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Summary

Microbiota can have positive and negative effects
on hosts depending on the environmental conditions.
Therefore, it is important to decipher host-
microbiota—environment interactions, especially
under natural conditions exerting (a)biotic stress.
Here, we assess the relative importance of microbiota
in different tissues of Pacific oyster for its successful
establishment in a new environment. We transplanted
oysters from the Southern to the Northern Wadden Sea
and controlled for the effects of resident microbiota by
administering antibiotics to half of the oysters.
We then followed survival and composition of
haemolymph, mantle, gill and gut microbiota in
local and translocated oysters over 5 days. High mor-
tality was recorded only in non-antibiotic-treated
translocated oysters, where high titres of active Vibrio
sp. in solid tissues indicated systemic infections.
Network analyses revealed the highest connectivity
and a link to seawater communities in the haemolymph
microbiota. Since antibiotics decreased modularity
and increased connectivity of the haemolymph-based
networks, we propose that community destabilization
in non-treated translocated oysters could be attributed
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to interactions between resident and external
microbiota, which in turn facilitated passage of vibrios
into solid tissues and invoked disease. These interac-
tions of haemolymph microbiota with the external and
internal environment may thus represent an important
component of oyster fithess.

Introduction

Exposure to novel environmental conditions can impose
biotic and abiotic stress on organisms (Shea and
Chesson, 2002; Hedge and Johnston, 2014). However,
such stressors will not only affect the organism directly,
but also the microbiota associated with it. Disturbances of
fine-tuned interactions among the host, microbiota and
the environment may have lethal consequences for the
host (Sison-Mangus et al., 2015). Among other functions,
resident microbiota are involved in the host immune
defence by preventing colonization and establishment of
pathogens (Kamada et al., 2013a; Abt and Pamer, 2014;
Desriac et al., 2014). While adjustments in community
composition can maintain such beneficial functions even
under changing environmental conditions, excessive
levels of stress can destabilize communities and facilitate
shift towards pathogenic states (Rosenberg et al., 2007;
Pita etal., 2013; Bauvais etal, 2015; Lokmer and
Wegner, 2015). As stability is important for community
functioning (Shade et al., 2012), environmental distur-
bances may bear multilayered consequences beyond the
direct effects on the host.

One extreme form of environmental shifts is transloca-
tion of organisms to new habitats, within or beyond their
normal range. This can happen either unintentionally (e.g.
species invasions) or intentionally, like in aquaculture
where it is a common practice (Galil et al., 2014). Such
habitat shifts will likely be associated with drastic changes
in environmental conditions and will not only lead to new
interactions of the new environment with the host, but also
with its associated microbiota. Further, both the host and its
microbiota will not only be affected by changes in abiotic
conditions, but will also be exposed to novel biotic environ-
ments, including microbes (Jones and Gomulkiewicz,
2012). In humans, for example, travelling to exotic desti-
nations is accompanied by shifts in microbiota composi-
tion, potentially leading to health problems (David et al.,
2014). While these new colonizers may not harm the
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organism directly, their interactions with resident
microbiota might lead to unforeseeable consequences that
cannot be explained by examining the host in isolation
(Brown et al., 2009; Koskella etal., 2011; Rillig etal.,
2015). To conclusively determine the role of microbiota in
colonization success, one needs to investigate the three-
way interactions between the host, its microbiota and the
environment.

One species that combines several aspects of novel
habitat colonization is the Pacific oyster (Crassostrea
gigas). This species successfully invaded and significantly
altered coastal habitats worldwide (Kochmann et al.,
2008; Wagner et al., 2012). Moreover, it is a common
aquaculture practice to transfer oysters of all life stages
between distant cultivation sites (Muehlbauer etal.,
2014).

Both transfer and invasion introduce potential mis-
matches between hosts, their resident, co-adapted
microbiota and the novel external biotic environment,
including microbes. In other words, the resident microbiota
find themselves in a new microbial context, encountering
related but locally adapted ecotypes (Martiny et al., 2006;
Cohan and Koeppel, 2008) that may alter the microbial
community dynamics within the host (Brown et al., 2009;
Koskella etal., 2011; Rillig etal., 2015). Despite the
applied and fundamental relevance, the consequences of
a new microbial context are largely unknown both for the
host-associated microbiota as a whole as well as for func-
tionally relevant groups involved.

One important lineage of symbionts and pathogens of
marine animals are the bacteria of the genus Vibrio (for
example, see Hoffmann et al., 2010; Rowley et al., 2014).
In oysters, several strains have been implicated in
environment-dependent diseases (Garnier et al., 2007,
Elston et al., 2008), invoking rapid evolutionary responses
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in host populations (Wendling and Wegner, 2015). In addi-
tion, the prevalence of pathogenic Vibrio spp. in oysters
depends on geographic origin (Petton et al., 2015). Vibrio
spp. and their close relatives of the family Vibrionaceae
thus represent an ideal focus group to investigate the
effects of a new microbial context on the dynamics of
opportunistic pathogens.

It is also likely that the disturbance effects will vary
among the different tissues of a host. In mammals, for
example, gut microbiota are important for immunity and
certain changes are related to potentially life-threatening
conditions (Kamada et al., 2013b; Ferreira et al.,, 2014),
while the belly-button communities are much less likely to
have such an effect (Hulcr etal, 2012). In oysters,
haemolymph communities seem to mirror the host condi-
tion, as they tend to have low diversity and are dominated
by few strains in moribund animals (Garnier et al., 2007;
Lokmer and Wegner, 2015). How the microbiota in other
tissues relate to oyster condition and to each other is far
less known, because most studies have focused on whole
body homogenates (Beleneva etal, 2007) or single
tissues (Zurel et al., 2011; Trabal etal., 2012; Wegner
et al.,, 2013; Trabal Fernandez et al., 2014). The variation
in microbiota composition between the tissues was rarely
considered in bivalves (but see Antunes et al., 2010; King
et al.,, 2012), especially in the context of host fitness (but
see Meisterhans et al., 2015).

In this study, we set out to experimentally explore how
microbiota in different tissues of Pacific oysters are
affected by translocation and how the new microbial
context affects oyster fitness in a new environment. To do
so, we transplanted Pacific oysters from the Southern
Wadden Sea (Texel, Netherlands) to the Northern
Wadden Sea (Sylt, Germany), and monitored short-term
shifts in microbiota composition in different oyster tissues
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during the initial phase of establishment in the new habitat
(Fig. 1A). The oyster populations on Texel and Sylt have
distinct invasion histories and are clearly differentiated by
mitochondrial haplotype frequencies (Moehler etal.,
2011). In order to distinguish between the oyster- and
microbiota-related effects on the establishment success,
we treated half of the oysters with antibiotics, thus mini-
mizing the interactions between resident microbes and
new colonizers, while the other half was transplanted with
their natural resident microbiota. We followed oyster sur-
vival and changes in diversity, composition and abun-
dance of oyster-associated bacterial communities as a
whole, and Vibrionaceae in particular, over the first 5 days
in the new habitat. In this way, we could estimate how the
composition and diversity of microbiota in different tissues
contribute to the successful establishment of Pacific
oysters in a new environment.

Results
Oyster survival and immune parameters

We observed significant differences in survival between
the four oyster groups, with only non-antibiotic treated
(control) oysters from Texel showing significantly elevated
mortality rates (overall test: % = 12.222, df = 3, P=0.007,
n= 80, Fig. 1B, see Table S1 for pairwise comparisons).
The mortality could not be linked to genetic differences
between the populations (as it differed between the
treated and control oysters from Texel, Table S1) nor to
differences in the immune system activity, as neither the
total haemocyte count (THC) [analysis of variance
(ANOVA): F372=1.302, P=0.281, n=76] nor the
phagocytosis rate per haemocyte (ANOVA: F3¢; = 0.565,
P=0.640, n=71) differed between the four oyster
groups. Plasma protein concentration was affected only
by antibiotic treatment and thus could not be linked
to the mortality either (ANOVA: antibiotic treatment:
Fi7+=11.314, P=0.001, effect size=0.136; origin;
Fy71=0.676, P=0.413; origin x treatment: F;7; = 0.528,
P=0.469, n=75).

Distinction between oyster and seawater microbiota

Bacterial communities in the seawater differed substan-
tially from those found in oyster tissues. The seawater
(n=3) and oyster (n=332) communities were similar in
terms of evenness [median: seawater (sw)=0.549, all
oyster samples = 0.641; Wilcoxon rank sum (RS) test:
P =0.334, Fig. 2A], but overall species richness was much
higher in the seawater (median: sw =873, all oyster
samples =310; Wilcoxon RS test: P=0.008, effect
size =-0.142, Fig. 2B). In contrast, the relative operational
taxonomic unit (OTU, 97% identity) richness of
Vibrionaceae was much higher in oyster tissues (median:
sw = 0.006, oyster = 0.079; Wilcoxon RS test: P=0.003,
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effect size = 0.159), mainly owing to high Vibrionaceae
diversity in the haemolymph (Fig. 2C). The activity of
Vibrionaceae — estimated from the colony forming unit
(CFU) counts on thiosulfate-citrate-bile salts-sucrose
(TCBS) agar — confirmed this pattern, with much higher
numbers in the haemolymph than in the seawater (median:
haemolymph = 4062.5, sw=500; Wilcoxon RS test:
P=0.004, effect size =0.166, Fig.2D). All seawater
samples were dominated by a handful of taxa belonging to
o-Proteobacteria and Flavobacteriaceae (Fig. 3A and B).
The most abundant OTUs in the seawater communities
(mean relative abundance > 0.01, n = 14) were also found
in 85% of the oyster samples albeit in lower abundance,
establishing the seawater as a source of bacteria for the
oyster microbiome, especially for the haemolymph [mean,
median and range of their combined abundance within
oyster samples: haemolymph = 0.059, 0.009 (0, 0.433),
n=141, solid tissues = 0.005, 0.002 (0, 0.083), n=191].
Nevertheless, the seawater and oyster communities were
clearly differentiated by community composition (Fig 3A
and B). In addition, non-metric multidimensional scaling
(NMDS) plot (Fig. 3A) revealed significantly lower within-
group p-diversity of seawater compared to oyster
microbiota, which was confirmed by Levene’s test for
homogeneity of multivariate variances (average distance
to median: oyster=0.614, seawater=0.201, Fi33;=
167.9, P< 1078, effect size = 0.25).

Factors explaining bacterial community differences
within oysters: tissue and oyster individual

Within oysters, o-diversity significantly differed between
the studied tissues, with substantially lower diversity
observed in the gut and the highest species richness in the
haemolymph (Fig. 2A and B; robust Wilcox bootstrapped
ANOVA: evenness: F35156 = 9.088, P < 0.001, effect size =
0.368; species richness: Fjgs403 =68.052, P <0.001,
effect size =0.747, n=332). A similar pattern was
observed for the relative species richness of Vibrionaceae
(Fig. 2C; robust Wilcox bootstrapped ANOVA: Fj 127508 =
7.767, P < 0.001, effect size = 0.376). Positive correlation
between the number of cultivable Vibrionaceae and their
species richness in the solid tissues [Spearman’s p: 0.280,
P <0.001, confidence interval (CI)=(0.143, 0.427),
Fig. S1D] and the lack of such correlation in the
haemolymph (Spearman’s p: 0.126, P=0.137, Fig. S1C)
suggest that high Vibrionaceae species richness in solid
tissues, but not in haemolymph, may indicate a systemic
infection. Unlike species richness, the evenness of
Vibrionaceae was negatively correlated with cultivability in
all tissues [Fig. S1A and B; haemolymph: Spearman’s p:
-0.196, P=0.020, Cl=(-0.239, —-0.021); solid tissues:
Spearman’s p: —0.208, P=0.004, Cl = (-0.347, —0.080)],
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Fig. 2. o-Diversity and Vibrionaceae activity in oyster tissues grouped according to oyster origin (clear = Sylt, grey = Texel) and antibiotic
treatment (O = control, A = treated): (A) overall evenness and (B) overall species richness; (C) proportion of total species assigned to
Vibrionaceae and (D) cultivable Vibrionaceae in 1 ml of haemolymph or approximately 100 mg of solid tissue. Seawater samples (black) are
shown in the leftmost plot for reference. Error bars represent standard error of mean.

suggesting that higher overall activity of Vibrionaceae
tends to be associated with proliferation of few, potentially

pathogenic strains.

Tissue also explained a significant portion of variance in
community composition, especially when phylogenetic

relatedness was taken into account (compare Bray—Curtis
and UniFrac in Fig. 4A), indicating substantial ecological
differences between the tissues. Haemolymph communi-
ties were clearly distinguished from those in solid
tissues by higher relative abundance of e-Proteobacteria

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology
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Fig. 3. B-Diversity and taxonomical
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(Arcobacter), Flavobacteria, Fusobacteria (Psychrilyo-
bacter) and y-Proteobacteria  (Oceanospirillaceae,
Vibrionaceae), and fewer Spirochaetes (Brachyspirae)
and B-Proteobacteria (Table S2). Among the solid
tissues, the most conspicuous difference was the high
abundance of Mollicutes (Mycoplasma) in the gut,
while the mantle and gill microbiota differed only slightly.

In addition to the large effect of tissue, a
considerable amount of variability in community composi-
tion was explained by differences between individual
oysters (Fig. 4A). In this case, however, the explained
variability was higher when phylogenetic relatedness was
disregarded (compare Bray—Curtis and UniFrac in
Fig. 4A).
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Fig. 4. Variance in community composition explained by (A) tissue
type and individual, and (B) oyster origin, antibiotic treatment, time
and their interactions in individual tissues. Barplots are graphical
representations of Permanova results (cross-hatching shows
non-significant factors). Since new oysters were sampled every
day, time is partially confounded with between-individual variation.

Factors explaining bacterial community differences
between oysters: experimental translocation and
antibiotic treatment

We examined the effects of population origin and antibiotic
treatment on overall a-diversity and the diversity and activ-
ity of Vibrionaceae separately for the haemolymph and
solid tissues (Fig. 2). The antibiotic treatment increased
species richness and evenness of haemolymph microbiota
in both oyster populations (Fig.2A and B, Table 1,
haemolymph model, main effect of treatment) and reduced
the diversity (Fig. 2C, Table 2, haemolymph model, main
effect of treatment) and cultivability of Vibrionaceae
(Fig. 2D, ANOVA: treatment: Fy 35 =13.344, P< 0. 001,
origin: Fy 135 = 2.509, P=0.116, treatment x origin: F 135 =
0.110, P=0.740, n=141). Interestingly, low evenness of
haemolymph microbiota before the transfer to the field
correlated with oyster survival (Table 1, haemolymph
model, main effect of survival), indicating that disrupted
community structure associated with few dominating OTUs
may have played a role in the mortalities. In solid tissues,
the response to antibiotics depended on the oyster origin.
In detail, antibiotics increased the evenness of mantle and
gill, but not of gut microbiota in Sylt oysters, while the
opposite was true for Texel animals (Fig. 2A, Table 1, solid
tissues model, tissue x treatment x origin interaction).
Although neither the treatment nor translocation affected
overall species richness (Fig. 2B, Table 1), the antibiotics
significantly reduced diversity of Vibrionaceae in Texel
oysters (Fig. 2C, Table 2, solid tissues model, origin x
treatment interaction), especially in the gut (Table 2, solid
tissues model, tissue x treatment interaction). The antibi-
otics also decreased the number of cultivable Vibrionaceae

in Texel oysters, while having little effect on Sylt animals
(Fig. 2D, ANOVA: treatment: Fi1=8.227, P=0.005,
origin:  Fy1s1=12.614, P=0.001, origin x treatment:
Fi11=7.641, P=0.006).

In order to examine the effects of population origin and
antibiotics on B-diversity, we analysed each tissue sepa-
rately (Figs 3 and 4). Despite the high temporal/individual
variability, the effects of antibiotics and the population
signature remained significant throughout the experiment.
Although we observed differences in abundance of some
minor genera in the haemolymph (mainly assigned to
Flavobacteria, o- and y-Proteobacteria), Vibrionaceae did
not show any significant variation (Table S3). Overall,
dominant genera were shared among the oyster groups,
but the relative abundance of OTUs belonging to those
genera differed. For example, while all haemolymph com-
munities — regardless of treatment or origin — contained
bacteria of the genus Arcobacter, Texel and Sylt oysters
were characterized by a different set of Arcobacter OTUs
(Table S4).

Association networks

The vast majority (89.7%) of associations in the whole-
oyster network occurred within tissues (coloured lines in
Fig. 5) and only 10.3% occurred between them (grey lines
in Fig. 5). Only haemolymph, however, showed higher
connectivity than expected by chance (compared with the
connectivity of 1000 random node subsets of the same
size, P < 0.05). We therefore focused on haemolymph for
further analysis, and constructed a network for each treat-
ment x origin combination to examine microbial associa-
tion networks in response to antibiotics and translocation
(Fig. 6). All resulting networks shared a densely con-
nected area, whose core consisted of the OTUs that were
also abundant in the seawater samples (o-Proteobacteria
and Flavobacteria), further establishing the intimate con-
nection between haemolymph and the environment.
Other motifs, characterized by Arcobacter, Vibrionaceae
or/and other y-Proteobacteria and some anaerobes,
belonging to Fusobacteria and Clostridia, were recovered
in each oyster group as well, and they tended to be
negatively associated with the first environmental (‘sea-
water’) subcluster (Fig. S2). These shared OTUs had
higher than average degree and represented 23 + 5% of
nodes within the individual networks (Fig. 6, Table S5).
Despite these shared features and although the antibiotic
treatment affected only the composition of minor genera
within the haemolymph microbiome (Table S3), it signifi-
cantly altered the association network structure, as anti-
biotics strongly reduced modularity and increased the
connectivity of the networks (Table 3, Table S5). In con-
trast to control oysters from Sylt, the network based on the
control oysters from Texel consisted of more sparsely
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Fig. 5. Association network showing OTU relationships within and
across the tissues. Nodes are coloured by taxonomy (as in Fig. 3)
and the size is proportional to the node degree. Full line denotes
co-occurrence, the dashed line denotes co-exclusion; edge weight
is proportional to correlation strength. Colour of edges connecting
OTUs within the tissue correspond to colour of that tissue;
inter-tissue edges are grey.

connected modules, which resulted in a pronounced
modular structure also reflected by a lower clustering
coefficient.

Discussion
Role of microbiota in oyster mortality

Intentional (transport, cultivation) and unintentional (inva-
sion) translocation exposes plants and animals to novel
abiotic and biotic conditions. One example is exposure to
new microbes colonizing hosts, where they interact not
only with the host but also with its resident microbiota.
High mortality of translocated oysters in our study may
have been caused by such interactions, since resetting
the microbial communities by administering antibiotics
prior to the field deployment significantly reduced mortal-
ity in translocated hosts. Alternatively, the antibiotic
treatment could have mitigated the effects of a transport-
stress-induced bacteriosis and affected mortality directly.
Since we neither recorded any mortality during transport
or in the initial lab-based rearing, nor could we detect any
signs of previous disease or significant differences in
immune parameters, we consider this to be unlikely.
Genetically based direct interactions between hosts and
new microbiota could also be excluded as a potential
cause of mortality, as genotypes from both oyster popu-
lations (Moehler et al., 2011) were randomly distributed
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between the antibiotic treatments. The specific change in
the network topology — observed in Texel but not in Sylt
oysters (Fig. 6) — rather suggests that it was the indirect
effects mediated by the resident haemolymph microbiota
bacteria (eliminated by antibiotic treatment) and new spe-
cific environmental conditions — including the exposure to
a new microbial context — that contributed to mortality
(Rillig et al., 2015).

Whereas high vibrio load and diversity were observed
in the haemolymph of all healthy oysters (including both
control groups), they did not translate into high loads in
the solid tissues or disease (Petton et al., 2015). High
loads of active Vibrionaceae in solid tissues were
observed only in translocated control animals and could
represent signs of systemic infections and thus the proxi-
mate cause of mortality. This underlines the importance of
performing tissue-specific analyses to understand how
the microbiota affects its host.

Interactions of haemolymph microbiota with the internal
and external environment

The inter-tissue OTU associations (Fig. 5) and fine-scale
individual variation in community composition (compare
UniFrac and Bray—Curtis in Fig. 4A) suggest that the
oyster microbiome is shaped by genotype (Wegner et al.,
2013), condition (Lokmer and Wegner, 2015) and neutral
processes (Nemergut et al,, 2013). However, the differ-
ences in community structure between the haemolymph
and solid-tissue microbiota (Figs 2-5) indicate the promi-
nent role of ecological and functional differences between
the tissues (Costello et al., 2009; Fuhrman, 2009; Pontarp
et al.,, 2012; Faust et al., 2015a). High network connectiv-
ity and the recurring core OTU subclusters (shared
groups of OTUs in the networks in Fig. 6 and Fig. S2)
imply that a considerable portion of haemolymph
microbiota was unaffected by host origin and antibiotics,
but rather determined by factors unaccounted for in our
experimental design. These subclusters might represent
OTU assemblages characteristic for alternative stable
community states, possibly related to changes in oxygen
concentration associated with periodical valve closing
(Sow et al., 2011; Faust et al., 2012). High prevalence of
aerobic, seawater-deduced bacteria in one subcluster,
and the dominance of microaerobic or anaerobic species
(Levican etal., 2014) in the other(s), might reflect a
healthy microbiome’s response to predictably recurring
environmental conditions, i.e. to the tidal cycle (Relman,
2012; Faust et al., 2015b). Shifts in relative OTU abun-
dance within genera (e.g. Arcobacter), combined with the
persistent community composition at higher taxonomic
levels, likely represent yet another mechanism by which
the haemolymph microbiota contribute to oyster response
to environmental conditions and/or reflect the oyster
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Fig. 6. Association networks of haemolymph OTUs grouped by oyster origin and treatment. Black frame denotes OTUs shared by all four
networks. Nodes are coloured by taxonomy (as in Fig. 3) and the size is proportional to degree. Full line denotes co-occurrence, the dashed
line denotes co-exclusion; edge weight is proportional to correlation strength. Edges connecting OTUs within the same class are coloured by

taxonomy, else they are grey. A Vibrionaceae; [] Arcobacter. In the last
core consisting mainly of OTUs abundant in the seawater (marked by ‘+

condition (Lokmer and Wegner, 2015). Overall, the com-
munity dynamics of haemolymph microbiota demonstrate
its close connection to the internal and external oyster
environment — a prerequisite for a role in acclimation and
maintenance of homeostasis in highly dynamic environ-
mental conditions.

Haemolymph microbiota in response to translocation
and antibiotic treatment

Time lag between the antibiotic treatment and field
deployment resulted in partial recovery and higher diver-

panel, mainly negative correlations between the subcluster with the

") and the rest of OTUs are apparent (see also Fig. S2).

sity of oyster microbiota, likely preventing deleterious
effects of depleted microbial communities in the treated
animals (Ridley etal, 2012; Abt and Pamer, 2014,
Gorokhova et al.,, 2015). In addition, low evenness of
haemolymph communities prior to deployment in the
oysters that eventually died suggests that evenness can
be used as an indicator for predicting disease (Ransome
et al., 2014; Lokmer and Wegner, 2015). Therefore, the
diversity of haemolymph microbiota seems to be impor-
tant for a successful response of oysters to environmental
challenges (Ptacnik et al., 2008; Wittebolle et al., 2009;
Eisenhauer et al., 2012; Stenuit and Agathos, 2015).
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Table 3. Properties of the networks depicted in Fig. 6.

Microbiota and oyster establishment 11

Sylt Texel

Control Antibiotic Control Antibiotic
# Samples 35 36 32 38
# Nodes 149 211 129 190
# Edges 721 2348 362 2742
% Positive edges 82.1 61.1 85.4 56.7
Average degree 9.678 22.256 5.612 28.863
Max degree 49 94 24 93
# Clusters 12 5 7 2
Connectance 0.065 0.106 0.044 0.153
Average path length 3.331 2.693 3.604 2.417
Average betweenness centrality 0.011 0.008 0.015 0.007
Modularity 0.224 0.053 0.599 0.036
Global clustering coefficient 0.625 0.540 0.459 0.565

Detailed comparison with random networks can be found in Table S5.

Apart from diversity, oyster response to the stress
exerted by our treatments could have been positively
affected by increased co-occurrence network connectivity,
which  probably reflected higher robustness of
haemolymph microbiota against disturbances (Estrada,
2007; Scheffer et al., 2012; Shade et al., 2012). Due to
low resolution of 16s rDNA-based analysis (Koeppel and
Wu, 2012; Schmidt et al., 2014), we cannot distinguish if
the increased connectivity was due to external coloniza-
tion of the disturbed communities (Robinson et al., 2010)
or to a correlated response of resident bacteria to antibi-
otics. Still, the higher diversity of antibiotic treated com-
munities suggests increased external colonization
because antibiotics usually decrease diversity due to
dominance of few resistant strains (Manichanh et al.,
2010; Dethlefsen and Relman, 2011; Panda et al., 2014),
especially when administering a mix of antibiotics like
performed here (Pena-Miller et al., 2013).

In control oysters from Texel, high modularity and lower
clustering coefficients could indicate a decreased com-
pensation capacity and thus a lower probability to suc-
cessfully respond to disturbances (Yachi and Loreau,
1999). Although the exact processes behind the observed
changes in community structure remain unclear, oysters
as filter feeders are in constant touch with a multitude of
bacteria, and intense microbial interactions in a new
microbial context could have affected community
stability (Defer etal, 2013; Rillig etal., 2015). Such
destabilization of the haemolymph microbiota, caused, for
example, by interactions between closely related but dis-
tinct strains (West and Buckling, 2003; Brown et al., 2009;
Koskella et al., 2011; Wendling and Wegner, 2015) could
explain the spillover of Vibrionaceae into solid tissues,
resulting in a systemic disease and higher mortality of
translocated control oysters.

However, the interpretation of the co-occurrence
network topology is not straightforward and the ecological
implications vary widely depending on the sort of input

data and the network building criteria (Thebault and
Fontaine, 2010; Faust and Raes, 2012; Berry and Widder,
2014; Widder et al., 2014; Williams et al., 2014; Faust
et al., 2015a; Peura et al., 2015). In addition, the relation-
ship between the stability and topology of the networks
depends on the type of disturbances to which the studied
communities are exposed to (Holme, 2011). Therefore,
caution must be exerted when linking network structure to
the mortalities observed here, unless network character-
istics like connectivity and modularity are experimentally
manipulated. Eliminating specific bacterial groups by
narrow-spectrum antibiotics is one possibility to perform
targeted manipulation of the network structure (Rea et al.,
2011), and that could elucidate causal links between
haemolymph community stability and tissue colonization
by pathogens.

Specificity of microbiota in solid tissues

While high diversity of haemolymph microbiota likely
reflects its tight connection to the variable environment,
the lower diversity of gut or gill microbiota may reflect the
specialized functional roles in target tissues (e.g. such as
nutrition in the gut; Duperron et al., 2007; Fraune and
Zimmer, 2008; Rodrigues et al., 2010; Fernandez-Piquer
et al., 2012). Such tissue-specific functional specialization
should lead to increased persistence of microbiota in solid
tissues. Here, we mainly observed origin-related persis-
tence of gill microbiota throughout the initial phase of
colonization (Table S6). Gills show high bacterial activity
in Pacific oysters (Hernandez-Zarate and Olmos-Soto,
2006) and many bivalve bacterial symbionts are situated
there (Duperron etal, 2007; Dubilier etal, 2008;
Rodrigues et al., 2010). Gill microbiota also exhibits long-
term stability (Zurel et al., 2011) and its composition cor-
relates with its host genotype (Wegner etal, 2013).
While the differences observed here could represent car-
ryover from the original site (Wegner et al., 2013; Trabal
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Fernandez et al., 2014) and would thus gradually disap-
pear (Wendling et al., 2014; Meisterhans et al., 2015),
their long-term persistence could reflect differences in the
genetic structure and history of both oyster populations
(Moehler et al., 2011).

Conclusion

We experimentally manipulated the interactions of the
oyster holobiont with the environment on several levels,
including the host genotype (by using genetically differen-
tiated host populations), the resident microbiota (by
administering antibiotics) and the external bacterial
context (by translocating treated and untreated hosts).
Our data highlight the importance to consider microbiota
in a tissue-specific context in order to understand the
interaction of the holobiont with a newly encountered envi-
ronment. Specifically, the spillover of Vibrionaceae from
the haemolymph into solid tissues and a resulting sys-
temic disease seemed to depend on the structure and
stability of haemolymph microbiota in response to a new
microbial context. This signifies the prominent role of
community structure and not necessarily taxonomic com-
position of the haemolymph microbiome for oyster
homeostasis. In order to elucidate the processes behind
the observed changes in community structure and to
better understand the function of microbiota in different
tissues, more studies focusing on the metabolism and
physiology of functionally important symbionts within
these dynamic bacterial networks are needed.

Experimental procedures
Oyster collection and pretreatment

To test interactions between the resident and novel external
microbiota, we transplanted oysters from the Southern
Wadden Sea to the Northern Wadden Sea and followed their
survival and changes in microbial communities over a 5-day
period. Southern Wadden Sea oysters (n=40) were col-
lected in de Cocksdorp, Texel, Netherlands (53° 0" N, 4° 54’
E), cleaned of epibionts and transported to the AWI Wadden
Sea station on Sylt. The same number of oysters was col-
lected from the transplantation site (Oddewatt, Sylt,
Germany, 55° 1" N, 8° 26" E). Initially, the oysters (n=80)
were kept in pre-filtered seawater from their original location
at ambient temperature (~ 14°C). To remove parts of the
resident microbiota, we added an antibiotic cocktail
(100 ug I of each ampicillin, tetracycline, gentamicin and
kanamycine, Sigma-Aldrich, Hamburg, Germany) to half of
the oysters from each location. The antibiotic concentrations
were chosen based on previous tests, where we treated the
oysters with the antibiotics and plated out haemolymph on
marine agar until no colonies had grown. After 3 days, we
took haemolymph samples from the adductor muscle with
23_1/4 gauge (0.6 dm, 30 mm) needles via notches drilled on
the ventral side of the shell immediately after collection (to

give the oysters time to recover). We froze ~ 200 pl aliquots
of haemolymph for microbiota analysis at -80°C, and imme-
diately processed the rest of the sample to measure the
immune parameters (THC, phagocytosis rate, haemolymph
plasma protein concentration). To estimate the number of
cultivable Vibrionaceae, we plated 5 pl of haemolymph on
TCBS agar and counted the resulting CFU.

Experimental set-up and sampling

The pretreatment resulted in four groups, each containing
20 animals: translocated (antibiotic)-treated, translocated
control, non-translocated (antibiotic)-treated and non-
translocated control oysters (Fig. 1A). For the field transplant,
always four oysters (one from each group) were put into a
single bag with a mesh size of 1 cm, resulting in 20 bags that
were brought out to the original site of collection of the north-
ern Wadden Sea oysters (Odewatt). For the following 5 days,
we randomly collected four bags every day. The period of 5
days was chosen because we wanted to focus on the initial
phase of the establishment, where we assumed the most
drastic and influential changes in the microbiome would occur
based on the previous infection experiments (Lokmer and
Wegner, 2015). We checked the survival and dissected the
surviving oysters, after taking a haemolymph sample through
the predrilled hole. We cut around 25 mm?® (~ 100 mg wet
weight) of the mantle, gills and gut tissues with a sterile knife
and flushed them thoroughly with sterile PBS in order to
remove transient, non-attached bacteria. We immediately
froze half of the tissue for microbiota analysis at —80°C, while
the other half was used to determine the number of cultivable
Vibrionaceae. To do so, we homogenized the tissue pieces in
500 ul of sterile PBS in the Qiagen TissuelLyser (Hilden,
Germany) using a single 5 mm stainless steel bead at 20 Hz
for 3 min and plated 10 ul on TCBS agar.

To determine the background composition of the microbial
communities and the number of cultivable Vibrionaceae in the
seawater, we took seawater samples (100 ml) on three occa-
sions during the sampling period (six samples in total, three
of them sequenced). The samples were filtered onto 0.2 um
47 mm Nuclepore Track-Etch Membrane filters, which were
then used for DNA extraction.

Oyster immune parameters

In order to measure THC, 50 ul of haemolymph was mixed
with equal amounts of 6% formaldehyde in sterile seawater
(SSW) and marine anticoagulant solution (Fedders and
Leippe, 2008). The resulting solution was further diluted 3 x in
sterile PBS and the cell count was measured with an auto-
mated cell counter (Scepter, Millipore, Darmstadt, Germany).

For phagocytosis, we followed the established protocols
(Wendling and Wegner, 2013). In short, 3x60 ul of
haemolymph were allowed to adhere to the bottom of 96-well
plates for 1 h. The supernatant was carefully decanted, and
the neutral-red-stained zymosan solution (Sigma-Aldrich)
was added to haemocytes and incubated with shaking for
1 h. The reaction was stopped by the addition of 6% formol in
SSW. The wells were washed several times with PBS, the
haemocytes with the phagocytosed particles were solubilized
in acidified ethanol (1% acetic acid, 50% ethanol), and the
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absorbance was measured at 550 nm with Nanodrop
ND-1000 spectrometer (peqglab, Erlangen, Germany). The
standard curve was constructed from zymosan solution
samples with known particle concentration, and the results
were expressed as the number of phagocytosed particles per
haemocyte.

To estimate the plasma protein content, 200 ul of
haemolymph was centrifuged for 5 min at 5000 g. The protein
concentration in the supernatant was measured in triplicates
with Quick-Start Bradford protein Bio-Assay (Bio-Rad, Her-
cules, CA, USA) according to the manufacturer’s protocol.

DNA extraction

DNA was extracted from approximately 200 ul of
haemolymph, or approximately 50 mg of mantle, gill and gut
tissue with Wizard SV 96 Genomic DNA Purification System
(Promega, Mannheim, Germany). The samples were placed
in pre-cooled (—20°C) TissueLyser Adapters (Qiagen) and
homogenized in a mixer mill (Retsch, Haan, Germany), using
a mixture of 0.5 mm glass-zirconium beads and a single
5 mm tungsten bead (for mantle, gill and gut) or 1 mm glass
beads (for haemolymph) at 30 Hz for 5 min in order to com-
pletely disrupt the tissues and bacterial cells. The standard
protocol for DNA extraction from animal tissues was used for
mantle, gill and tissue, while only proteinase K (20 ul of
20 mg mI™" solution, Sigma-Aldrich) was added to the
haemolymph for protein digestion. The samples were incu-
bated at 55°C for at least 4 h and extracted according to the
manufacturer’s protocols. Blank extractions to check for bac-
terial contamination of reagents were also performed.

For the seawater samples, the filters were cut with sterile
scissors into smaller pieces and homogenized in 2 ml tubes
with a mixture of beads from PowerWater® DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, CA, USA) and 0.5 mm
glass-zirconium beads in RLT buffer (DNeasy Blood & Tissue
Kit, Qiagen) and further treated as described in Thomsen and
colleagues (2012). Shortly, a round of bead beating at 30 Hz
for 5 min was followed by 10 min at 56°C with continuous
mixing. This was repeated twice and then the proteinase K
was added and the digestion mix was incubated for 2 h. The
samples were then extracted following the manufacturer’s
protocol with the adjusted reagent volumes. We used differ-
ent methods for DNA extraction from the seawater and oyster
tissues due to the differing properties of the source material.
Although this could introduce a bias and caution is required in
interpreting the results, previous research has shown that
such biases tend to be minor (Sergeant et al., 2012; Rubin
etal., 2014).

Polymerase chain reaction (PCR)

We amplified 16s rRNA V1-V2 regions with uniquely
barcoded 27f and 338r PCR primers. The PCR reactions
(25 pl) were set up in 96-well plates as follows: 4 ul of each
forward and reverse primer (final concentration: 0.28 uM),
0.5l dNTPs (final concentration: 200 uM each), 0.25 ul
Phusion Hot Start Il High-Fidelity DNA Polymerase (0.5 unit
per reaction) and 5 ul of High fidelity (HF) buffer (7.5 mM
MgCI2, Thermo Fisher Scientific, Waltham, MA, USA). We
used 1 ul of undiluted haemolymph DNA, 1 pl of 10 x diluted
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seawater DNA and 2—4 ul of solid tissue DNA per reaction.
For each 96-well plate, 20 control reactions (12.5 pul) were
performed: one positive control and unique combinations of
all used forward and reverse primers as negative control, with
water as a template.

The PCR cycling conditions were as follows: 30 s initial
denaturation at 98°C, then 30 cycles: 9 s denaturation at
98°C, 1 min annealing at 55°C, 90 s extension at 72°C,
10 min final extension at 72°C.

In order to check for the product and to estimate its amount,
the reactions were analysed immediately on a 1.5% agarose
gel. Briefly, 5 ul of loading buffer was mixed with 3 pl reaction
and loaded into the gel prepared with SYBR Safe DNA Gel
Stain (Life Technologies GmbH, Darmstadt, Germany),
including 3 ul of O’'GeneRuler™ 100 bp Plus DNA Ladder
(Thermo Fisher Scientific). The separation was conducted at
120 V per 35 cm for 80 min. The result was photographed
with Gel Doc™ XR+ System and analysed with Image Lab™
Software (Bio-Rad) to estimate the absolute concentration of
the PCR products using the ruler as internal standard. If there
was no amplification in blank extractions, they were excluded
from further analysis. Equal amounts of the products from a
single gel were pooled together (25—100 ng per sample), run
on 1.5% agarose gel and purified with MinElute Gel Extrac-
tion Kit (Qiagen) according to the manufacturer’'s protocol,
including optional additional centrifugation and steps recom-
mended for salt-sensitive applications. The concentration of
DNA in the resulting subpools was measured fluorometrically
with Qubit dsDNA br Assay Kit (Life Technologies GmbH) in
the Qubit fluorometer (Life Technologies Invitrogen Gmbh,
Karlsruhe, Germany). The equal amounts of subpools were
then mixed together and frozen at —20°C until sequencing.
The paired-end sequencing by synthesis was performed on
an lllumina MiSeq platform at the Max Planck Institute for
Evolutionary Biology in PI6n, Germany.

Sequence quality control and preprocessing

All sequencing libraries were processed together. Quality
control, OTU clustering and taxonomy assignment were per-
formed in MOTHUR (Schloss etal, 2009), following the
MOTHUR MiSeq SOP (Kozich et al., 2013). We retained only
overlapping regions of the contigs and removed any
sequences with ambiguous bases and/or homopolymers of
8 bp or longer in order to ensure good quality and reduce the
number of spurious OTUs. The sequences were aligned to
SILVA 119 reference alignment (Quast et al., 2013) cut to
V1-V2 region, and the taxonomy was assigned with 80%
confidence cut-off, using the Greengenes taxonomy 13_08
(DeSantis et al, 2006) and the Naive Bayesian Classifier
(Wang etal, 2007) implemented in MOTHUR. Unknown
(i.e. sequences not assigned to any kingdom), chloroplast,
Archaea and Eukaryotic sequences were removed from
further analysis. We performed single-linkage pre-clustering
with two differences allowed (Huse et al., 2010), removed the
chimeras and created 97% OTUs using average-linkage
clustering method. Consensus taxonomy for an OTU was
assigned with a 50% consensus confidence threshold. We
calculated rarefaction curves of diverse a-diversity metrics in
QIME (Caporaso et al., 2010) in order to estimate the effect of
sampling effort and to determine sequencing depth for the
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final analysis. We subsampled the dataset to 8000 reads per
sample for the final analysis. Because the abundant OTUs
(> 100 reads) in the single positive blank control were rare
(< 1%) in the remaining samples, we simply excluded them
from further analysis. In order to calculate a tree needed for
phylogenetic measures of diversity, we picked a representa-
tive set of sequences using the distance method in MOTHUR
and calculated the tree using FASTREE (Price et al., 2010).
The final dataset comprised 3 seawater, 141 haemolymph
(including pre- and post-deployment samples), 68 gill, 61 gut
and 62 mantle samples (335 in total).

Statistical analysis

All statistical analyses were performed in R (R Core Team,
2013). For o-diversity, we used a complete rarified dataset
(8000 reads per sample) to analyse the differences in even-
ness [calculated as H/In(S), where H is the Shannon-Wiener
index and S is species richness] and species richness (total
number of species). We first tested for differences between
the seawater and oysters using non-parametric asymptotic
Wilcoxon Mann—Whitney RS test (Wilcoxon RS test). We
subsequently tested for differences between the tissues
using robust analysis of variance (Wilcox and Schénbrodt,
2014), as the assumptions for classical ANOVA were not
satisfied. Finally, we analysed haemolymph and solid tissues
separately with linear mixed models (Bartoi, 2014;
Kuznetsova et al., 2015; Bates et al., 2015).

Because not only Vibrio sp. but also other Vibrionaceae
grow on TCBS agar and, in addition, classification of short
reads to low taxonomic levels can be unreliable, we decided
to focus the analyses on the whole Vibrionaceae family, and
not just the genus Vibrio. In addition, due to the sampling
procedure, the CFU counts were not directly comparable
between the haemolymph and solid tissues, and were thus
analysed separately.

For B-diversity, we kept only the OTUs with relative abun-
dance higher than 0.1% in at least 10 samples to reduce the
dataset complexity. We calculated Bray—Curtis distances and
weighted UniFrac distances (Hamady et al., 2010) using the
phyloseq package (McMurdie and Holmes, 2013), and the
results were further analysed by NMDS and Permanova
(non-parametric permutational multivariate analysis of vari-
ance; Anderson and Beaven, 2001) implemented in the
adonis function in the vegan package (Oksanen et al., 2013).
We first compared the tissues and then analysed the
B-diversity in each tissue separately.

We statistically examined the variation at the class-level
taxonomical composition between the tissues and the
changes in the abundance of OTUs and genera in
haemolymph microbiota according to origin and treatment by
multivariate generalized mixed models (mvabund package;
Wang et al., 2012). This method fits a multivariate model for
the differences between the whole communities as well as
univariate models for the abundance of each taxon separately,
thus identifying taxa responsible for the observed differences.
Because the mean—variance relationship of the data is empiri-
cally estimated prior to the model-fitting (in this case negative-
binomial), potential confounding of location and dispersion
effects inherent to distance-based methods is avoided
(Warton et al., 2012).

We included time as an ordered factor in the models to
check for temporal trends in the data. However, we could not
disentangle individual variability from true time effects due to
our experimental design. For this reason we do not further
discuss the temporal trends, although we included them in
results for completeness.

To explore both positive and negative associations of the
OTUs within and between the tissues, we constructed an
association network using the sparcc algorithm (Friedman
and Alm, 2012) implemented in MOTHUR. We performed
10 000 permutations and kept only correlations > 0.4 with P
value < 10 to exclude as many spurious correlations as
possible (Marino et al., 2014). The input matrix was organ-
ized similar to Faust and colleagues (2012): OTUs in tissues
in the rows and individual oysters in columns. Only the
oysters with available data for all four tissues and the OTUs
that appeared in at least one third of the samples were
analysed (Berry and Widder, 2014). We statistically deter-
mined the significance of observed connectivity within/
between the tissues by comparison to connectivity between
the random subsets of nodes of equal size as the tested
group (Faust et al., 2012). Additionally, to assess the effect of
treatment and origin on microbial associations in the
haemolymph, we constructed a network for each experimen-
tal group of oysters including only haemolymph samples, and
calculated their descriptive statistics including clustering
coefficient (Newman et al., 2002) and modularity. Modularity
is a measure of separation of a network into densely intra-
connected areas, with fewer connections between them
(modules, communities), with respect to some division rule.
In this case modules were computed using the walktrap algo-
rithm (Pons and Latapy, 2005). The networks were visualized
using the igraph package (Csardi and Nepusz, 2006). Raw
demultiplexed sequence data are available at European
Nucleotide Archive under the study accession number
PRJEB8492.
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Fig. S1. Correlation between the number of -cultivable
Vibrionaceae and Vibrionaceae evenness (A, B) or
Vibrionaceae species richness (C, D) in the haemolymph and
solid tissues. The lines show a linear model fit and are used
only as an illustration for the relationship. All conclusions are
based on non-parametric Spearman’s p coefficient.
p = Spearman’s p.

Fig. S2. Association networks of haemolymph OTUs
grouped by oyster origin and treatment showing only positive
correlations (colour, shape and size legend as in Fig. 6).
Separate subnetworks thus represent negatively correlated
modules of the complete network. Arrows point to the ‘sea-
water’ cluster, while the ellipses encircle all parts of the
network where the other OTUs/motifs shared by the oyster
groups are found.

Table S1. Pearson residuals for the x? test of end-point sur-
vival between the four oyster groups. Texel non-antibiotic
treated oysters are the only group with the higher than
expected mortality.

Table S2. Multivariate generalized linear model (negative
binomial) showing significant differences at the class level
between the oyster tissues, origin and treatment.

Table S3. Multivariate generalized linear model (negative
binomial) showing effects of oyster origin and treatment on
the abundance of genera within the haemolymph. Only
genera with significant differences are listed.

Table S4. Multivariate generalized linear model (negative
binomial) showing effects of oyster origin and treatment on
the OTU abundance within the haemolymph. Only OTUs with
significant differences are listed.

Table S5. Properties of original haemolymph networks and
average of 1000 random networks with same number of
nodes and edges.

Table S6. Multivariate generalized linear model (negative
binomial) showing effects of oyster origin and treatment on
the genera abundance in solid tissues. Only genera with
significant differences are listed.
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