patterns of expression were detected by
ANOVA (EsRh2: H5 = 2, p N 0.7; EsRh3: H5 = 9.1, p = 0.06; EsRh4:
H5 = 4.8, p N 0.3; EsRh5: H5 = 4.9, p N 0.3; EsRh6: H5 = 4.3, p N 0.3;
EsPeropsin: H5 = 9.2, p N 0.05). However, the overall data suggest the
opsins shows that EsRh2, EsRh3, EsRh4, and EsRh5 opsin proteins fall in the MWS clade,
rthologs. Bootstrap confidence values based on 1000 replicates are shown at nodes. Scale
-wavelength sensitive; SWS, short-wavelength sensitive. Accession numbers: Litopenaeus
; Archaeomysis grebnitzkii: ABI48867; Euphausia superba: ABI48874; Uca pugilator Rh2:
Q01809; Uca pugilator Rh3: E5G6F2; Neogonodactylus oerstedii: AIF73508; Branchinella
adansoni: BAJ22674; Limulus polyphemus: AIT75833; Argulus siamensis: 461527168, VIP
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Fig. 2. Alignment of amino acid sequences of Euphausia superba Peropsinwith orthologs of mouse (Musmusculus), amphioxus (Branchiostoma belcheri), Crustacea (Argulus siamensis) and
three arthropods (the limulus Limulus polyphemus and the spiders Cupiennius salei and Hasarius adansoni). Amino acid residues conserved are highlighted on a grey background and
alignment gaps are indicated by dashes (-). The seven transmembrane domains are indicated by lines above the sequence and labelled with Roman numerals. The lysine residues
which bind to the retinal chromophore is indicated by an asterisk. The “DRY” and “NPXXY” motifs, which are highly conserved among G-protein coupled receptors, are indicated by
symbols + and $, respectively.
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existence of a temporal modulation of the amplitude and phase of
expression for all the novel opsins (Fig. 5). Indeed, EsRh2, EsRh3 and
EsRh5 showed maximum levels at 06:00 (Fig. 5A–B, D), whereas EsRh4
and EsRh6 (Fig. 5C, E) reached the peak in the second half of the daylight
(15:00–18:00). Conversely, EsPeropsin shows its peak in the middle of
the night, at 01:00, when solar irradiance reaches the lowest levels
(Fig. 5F). A further analysis performed with RAIN, a robust non-para-
metric method for the identification of rhythms in biological time series
(Thaben and Westermark, 2014), showed that a significant sinusoidal
pattern of oscillation actually exists in the case of Peropsin and EsRh3
(p= 0.0195, Phase: 01:00 and p= 0.0016, Phase: 06:00, respectively).

4. Discussion

Using a transcriptomic approach, we significantly expanded our
knowledge of the opsin repertoire in the Antarctic krill E. superba.
Based on phylogenetic affiliations, we identified 5 visual r-opsins
belonging to the MWS and LWS clades and a non-visual opsin member
of the Peropsin group. The expression of many opsins in the photore-
ceptor system seems to be common in crustaceans wheremany species
express more opsins than expected based on their photoreceptor
physiology. For instance, Stomatopoda and Cladocera species have
more than 30 opsins, belonging to different classes, expressed in their
transcriptomes. Visual opsins form three evolutionarily distinct groups
that generally correlate with the maximum wavelength absorption
(LWS, MWS and SWS/UVS; Porter et al., 2007, 2012). Krill opsins
Please cite this article as: Biscontin, A., et al., The opsin repertoire of theAnt
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identified until now belonged to LWS and MWS clades. Interestingly,
none of the contigs that we identified was member of the SWS/UVS
clade. This is quite anunexpected result asmaintenance of blue sensitiv-
ity is likely to be dependent on the photic environment of the species
and adult Antarctic krill show a daily vertical migration pattern along
the water column below 30 m, where only the blue wavelengths
penetrate (Godlewska, 1996). However, another crustacean species
phylogenetically closely related to the Antarctic krill, the stomatopod
Hemisquilla californiensis, living the blue wavelengths range (10–50 m),
showed in the transcriptome only one transcript annotated as member
of SWS/UVS clade (Porter et al., 2013). We expect that an increased
depth of coverage of sequencing would identify additional opsin/s in
E. superba, with the maximum wavelength absorption in the short
wavelengths spectrum.

Non-visual opsins have been detected in invertebrates. For instance a
non-visual c-opsin, named pteropsin, has been identified in the brain of
the honey bee Apis mellifera (Velarde et al., 2005). Neuropsin (opsin-5)
orthologs have been found in the genomes of the tardigrade Hypsibius
dujardini (Hering and Mayer, 2014) and of the echinoderm Amphiura
filiformis (Delroisse et al., 2014). In the present investigation we have
detected in the transcriptome of E. superba a transcript of the non-
visual opsin Peropsin gene. Peropsin has been originally described in
human retina (Sun et al., 1997) and further experiment in lancelets
demonstrated its photoisomerase activity (Koyanagi et al., 2002).
Peropsin orthologs have been identified and characterized in different
Chelicerata (spiders Hasarius adansoni and Cupiennius salei, horseshoe
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Fig. 3.Alignment of the 4 novel krill opsin sequences clustering in theMWS clade showing conserved amino acid residues (grey shaded). Black shading indicates two residues in the IIITM
domain functionally related to the long/middle-wavelength spectral sensitivity. Lines above sequences indicate the transmembrane domains. Symbolsmark residues andmotifs necessary
for phototransduction (for more details see results and legend to Fig. 2).

Fig. 4. Relative expression levels of Euphausia superba opsins in brain, compound eyes and
abdomen.
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crab Limulus polyphemus; Nagata et al., 2010; Eriksson et al., 2013;
Battelle et al., 2015) and Crustacea (the Branchiura A. siamensis and
the Copedoda Calanus finmarchicus; Sahoo et al., 2013; Lenz et al.,
2014) species. Interestingly, EsPeropsin is expressed both in eye and in
abdomen. The expression in the compound eyes suggests the hypothe-
sis that it could play a role in vision as retinal photoisomerase. However,
the expression in the abdomen seems to indicate that it has not (if any)
exclusively a role as a photoisomerase, but it could also work as a
photoreceptor. The expression of opsins in the crustacean abdomen
has been previously reported. The crayfish Procambarus clarkii has a
well-characterized extraocular photoreceptor, called the caudal
photoreceptor, located in the sixth abdominal ganglion. SWS and LWS
opsin transcripts have been observed not only in the sixth abdominal
ganglion, but also in all ganglia of the nerve cord (Kingston and Cronin,
2015). The functional role of the caudal photoreceptor is extended to
the triggering of the tail reflex, and to the walking behaviour of the ani-
mal. Furthermore, because the abdomen of the Antarctic krill presents
photophores, which are used for counterillumination, a common and
successful cryptic strategy, we cannot exclude an involvement of the
abdominal photoreceptors in a feedback mechanism controlling the
irradiance of the light emitted by photophores (Grinnell et al., 1988).

We had previously observed daily rhythms in the expression of the
krill opsins EsRh1a and EsRh1b, with a peak of expression at 06:00, in
specimen exposed to natural lighting conditions, despite high levels of
inter-individual variability (De Pittà et al., 2013). In the present study,
the use of a robust non-parametric method specifically designed for
the identification of biological rhythmicity allowed us to detect a signif-
icant sinusoidal pattern of oscillation for two out of the six newly iden-
tified opsins, namely EsPeropsin and EsRh3. Interestingly, EsPeropsin and
EsRh3 have different pattern of expression and peak at different time of
day (01:00 and 06:00, respectively). Different daily expression profiles
of opsins with different spectral sensitivity could be important for the
Antarctic krill to entrain their physiological, metabolic and behavioural
processes to the daily changes in irradiance and spectral composition
of sunlight that occur in the Southern Ocean throughout the seasons
(Gaten et al., 2008; Teschke et al., 2011; De Pittà et al., 2013).
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Fig. 5. Temporal patterns of expression of Euphausia superba opsins in the head of specimens caught under natural conditions during the Antarctic summer. Times of fishing (h) and
irradiance (W/m2) at the fishing depth are reported. Blue bars provide a representation of underwater irradiance at the fishing depth. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In summary, we have extended our knowledge on the E. superba
opsin repertoire, including the discovery of a non-visual opsin. The
future identification of other opsins as pteropsin (c-opsin), arthropsin
(r-opsin) and neuropsin (group 4 opsin) could permit further recon-
struction of the set of E. superba opsins and interpretation of the
complex behavioural responses of krill to changes in illumination
during the daily vertical migration and during the seasonal changes of
sun irradiance.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.margen.2016.04.010.
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