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Abstract Aircraft measurements are used to characterize properties of clear-air turbulence
in the lower Arctic troposphere. For typical vertical resolutions in general circulation mod-
els, there is evidence for both downgradient and countergradient vertical turbulent transport
of momentum and heat in the mostly statically stable conditions within both the boundary
layer and the free troposphere. Countergradient transport is enhanced in the free troposphere
compared to the boundary layer. Three parametrizations are suggested to formulate the tur-
bulent heat flux and are evaluated using the observations. The parametrization that accounts
for the anisotropic nature of turbulence and buoyancy flux predicts both observed down-
gradient and countergradient transport of heat more accurately than those that do not. The
inverse turbulent Prandtl number is found to only weakly decrease with increasing gradient
Richardson number in a statistically significant way, but with large scatter in the data. The
suggested parametrizations can potentially improve the performance of regional and global
atmospheric models.

Keywords Arctic - Countergradient flux - Parametrization schemes - Planetary boundary
layer - Subgrid-scale turbulence
1 Introduction

Parametrization of subgrid-scale (SGS) turbulence is an essential part of atmospheric mod-
elling. Most operational regional and global atmospheric models parametrize SGS turbulence
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by vertical diffusion of momentum, heat, moisture, and other atmospheric constituents above
the surface layer (Cuxart et al. 2006). In this approach all relevant equations are simplified
by Reynolds averaging, where each variable of interest is decomposed into a mean and a
turbulent fluctuating part (X = X + X’). A simplified set of boundary layer equations for
continuity, momentum, and heat can be listed as (Stull 2003)
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where U and V are mean wind velocity components in the x and y directions (mean wind
velocity in the z direction (W) is assumed zero), f is the Coriolis parameter, subscript g
denotes geostrophic wind, u’, v’, and w’ are turbulent wind velocity components in the x, y,
and z directions, 6, is the mean virtual potential temperature, o is the mean density, C, is
the heat capacity of air at constant pressure, L, is the latent heat of vapourization of water, E
is the water vapour flux, Q* is the net radiation, and 6 is the turbulent fluctuation in virtual
potential temperature.

A fundamental difficulty with the above equations is the parametrization of the turbulent
flux term (0 X’ u’j /0x), particularly under statically stable conditions, where turbulence is
intermittent and mixing is weak (Aliabadi et al. 2016a,b). Models that formulate turbulent
fluxes as a function of other known variables fall under two major categories: models that
only account for downgradient transport of momentum and heat, and models that account
for both downgradient and countergradient transport of these quantities.

1.1 Downgradient Transport

In the case of one-dimensional vertical diffusion and assuming horizontal homogeneity (i.e.

d"} = dx = 0), downgradient transport models assume that the Reynolds stress (u'w’) and

turbulent heat flux (6, w’) (heat flux hereafter) are proportional to the vertical gradient of
mean horizontal wind speed and virtual potential temperature

U
vw = —K;;—, %)
0z
00,
0w = —Kj—, 6
W e (6)

where horizontal wind speed is in the along-wind direction. Here we assume constancy of
wind direction with height, so with the rotation of the coordinate frame along the z axis we
can obtain V = %—‘Z/ = 0 for notational convenience. This approximation is reasonable if short
vertical distances are involved, which is the case in our analysis. K,, and K}, are the eddy
viscosity (or momentum diffusivity) and eddy conductivity (or heat diffusivity), respectively.
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First-order models formulate diffusivity as a function of mixing length and stability [e.g.
gradient Richardson number or Obukhov length, see Delage and Girard (1992), Delage
(1997), Mahrt and Vickers (2003), Han et al. (2009)]. 1.5-order models formulate diffusivity
as a function of turbulent kinetic energy (e = %(u’2 + v2 4+ w’?)) and/or other variances
of turbulent fluctuating components in addition to mixing length and stability (Mellor and
Yamada 1974; Bougeault and Lacarrere 1989; Bélair et al. 1999; Cuxart et al. 2006). Full
second- and third-order models may eliminate the need for momentum and heat diffusivity
parametrization because they formulate and solve all second- and third-moment equations,
respectively. However, their use is limited in operational models due to complexity and
computational cost (Stull 2003).

The ratio of K, to K; quantifies the relative efficiency of momentum and heat transfer
and is known as the turbulent Prandtl number,

u'w’ 99,
K
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and if Pr; is known, such a formulation allows for the determination of K, given K}, or vice
versa. Pr; is usually formulated as a function of stability such as the gradient Richardson
number,
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with Pr; =~ 1 under statically neutral or unstable conditions. It is, however, reported to
increase with increasing gradient Richardson number in the statically stable regime (Kondo
etal. 1978; Ueda et al. 1981; Kim and Mahrt 1992; Ohya 2001; Gracheyv et al. 2007a, b). This
relationship is mostly verified on flux towers near the surface, for example the Surface Heat
Budget of the Arctic (SHEBA) Ocean experiment with measurements under 20 m in height
(Grachev et al. 2007a, b) or the 213-m flux tower covering the lower portion of the boundary
layer used by Ueda et al. (1981). To the authors’ knowledge, the only observational studies
to verify this relationship at higher altitudes are the aircraft studies of Kennedy and Shapiro
(1980) and Kim and Mahrt (1992), in which only a limited number of measurements were
made.

1.2 Downgradient and Countergradient Transport

Models including the countergradient transport of momentum and heat introduce an addi-
tional term to the downgradient expression (Bélair et al. 1999),
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with I, and I}, as constants or functions representing non-local features in the hydrodynamic
flow, such as the influence of the surface. Earlier models of this kind were developed by
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Deardorff (1966, 1972a,b) for the heat flux with I}, formulated as a function of variances
of turbulent virtual potential temperature and turbulent vertical velocity. In the more recent
Gayno-Seaman scheme for heat flux, I, is formulated using surface heat flux and convective

vertical velocity w, = [gZi / (TU(W)S)]IB, where Z; is the boundary-layer height and
subscript s denotes surface (Han et al. 2009).

These countergradient models are conventionally developed for the convective boundary
layers under statically neutral or unstable conditions. However, other studies find countergra-
dient transport occurring under stable conditions as well. Laboratory studies by Komori and
Nagata (1996) show countergradient transport of momentum, particularly at large scales, in
stably-stratified shear flows. Direct numerical simulations and comparisons with turbulent
channel-flow observations by lida and Nagano (2007) also indicate the presence of persis-
tent countergradient transport in stably-stratified shear flows. Flux-tower measurements by
Mahrt and Vickers (2005) indicate that under statically stable conditions, turbulence becomes
intermittent with countergradient transport of heat at large scales near the surface. Aircraft
observations by Inoue et al. (2005) identify positive heat flux within the statically stable Arc-
tic lower troposphere associated with ice openings, which is indicative of countergradient
transport. Various phenomena are suggested to cause countergradient transport of momen-
tum and heat under statically stable conditions. Examples include wavy motions, breaking
of waves due to Kelvin-Helmbholtz instability (Ohya 2001) and the formation of longitu-
dinal vortical structures that are elongated in the streamwise direction (Iida and Nagano
2007).

The countergradient approach under statically stable conditions is not extensively adopted
in models due to a lack of observations and knowledge of adequate parametrizations.
However, such an inclusion is very important for two reasons. First, a large portion of
the atmosphere above the boundary layer exhibits statically stable conditions, therefore,
countergradient transport, if it exists, should occur in a major part of the atmospheric
domain. Second, countergradient transport may become more important under static
stability since there is a significant decrease in downgradient transport under such con-
ditions (Iida and Nagano 2007). As a result, successful inclusion of a countergradient
parametrization for such cases may improve atmospheric model performances signifi-
cantly.

1.3 Research Objectives

Many studies in the literature characterize properties of turbulence under statically stable con-
ditions in boundary layers experimentally, either in laboratory or in the atmosphere using flux
towers. However, studies of clear-air turbulence at higher altitudes in the lower troposphere
above the boundary layer under very stable conditions are lacking. Even studies that attempt
such measurements produce statistics that are informative but not necessarily directly use-
ful for atmospheric model development. For example, Cho et al. (2003) and Dehghan et al.
(2014) analyze aircraft measurements of turbulence using structure functions to derive dis-
sipation rates (€) in clear-air turbulence, and Inoue et al. (2005) measured the heat flux over
sea-ice using aircraft observations. However, these statistics do not reliably estimate turbu-
lent diffusion coefficients (K,,, K;), which are relevant to turbulent flux parametrizations in
the atmosphere (Hocking 1999). In addition, turbulence measurements using instrumenta-
tion on aircraft under stable conditions pose many difficulties due to weak turbulence and
non-stationary or heterogeneous conditions.
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To address these needs, we used an aircraft to measure clear-air turbulence in the lower
Arctic troposphere near Resolute, Nunavut, Canada, during the summer 2014. The slant
profiling technique is used to estimate Reynolds stress, heat flux, and vertical gradients of
wind speed and virtual potential temperature. This information is then used to directly derive
diffusion coefficients and the turbulent Prandtl number. Additionally, turbulent kinetic energy
and dissipation rates are computed. The findings are then used to evaluate expressions for
heat flux and turbulent Prandtl number for use in atmospheric modelling.

2 Experimental Methodology

The actual campaign was the first of two research aircraft missions in the Arctic as part of the
NETCARE (NETwork on Climate and Aerosols: Addressing Key Uncertainties in Remote
Canadian Environments) project (www.netcare-project.ca). The aircraft, Polar 6, was a DC-3
converted to a Basler BT-67, from the German Alfred Wegener Institute (AWI). Turbulence
measurements were performed during 19 flights, including test, ferry, and research flights
around Resolute Bay (74.71°N, 94.97°W), Nunavut, Canada, from 26 June 2014 to 24 July
2014. Figure 1 and Table 4 show the schedule and tracks for the 11 research flights, which
mainly occurred over frozen or open ocean. Each research flight varied in duration, with a total
of 52.1 flight hours. The aircraft only occasionally sampled very thin clouds as confirmed by
Leaitch et al. (2016) who find only 62 cloud-averaged samples for a total of 1.6 flight hours
out of the entire 52.1 flight hours. So, it is expected that properties of clear-air turbulence
were measured most of the time.

Fourteen radiosondes were launched during the study campaign from either the weather
station in Resolute Bay (ten radiosondes) or from the Amundsen ice-breaker (four radioson-
des) around the vicinity of Resolute Bay, in order to provide vertical profiles through the
troposphere. Figure 1 and Table 5 show the location for radiosonde launches. The Amund-
sen locations were 74.24°N 91.52°W, 74.28°N 91.58°W, 74.24°N 92.22°W, and 74.61°N
94.91°W for radiosonde launches 11, 12, 13, and 14, respectively. Using the radiosonde
data the boundary-layer height (Z;) is estimated as 2754164 m during the campaign. For
this estimate the bulk Richardson number is calculated between two heights, one near the
surface at 40-m elevation and another at successively increasing elevations, until a critical
bulk Richardson number of 0.5 is reached. The boundary-layer height is then approximated
as this height. For more details refer to Aliabadi et al. (2016a).

2.1 State Parameters and Meteorological Measurements

State and meteorological variables were measured with a sampling frequency of 40 Hz by
the AIMMS-20 instrument, installed under the wing of the Polar 6 aircraft. The instru-
ment was manufactured by Aventech Research Inc., Barrie, Ontario, Canada, and consisted
of various modules. The air data probe (ADP) accurately measured the three-dimensional
aircraft-relative flow vector (true air speed, angle-of-attack, and sideslip), and a three-axis
accelerometer pack facilitated direct measurement of turbulence. The temperature and rel-
ative humidity sensors were located in the aft section of the probe for protection. A GPS
module provided the aircraft 3D position and inertial velocity. Horizontal and vertical wind
speeds were measured with accuracies of 0.50 and 0.75 m s~!, respectively, with a reso-
lution 0.01 m s~!, which was two to three orders of magnitude smaller than typical wind
speeds. The accuracy and resolution for temperature measurements were 0.30 and 0.01 °C,
respectively, and the accuracy and resolution for relative humidity measurement were 2.0 and
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Fig. 1 NETCARE 2014 research flight tracks and radiosonde launching platforms from Resolute Bay
(radiosondes S: 1-10) and the Amundsen ice-breaker (radiosondes S: 11-14)

0.1 %, respectively. The mean true air speed during the research flights was 70.94+6.7ms™!,
where the variability is reported with one standard deviation.

2.2 Aircraft Slant Profiling
2.2.1 Stationary versus Moving Probe Measurements

Turbulent eddies in the atmosphere usually satisfy the Taylor hypothesis (Willis and Deardorff
1976), so that they may be considered frozen as they travel past a sensor (Taylor 1938) under all
stability conditions (Geernaert et al. 1987; Ohya 2001). Given that aircraft speeds are usually
about one order of magnitude higher than typical wind speeds, itis a good practical assumption
to consider equivalence between flux tower (stationary probe) and aircraft (moving probe)
turbulence measurements for atmospheric studies.

2.2.2 Determination of Mean Vertical Gradients

To determine the vertical variation of state and meteorological parameters, monotonic ascents
and descents in aircraft legs are identified given a set of fixed height intervals (AH = 50,
100, 200 m). Figure 2 shows an example of a conceptual monotonic ascent, where the height
interval and leg length indicate the vertical and horizontal displacements of the aircraft.
Table 1 shows the statistics for the vertical and horizontal displacements of the aircraft
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Slant profiling
Height interval

Leg length

Fig.2 Slant profiling with the Polar 6 aircraft; a conceptual monotonic ascent is shown with the height interval
and leg length identified; the aspect ratio of the height interval versus leg length is not to scale

Table 1 Statistics for flight legs identified using slant profiling technique tabulated as a function of leg height
interval (AH)

No. of legs (QC legs) Avg. leg time (s) Avg. leg length (m)
AH =50m 4254 (1743) 18£8 1365 £ 638
AH =100 m 1984 (903) 35+ 11 2630 £ 920
AH =200m 920 (467) 71+ 14 5304 + 1353

associated with each height interval. These height intervals are chosen because they are
representative of a typical vertical resolution in operational weather forecast models. One
limitation of this study, however, is that the associated horizontal distances are smaller than
typical horizontal resolution in models by a factor of two to five (Aliabadi et al. 2016a).

Knowledge of vertical gradients of mean horizontal wind speed and virtual potential tem-
perature with high certainty is essential since these gradients frequently appear in expressions
that formulate turbulent fluxes (for example Eqs. 5-9). For this purpose, these gradients are
determined by fitting a line to each profile. Since some profiles are contaminated by mesoscale
and large-scale atmospheric fluctuations, profiles are quality controlled (QC) for linear fits
with a coefficient of determination (R2) >0.5. Profiles with R < 0.5 are discarded. For the
selected height intervals a number of statistics are identified and shown in Table 1; the legs
occurred in an altitude range from 150 to 3000 m.

2.2.3 Determination of Systematic and Random Errors in Turbulence Measurements

Ensemble averaged turbulent variances and fluxes are approximated by a finite sample over
a finite time period using time averaging. The systematic and random errors, which arise
from time averaging instead of ensemble averaging, are estimated using the methodology
of Lenschow et al. (1994). We estimate these errors using aircraft measurements from the
longest flight legs. Random errors are not biased, but the systematic errors discussed here
always result in underprediction of variances or magnitude of the turbulent fluxes, either
positive or negative.
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The second-order moments for variances of vertical wind and virtual potential temperature
fluctuations are represented by 112, and the second-order moments for heat flux and Reynolds
stress are represented by F. Note that subscripts w, u, 8,, uw, and 6,,w for these moments are
not shown for notational convenience. These moments are approximated by time averaging
over a finite time (7") and represented by > (7) and F (T'), respectively. The systematic error
(SE) and the random error (R E) estimates for variances and fluxes are given by

e —<p(T)> 7

SE 2—, (11)
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where 7 is the integral time scale corresponding to the variances and fluxes of interest,
and it is assumed that T <« T. The integral time scale can be calculated if well-behaved
normalized autocorrelation functions (R,p) can be computed so that 7,, = fooo Ry (t)dt.
For a discretized time series, the autocorrelation function is computed using the expression
Rap (] )
N—j—1 _ -
ieo [(ax — @) (brtj — brsj)]
N—j—1 _ = 11V [<N—j-1 _ - 172
(205 @ =@ =Bol ] [Z05 ™ [@ers = @) it — B
15)

where the total time series with a sampling time of Az contains N data points and autocorrela-
tion is computed for a time lag of #, —#; = j At over the entire time series. Averages for k and
k + j indices are calculated using X = ﬁ Z,}(V:_O*’_l X and X4 = ﬁ ,}(V:_O"_l Xkt j-

Figure 3 shows the well-behaved computed normalized autocorrelations for the deter-
mination of integral time scales except for Rg 9, and Rg,,,. Autocorrelation functions are
computed without high-pass filtering of input data to ensure that all scales of fluctuations
less than the flight leg length are accounted for. R, and R, start near unity and decrease
to zero by about 10 s and 40 s, respectively. R,,, starts from unity and decreases to zero
by about 35 s, but it decreases more slowly initially. Ry, g, and R, are usually difficult to
calculate due to the presence of thermal structures in the atmosphere, hence in practice 7y,
and 7,,,, are multiplied by a factor of 1.5 to provide conservative estimates for 7g,9, and g,y
(Lenschow et al. 1994). With these considerations we estimate the integral time scales, by
integrating autocorrelations, as Ty, = 3.6 8, 7,y = 11.9°s, 7,y = 20.8 8, 79,4y = 31.21 s,
and 74,9, = 5.4 s. Our values for variances and fluxes are by a factor of 3 and 20, respectively,
higher than those determined by Lenschow et al. (1994) within the convective boundary layer
in mid latitudes. This is expected since intermittent turbulence, which accounts for a large
amount of energy transfer under stable conditions, occurs at larger scales. These integral time
scales provide estimates for percent systematic and random errors for single measurements
(n = 1) and multiple measurements (n = 20) in Table 2.

These errors are not insignificant and in the ideal situation longer flight legs would have
been necessary to reduce them. However, our unique approach to measure a large number
of profiles at each height or stability condition (Ri) helps to reduce the random errors sub-
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Fig. 3 Median normalized autocorrelation functions for non-filtered signals computed for all flight legs
(AH =200 m)

Table 2 Estimates for percent systematic and random errors in turbulence measurements as a function of
number of measurements (n) (AH = 200 m)

SEww RE SE,gvgv REgvgv SE,w RE, SEng REQUw
n=1 10 32 15 39 59 77 88 94
n=20 10 7.1 15 8.7 59 17 88 21

stantially. We present results in 20 bins centred around specific heights or stability parameter
(Ri). For AH = 200 m, each bin contains n ~ 20 measurements, given the number of
quality controlled legs in Table 1. Therefore, the random errors for the quartiles in each bin
should reduce by a factor of 1//n &~ 1/+/20.

To minimize the errors, we report the majority of our analyses performed for height
intervals of AH = 200 m. This choice also corresponds to a typical vertical resolution
within the lower troposphere for operational weather forecast models. Where appropriate,
results are also shown for AH = 50 or 100 m to demonstrate single profiles in Sect. 4.1 or
for the purpose of sensitivity analysis in Sect. 4.5. Throughout the following analyses we
apply a correction for the calculated systematic errors.

2.3 Cut-off Frequency and the Spectral Properties of Turbulence

To calculate turbulence quantities for each leg, a high-pass filter with a cut-off frequency
of f. = 0.025 Hz is used to remove mesoscale variations in the signals. This excludes
atmospheric fluctuations greater than about 3.2 km in length, based on the average aircraft
speed. This cut-off frequency is close to that used in other turbulence measurements using
aircraft in stable conditions at mid latitudes by Lenschow et al. (1988) (f. = 0.01 Hz).
We report the majority of our results using this cut-off frequency, however, in Sect. 4.5 a
sensitivity analysis is also performed and reported to show the effect of varying f. from
0.0125 to 0.2 Hz.
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Turbulent dissipation rate (¢) for each leg is calculated using structure functions based on
the methodology of Hocking (1999) and Dehghan et al. (2014). Spectral analysis is performed
for the heat flux using fast Fourier transform (FFT) (Stull 2003).

3 Turbulent-Flux Parametrization

We propose a framework to parametrize the heat flux, and the Reynolds stress (through
the parametrization of the turbulent Prandtl number), for use in 1.5-order turbulence closure
schemes. For this purpose we develop three parametrizations for the heat flux using its budget
equation with increasing level of simplification. Assuming horizontal homogeneity and no
subsidence, the transport equation for the heat flux is given as (Stull 2003)

B _ by 0 g 1,00 Zv(aw/) (%) 06

ot 0z 0z ‘e, P Oz 9z 0z
—— —_—— —— R
1 XI v \% VIII X

where terms, from left to right, are labeled storage (I), production or consumption by mean
potential temperature gradient (XI), transport by turbulent motion (IV), production by buoy-
ancy (V), pressure redistribution (VIII), and dissipation (X) with v representing the kinematic
viscosity of air (Stull 2003). We keep the numbering of these terms consistent with the original
equation provided by Stull (2003), which is for general conditions and includes more terms.
Assuming the quasi-steady-state condition for heat flux and neglecting terms IV for simplic-
ity and term X for being insignificant compared to other terms, which are to be discussed in
detail in Sect. 4.4, we obtain
/
0= —wi?® gty Lpdi, (17
0z 9, P 0z

o7
Term V may be approximated as Cg % (Yamada and Mellor 1975), where C is a constant that

shall be fitted experimentally. Term VIII may also be simplified to —;IThQI’}w’ (Rotta 1951),

where [, is a mixing length for heat and g% = u? + v + w is twice the turbulent kinetic
energy (e) (Mellor 1973). Rearranging these terms for heat flux we obtain

3 [ —500, 02
ow = 2 —w? 2 4 cg= (18)
oz b,

which accounts for anisotropic turbulence in the z direction, and both downgradient and coun-

tergradient transport of heat. This is true since under statically stable conditions (aa%" > 0),

term (—W%’) is always negative, contributing to downgradient transport, while term

o2
Cg %) is always positive with C > 0, contributing to countergradient transport. We call

this formulation Parametrization 1 for the heat flux. Now we explicitly assume that turbulence
is isotropic to arrive at a more simplified parameterization. Turbulent fluctuations of wind
speed (u’, v/, w') are statistically similar in all directions in the case of isotropic turbulence,
allowing us to replace w2 with ¢2/3, to obtain

31 2 50, 62
orw = "(—q“ +Cg”), (19)

q 3 9z Oy
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as Parametrization 2. We can further simplify this expression by ignoring the countergradient
term to arrive at the familiar downgradient heat flux formulation

Opw' = —lng—, (20)
dz

as Parametrization 3. The three formulations for heat flux provide parametrizations with
increasing level of simplification. For example, the first parametrization requires additional
knowledge of both vertical velocity variance (w'?) and variance of virtual potential temper-
ature (6/%), while the third parametrization only requires knowledge of the turbulent kinetic
energy and mixing length to formulate heat flux. In light of this development, the parameter-
izations give Egs. 10 and 6 as

3,w? | 96, Cg o2

Olw = — 2|, 1)
q 9z w26y
Kh Fh
— 90, 3Cg6?
w = — g | T2 - TEA ] (22)
—— | 0z q- 6,
Kh
Iy
90
Olw = — lg —. (23)
—— 0z
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From any of the parametrizations above, and knowledge of the turbulent Prandtl number,
the most convenient approach to calculate Reynolds stress is using Eq. 7. In such a case,
the analytical development to derive a parametrization for Reynolds stress using its budget
equation is not necessary. This approach, however, is limited for a number of situations.
The stable boundary layer can support gravity waves that cause non-zero Reynolds stress
but zero heat flux. For such a situation, the turbulent Prandtl number is undefined. Because
gravity waves are ubiquitous in the stable boundary layer, they must always be assumed
present and active in the vertical redistribution of kinetic energy and momentum. Atmospheric
models usually enforce minimum values for turbulent kinetic energy or momentum diffusivity
throughout the vertical domain (Makar et al. 2014).

This development allows for an experimental examination of turbulent fluxes and turbulent
Prandtl number in the lower troposphere to investigate the success of the above parametriza-
tions in predicting turbulent fluxes under statically stable conditions.

4 Results and Discussion

Figure 4 shows vertical profiles of virtual potential temperature (6, ) measured by the radioson-
des; the height is normalized by the boundary-layer height (Z;). For many soundings an
intermediate stable layer, or sometimes multiple stable layers, appear(s) above Z; and below
the very stable layer aloft up to 7~ 10. Similar features were observed by Aliabadi et al.
(2016a) in Barrow, Alaska where there is no definite step change in the vertical shape of 6,

from Z; to the very stable layer aloft; rather, there is a gradual transition between estimated
Z; and the stable layer aloft (see reference for discussion). During most flight legs, the lower
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Fig.4 Vertical profiles of virtual potential temperature as measured with radiosondes launched from Resolute
Bay or the Amundsen during the NETCARE 2014 campaign

troposphere in the Arctic exhibits strong stability with a positive vertical gradient for virtual
potential temperature profiles that passed the quality control test for linearity described in
Sect. 2.2.2. The vertical gradient for horizontal wind speed, however, can be either positive
or negative.

4.1 Downgradient and Countergradient Transport for Individual Flight Legs

Figure 5 shows evidence for both downgradient and countergradient transport of momentum
and heat for selected individual profiles. By the definition of downgradient transport (Eqs. 5
and 6), if a profile of wind speed or virtual potential temperature exhibits a positive vertical
gradient, the downgradient turbulent fluxes must be negative and scatter plots for 6, — w’ or
u’ — w’ should show activity in the second and fourth quadrants (note: our definition of quad-
rants are as follows: 1 for top-right, 2 for top-left, 3 for bottom-left, and 4 for bottom-right). If
a profile exhibits a negative vertical gradient, the downgradient turbulent fluxes should show
activity in the first and third quadrants. For countergradient transport, the opposite occurs.

The two selected profiles exhibit positive vertical gradients for wind speed and virtual
potential temperature. As a result, for the downgradient case, the fluxes show activity in
quadrants 2 and 4 (Fig. 5c, e), while for the countergradient case, the fluxes show activity in
quadrants 1 and 3 (Fig. 5d, f). There appear accumulated clusters of points in the quadrant
plots. This is caused by the limited sampling time interval, where only few eddies, each
corresponding to a cluster of points, are detected for each leg. The time series for fluxes
in Fig. 5g, h show examples of detected eddies that can be associated with the quadrant
plots.

Figure 6 shows an example time series on 8 July 2014 when the aircraft ascended
close to 3000 m altitude and descended to 200 m altitude. Heat fluxes and diffusion
coefficients are calculated corresponding to a slant profile at a given altitude. The heat
flux is negative near the ground but becomes positive at higher altitudes, indicating
countergradient transport aloft. This results in positive apparent diffusion coefficients using
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Fig. 7 Vertical profile of the gradient Richardson number (Ri); the lines indicate 25th and 75th percentiles
and the markers indicate medians

Egs. 5 and 6 near the ground but negative coefficients aloft using the same equations. Dur-
ing most of this time period the aircraft flew over sea ice, with no correlations observed
between turbulent fluxes and surface type changes (i.e. sea ice, leads, polynyas or other
terrains).

4.2 Variation of Turbulent Quantities as a Function of Normalized Altitude or
Stability Criteria

Due to lack of a diurnal cycle in the Arctic, turbulent quantities should be independent of
the diurnal period and can be plotted versus normalized height (normalized by the boundary-
layer height) or a stability parameter such as the gradient Richardson number (Ri) to provide
characteristics of the troposphere during the polar day under more general conditions (Ali-
abadi et al. 2015). Figure 7 gives the vertical variation in stability parameter (Ri), indicating
increasing stability with altitude.

Figure 8 shows vertical profiles of heat flux, Reynolds stress, heat diffusivity, and momen-
tum diffusivity. The heat flux is negative within the boundary layer but has a tendency toward
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positive values with increasing height. Since most legs exhibit statically stable conditions with
positive vertical gradients in virtual potential temperature, the positive heat flux is indicative
of countergradient transport. This consequently results in the diffusivity, calculated using
Egs. 5 and 6, to show a tendency toward negative values with increasing height or Ri. The
profile for Reynolds stress does not show a systematic shift, because vertical gradients for
wind speed can be positive or negative, with countergradient transport of momentum having
the same likelihood of being positive or negative. The profiles of heat and momentum diffu-
sivity are very similar, indicating that similar downgradient or countergradient mechanisms
for transport occur for both heat and momentum.

The magnitude of countergradient heat flux above the boundary layer in this study can be
compared to aircraft observations of the magnitude of downgradient heat flux in convective
boundary layers in lower latitudes. Our estimates are comparable to near-surface observations
and observations near the top of convective boundary layers. For example, measurements by
Bélair et al. (1999) give 0.08 K m s~ near the surface and 0.02 K m s~! near the top of the
convective boundary layer for the Montreal-96 Experiment on Regional Mixing and Ozone
(MERMOZ).

Turbulent kinetic energy (e), dissipation rate (¢), and mixing lengths are also quantified.
To estimate the dissipation rate using the methodology of Dehghan et al. (2014), the second-
order structure function (Dy (r)) is calculated from the time series of

2
DL(r) = [UL (t + %) - UL@)] , (24)

a
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where U7 is the horizontal wind-velocity component parallel to aircraft heading, V is aircraft
mean horizontal speed during each leg, and r is a length scale within the inertial subrange of
energy cascade. Then the dissipation rate and the second-order structure function are related
by

Dy (r) = Cqr*?e*’, (25)

where Cy is close to 2.0. The average dissipation rate is estimated by considering a range for r
from 200 to 800 m. This is justified because there is a linear relationship between log(Dy (r))
versus log(r) in this range of length scales, which indicates the presence of inertial subrange
in the energy cascade.

Mixing lengths are calculated for momentum and heat separately according to Kim and
Mabhrt (1992) as

K

Ly = [|—=2—1, 26

" ’(‘JU/BZ (20
K

Iy = ‘fh . 27)
aU/oz

Figure 9 shows these quantities. Turbulent kinetic energy and dissipation rate show higher
magnitudes within the boundary layer (Z/Z; < 1), which is also characterized by reduced
stability (0 < Ri < 4), and decrease by a factor of two to four in the free troposphere, but
they do not vanish with increasing height. Mixing lengths for momentum and heat are similar
and slightly increase with height but appear to reach an asymptotic limit. Mixing lengths also
show variations as a function of gradient Richardson number (Ri), where increasing stability
(Ri > 4)increases the mixing length. This is unlike the predictions of Kim and Mahrt (1992).

Our estimates of turbulent kinetic energy, dissipation rate, and mixing lengths can be com-
pared to observations in lower latitudes. Our estimate of the median turbulent kinetic energy
within the boundary layer is one order of magnitude less compared to aircraft observations
in the convective boundary layer. For example, measurements by Bélair et al. (1999) give the
range 1.5-2.2 m? s~2 in MERMOZ. Our estimate of the dissipation rate within the stable
boundary layer is about the same order of magnitude as previous aircraft observations near
and above the top of the boundary layer in mid-latitudes. For example, measurements by
Dehghan et al. (2014) give the range 0.1-1.5x1073 m? s=3 for altitude range 0.5-12 km
around the O-QNet radar network, located in south-western Ontario, Canada. Our estimate
of the median mixing length in the mostly statically stable troposphere is in the same order of
magnitude compared to other observations under statically stable conditions. For example,
Kim and Mahrt (1992) give the range 2—14 m as reported in various other studies.

These results suggest that countergradient momentum and heat transport is observed in
the very stable free troposphere and they become more important under such conditions
because their magnitude can be equivalent or higher than downgradient heat and momentum
transport. As a result, their inclusion in relevant parametrizations is important and may
improve performance of atmospheric models.

4.3 Spectral Analysis of Heat Flux

To investigate spatial and temporal scales of instabilities that cause counter-gradient transport,
cospectral analysis of the heat flux is performed. The wavenumber is calculated using

_2m  2xnf
=5 =T

K (28)
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Fig. 9 Turbulent kinetic energy and dissipation rate profiles (a), mixing length profiles (b), turbulent kinetic
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indicate medians; turbulent kinetic energy and dissipation rate show higher magnitudes within the boundary
layer (h < Z;) and under weak stability (Ri < 2); mixing lengths increase with height and stability

where f is frequency (Hz) (Dehghan et al. 2014). Figure 10 shows the absolute value of the
cospectrum of the heat flux for n = 920 spectra on a logarithmic scale and the cospectrum of
the heat flux separated into the boundary layer (n = 74) and the free troposphere (n = 846)
on a logarithmic—inear scale.

The absolute value is used in the logarithmic scale to consolidate all spectra on the same
plot in order to observe the regimes associated with the buoyancy flux and the Kolmogorov
inertial subrange (Hocking 1999; Pope 2000; Stull 2003; Lovejoy et al. 2007). The cospec-
trum at small scale (inertial subrange) occurs at approximately ¥ > 0.01 m~!, while the
cospectrum at large scale (buoyancy range) occurs at approximately x < 0.01 m~!. The
integral of the cospectrum over an interval of wavenumbers is equal to the magnitude of
heat flux that occurs at the same range of wavenumbers (Stull 2003). Using this principle
and inspecting the cospectrum plot, we confirm that large-scale turbulence (x < 0.01 m™1),
when present, is responsible for the majority of heat flux compared to small-scale turbulence
(k > 0.0l m™").

The logarithmic—linear plot shows that the large-scale flux activity is shifted to the positive
side from the boundary layer to the free troposphere. This suggests that heat transport is
enhanced under countergradient conditions in the free troposphere. [Note that in the mostly

stable regime (% > O), the positive heat flux is countergradient (Eq. 18)].
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Fig. 10 Absolute value of cospectrum of the heat flux on a logarithmic scale (a) and cospectrum of the heat
flux separated in the boundary layer and in the free troposphere on a linear scale (b) (AH = 200 m, f. = 0.025
Hz)

4.4 Experimental Estimation of Terms in the Heat-Flux Budget Equation

An experimental estimation of the terms involved in the heat-flux budget equation is essential
in the understanding of success or failure of suggested parametrizations to formulate heat
flux. Our goal is to investigate the significance of each term both in order of magnitude and
sign for inclusion in 1.5-order turbulence closure schemes.

Figure 11 shows the measured heat flux and the estimated terms in the heat-flux budget
Eq. 16 such as production or consumption by mean potential temperature gradient (XI),
transport by turbulent motion (IV), production or consumption by buoyancy (V), pressure
redistribution (VIII), and dissipation rate (X) as a function of normalized height or Richardson
number. The terms in decreasing order of magnitude are V, IV, XI, VIII, and X. Term VIII
exhibits both positive and negative values, and since it was replaced by —ﬁeéw’ in the
derivation of the three parametrizations in Sect. 3, it shows that heat flux exhibits both
positive and negative values. Although small, this term cannot be neglected since the heat
flux in this term is rearranged to give the parametrizations. Term X is insignificant and was
neglected. Although term IV has similar magnitude as term XI, it was also neglected for
simplicity because it contains a third-order moment that requires further parametrization.
While term XI is negative, term V is positive. This implies that term XI contributes to the
downgradient flux, while term V is a significant source for the countergradient flux. This
budget analysis justifies the inclusion of terms XI and V, i.e. the variances of w and 6,, in the
successful parametrization of the countergradient heat flux under statically stable condition,
as is considered in Eqgs. 18 and 19.

4.5 The Effect of Cut-off Frequency (f,) and Height Interval (A H) on
Turbulence Measurements

Measurements of turbulence quantities are sensitive to the choice of cut-off frequency ( f;)
and height interval (AH), and a series of sensitivity tests are conducted to investigate the
effects. For the sensitivity of turbulence measurements to f., the height interval AH =
200 m is selected while f, is varied from 0.0125 to 0.2 Hz. This range corresponds to
removing fluctuations at length scales from 6.4 to 0.4 km, above and below the average flight
length of 5.3 km. Figure 12 shows that with increasing f, the measured turbulence quantities
are underestimated while with decreasing f, turbulence quantities reach toward a plateau.
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Fig. 11 Experimental estimates of the terms in the heat-flux budget equation as a function of normalized
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measured heat flux with a red label, and to the right are the terms in the budget equation that are labelled with
black Roman numerals; the lines indicate 25th and 75th percentiles and the markers indicate medians

The results associated with f. = 0.0125 Hz are not shown because this frequency yields
identical turbulence quantities to f. = 0.025 Hz.

For the sensitivity of turbulence measurements to height interval, the cut-off frequency of
fe = 0.025 Hz is selected while the height interval is varied from AH = 50 m to 200 m. At
this frequency all SGS fluctuations are contained. Figure 13 shows that with increasing height
interval, the measured turbulence quantities increase while with decreasing height interval
they are underestimated. This is mainly caused by a significant increase in systematic errors.
From modelling considerations, however, turbulence quantities need only be considered and
parametrized at the subgrid-scale because larger scales of fluctuations are resolved explicitly.
With this consideration, and as is shown in Fig. 13, turbulence fluctuations are a function of
grid size (e.g. mixing length) and scale up with increasing grid size.
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4.6 Evaluation of Parametrizations for Heat Flux

The parametrizations in Sect. 3 are evaluated by fitting them against the observed heat flux.
The fitis not performed for heat flux averaged over different heights, but rather each measured
heat flux associated with a flight leg is compared to the corresponding heat flux estimated
by the parametrizations, given the terms that they require, which are also available from the
measurements. The fit is performed using genetic optimization. In this technique, a starting
guess for the constant(s) to be fitted are provided. Subsequently, multiple iterations are
performed to minimize a global cost function, such as the chi squared function calculated
for a set of observed versus fitted values, by finding appropriate constants to fit the data
efficiently. For details of this technique see Aliabadi et al. (2016a).

Figure 14 shows the comparison as a function of normalized height and Richardson number
(AH =200m, f. = 0.025Hz). The mixing length used for each fitis the median value for the
entire dataset already calculated (/;, = 28.4 m). The fitted constants C for parametrizations
1 and 2 are 0.023 = 0.004 and 0.088 + 0.006, respectively. The biases (parametrized minus
observed) for parametrizations 1, 2, and 3 are —0.049, —0.124, and —0.215 m, respectively.
The corresponding root-mean-square errors (RMSE) are 0.242,0.372, and 0.418, respectively.
Due to a large scatter in data, the computed RMSE is 1 to 2 times larger than the 25th and
75th percentiles for heat flux shown in Fig. 8.

The bias and RMSE values increase from parametrization 1 to 3 no matter the choice
of cut-off frequency (not presented), suggesting that parametrization 1 is preferred for two
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reasons. First, it accounts for the anisotropic nature of turbulence in the troposphere, which
is also confirmed by observations of Lovejoy et al. (2007). Second, it incorporates term V in
the budget equation to predict the observed countergradient heat transport. The value of the
fitted constant C remains practically unchanged for the choice of a cut-off frequency (not
presented) as long as only SGS fluctuations are retained. The value of the fitted constant
C, however, increases by 75% as we consider the next shorter height interval, i.e. from
AH =200 to 100 m or from AH = 100 to 50 m (not presented).

S Implications of the Heat-Flux Parametrization in Atmospheric
Modelling

An approximate calculation can be performed to investigate the effect of heat-flux parame-
trization on typical atmospheric model calculations such as that of the mean virtual potential
temperature. Assuming no subsidence, horizontal homogeneity, and neglecting radiation, the
heat balance Eq. 4 can be simplified to

30, 30, w’
ar 9z
This equation relates the rate of change of the mean virtual potential temperature to the
vertical gradient of heat flux. The change in mean virtual potential temperature during a time

(29)
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scale equivalent to the timestep in an atmospheric model (At) is therefore approximated as
AG, = — 395/’;/ At. It is evident from Fig. 14 that the heat flux exhibits a vertical gradient,
especially for parametrizations 2 and 3, so it is expected that this will produce a change in
mean virtual potential temperature. We fit a function of the form 6, w’ = —a/(1 + bz) to the
median heat flux (6, w’) and show it in Fig. 15a; the slope of this line at any height is found

analytically as

00w’ ab

9z (1+b2)? GO

Therefore the amount of change in mean virtual potential temperature at any height during
the model timestep is approximated as
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— ab
=

= a +bz)2At' 31

A typical timestep in numerical weather prediction is At = 500 s, and so a change in
mean virtual potential temperature due to heat flux is approximated as shown in Fig. 15b. The
predicted temperature change due to heat flux based on the observations during At = 500
s is estimated as Af, ~ —1 K near the lowest level. Parametrization 1 predicts a value of
AB, ~ —0.01 K, while parametrizations 2 and 3 predict Af, ~ —9 K and A8, ~ —12.5K,
respectively. This suggests that atmospheric models utilizing parametrizations 2 and 3 can
potentially have a cooling bias due to the heat-flux formulation, particularly at low altitudes
within the boundary layer. Of course, we do not present the importance of other terms in the
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Table 3 Parametrization of the inverse turbulent Prandtl number

Study Pry :

This study 1+(())'.§)91Ri

Kondo et al. (1978) sk 1< Rijand ——1——— (0<Rri<1
7Ri 6.8T3Ri+ 5377

Kennedy and Shapiro (1980) e

Kim and Mahrt (1992) TSTI08RT

Zilitinkevich and Calanca (2000) 024-009VRi (028 < Ri < 6.91)

heatbalance Eq. 4, such as radiation, but this finding further justifies the use of parametrization
1 to reduce temperature biases due to heat-flux formulation in atmospheric models.

6 Turbulent Prandtl Number

Turbulent Prandtl number is calculated for each flight leg using Eq. 7, and an empirical
relation is fitted to the data
prl=—2% (32)
! 14 bRi

The fit is performed using the same genetic optimization discussed in Sect. 4.6; we find
a = 0.89 £0.06 and b = 0.01 £ 0.02. The Pearson’s chi-squared test for goodness of fit
indicates x2 = 270 with degrees of freedom v = n — 1 = 466. The probability of observing
this value of x2is P > 0.995, greater than conventional criteria for statistical significance
(0.001-0.005), although we observe a large scatter in the data.

Other formulations in previous studies, which explore the relationship between Richardson
number and turbulent Prandtl number, have a similar form and are shown in Table 3 (Kondo
et al. 1978; Kennedy and Shapiro 1980; Kim and Mahrt 1992; Zilitinkevich and Calanca
2000). The aircraft study of Kim and Mahrt (1992) was conducted above the boundary layer
(2-3 km altitude) for clear-air turbulence measurements over Kansas, Oklahoma, and the
Gulf of Mexico. Kennedy and Shapiro (1980) presented a similar study but at altitudes above
7 km over Kansas, Missouri, Oklahoma and Arkansas. The study by Kondo et al. (1978)
was in the Osaki Plain about 35 km north of Sendai, Japan, using a 22-m tower, and that of
Zilitinkevich and Calanca (2000) in West Greenland using a 30-m tower.

While all other formulations suggest that the inverse turbulent Prandtl number should
decrease significantly with increasing Richardson number, our results only predict a weak
decrease. The large scatter in the turbulent Prandtl number under stable conditions is also
observed in other studies [e.g. see Grachev et al. (2007a,b)] due to sampling problems,
intermittent nature of turbulence, and other reasons discussed in Sect. 3.

7 Conclusions and Future Work
Properties of clear-air turbulence are characterized in the Arctic lower troposphere using

aircraft measurements up to a 3 km altitude. This portion of the atmosphere is dominated
by statically stable conditions. There is evidence for both downgradient and countergradient
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vertical transport of momentum and heat, with apparent countergradient transport becoming
enhanced above the boundary layer. Three parametrizations are suggested to formulate the
heat flux and are evaluated using observations at different flight height intervals (AH =
50, 100, and 200 m) and cut-off frequencies (f, = 0.0125, 0.025, 0.05, 0.1, and 0.2
Hz).

The best-fit parametrization accounts for the anisotropic nature of turbulence (i.e. differ-

ence between w'? and u'?) and buoyancy flux (i.e. term V in the heat-flux budget equation)
to predict both downgradient and countergradient transport. This parametrization requires
modelling of mixing length, turbulent kinetic energy, vertical velocity variance, and virtual
potential temperature variance. The parametrization that accounts for only downgradient
transport resulted in the largest error, and requires modelling of mixing length and turbulent
kinetic energy only. All turbulence quantities and fitted constants are dependent on the choice
of flight height interval and cut-off frequency.

Since the parametrizations are fitted for representative vertical resolutions in atmospheric
models, they may be used with the suggested constants, however with caution for two rea-
sons. First, larger horizontal sample legs, comparable to horizontal resolution in atmospheric
models, would have been necessary in reducing systematic and random errors for turbulence
measurements and consequently improvement of the fit for constants. Second, the choice
of cut-off frequency would have influences on scales of SGS turbulence that are desired to
be resolved, systematic and random errors, and consequently the estimates for turbulence
quantities.

Depending on an atmospheric model choice, the turbulent Prandtl number (Pr;) may be
needed to close a turbulence model scheme. For this purpose we obtain a relationship between
Pr,_1 and gradient Richardson number (Ri). There is an indication that the Pr,” ! decreases
weakly with increasing Ri in a statistically significant way, although with a scatter in the
data.

Future work requires characterization of clear-air turbulence under stable conditions at
higher altitudes and in other climates using a similar or more accurate methodology. A
particular improvement is to increase sampling time so that systematic and random errors in
turbulence measurements can be further reduced. It is also desired to cover larger horizontal
distances during the sampling time to be more representative of atmospheric model horizontal
resolutions (=10 km).

Although we identify countergradient flux transport processes in the stable Arctic tro-
posphere, we do not have a robust theory for the cause of this phenomenon. Future studies
should investigate detailed physical processes that can potentially produce countergradient
fluxes in the stable Arctic troposphere (e.g. Kelvin—Helmhottz instabilities, gravity waves,
horizontal or vertical advection). We also recommend to run numerical experiments to inves-
tigate the effect of including countergradient turbulent flux parametrizations in atmospheric
models.
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Appendix 1: Flight and Radiosonde Schedule for the NETCARE 2014

Campaign

See Tables 4 and 5.

Table 4 Flight schedule for the NETCARE 2014 campaign; only research flights listed (5-15); test and ferry
flights excluded (14, 16-19)

Flight No. Date Sampling time interval Flight duration (h)

5 4 July 2014 1940-2211 3.7

6 5 July 2014 1503-1925 4.9

7 7 July 2014 1506-1941 5.6

8 8 July 2014 1502-1949 5.3

9 10 July 2014 1505-1924 5.0

10 12 July 2014 1828-2256 5.1

11 17 July 2014 1524-1933 4.7

12 19 July 2014 1505-1928 5.1

13 20 July 2014 1501-1917 4.7

14 21July 2014 1317-1637 4.0

15 21July 2014 1817-2141 4.0

Total 52.1

::cll)leestsimiesii(l;i?;:(llz:;gz;ge Platform No. Date Launch time Z; (m)

}Z‘Sil‘b’j“céilgafi‘;‘he NETCARE  pesoluteBay 1 10July2014 2327 131
Resolute Bay 2 11 July 2014 2317 190
Resolute Bay 3 12 July 2014 2315 240
Resolute Bay 4 15 July 2014 2320 301
Resolute Bay 5 16 July 2014 2317 295
Resolute Bay 6 18 July 2014 2317 597
Resolute Bay 7 20 July 2014 2325 384
Resolute Bay 8 21 July 2014 2321 213
Resolute Bay 9 22 July 2014 2319 256
Resolute Bay 10 23 July 2014 2318 563
Amundsen 11 20 July 2014 1810 387
Amundsen 12 20 July 2014 2342 49
Amundsen 13 21 July 2014 1709 177
Amundsen 14 23 July 2014 2354 67
Mean 275 £ 164
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