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Zusammenfassung 

Die großen Eisschilde in den Polarregionen reagieren auf ein sich wandelndes Klima 

durch Wachstum und Schmelze. Diese Eisschildveränderungen haben globalen 

Einfluss, wie zum Beispiel durch die Veränderungen des Meeresspiegels, und 

beschränken sich nicht nur auf die Polarregionen. Im letzten Jahrhundert hat sich die 

Durchschnittstemperatur der Erde kontinuierlich erhöht. Direkte präzise Beobachtungen 

der Eisschild-Massenbilanzen reichen in der Regel nur einige Jahrzehnte zurück. Dies 

erschwert es zwischen kurzfristigen Fluktuationen und langfristigen, vom Klimawandel 

verursachten Veränderungen der Eisschilde zu unterscheiden. Folglich ist es wichtig zu 

verstehen, wie die Eisschilde in der Vergangenheit auf ähnliche Klimaveränderungen 

reagiert haben, um dieses Wissen auf die Gegenwart und Zukunft übertragen zu können. 

Zur Zeit der letzten maximalen Ausdehnung der Eisschilde, vor 26.500-19.000 Jahren, 

erstreckte sich der grönländische Eisschild bis auf den heute von Ozean bedeckten 

Kontinentalschelf. Die exakte Ausdehnung des Eisschildes auf dem Schelf ist jedoch 

bisher unbekannt. In der Bathymetrie des Schelfs sind morphologische Strukturen 

zurückgeblieben, die von diesem ausgedehnten Eisschild geformt wurden. Diese glazial 

erzeugten morphologischen Strukturen ermöglichen es aufschlußreiche Informationen 

über die ehemalige Eisausdehnung, die Struktur des Eisflusses, sowie dessen 

Rückzugsverhalten nach Ende der letzten Eiszeit abzuleiten. Für die Erfassung dieser 

Strukturen ist die Kenntnis der Bathymetrie in ausreichender Auflösung erforderlich, 

die mittels hydro-akustischer Systeme gewonnen werden kann. 

Die meist dichte Meereisbedeckung in den Gewässern vor Nordostgrönland verhindert 

die Datenerfassung über weite Teile des Jahres und erfordert den Einsatz von 

Eisbrechern. Trotz dieser erschwerten Bedingungen zur Datenerfassung, ist es wichtig 

die glaziale Vergangenheit Nordostgrönlands zu rekonstruieren da etwa 20% des 

grönländischen Eisschildes über dieses Gebiet abfließen. Der Großteil hiervon fließt 

über den Nordostgrönlandeisstrom ab, der etwa 700 km in das Landesinnere 

hereinreicht und somit der größte Eisstroms Grönlands ist. Auch wenn der 

Kontinentalschelf in dieser Region der breiteste ganz Grönlands ist, gab es in diesem 

Gebiet bisher aufgrund der mangelnden Datengrundlage nur wenige Untersuchungen 

zur Eisschildkonstellation während des letzten glazialen Maximums. 
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In dieser Arbeit werden hydro-akustische Daten, die seit den 1980er Jahren in den 

Gewässern vor Nordostgrönland erfasst wurden, auf glaziale morphologische Strukturen 

untersucht um daraus die vergangene Eisschildkonstellation abzuleiten. Durch diese 

Untersuchung wird erstmalig die Ausdehnung des grönländischen Eisschildes über den 

Großteil des Kontinentalschelfs und in mindestens zwei Trögen bis hin zur Schelfkante 

direkt nachgewiesen. Die rekonstruierten Fließrichtungen der Eisströme legen den 

Schluß nahe, dass sich auf den flacheren Regionen des Kontinentalschelfs lokale marine 

Eisdome bildeten. Der anschließende Rückzug des Eises erfolgte unterschiedlich schnell 

in verschiedenen Teilen des Schelfs. In Phasen des Eisschildrückgangs trieben Eisberge 

mit einem Tiefgang von mehr als einem Kilometer vom Arktischen Ozean in den 

Nordatlantik. Diese Ergebnisse liefern neue Rahmenbedingungen, die unser Verständnis 

der vergangenen Eisschildkonstellation in der Arktis verbessern. 
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Abstract 

Ice Sheet responses to a changing climate are not only effecting the polar regions but 

have global implications, i.e. sea level change. During the last century, a steady increase 

of average global temperatures has been observed. Accurate direct observations of ice 

sheet responses related to this increase are typically only available in timescales of 

decades. This results in difficulties to distinguish between short term ice mass 

fluctuations and long-term changes that may correspond to climate change. 

Subsequently, to understand ice sheet behavior in a changing climate and to enable us to 

predict future responses, it is necessary to understand how ice sheets have responded in 

the past. 

During the last glacial maximum, 26,500-19,000 years before present, the entire 

Greenland Ice sheet extended onto the continental shelf that today is covered by the 

ocean. However, its extent on the shelf is still not resolved. The bathymetry of the shelf 

reveals morphologic remnants that have been created by this extensive ice sheet. These 

remnants, also referred to as submarine glacial landforms, allow us to infer the extent of 

the past Greenland Ice Sheet as well as giving information of its ice stream pathways 

and its retreat behavior in the succession of the last ice age. However, hydro-acoustic 

data acquisition is needed to reveal the bathymetry of the shelf in sufficient resolution to 

resolve submarine glacial landforms. 

In Northeast Greenland, data acquisition is impeded by harsh sea-ice conditions during 

most parts of the year and icebreakers are required to operate in this region. 

Nevertheless, the reconstruction of Northeast Greenland’s glacial history is important as 

about 20% of the Greenland Ice Sheet is drained here. Most of this ice discharge is 

operated via the Northeast Greenland Ice Stream that reaches about 700 km inland and 

therefore is the largest ice stream of Greenland. The continental shelf of Northeast 

Greenland is the broadest shelf of Greenland but so far only few investigations shed 

light on the past ice sheet system, due to the limited availability of hydro-acoustic data. 

In this thesis, I investigate hydro-acoustic data that have been acquired since the 1980s 

in the waters offshore Northeast Greenland for submarine glacial landforms that are 

used to derive the setting of the past ice sheet system. As a result, first direct marine 

evidence is provided that the Greenland Ice Sheet covered the majority of the 
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continental shelf in Northeast Greenland and at least in two troughs extended to the 

shelf edge. Reconstruction of ice stream pathways suggests that local marine ice domes 

have resided on shallower parts of the shelf. The ice sheet retreat was spatially variable 

on the shelf during deglaciation. Large icebergs, reaching drafts of more than one 

kilometer, drifted from the Arctic Ocean to the North Atlantic continuously during 

deglaciation. These results deliver new constraints to improve our picture of the past 

Arctic ice sheet setting and development. 
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1. Introduction 

1.1 Motivation 

The cryosphere, including the Greenland Ice Sheet, responds to changes of the global 

climate. The effects of these responses are not restricted to the polar regions, but have 

world-wide implications. Mass loss of the ice sheets is identified as a major contributor 

to sea level change [Church et al., 2011]. By delivering an additional source of 

freshwater, ice discharge is influencing the deep water formation in polar regions, the 

main driver of the global thermohaline circulation which is essential for the global 

latitudinal heat exchange [Broecker, 2010]. The Greenland Ice Sheet experienced 

increased ice loss in a warming climate within the last two decades [Vaughan et al., 

2013]. However, these changes need to be examined in the context of past climate 

changes and their corresponding responses of the cryosphere [Vaughan et al., 2013]. 

Reconstructing the past Greenland Ice Sheet extent and its development, hence, is 

crucial to understand past ice sheet responses and is needed to validate ice sheet models 

that estimate future responses. 

Ice sheets are modulating the landscape by erosion and deposition of sediments. This 

altered landscape is left behind after ice sheet retreat. Probably the most impressive and 

well-known terrestrial example of such landscapes are fjords carved out by fast flowing 

outlet glaciers during long periods of glaciation. In the period of the last glacial 

maximum (LGM), 26,500-19,000 years before present, the Greenland Ice Sheet 

extended beyond the modern day coastline of Greenland [Funder et al., 2011]. 

Subsequently, morphologic remnants produced by the LGM ice sheet are still present in 

the bathymetry of the Greenland continental shelves, where they are better protected 

against erosion compared to the terrestrial realm. These remnants, also referred to as 

submarine glacial landforms, can provide information on the glacial system that was 

active during their formation [e.g., Jakobsson et al., 2014 and references therein; 

Livingstone et al., 2012]. 

High resolution bathymetric data can be acquired with hydro-acoustic methods to assess 

these submarine glacial landforms. Despite modern icebreaker capabilities, the 

bathymetry of large areas in polar regions remain poorly resolved, due to their 

remoteness and inaccessibility caused by harsh sea-ice conditions. However, some of 
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these regions are most relevant to deliver a comprehensive picture of the past glacial 

system and its responses to climate changes. 

 

Figure 1.1: Location map of the study area and geographical locations, based on GEBCO_14 [Weatherall 
et al., 2015] 

The waters offshore Northeast Greenland (NEG) are such a remote and hardly 

accessible area which, nevertheless, is a key region to observe the past glacial system 

(Fig 1.1). High resolution bathymetric data have been acquired in this region pre-

dominantly with R/V Polarstern since the 1980s, but only few investigations on the 

submarine glacial landforms have been conducted on this data. In recent years, this data 

set has increased by a number of additional R/V Polarstern cruises. A joint investigation 

of the available data promised to significantly increase the understanding on the past 

glacial system that has been active in this region. 
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1.2 The Northeast Greenland continental shelf and 
adjacent waters 

The study area covers the NEG continental shelf and parts of the Fram Strait between 

the latitudes 74°N and 81°N (Fig. 1.1). Bathymetric compilations, created before this 

thesis, model the continental shelf with irregular undulating topography, pre-dominantly 

in a depth range between 400 to 100 m, and show coarsely defined cross-shelf troughs 

(Fig. 1.2) [Jakobsson et al., 2012b]. Here, the Greenland continental shelf reaches its 

maximum width of more than 300 km. Subsequently, this broad shelf represents the 

largest possible area for oscillation of the Greenland Ice Sheet. The continental shelf 

consists of sediments that in parts are more than 13 km thick [Hamann et al., 2005]. 

These sediments filled basins and covered ridges that where formed during the complex 

breakup of the North Atlantic Ocean and the Fram Strait including various oblique 

spreading processes [Engen et al., 2008]. The sediment transport since ~7 Ma is 

assumed to be pre-dominantly facilitated by ice streams [Berger and Jokat, 2009]. 

 

Figure 1.2: Map of the study area with glacial setting, major oceanographic currents, median sea-ice 
extent and geographical locations; Bathymetry from IBCAO V3.0 [Jakobsson et al., 2012b]; 
AW=Atlantic Water, EGC=East Greenland Current, NEGIS=Northeast Greenland Ice Stream, 79G=79°-
Glacier, ZI=Zachariae Isstrøm 



Introduction 
 

4 

The Fram Strait, located between NEG and Svalbard, has an average depth of about 

2500 m. In the center of Fram Strait, Hovgaard Ridge is the shallowest undersea feature 

with its crest reaching 1180 m depth. The Fram Strait is the only deep-water connection 

of the Arctic Ocean to the world’s oceans. In the eastern part of Fram Strait, warm 

Atlantic water flows into the Arctic Ocean and keeps the waters west of Svalbard free of 

sea ice for longer periods (Fig. 1.2). In contrast, on its western side cold Arctic water, 

including sea ice from the Arctic Ocean, is exported southward within the East 

Greenland Current (EGC) [Aagaard and Coachman, 1968]. This results in year-round 

harsh sea-ice conditions for the western Fram Strait (Fig. 1.2), as well as regular 

formation of fast ice close to the NEG coast [Hughes et al., 2011]. Despite this inflow 

of cold Arctic water, relatively warm Atlantic water (1°C) has been observed close to 

the coast near a marine terminating outlet glacier [Straneo et al., 2012]. This Atlantic 

water must have crossed the continental shelf from the east to the west through 

bathymetric pathways and could enhance basal melting at the of the outlet glacier. 

The largest outlet glaciers in the study area are Nioghalvfjerdsfjorden Glacier (also 

referred to as 79°-Glacier) and Zachariae Isstrøm. These are fed by the NEG ice stream 

(Fig. 1.2). This ice stream is the largest of the Greenland Ice Sheet, reaching 

approximately 700 km inland [Joughin et al., 2001]. The drainage area of all outlet 

glaciers terminating in the study area cover approximately 20% of the Greenland Ice 

Sheet [Zwally et al., 2012]. This highlights their importance for the entire ice sheet. 

While the northeastern part of the ice sheet has been thought to be relatively stable 

compared to other regions of Greenland [Rignot and Kanagaratnam 2006; Joughin et al. 

2010], recent studies based on satellite observations showed increased ice sheet thinning 

[Helm et al., 2014; Khan et al., 2014]. 

1.3 Research Questions 

1.3.1 Ice extent of the Greenland Ice Sheet during the Last Glacial 
Maximum 

The LGM extent of the Greenland Ice Sheet on the NEG continental shelf is still 

predominantly based on conceptual models [Funder et al., 2011]. These models 

estimate the minimum LGM ice extent to be located close to the coastline south of 

79°N. North of 79°N, observations of submarine glacial landforms in swath bathymetric 
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data gave evidence for the existence of an ice stream on the middle shelf but did not 

map its maximum extent [Evans et al., 2009; Winkelmann et al., 2010]. Based on 

relative late deglaciation dates at the coastline, Bennike and Björck [2002] suggested 

that the Greenland Ice Sheet reached further offshore NEG, possibly until the shelf 

break. However, marine geophysical evidence for this more extensive LGM ice sheet is 

missing so far. 

 What was the LGM ice extent on the NEG continental shelf? 

 Can the larger LGM ice extent suggested by Bennike and Björck [2002] be 

verified by marine geophysical data? 

1.3.2 Retreat dynamics of the Greenland Ice Sheet after the Last 
Glacial Maximum 

Submarine glacial landforms, formed underneath and at the margin of an ice stream, can 

provide indications for the retreat dynamics during deglaciation [Dowdeswell et al., 

2008]. Studies of submarine glacial landforms in the northernmost trough on the NEG 

continental shelf demonstrate that the retreat dynamics varied between different parts of 

the trough [Evans et al., 2009; Winkelmann et al., 2010]. Landforms indicative of slow 

stepwise retreat as well as landforms indicative of rapid retreat have been mapped. Due 

to the relatively small spatial coverage of the so far studied high resolution swath 

bathymetric data, these observations are restricted to a small portions of the trough. The 

retreat dynamics in other parts of the trough and on the remaining shelf are unresolved. 

 How are submarine glacial landforms that are indicative of retreat dynamics 

distributed on the NEG continental shelf? 

 Is there a systematic pattern of ice retreat? 

1.3.3 Paleo-ice stream pathways in Northeast Greenland 

Paleo-ice stream pathways can be inferred from observations of submarine glacial 

landforms formed by palaeo-ice streams [e.g. Lavoie et al., 2015; Ottesen et al., 2005]. 

The limited bathymetric data coverage on the shelf and the usage of ice topography 

instead of under-ice topography for Greenland in recent bathymetric models [Jakobsson 
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et al., 2012b], has impeded detailed reconstructions of palaeo-ice stream pathways in 

NEG. Ice stream pathways, however, are crucial to reconstruct the past ice sheet system 

and the drainage areas. Fast flowing marine based ice streams typically have a relatively 

little slope and are close to floatation [Lavoie et al., 2015]. Subsequently, they have 

only small potential for sea level rise after deglaciation. Pathways redirected around 

shallower bathymetric areas, however, can indicate locations where local marine ice 

domes were present. These ice domes potentially stored more ice above floatation, with 

corresponding higher potential to change the sea level after deglaciation. 

 Which pathways have been used by the ice streams that drained the Greenland 

Ice Sheet? 

 Did local marine ice domes exist on the continental shelf? 

 If local marine ice domes existed, how large were they and what was their 

contribution to sea-level change? 

1.3.4 Ice export from the Arctic Ocean through Fram Strait 

Ice from the Arctic Ocean drifts within the EGC through the Fram Strait and delivers 

freshwater to the Greenland-Iceland-Norwegian Sea. Increased freshwater inflow, i.e. 

during deglaciations, can relocate or even shut down the formation of North Atlantic 

Deep Water (NADW) [Aagaard and Carmack, 1989], one of the main drivers of the 

global thermohaline circulation [Broecker, 2010]. It remains under debate, whether 

thick sea-ice or large icebergs were responsible for NADW shut-downs in the past 

[Bradley and England, 2008; Moore, 2005]. For this reason, Moore [2005] suggested to 

investigate the shallower parts in Fram Strait for traces of grounded very large icebergs 

that could have been exported from the Arctic Ocean. These would indicate that 

icebergs played an important role in the formation of NADW by exporting a significant 

amount of freshwater. Evidence for very deep drafted icebergs, furthermore, would 

provide an estimate for ice shelf thickness as an additional constraint for the complex 

and debated glacial history of the Arctic Ocean [Jakobsson et al., 2014]. 

 Have there been deep drafted icebergs exported from the Arctic Ocean 

through Fram Strait and what was their maximum draft? 
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2. Material and Methods 

The results of this thesis are based on data acquired by hydro-acoustic surveys from 

R/V Polarstern that have been recorded and processed in-house by the bathymetry and 

geodesy group of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research (AWI) including myself. Occasionally, additional hydro-acoustic data from 

other vessels are used that have been acquired and processed by collaborators or 

contributors. Seismic and topographic data sets have been integrated for the production 

of the NEG digital bathymetric model (DBM) (for further details see Chapter 7.3). In 

this chapter, a short introduction of hydro-acoustic measuring principles, the acquisition 

systems (Fig. 2.1) and the processing steps is given. A more comprehensive description 

of hydro-acoustics can be found in the literature [e.g. de Jong et al., 2002; Lurton, 

2004]. For more specific information on the data and methods used in each publication, 

please refer to the data and method chapters of the contributions to scientific journals 

and books (Chapters 4.2, 7.2, 7.3 and 8.2). 

 

 

Figure 2.1: Different types of hydro-acoustic seafloor mapping systems that have been used in this thesis. 
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2.1 Hydro-acoustic measuring principles 

The basic principle of hydro-acoustically surveying the water depth is to measure the 

time between the transmission of an acoustic signal and the arrival of the received signal 

that was reflected from the seafloor. Given this time interval (t) and a water sound 

velocity (c) it is possible to calculate the depth (d) of the reflector by: 

d = t × c / 2 

The water sound velocity is typically about 1500 m/s but varies with density. Density 

again depends on temperature, salinity and depth. Temperature and salinity are laterally, 

vertically, and temporally variable. The highest variation in temperature usually is 

present in the upper 1000 m of the water column caused by surface mixing, solar 

heating, currents and external inputs. The salinity is given as the percentage of dissolved 

salts in pure water (p.s.u. = practical salinity units). In average, the oceans salinity is 

about 35 p.s.u., but can vary significantly in different areas. The water masses of the 

NEG continental shelf for example can vary from 35 to 30 p.s.u., due to freshwater 

input [Rabe et al. 2009]. With depth, the increased hydrostatic pressure results in higher 

sound velocities. A typical sound velocity profile from central Fram Strait is shown in 

Figure 2.2. While hydro-acoustic waves that travel perpendicular to the water layers are 

only experiencing a velocity change, waves that travel through stratified water layers at 

an oblique angle are refracted by the change in sound velocity (Fig. 2.3b). 

In model conditions, the transmitted acoustic signal will only reflect from the targeted 

seabed. In the real world, however, the received signal will include reflections that can 

interfere with the target signal, i.e. reflections at obstacles in the water column. In 

addition, the strength of the returning targeted signal depends on seafloor composition 

and its ability to backscatter the transmitted signal, i.e. rough seafloor has a higher 

backscatter than smooth seafloor. Furthermore, the receiver not only records the 

reflected signal but also records noise from other acoustic sources, i.e. from the vessel 

itself, other acoustic systems, or especially in ice covered areas noise from ice breaking 

activities. These factors have to be considered and treated during post-processing to 

obtain the targeted reflected signal. 
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Figure 2.2: Example sound velocity profile, measured in central Fram Strait (PS85/0460-1) 

2.2 Hydro-acoustic data acquisition systems and processing 

2.2.1. Bathymetric data 

Since the early 20th century, singlebeam echosounding systems have been used to 

measure the ocean depth. An acoustic signal, also called ping, is transmitted vertically 

into the water column below the vessel (Fig. 2.1) and the return echo is recorded. 

Knowing the speed of water, the measured two-way travel time of the seafloor 

backscattered signal is used to determine the water depth. Typically these systems have 

an opening angle of 5-15° and operate with 12 kHz frequency for deep water systems 

[Lurton, 2004]. 

Multibeam echosounding systems have been established in the 1970s. Multibeam 

systems not only receive depth information of one point per ping, but receive multiple 

depth measurements simultaneously (Fig. 2.1). This is achieved by transmitting and 
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receiving several beams, with small individual beam widths of 1-3°, in different angles 

perpendicular to the axis of the vessel at once. This results in a swath of depth 

measurements underneath the vessel, from port to starboard. The width of this swath is 

depending on the swath angle and the water depth. Hence, the swath angle is a key 

parameter for determining the size of the surveyed area. The number of beams in one 

swath and their beam angle is determining the resolution of the system. Over the last 

decades these parameters of multibeam acquisition systems have improved 

continuously. The systems installed onboard R/V Polarstern over time for example have 

underwent a change in swath angle from 90° to 150° and the number of beams has 

increased from 16 to 345 (Table 2.1). These improvements have doubled the size of the 

surveyed area and improved the resolution perpendicular to the vessel by more than an 

order of magnitude. 

Table 2.1: Multibeam echosounding systems installed on R/V Polarstern over time 

System Installation 
date 

Transmitting 
frequency 

[kHz] 
Beams Swath 

angle 

A-priori depth accuracy 
center beam (outer 

beam) 

Seabeam 
(L3 ELAC Nautik) 

1983 12.3 16 <90° 0.5% (1%) 

Hydrosweep DS1 
(ATLAS Hydrographic) 

1989 15.5 59 <120° 0.5% (1%) 

Hydrosweep DS2 
(ATLAS Hydrographic) 

1997 15.5 59 
(240) <120° 0.5% (1%) 

Hydrosweep DS3 
(ATLAS Hydrographic) 

2010 15.5 345 <150° 0.2% (0.5%) 

 

Due to the more complex survey setting of multibeam systems compared to singlebeam 

systems, more parameters are needed for data processing. Apart from the geographical 

position of the vessel from global positioning system (GPS) measurements, information 

is needed for the motion of the vessel given by the parameters roll, pitch, heading, and 

heave, to calculate the orientation of the beam vectors (Fig. 2.3a). On R/V Polarstern, 

this information is gathered by the Marine Inertial Navigation System (MINS) and is 

subsequently sent to the multibeam system. The geometry of the transmitted beams in a 

multibeam system results in oblique observation rays relative to the sea surface that are 

refracted when they cross the stratified water layers of varying sound velocity in an 
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oblique angle (Fig. 2.3b). This has to be assigned in the data processing by including a 

sound velocity profile, which, in addition to calculate the traveled distance of the sound 

signal, is used to calculate the refracted true ray. Due to the variability of the sound 

velocity, in situ measurements either of the variables temperature, salinity, and depth or 

the sound velocity directly are needed for data processing. During most research 

expeditions Conductivity-Temperature-Depth (CTD) sensor measurements are 

conducted regularly, pre-dominantly for oceanographic investigations. These 

measurements deliver information on temperature and salinity in different depths. With 

this information the sound velocity can be calculated (Fig 2.2) [e.g. Chen and Millero, 

1977; Medwin, 1975]. Another option to obtain the sound velocity profile on board is 

the Valeport Limited MIDAS SVP instrument. This instrument can directly measure the 

sound velocity by measuring the time of a signal that is sent over a very short but 

precisely measured distance. This instrument has been used as often as possible in areas 

where no CTD measurements have been made. 

 

Figure 2.3: Sketch of a) the vessel motion parameters and b) the geometry of refracted observation rays 

Bathymetric data acquired by R/V Polarstern has been processed and cleaned manually 

with CARIS HIPS&SIPS. Cleaning of the data is necessary due to the challenges in data 

acquisition mentioned above, e.g. reflectors in the water column, vessel motion errors, 

noise from ice breaking activities, and so forth. Additional cleaning has partly been 

carried out with QPS Fledermaus. For visualization and interpretation purposes, gridded 

bathymetric models have been derived from the data. Detailed high resolution models of 

multibeam data have been gridded either with QPS Fledermaus or the Generic Mapping 
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Tools (GMT) [Wessel and Smith, 1995]. The larger scale DBM of the NEG continental 

shelf, with interpolated surface in data gaps, has been gridded using a two-resolution 

gridding technique (see chapter 7.3.3). This technique is a modified version of the 

gridding techniques used for the mapping projects International Bathymetric Chart of 

the Arctic Ocean (IBCAO) [Jakobsson et al., 2012b] and International Bathymetric 

Chart of the Southern Ocean (IBCSO) [Arndt et al., 2013] and combined tools of QPS 

Fledermaus, ESRI ArcGIS and GMT. 

2.2.2. Subbottom profiler data 

Subbottom profiler systems are similarly set up as singlebeam echosounders and 

transmit an acoustic signal vertically from the vessel to the ocean floor (Fig 2.1). In 

contrast to the singlebeam system that surveys the water depth, the subbottom profiler 

system is designed to survey reflections of the first sedimentary layers of the seafloor. 

To achieve this, it operates with lower frequencies, typically 3.5 kHz, that can penetrate 

into the sediment. Besides the frequency, the penetration depth is depending on the type 

of seafloor. In clay-like sediment the signal penetration can reach down to 50-200 m to 

resolve its inner structure [Lurton, 2004]. On formerly glaciated shelves however the 

penetration usually is much less due to sediments that were over-consolidated by the 

presence of an ice sheet. 

On R/V Polarstern currently the ATLAS Parasound P-70 system is installed. This 

system utilizes the parametric effect of two transmitted acoustic signals, usually set to 

18 kHz and 22 kHz, to create a transmitted carrier wave of 20 kHz and a beat frequency 

of 4 kHz that is used for the measurement. This setting of transmitting acoustic signals 

with higher frequencies makes it possible to use a relatively small transducer and to 

achieve a narrow beam of 4 x 4.5° that minimizes the footprint of the signal and, hence, 

increases the lateral accuracy of the signal. The recorded signal today is stored by the 

acquisition system in ASD files. These can be exported to files in SGY format, which 

have been used to visualize the data in IHS Kingdom. 
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3. Contributions to scientific journals and 
books 

My work on this PhD thesis comprises three contributions to ISI-peer reviewed journals 

and two contributions to a peer-reviewed book as first author: 

Deep water paleo-iceberg scouring on top of Hovgaard Ridge – Arctic 
Ocean 

Arndt, J. E., F. Niessen, W. Jokat, and B. Dorschel (2014) 

Geophysical Research Letters, 41(14), p. 5068-5074, doi: 10.1002/2014gl060267. 

In this article, we investigated hydro-acoustic data from Hovgaard Ridge, located in the 

center of the Fram Strait. On the top of the ridge, we found iceberg ploughmarks 

(scours) in a modern day water depth of >1200 m. We discuss source regions of these 

giant icebergs and their drift direction. Based on this discussion we infer that a 

significant amount of freshwater was supplied to the Greenland-Iceland-Norwegian Sea 

by icebergs during phases of deglaciation. 

I reprocessed and investigated the hydro-acoustic data and wrote the manuscript. Frank 

Niessen gave valuable support for the discussion chapter and in the method chapter for 

the subbottom profiler data section. Wilfried Jokat and Boris Dorschel provided 

scientific input and supervised the work. 

Deep-water iceberg ploughmarks on Hovgaard Ridge, Fram Strait 

Arndt, J. E., and M. Forwick (accepted) 

in Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, edited by 

J. A. Dowdeswell, M. Canals, M. Jakobsson, B. J. Todd, E. K. Dowdeswell and K. A. 

Hogan, Geological Society, London. 
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In this book chapter, we described the iceberg ploughmarks on Hovgaard Ridge, as 

described in the article above, with newer and higher resolution hydro-acoustic data. 

These data give a more accurate picture of the ploughmarks. 

I wrote the manuscript. Matthias Forwick provided the hydro-acoustic data. 

Glacial lineations and recessional moraines on the continental shelf of 
Northeast Greenland 

Arndt, J. E., and J. Evans (accepted) 

in Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, edited by 

J. A. Dowdeswell, M. Canals, M. Jakobsson, B. J. Todd, E. K. Dowdeswell and K. A. 

Hogan, Geological Society, London. 

In this book chapter, we reviewed the findings of two studies that investigated hydro-

acoustic data from the northernmost trough of the NEG continental shelf. Submarine 

glacial landforms are described that reveal the presence of a palaeo-ice stream in the 

trough and indicate that it had variable retreat dynamics during deglaciation. 

I wrote the generic part of the chapter and the section on recessional moraines of the 

manuscript. Jeffrey Evans wrote the section on glacial lineations. 

A new bathymetry of the Northeast Greenland continental shelf: 
Constraints on glacial and other processes 

Arndt, J. E., W. Jokat, B. Dorschel, R. Mykelbust, J. A. Dowdeswell, and J. Evans 

(2015), 

Geochemistry Geophysics Geosystems, 16(10), p. 3733-3753, doi: 

10.1002/2015GC005931. 

In this article, we have compiled a new digital bathymetric model of the NEG 

continental shelf. The model is based on all available bathymetric data and up-to-date 

continental topography data sets. The bathymetric data have been reprocessed or, 

respectively, quality controlled for this compilation. We have investigated the 

morphology of the new bathymetric model to infer glacial, halokinetic, and volcanic 
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processes active during its formation. In addition, the new model provides constraints 

on recent oceanographic processes that are depending on the continental shelf 

morphology. 

I acquired and processed the bathymetric data from R/V Polarstern cruise PS85, 

obtained bathymetric data from other resources, supervised reprocessing and partly 

reprocessed the remaining bathymetric base data sets including a final quality control, 

wrote and conducted the gridding routines, and prepared the manuscript. Wilfried Jokat 

provided the seismic data from AWI, scientific input and supervised the work. Boris 

Dorschel provided scientific input and supervised the work. Reidun Myklebust provided 

first reflector data from TGS seismic surveys. Julian A. Dowdeswell and Jeffrey Evans 

provided swath bathymetric data of cruise JR106. 

Ice sheet limits and retreat dynamics on the Northeast Greenland 
continental shelf during the last full-glacial period 

Arndt, J. E., W. Jokat, and B. Dorschel (submitted) 

Quaternary Science Reviews. 

In this article, we investigated all high resolution swath bathymetric data acquired with 

R/V Polarstern in the two northernmost troughs of the NEG continental shelf and the 

inter-trough area. We mapped small-scale submarine glacial landforms and used these 

to reconstruct the last full-glacial ice extent of the Greenland Ice Sheet, its successive 

retreat dynamics, and the distribution and orientations of iceberg ploughmarks after 

deglaciation in this region. 

I acquired and processed the bathymetric data from R/V Polarstern cruise PS85, 

supervised reprocessing and partly reprocessed the remaining bathymetric base data sets 

including a final quality control, mapped the submarine glacial landforms, and wrote the 

manuscript. Wilfried Jokat and Boris Dorschel provided scientific input and supervised 

the work. 
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4. Deep water paleo-iceberg scouring on top of 
Hovgaard Ridge–Arctic Ocean 

Jan Erik Arndt1, Frank Niessen1, Wilfried Jokat1, and Boris Dorschel1 

1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 

Bremerhaven, Germany 

 

Published in Geophysical Research Letters, Vol. 41(14), p. 5068-5074, doi: 

10.1002/2014GL060267 

 

Abstract 

In multibeam echosounder and subbottom profiler data acquired during R/V Polarstern 

cruise ARK-VII/3a from the Hovgaard Ridge (Fram Strait), we found evidence for very 

deep (>1200 m) iceberg scouring. Five elongated seafloor features have been detected 

that are interpreted to be iceberg scours. The scours are oriented in north-south/south-

north direction and are about 15m deep, 300m wide, and 4 km long crossing the entire 

width of the ridge. They are attributed to multiple giant paleo-icebergs that most 

probably left the Arctic Ocean southward through Fram Strait. The huge keel depths are 

indicative of ice sheets extending into the Arctic Ocean being at least 1200m thick at the 

calving front during glacial maxima. The deep St. Anna Trough or grounded ice 

observed at the East Siberian Continental Margin are likely source regions of these 

icebergs that delivered freshwater to the Nordic Seas. 
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4.1 Introduction 

The Fram Strait (FS) is the only deep water connection of the Arctic Ocean to the world 

oceans and for this reason plays an important role in water and heat exchange [Fieg et 

al., 2010; Rabe et al., 2013; Schauer et al., 2004]. The Greenland-Iceland-Norwegian 

Sea south of the Fram Strait is an important area for North Atlantic Deep Water 

(NADW) formation, one of the main drivers of the global oceanic thermohaline 

circulation [Broecker, 2010]. NADW formation in this area is most vulnerable to 

freshwater discharges out of the Arctic Ocean [Aagaard and Carmack, 1989; Bradley 

and England, 2008]. Isotopic evidence from a sediment record in the Fram Strait (ODP 

Site 910) suggests strong imprint of Arctic Freshwater pulses on Earth’s climate system 

throughout the last 0.8 Ma [Knies et al., 2007]. Predominantly, the freshwater was 

exported at major glacial terminations, when continental ice sheets in the circum-Arctic 

collapsed and large amounts of ice were released into the Arctic Ocean [Darby et al., 

2002; Knies et al., 2007]. The amount of ice exported from the Arctic Ocean then can 

be sufficient to shut down the NADW production south of Fram Strait [Bradley and 

England, 2008; Moore, 2005]. The question arose whether mainly large icebergs 

released from ice shelves in the Arctic Ocean or sea ice of more than 50m in thickness 

were exported during glacial terminations [Bradley and England, 2008; Moore, 2005]. 

It has been suggested to investigate the ridges and plateaus in the Arctic gateway region 

including the Hovgaard Ridge (HR) (see Figure 4.1a) in order to explore the possibility 

of deep draft icebergs invading the Nordic Sea from the north [Moore, 2005]. 

Between the years 1984 and 1997, the German research vessel Polarstern collected 

swath bathymetry data in this area during nine research cruises. These data were 

compiled in the Bathymetric Chart of the Fram Strait (BCFS) [Klenke and Schenke, 

2002] providing information on the geometry of large-scale topographic features in 

Fram Strait. Here we focus on small-scale features on top of HR (Figures 4.1b and 

4.1c). Five linear features are located at about 1200 m. We interpret these features to be 

scours of giant paleo-icebergs. Our study strongly supports the hypothesis that icebergs 

calved off ice shelves in the Arctic Ocean and drifted through the Fram Strait into the 

Nordic Sea. 
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Figure 4.1: (a) Bathymetric overview map of Fram Strait based on International Bathymetric Chart of the 
Arctic Ocean (IBCAO) 3.0 [Jakobsson et al., 2012b]. (b) Planar view of gridded ARK-VII/3a 
bathymetric data on Hovgaard Ridge with identified scours (black dashed lines) and the location of dated 
cores (star) and undated cores (circle). (c) Three-dimensional view of the bathymetry. 

Bathymetric studies carried out in the Arctic Ocean during the last decades 

demonstrated that ice shelves have extended north into the Arctic Ocean [Jakobsson et 
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al., 2010; Jakobsson et al., 2013; Mercer, 1970; Niessen et al., 2013] and that the 

common view of Quaternary Arctic ice sheets that terminated at the shelf edges [Ehlers 

and Gibbard, 2007; Svendsen et al., 2004] is too simple. In places, evidence of 

grounded ice can be found in the seafloor morphology of the entire Arctic Ocean and 

are so far detected up to a maximum depth of 1200m [e.g., Dowdeswell et al., 2010b; 

Gebhardt et al., 2011; Jakobsson et al., 2008b; Jakobsson et al., 2005; Niessen et al., 

2013] (see Figure 3). Traces of single grounded megascale icebergs from the Arctic 

have been found at about 1000m depth [e.g., Dowdeswell et al., 2010b; Jakobsson et al., 

2010; Kuijpers and Werner, 2007], with the deepest at about 1085 m in Baffin Bay, 

West Greenland [Kuijpers et al., 2007]. Thus, the scours discussed in this paper also 

underlines the existence of huge ice sheets and are so far the deepest traces of giant 

icebergs. 

4.2 Data and Methods 

All bathymetric and subbottom profiler data were acquired during cruise ARK-VII/3a in 

August 1990. Subbottom profiler data were measured with the Atlas Parasound system 

and were recorded on paper only (Atlas Deso-25). Parasound is a parametric system 

using 18 and 22 kHz as primary and 4 kHz as secondary (subbottom) frequencies, 

respectively. The footprint of Parasound is given with about 7% of the water depth 

(84m lateral resolution at 1200m water depth). Due to its age and former acquisition 

setup, the data quality is rather poor compared to modern parametric systems but still 

significantly better than that of conventional 3.5 kHz subbottom systems. 

Swath bathymetry was surveyed with an Atlas Hydrosweep DS1 multibeam system 

with 59 beams and a transmitting frequency of 15.5 kHz. The bathymetric data were 

cleaned with Caris HIPS software for the BCFS [Klenke and Schenke, 2002]. In 2013 

the data were again checked with Caris HIPS and additionally with QPS Fledermaus. 

For this study, a bathymetric grid was calculated using the remove-restore method 

[Jakobsson et al., 2012b] applying 60 m resolution where data were available and 180m 

resolution in the data gaps. 
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Table 4.1: Properties of Identified Seafloor Features 

ID Relative Depth Width (m) Length (m) Grid Bearing (deg) 
F1 10 200 4000 185 

F2 5 200 4000 173 

F3 5 100 2000 187 

F4 15 300 4000 193 

F5 10 150 2000 199 

4.3 Results 

In total, five elongated features were identified in the bathymetric data on the crest of 

HR at about 1200 m (Figures 4.1b and 4.1c). All structures are straight. The most 

prominent features are F1 and F4 and are clearly visible in the bathymetric grid (Figures 

4.1b and 4.1c). Table 4.1 lists the properties of each identified feature. The scours only 

appear at the very top of HR in a fixed range between 1180 m and 1210 m depth 

(Figures 4.1b and 4.1c). In general, they are oriented in a north-south/south-north 

direction with grid bearing ranging by 26° and less (Table 4.1). All five lineaments are 

verified by transects of subbottom profiler data (Figure 4.2 and Appendix A). To a 

depth of approximately 40 m below the sea floor, three acoustic units can be 

distinguished. Unit 1 is a spotted but otherwise featureless drape with a thickness of 

about 5 m. Unit 2 consists of sediments with discontinuous reflectors intercalated with 

more massive or semitransparent deposits, underlain by well stratified sediments (Unit 

3, Figure 4.2). Lineaments F2/F3 and F5 are clearly draped by Unit 1 sediments. For 

lineaments F1 and F4 such a drape is not, or not clearly, visible (Figure 4.2), which may 

be the result of the limited lateral resolution of the system (84m on top of the HR). The 

sediments of Unit 3 are undisturbed (Figure 4.2). 

4.4 Discussion 

Lineaments on the sea floor can have different origins, such as induced by active 

faulting (e.g., caused by differential compaction of underlying sediments [Chopra and 

Marfurt, 2012]) or by erosion (e.g., by grounding of ice [e.g., Dowdeswell et al., 

2010b]). The undisturbed character of the sediments of Unit 3 (Figure 4.2) shows that 
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the features are caused by erosion rather than by processes active within the formation. 

Elongated features of a moving grounded ice sheet generally occur in groups as parallel 

bed form sets [e.g., Graham et al., 2009]. The features observed here are not 

streamlined parallel but show grid bearing differences of up to 26° (Table 4.1 and 

Figure 4.1). Thus, we suggest that these features were produced by giant icebergs 

scouring the ridge crest at some time in the past. The differences in grid bearing also 

indicate that the scours were created by several icebergs rather than by a single 

multikeeled iceberg. 

 

Figure 4.2: Subbottom profiler data (for location see grey line in Figure 4.1b) showing the acoustic units 
(separated by orange lines). Note massive sediments with discontinuous reflectors in Unit 2 (yellow 
areas). 

The basic question is: Where did these icebergs come from? Iceberg trajectories are 

mainly steered by ocean currents and additionally by wind, waves, and sea ice that are 

variable in time and space [Death et al., 2006]. Modern day oceanographic observations 

show that the water current direction at HR to more than 1000m depth is strongly 

influenced by the East Greenland Current (EGC) having a north to south flow direction. 

The more easterly West Spitsbergen Current, transporting relative warm Atlantic water 

to the north, has only a marginal influence on HR [Schauer et al., 2004]. Moreover, the 

flux of Atlantic water into the Arctic Ocean via Fram Strait has a relatively large 

indirect effect on currents at HR, because the major part of water masses transported by 

the West Spitsbergen Current are recycled into the EGC intermediate water in the 

central Fram Strait [Johannessen, 1986]. This component is suggested to be reduced 

with a reduction of the West Spitsbergen Current during phases of glacial maxima 



Deep water paleo-iceberg scouring on top of Hovgaard Ridge–Arctic Ocean 
 

23 

[Jakobsson et al., 2010] and a more southerly overturning circulation in the North 

Atlantic [Hu et al., 2010]. However, even with a weaker EGC during glacial times the 

drift direction at HR is suggested to be north to south. Consistently, Darby et al. [2002] 

showed that icebergs from the Laurentide and Innuitian Ice Sheet left the Arctic Ocean 

through Fram Strait based on drop stone investigations. In addition, core PS13/140-4, a 

4.3 m long sediment core retrieved from the top of the HR in 1988 (Figure 1b), has a 

variable lithology including abundant ice-rafted debris and coal fragments [Wollenburg, 

2012]. Bischof et al. [1990] reconstructed the ice drift pattern of the Nordic Seas based 

on coal fragments and concluded that they most probably originate from coal exposures 

in northern Siberia eroded by ice and then transported through Fram Strait by icebergs 

into the North Atlantic. Furthermore, scour and lineation directions observed on Morris 

Jesup Rise [Jakobsson et al., 2010] and Yermak Plateau [Gebhardt et al., 2011], 

respectively, are also indicating that Arctic ice was drifting in the direction of Fram 

Strait (see Figure 4.3). Thus, the scours on HR most likely are caused by icebergs 

produced in the Arctic Ocean drifting southward trough Fram Strait and less likely 

originate from ice streams farther south such as those entering the Nordic Sea from 

Greenland or Scandinavia. Subsequently, the scours give evidence that several 

megascale icebergs left the Arctic Ocean trough Fram Strait, with only the deepest 

leaving a trace on HR. This is indicating that iceberg export to lower latitudes was 

larger than currently though. The icebergs were an additional source of fresh water. 

Therefore, they likely influenced the formation areas of polar deep water and thus the 

meridional overturning circulation [Knies et al., 2007]. 

The icebergs are estimated to have keel depths of at least up to 1090 m assuming a 120 

m lower sea level during maximum glaciations [Rohling et al., 2009]. No similar 

features are visible in the deeper, also relatively flat, parts of HR. Therefore, we suggest 

that 1090 m keel depth was the maximum size limit of paleo-icebergs passing Fram 

Strait. Modern day observations of icebergs in the Antarctic show a maximum draft of 

less than 700 m [Dowdeswell and Bamber, 2007]. Thus, today we have no equivalent of 

the processes producing giant icebergs during glacial times. However, Dowdeswell and 

Bamber [2007] conclude that deep-keeled icebergs originate from fast-flowing ice, 

which in our case had to be thicker than 1200m at the grounding line to produce 

icebergs of sufficient size. Furthermore, the pathway to HR had to be free of shallower 

bathymetric obstacles, e.g., ridges or continental shelf edges. 
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Batchelor and Dowdeswell [2013] analyzed Arctic cross shelf troughs that could have 

facilitated fast ice flow. They found that Arctic troughs are up to 1000 m deep. Southern 

Greenland and the Baffin Bay area can be excluded as source areas of icebergs on the 

HR due to shallow bathymetric obstacles in the North Atlantic (<700 m at Denmark 

Strait). The remaining troughs are up to 900 m deep (M’Clintock Inlet). This depth is 

reached at the inner continental shelf with a shallower shelf edge further offshore, 

preventing the release of giant icebergs into the Arctic Ocean. Thus, icebergs had to be 

calved offshore the continental shelf in order to travel to HR. St. Anna Trough is the 

deepest Arctic trough at the shelf edge (800 m) [Jakobsson et al., 2012b]. Polyak et al. 

[1997] suggested that the St. Anna ice stream has reached the shelf edge. The ice in St. 

Anna Trough was at least ≈ 900 m thick to stay grounded at the shelf edge. Therefore, 

we can conclude that the ice sheet had to be at least 300 m thicker at the St. Anna 

Trough grounding line than the currently estimated minimum ice thickness, in order to 

calve icebergs of sufficient size. Other slightly shallower major Arctic troughs are 

located in the Amerasian Basin. The Laurentide Ice Sheet, however, was too thin 

reaching up only to <100 m above sea level close the north Canadian coast during 

glacial maxima [England et al., 2009]. In contrast, the central Innuitian Ice Sheet is 

suggested to be thicker than 1000 m for the last glacial maximum [England et al., 2006] 

and supplied the M’Clintock Inlet Ice Stream (700 m trough depth at shelf edge). In 

order to travel from the Amerasian Basin to Fram Strait, icebergs had to cross the 

Lomonosov Ridge. This ridge only has a few gateways deep enough for giant icebergs 

(See Figure 4.3). In addition, Polyak et al. [2001] showed that the central crest of 

Lomonosov Ridge was eroded by ice originating most likely from the Eurasia Basin. 

Thus, giant iceberg source areas in the Eurasian Basin are more likely responsible for 

the HR scours. 

The only traces of grounded ice in similar depths as the iceberg scours we describe here 

are observed on the formerly glaciated East Siberian Continental Margin [Niessen et al., 

2013] of which the former glaciations and ice flow dynamics are still mostly unknown. 

The East Siberian Continental Margin, however, is also located in the Amerasian Basin. 

A regional ice advance documented on Yermak Plateau before 790 kyrs B.P. is only 

about 400 km northeast of HR [e.g., Flower, 1997; Gebhardt et al., 2011; Knies et al., 

2007; O’Regan et al., 2010]. This, however, unlikely was the source of the giant 

icebergs due to the observed depth of less than 850 m, and the lack of evidence for fast-

flowing ice since no troughs are present on Yermak Plateau. A determination of the 
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source of the icebergs is not possible within this study. Nevertheless, St. Anna Trough, 

showing the smallest difference to its estimated minimum ice thickness and located in 

the Eurasian Basin, and the East Siberian Continental Margin, with grounded ice at 

similar depths, are likely sources. 

 

Figure 4.3: Deep grounded ice events (I = produced by single icebergs) in the central Arctic Ocean with 
depths and if known direction (black arrow). The maximumice extent [after Niessen et al., 2013] is shown 
as black dashed line; red arrow shows St. Anna Trough (SAT) ice stream; grey shows areas shallower 
than 1200m based on IBCAO 3.0 [Jakobsson et al., 2012b]; generalized current directions between 200m 
and 1700m depth are from Rudels et al. [1994]; MJR = Morris JesupRise; SAT = St. Anna Trough; YP = 
Yermak Plateau. 
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According to our interpretation of acoustic subbottom data, icebergs grounded on the 

HR during and at the end of the deposition of Unit 2, because all elongated grooves 

were cut into Unit 2 sediments. In places, grounding leads to alteration of well-stratified 

sediments into massive or transparent deposits. The iceberg keels were subsequently 

draped by hemipelagic mud of Unit 1. However, the limited resolution of the subbottom 

images does not exclude the possibility that some features (F1, F4) were eroded into 

Unit 1. 

The chronology of the scours remains undetermined until well-dated cores from the top 

of the HR become available. Core PS13/140-4 from the top of HR (Figure 4.1b) has no 

chronology [Wollenburg, 2012]. However, ODP Site 908, located on the eastern flank 

of HR (Figure 4.1b), has an age model and subbottom structures similar to those 

described here for the top area of the HR [Knies et al., 2009]. Unit 1 is approximately 

2m thicker close to ODP Site 908 than adjacent to the scours suggesting sedimentation 

rates are about 35% lower on top of HR compared to the drill site (see Appendix A). 

For the top 35 m of Site 908 the linear sedimentation rate is 4.4 cm kyr1, which is 

calculated from one chronological point of 780 kyrs at 34.45 m below seafloor [Knies et 

al., 2009]. Assuming a linear sedimentation rate of 2.9 cm kyr-1 on top of the HR (35% 

lower than 4.4 cm kyr-1) the base of Unit 2 and Unit 1 has an estimated age of 700 kyrs 

and 170 kyrs B.P., respectively. Taking into account the low resolution in the age model 

of the Quaternary sediments of site 908 including the uncertainty in the correlation of 

acoustic Units 1 and 2 to the top of the HR, it seems reasonable to assume that ice 

grounding took place since about 600 to 800 kyrs B.P. (marine isotope stage (MIS) 15 

to MIS 20). Since this time the global ice volume has increased significantly [Gebhardt 

et al., 2011; Tiedemann et al., 1994]. Abundant ice-rafted debris is found in sediment 

cores from the Arctic Ocean indicative of drifting icebergs since MIS 16 [Stein et al., 

2010]. Increased export of ice to the HR is also recorded at Site 908 where the sand 

content shifts above 30 wt % after approximately 700 kyrs B.P. [Knies et al., 2009]. We 

suggest that icebergs grounded on HR for several times during this period. The scours 

visible in our bathymetric data were eroded into the upper sediments of Unit 2 possibly 

during MIS 6 (190 to 130 kyrs B.P.) when the maximum glacial coverage of the circum-

Arctic area is thought to have occurred [Jakobsson et al., 2010]. With only the present 

data at hand, we cannot exclude post-MIS-6 erosion by grounded ice. 
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4.5 Conclusions 

1. The five seafloor features on top of HR at depths down to 1210 m are erosional and 

best explained as scours of giant paleo-icebergs (draft of ≈ 1090 m), which has 

occurred several times during the last 800 kyrs. These are, so far, the deepest 

observed iceberg scours and thus are an important constraint for paleo-ice sheet 

thickness at the former calving line. 

2. Based on past and modern oceanic conditions megascale icebergs most probably 

left the Arctic Ocean through Fram Strait and scoured the HR in a north to south 

direction. Accordingly, a significant amount of freshwater was likely exported to 

lower latitudes by icebergs, of which the largest (giant icebergs) grounded at the 

HR. Likely, giant iceberg source areas are the St. Anna Trough or the East Siberian 

Continental Margin. 
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5.1 Introduction 

The drift of partially grounded icebergs leads to the formation of ploughmarks on the 

sedimentary seafloor of high-latitude continental shelves, bathymetric ridges and 

plateaus. Ploughmarks of various dimensions have been identified at several locations 

in the Arctic Ocean, suggesting that the icebergs produced during past glaciations were 

of different sizes and configurations [Jakobsson et al., 2014]. According to Jakobsson et 

al. [2014], giant icebergs with drafts of more than 1000 m were present in the Arctic 

Ocean, most probably during the Saalian glaciation of Marine Isotope Stage 6. Very 

deep iceberg ploughmarks have been mapped on Morris Jesup Rise at 1045 m water 

depth [Jakobsson et al., 2010] and offshore of central West Greenland at 1085 m of 

modern water depth [Kuijpers et al., 2007]. The iceberg ploughmarks illustrated here, 

from Hovgaard Ridge in central Fram Strait (Figure 5.1a), are the deepest features 

mapped to date where they occur to water depths of 1210 m [Arndt et al., 2014]. 

5.2 Description 

Hovgaard Ridge is an approximately 110-km long, southeast-northwest orientated ridge 

representing the shallowest bathymetric obstacle in the central Fram Strait, the only 

deep-water gateway of the Arctic Ocean (Figure 5.1a). Its summit is at about 1180 m 

water depth (78°25’N, 1°E). The very top of the ridge is relatively flat, whereas its 

flanks are steep (>10°). Six elongate shallow depressions with raised rims have been 

identified on swath-bathymetric imagery from the shallow parts of Hovgaard Ridge (1-

6, Figures 5.1b and c). The depressions are almost straight and strike north-south, with 

their bearings ranging over 26°. They are up to 4 km long and cross the shallowest part 

of Hovgaard Ridge (1180 m to 1210 m water depth). The depressions have a relative 

depth of 5 to 15 m and are between about 100 and 300 m wide. A single elliptical 

depression has been identified between depressions 1 and 2 (P, Figures 5.1b and c). This 

depression is about 400-500 m in diameter and 10 m deep. 

The subbottom stratigraphy contains three seismostratigraphic units (Figure 5.1d): an 

approx. 8 m thick acoustically stratified Unit 1; an up to 5 m thick, acoustically semi-

transparent Unit 2 with acoustically transparent bodies (marked in red; Figure 5.1d); an 

acoustically stratified Unit 3. The data reveal that the linear depressions and rims on the 

seafloor mimic the irregularities in Unit 2. 
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Figure 5.1: Multibeam bathymetry and subbottom profiler data of iceberg ploughmarks on Hovgaard 
Ridge. (a) Location of the study area (red box; map from IBCAO v. 3.0). (b) Swath-bathymetric image of 
iceberg ploughmarks on Hovgaard Ridge, orientated in a north-south direction and the pit hole (P). 
Acquisition System Kongsberg EM300. Frequency 30-34 kHz. Grid-cell size 25 m. (c) 3D oblique view 
of iceberg ploughmarks looking from the north-east. (d) Subbottom profile crossing the iceberg 
ploughmarks. The ploughmarks are formed in the upper sedimentary units, whereas Unit 3 is undisturbed. 
Shaded red areas show semi-transparent deposits. Acquisition system Edgetech 3300-HM subbottom 
profiler, pulse mode 1.5-9 kHz, pulse-length 40 ms. 
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5.3 Interpretation 

The elongated depressions on the relatively flat upper surface of Hovgaard Ridge are 

interpreted as ploughmarks formed from the grounding of giant icebergs with very deep 

keels. The undisturbed character of acoustic Unit 3 implies that the depressions were 

formed by an erosive process. The slightly varying orientations of the ploughmarks 

suggest that they were produced by several individual icebergs rather than by one multi-

keeled iceberg; a phenomenon observed on Yermak Plateau [Dowdeswell et al., 2010b]. 

Assuming a sea-level lowering of approximately 120 m during past full-glacial periods, 

the iceberg drafts reached water depths of 1090 m. The transparent deposits in acoustic 

Unit 2 are suggested to be iceberg turbates that formed during iceberg grounding [T. O. 

Vorren et al., 1983]. The elliptical depression is interpreted as a grounding pit produced 

by a single hit of a turning giant iceberg. 

Modern and reconstructed past oceanographic observations suggest a southward drift of 

icebergs through Fram Strait into the North Atlantic [e.g., Darby et al., 2002]. The 

southward iceberg drift in the past is also supported by ice-rafted debris found in a 

sediment core on Hovgaard Ridge, which consists of coal fragments that can be linked 

to source areas in the Arctic Ocean [Bischof et al., 1990], and by the orientations of 

iceberg ploughmarks in the central Arctic Ocean that indicate a drift direction towards 

Fram Strait [Jakobsson et al., 2014]. Thus, the icebergs leading to the formation of the 

ploughmarks on the crest of Hovgaard Ridge most likely derived from ice sheets with 

grounding lines at water depths of 1200 m or more surrounding the Arctic Ocean. An 

additional pre-requisite is that the pathway between the calving front and Hovgaard 

Ridge was free of shallower bathymetric obstacles. St. Anna Trough, located at about 

70°E between Russian Franz Josef Land and Severnaya Zemlya, is the deepest trough at 

the shelf edge in the Arctic Ocean. It has been demonstrated that grounded ice streams 

extended repeatedly to the shelf break in this trough [Polyak et al., 1997]. Further east, 

the East Siberian continental margin is the only other place in the Arctic Ocean where 

traces of grounded ice at a similar depth (about 1200 m) have been found [Niessen et 

al., 2013]. Consequently, the iceberg ploughmarks on the crest of Hovgaard Ridge are 

suggested to have their origin from grounded giant icebergs calving from ice sheets 

terminating in the St. Anna Trough or on the East Siberian continental margin [Arndt et 

al., 2014]. 
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6.1 Introduction 

The Northeast Greenland (NEG) continental shelf is only sparsely mapped due to its 

remoteness and harsh year-round sea-ice conditions. Mapping the distribution of 

submarine glacial landforms relies mainly on single track lines of multibeam echo 

sounder bathymetric data with only occasional systematic surveys. Ice streams drain the 

modern Greenland Ice Sheet to its northeastern margin in several fjords near the head of 

the Westwind Trough (Figure 6.1a). The presence of glacial lineations and recessional 

moraines in the inner to middle trough indicates that the Greenland Ice Sheet extended 

onto the continental shelf probably during the Last Glacial Maximum [Evans et al., 

2009; Winkelmann et al., 2010]. 

6.2 Description 

Multibeam bathymetry and subbottom profiler data showing glacial landforms were 

acquired along several transects transverse to the orientation of Westwind Trough 

(Figure 6.1a) [Evans et al., 2009]. The multibeam bathymetry reveals the presence of 

numerous, parallel to sub-parallel and elongated ridges or lineations forming positive 

relief relative to the surrounding seafloor (Figure 6.1b). The orientation of the lineations 

is sub-parallel to the long-axis of Westwind Trough. The lineations are well-defined in 

some areas of the trough but are more subtle elsewhere. Lineations often exceed 2.5 km 

in length and can approach 10 km. They are up to 10 m in height, about 350 m in width, 

with elongation ratios of 12:1 to 33:1 (Figures 6.1c and d). 

Subbottom profiles show that the lineations are sedimentary, and comprise acoustically 

transparent and homogenous sediment with a distinct, flat to undulating basal reflector 

(Figures 6.1c and d). The thickness of this uppermost sedimentary unit is up to 30 m 

but, in some areas of the trough, the unit is <10 m thick or appears to be absent or below 

the vertical resolution of the TOPAS system. The acoustically-transparent sediment is 

either: (a) confined to the lineations; or (b) occurs as a semi-continuous layer in which 

lineations are formed in the surface and sediment extends beneath the intervening 

grooves. 
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Figure 6.1: Multibeam bathymetry and cross-profiles of glacial lineations and recessional moraines in 
middle to outer Westwind Trough on the NE Greenland continental shelf. (a) Location map showing the 
study area (red boxes) (map from IBCAO Version 3.0). (b) Image showing glacial lineations indicating 
the past expansion of the Greenland Ice Sheet onto the continental shelf [modified from Evans et al., 
2009]. Acquisition system Kongsberg EM120. Frequency 12 kHz. Grid-cell size 15 m. (c) and (d) 3.5 
kHz subbottom profiles transverse to the trough long-axis (x-x’ and y-y’ in Fig. 1b) showing glacial 
lineations formed in an acoustically transparent sedimentary unit consistent with spatially discontinuous 
to semi-continuous soft basal till. Acquisition system Kongsberg TOPAS PS 018, secondary beam 
frequency 0.5-6 kHz. (e) 3D oblique view of swath bathymetry showing arcuate to elongate recessional 
moraines produced along a retreating ice sheet margin. Acquisition system ATLAS Hydrosweep DS2. 
Frequency 15,5 kHz. Grid-cell size 20 m. (f) and (g) 4 kHz subbottom profiles trough recessional 
moraines (z-z’ in Fig. 1e). The moraines are asymmetric in profile, with steeper west-facing slopes and 
comprise acoustically transparent sediment consistent with soft basal till. Acquisition system ATLAS 
PARASOUND, 18 kHz and 22 kHz transmission frequencies. Images in (e), (f) and (g) modified from 
Winkelmann et al. [2010]. 
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A 160 km² area of the central Westwind Trough (Figure 6.1a) was surveyed 

systematically by Winkelmann et al. [2010]. A number of ridges are visible in water 

depths between 270 to 350 m (Figure 6.1e), and are generally oriented roughly 

orthogonal to the lineations mapped further west in the trough (Figure 6.1b). They are 

between 10 to 25 m high relative to the surrounding seafloor and up to 7 km long. Most 

of the ridges are arcuate, a few are more elongated and smaller in height (< 10m). 

Further, most ridges are asymmetrical in cross-section with the majority having a 

steeper west-facing slope (Figures 6.1f and g). Subbottom profiler data shows a rather 

flat surface representing the surface of an acoustic unit extending underneath the ridges 

(Figure 6.1g). The internal structure of the ridges consists of an acoustically-transparent 

unit, and both the ridges and intervening flat seafloor are draped by a thin upper 

acoustic unit. 

6.3 Interpretation 

The elongated, streamlined sedimentary lineations in inner Westwind Trough (Figure 

6.1b) are interpreted as subglacial bedforms produced at the base of an active ice sheet. 

Comparison with sediments of similar acoustic character, found in close association 

with subglacial lineations on other polar continental shelves [Ó Cofaigh et al., 2002], 

indicates that the lineations are formed in the surface of a homogenous soft or dilatant 

till [Dowdeswell et al., 2004]. The distribution of lineations within a cross-shelf trough 

are often used as indicators of the former presence of ice streams where fast-ice flow is 

facilitated by substrate deformation [e.g., Dowdeswell et al., 2004; Ó Cofaigh et al., 

2002]. The fresh appearance of the lineations in Westwind Trough suggest an advance 

of the Greenland Ice Sheet onto the adjacent NEG shelf most probably during the last 

glacial cycle, and that a fast-flowing ice stream was active in Westwind Trough [Evans 

et al., 2009]. The apparent lack of retreat moraines and the presence of only a very thin 

drape of deglacial/postglacial sediments overlying the subglacial lineations on 

geophysical records from the inner shelf suggest that ice recession through this part of 

Westwind Trough was relatively rapid [Dowdeswell et al., 2008]. 

In contrast, transverse-to-flow moraines imply a stepwise deglaciation with multiple 

halts and minor readvances of the ice-stream grounding-zone [Dowdeswell et al., 2008]. 

The ridges located further east on the middle shelf (Figures 6.1a and e), based on their 

asymmetric morphology and their inner structure, are probably recessional push 
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moraines formed during episodic still-stands that punctuated the retreat of a Westwind 

Trough palaeo-ice stream [Winkelmann et al., 2010]. These recessional moraines are 

formed at the ice-sheet terminus by bulldozing sediment during minor re-advances of a 

grounded ice front or by deposition during significant halts [Golledge et al., 2008]. The 

thin drape of sediments overlying the moraines and adjacent seafloor is probably of 

Holocene age. 

The distribution of lineations on the inner shelf and recessional push moraines on the 

middle shelf indicate that the speed of the palaeo-ice stream retreat in Westwind Trough 

was highly variable. In the initial phase of deglaciation, ice retreat was stepwise forming 

moraines. In a later stage, ice retreat accelerated leaving undisturbed sub-ice stream 

lineations. 
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Abstract 

A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) 

continental shelf (74°N–81°N) is presented. The DBM has a grid cell size of 250 m 3 

250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 

single-beam cruises and first reflector depths from industrial seismic lines. The new 

DBM substantially improves the bathymetry compared to older models. The DBM not 

only allows a better delineation of previously known seafloor morphology but, in 

addition, reveals the presence of previously unmapped morphological features including 

glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These 

submarine landforms are used to infer the past extent and ice-flow dynamics of the 

Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent 

ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric 

troughs that may enable the inflow of warm Atlantic water masses across the shelf, 
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driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice 

sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the 

middle shelf are also suggested to be related to salt diapirism. North-south orientated 

elongate depressions are identified that probably relate to ice-marginal processes in 

combination with erosion caused by the East Greenland Current. A single guyot-like 

peak has been discovered and is interpreted to have been produced during a volcanic 

event approximately 55 Ma ago. 
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7.1 Introduction 

The Northeast Greenland (NEG) continental shelf (20°W–5°W and 74°N–81°N) is the 

broadest shelf along the Greenland margin, extending more than 300 km from the 

coastline (Figure 7.1). It is bounded to the east by the Fram Strait, the only deep water 

connection between Arctic Ocean and lower-latitude seas, and to the west by the East 

Greenland coastline that consists of fjords, islands, and marine-terminating glaciers. 

Nioghalvfjerdsfjorden Glacier (also referred to as 79°-Glacier), Zachariae Isstrøm, 

Storstrømmen, and L. Bistrup Bræ (Figure 7.1b) are the major ice streams of the 

Greenland Ice Sheet in our study area, of which the former three are part of the NEG ice 

stream (Figure 7.1; NEGIS) that extends up to ~700 km inland [Joughin et al., 2001]. In 

total, these ice streams drain about 20% of the Greenland Ice Sheet [Zwally et al., 

2012]. Over the past few decades, the NEG area of the ice sheet has been thought to be 

relatively stable compared to other parts of Greenland [Joughin et al., 2010; Rignot and 

Kanagaratnam, 2006]. Recent studies, however, have shown increased ice-sheet 

thinning in this area [Helm et al., 2014; Khan et al., 2014]. During the late Quaternary, 

the extent of the NEG glaciers has experienced great variability. For example, 79°- 

Glacier today has a fringing ice shelf approximately 80 km long and 20 km wide 

[Mayer et al., 2000]. In the early-mid Holocene, from 7.7 to 4.5 kyrs, this ice shelf was 

not present [Bennike and Weidick, 2001]. In contrast, high-resolution bathymetric 

observations of submarine glacial features demonstrate that the ice sheet extended onto 

the continental shelf [Evans et al., 2009; Winkelmann et al., 2010] and possibly reached 

the shelf edge 300 km to the east during the Last Glacial Maximum (LGM) [Bennike 

and Weidick, 2001]. However, the glacial history of the NEG continental shelf remains 

poorly known because few records of glacial geomorphology and sediments are 

available and more constraints on past ice-sheet dynamics are required to understand 

ice-sheet response in a changing climate. With its exceptional width, the NEG 

continental shelf represents the largest possible oscillation of the Greenland Ice Sheet 

and thus is a key region to study past ice-sheet behavior and assess its possible 

contribution to full-glacial sea level fall. For several other formerly glaciated continental 

shelves, new regional digital bathymetric models (DBM) have been produced recently 

[Dickens et al., 2014; Graham et al., 2011; Nitsche et al., 2007], providing new insights 

on past ice-sheet extent and ice-stream activity through the identification and regional 

mapping of large-scale glacial features, such as cross-shelf troughs and grounding-zone 
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wedges (GZWs) [e.g. Batchelor and Dowdeswell, 2014; Batchelor and Dowdeswell, 

2015]. 

 

Figure 7.1: (a) Location map of the study area showing sea ice, glaciological, and oceanographic 
conditions. Ice-sheet velocities are from Joughin et al. [2010]. NEGIS = Northeast Greenland Ice Stream, 
NØIB=Norske Øer Ice Barrier, AW=Arctic Water, RAW=Return Atlantic Water, WSC=West 
Spitsbergen Current, and EGC=East Greenland Current. (b) Geographical names mentioned in the text; 
79G=79°-Glacier, ZI=Zachariae Isstrøm, SS=Storstrømmen, LBB=L. Bistrup Bræ, and IT=inter-trough 
areas. 

The extend and dynamics of marine-terminating glaciers or ice-streams draining the 

Greenland Ice Sheet are strongly dependent not only on atmospheric forcing but, 

additionally, on ocean circulation, which can transport relatively warm water masses to 

or below the ice front that enhance submarine melting at the grounding-line or 

underside of the floating margins [Christoffersen et al., 2011; Hellmer et al., 2012; 

Holland et al., 2008]. The western part of Fram Strait and the NEG outer shelf are 

influenced strongly by the cold southward-flowing East Greenland Current (Figure 7.1a; 

EGC) [Aagaard and Coachman, 1968]. The currents on the inner shelf are still only 

poorly understood, with conflicting interpretations suggesting clockwise or 

counterclockwise water circulation [Bourke et al., 1987; Budéus and Schneider, 1995; 

Wadhams et al., 2006]. Nevertheless, relatively warm Atlantic water (1°C) has been 

observed at 79°-Glacier [Straneo et al., 2012] that must have crossed the continental 
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shelf from the east. The movement of water masses on the continental shelf is 

dependent, in part, on bathymetric pathways that allow the density-driven exchange of 

water masses. Accordingly, modeling of such systems relies on accurate knowledge of 

shelf bathymetry. 

The geology of the NEG continental shelf is related to the highly variable and complex 

breakup of the North Atlantic Ocean and Fram Strait, linked to various oblique 

spreading processes [Engen et al., 2008]. Hamann et al. [2005] showed that the northern 

part of the NEG shelf consists predominantly of deep sedimentary basins, including 

areas with salt diapirism and faulting. South of 75°N, the NEG Volcanic Province is 

present [Hamann et al., 2005]. Occasionally, these processes leave imprints in the form 

of unique morphological features on the seafloor. Mapping these features allows a 

greater horizontal resolution for geological interpretations that have previously relied on 

limited seismic data coverage. 

The EGC continuously transports sea ice from the Arctic Ocean, resulting in year-round 

harsh sea ice conditions on the NEG shelf. In addition, a large area of land-fast sea ice, 

named Norske Øer Ice Barrier (Figure 7.1a), was present for decades and has recently 

started to break up more regularly in late summer [Hughes et al., 2011]. Therefore, the 

NEG shelf is typically inaccessible to research vessels collecting bathymetric data. This 

situation has changed dramatically in the last decade with periodically light sea-ice 

conditions even in the northern parts of NEG enabling seafloor bathymetric data to be 

acquired during a number of geoscience cruises. 

Bathymetry data for the NEG continental shelf were first described by Johnson and 

Eckhoff [1966], indicating the wide extent of the shelf. Later, bathymetric models 

described trough structures on the shelf [Perry et al., 1980]. The most recent regional 

compilation was published in 1994 [Cherkis and Vogt]. Today, the bathymetry of the 

NEG shelf is best described by the International Bathymetric Chart of the Arctic Ocean 

(IBCAO) Version 3.0 [Jakobsson et al., 2012b]. These data sets, however, are outdated 

or, in case of IBCAO, are part of larger pan-Arctic compilations that cannot focus on 

relatively small regions and, thus, have more artifacts and/or missing data in 

comparison to a designated regional compilation. 

Here we present a new regional digital bathymetric model (DBM) for the NEG 

continental shelf. This DBM was produced using both new and reprocessed bathymetric 

data. The core of the database consists of 30 cruises with multibeam echo sounder data 
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and more than 20 cruises with single-beam echo sounder data from 1985 until the 

present. In addition, seismic first reflector data, echo-sounding data from an 

autonomous undersea vehicle (AUV), CTD maximum depths, as well as topographic 

under-ice data have been integrated in the database. The database was gridded at a cell 

size of 250 m 3 250 m, which is twice as high as older models. These improvements 

make it possible to reveal for the first time previously unmapped seafloor landforms and 

to improve the resolution and description of the morphology of the NEG continental 

shelf. Based on the new DBM, we have mapped and described various morphological 

seafloor features on the NEG shelf. These provide information on the extent, pathways, 

and behavior of past ice streams draining the NE sector of the Greenland Ice Sheet and 

the location of active salt diapirism. Furthermore, the DBM serves as an important 

boundary condition for future oceanographic and biological research in the region. 

7.2 Data 

7.2.1 DBM Base Data 

The compilation of the NEG DBM is based on bathymetric, topographic, and under-ice 

bedrock elevation data (Table 7.1 and Figure 7.2). In addition to echo-sounding data 

from research vessels, first reflector depth data from systematic seismic surveys have 

been made available by TGS and Autosub-II AUV data from mission M365 underneath 

Norske Øer Ice Barrier (Figure 7.1) [Wadhams et al., 2006] have been integrated. 

For areas without any acoustic soundings, alternate data sets were used to constrain the 

water depth. Maximum depths of CTD casts were used as minimum depth information 

in areas where the resulting gridded depths were otherwise shallower. Furthermore, the 

bathymetric map of Cherkis and Vogt [1994] was used to infer contours close to the 

coast. In addition, we added inferred contours at 5 m above sea level for islands that 

were not represented by the topographic data sets. Some of these islands were identified 

offshore of the Nioghalvfjerdfjorden ice shelf edge from satellite imagery [NASA 

Landsat Program, 2000]. Tuppiap Qeqertaa (Tobias Island) on Northwind Shoal was 

described by Bennike et al. [2006] (Figure 7.1b). The locations of inferred contours are 

shown in the source identifier grid that accompanies the DBM (Figure 7.2 and 

Appendix B).  
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Table 7.1: Data Sets used in the Digital Bathymetric Modela 

Type ID Year Vessel Source Reference 
Multibeam ARK-III/2 1985 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-III/3 1985 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-IV/1 1987 FS Polarstern AWI Klenke and Schenke 2002 
 ARK_IV/3 1987 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-VII/1 1990 FS Polarstern AWI  
 ARK-VII/3a 1990 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-VII/3b 1990 FS Polarstern AWI  
 ARK-VIII/3 1991 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-X/1 1994 FS Polarstern AWI  
 ARK-X/2 1994 FS Polarstern AWI  
 ARK-XI/2 1995 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-XIII/2 1997 FS Polarstern AWI  
 ARK-XIII/3 1997 FS Polarstern AWI Klenke and Schenke 2002 
 ARK-XV/2 1999 FS Polarstern AWI  
 ARK-XVI/1 2000 FS Polarstern AWI  
 ARK-XVII/1 2001 FS Polarstern AWI  
 ARK-XVIII/1 2002 FS Polarstern AWI  
 ARK-XVIII/2 2002 FS Polarstern AWI  
 ARK-XIX/4a 2003 FS Polarstern AWI  
 ARK-XIX/4b 2003 FS Polarstern AWI  
 ARK-XX/2 2004 FS Polarstern AWI  
 ARK-XX/3 2004 FS Polarstern AWI  
 ARK-XXIV/3 2009 FS Polarstern AWI Winkelmann et al. 2010 
 ARK-XXVII/1 2012 FS Polarstern AWI  
 ARK-XXVIII/2 2014 FS Polarstern AWI  
 ARK-XXVIII/3 2014 FS Polarstern AWI  
 ARK-XXVIII/4 2014 FS Polarstern AWI  
 LOMROG 2007 RV Oden SU Jakobsson et al. 2008a, 2010 
 NEGC2008 2008 RV Oden SU  
 JR106 2004 RRS JC Ross SPRI Evans et al. 2009 
Singlebeam ARK-IX/2 1993 FS Polarstern AWI  
  ARK-IX/3 1993 FS Polarstern AWI  
  ARK-XIII/1 1997 FS Polarstern AWI  
  ARK-XIV/2 1998 FS Polarstern AWI  
  ARK-XV/1 1999 FS Polarstern AWI  
  ARK-XV/3 1999 FS Polarstern AWI  
  ARK-XVI/2 2000 FS Polarstern AWI  
  ARK-XIX/2 2003 FS Polarstern AWI  
  ARK-XX/1 2004 FS Polarstern AWI  
  ARK-XXI/1 2005 FS Polarstern AWI  
  ARK-XXIII/1 2008 FS Polarstern AWI  
  ARK-XXIII/2 2008 FS Polarstern AWI  
  ARK-XXIV/1 2009 FS Polarstern AWI  
  ARK-XXV/1 2010 FS Polarstern AWI  
  ARK-XXV/2 2010 FS Polarstern AWI  
  ARK-XXVI/1 2011 FS Polarstern AWI  
  various cruises 2008-14  NPI  
  1 cruise 2009 MV Arctic Sunrise WHOI  
  PLRSEA90 1990 USCGC Polar Sea USN  
Seismic first reflector NEG08 2008  TGS  
  NEG09 2009  TGS  
  NEG10 2010  TGS  
  NEG11 2011  TGS  
  NEG12 2012  TGS  
  NEG13 2013  TGS  
  NEG14 2014  TGS  
  64 single shots 1998-99  AWI Mayer et al. 2000 
AUV-Singlebeam M365 2004 Autosub-II SPRI Wadhams et al. 2006 
CTD (max depths) 25 casts -  NODC  
 9 casts 1998-99  AWI Mayer et al. 2000 
 3 casts -  NPI  
Topography GIMP 2014  BPRC Howat et al. 2014 
Bedrock topography - 2014  UCI Morlighem et al. 2014 
aAWI = Alfred Wegner Institute; BAS = British Antarctic Survey; BPRC = Byrd Polar Research Center; NODC = National 
Oceanographic Data Center; NPI = Norske Polar Institute; UCI = University of California, Irvine; USN = U.S. Naval Research 
Laboratory; SPRI = Scott Polar Research Institute; SU = Stockholm University; WHOI = Woods Hole Oceanographic Institute. 
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Figure 7.2: Bathymetric data coverage map for the Northeast Greenland shelf and deeper water showing 
the locations of different data sources. MB = Multibeam echo-sounding; SB = Single-beam echo-
sounding; S = First reflector picked from seismic data. 
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7.2.2 Seismic Data for Interpretation 

Multichannel seismic data were used from FS Polarstern cruise ARK-XV/2 (for location 

see Figure 7.4). The data were acquired in heavy ice with a 1600 m long 64-channel 

streamer using a tuned air gun cluster with a total volume of 24l (8VLF air guns). In 

addition, 14 sonobuoys were deployed during this cruise to better determine the seismic 

velocities of the subsurface. 

7.3 Methods 

7.3.1 Bathymetric Data Processing 

All Polarstern multibeam and single-beam data were edited with CARIS HIPS and SIPS 

software and, finally, extracted as XYZ ASCII data. Multibeam and single-beam data 

from other vessels were available as partly cleaned XYZ ASCII data. All bathymetric 

points were checked and further cleaned with QPS Fledermaus software using the PFM 

file format. Single-beam data were acquired using 1500 m/s as the standard sound 

velocity through water. At crossing points between single-beam data and multibeam 

data surveys, we were able to estimate a reasonable sound velocity from the depth 

differences and to correct the single-beam measurements to a common depth reference. 

7.3.2 Topographic Data Processing 

In glaciated regions, bedrock topography underneath the ice sheet is the continuation of 

shelf bathymetry. The onshore part of the study area comprises of ice-covered and ice-

free landscapes. The Greenland Ice Mapping Project (GIMP) DEM [Howat et al., 2014] 

describes the ice sheet surface and the ice-free topography, and this was used for ice-

free areas in the NEG DBM. For ice-covered areas, we used the icepenetrating radar-

derived under-ice bedrock data set from Morlighem et al. [2014]. 

The GIMP DEM showed erroneous data leading to artifacts in the surface representation 

in some areas (e.g., spikes or holes). Therefore, we exported the DEM as a XYZ ASCII 

point cloud and removed these errors using a QPS Fledermaus PFM file. The cleaned 

point cloud was then gridded at 200 m resolution with a spline under tension algorithm 

[W H F Smith and Wessel, 1990] to fill the data gaps that resulted from the data editing. 
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The GIMP DEM and the data set from Morlighem et al. [2014] used ellipsoidal WGS84 

altitude as the vertical reference. All bathymetric data are referenced to mean sea level. 

In NEG, the difference between ellipsoidal and mean sea level is approximately 30–50 

m. When combining the bathymetric and land-topographic data sets, their vertical 

datum has to be the same. Accordingly, we transformed the vertical reference of the 

topographic data to the EGM2008 geoid that approximately matches mean sea level. 

The elevation data sets were clipped and integrated into the DBM by applying masks on 

the bedrock and topographic elevation data sets. These masks were derived from the 

ice-covered and ice-free terrain classification masks of GIMP [Howat et al., 2014]. 

Where the GIMP DEM had erroneous areas, as mentioned above, the masks 

misleadingly indicated ocean grid cells. Both masks where manually cross checked for 

errors by comparison to satellite imagery and the adjacent topography. In the area of 

79°-Glacier, and particularly on the floating ice shelf at its margin, the ice mask was 

modified to use the seismic measurements of Mayer et al. [2000] as under-ice bedrock 

elevation instead of the data set of Morlighem et al. [2014]. Finally, the masked 

topographic and under-ice bedrock elevation data sets were converted to XYZ ASCII. 

Figure 7.2 shows ice-free and ice-covered areas where bedrock elevation data have been 

used. 

 

Figure 7.3: Scheme showing data-processing and gridding steps to produce the Northeast Greenland 
digital bathymetric model (NEG DBM). Yellow boxes represent data sources, green boxes are processing 

steps, and white boxes are the digital bathymetric models. 
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7.3.3 Gridding 

The overall working scheme of the gridding process is shown in Figure 7.3. The XYZ 

ASCII files of all data sources form the data base of the NEG DBM. In addition to 

position and elevation (XYZ), a weighting value and a source identification number 

were assigned to each data point (XYZWS) to retain information on the data source. 

The DBM was calculated in a polar stereographic projection with latitude of origin at 

70°N and the central meridian at 45°W (EPSG:3413—WGS 84 NSIDC sea ice polar 

stereographic north). It covers an area of approximately 400,000 km2 and includes the 

NEG continental shelf from ~74°N to 81.5°N. 

The DBM was gridded with a multiresolution gridding algorithm which has also been 

used in other bathymetric compilations [Arndt et al., 2013; Hell and Jakobsson, 2011; 

Jakobsson et al., 2012b]. This technique produced a smooth interpolated surface in 

areas with sparse data, while retaining detailed information of the seafloor morphology, 

where data quality and density were sufficient. Two grid cell sizes were used: a 250 m × 

250 m cell size was used as high resolution and 500 m 3 500 m cell size as low 

resolution. To minimize artifacts at the boundary between high and low-resolution 

areas, we used a bending algorithm [Arndt et al., 2013] in a transition zone of 500 m. 

The resulting DBM was checked visually after gridding for artifacts in the QPS 

Fledermaus software. Checking the DBM and cleaning the database was repeated in an 

iterative process (Figure 7.3), until the DBM showed satisfactory results. During this 

process, further inferred contours were added in data gaps where the interpolation 

yielded unrealistic results in comparison to well-surveyed adjacent bathymetry or 

topography. Detailed information on the location of inferred contours can be obtained 

from the source identifier grid (Figure 7.2 and supporting information). 
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Figure 7.4: The new digital bathymetric model of the Northeast Greenland continental shelf based on the 
data shown in Table 7.1 and Figure 7.2. Black line shows the present-day coastline. White dashed lines 
show the locations of bathymetric profiles given in Figures 7.5 and 7.6 and the seismic line AWI-99080 
in Figure 7.9. 
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7.4 Results 

The resulting bathymetric model of the NEG continental shelf and adjacent areas is 

presented in Figure 7.4. In total, 18% of the grid cells on the NEG continental shelf 

(down to 1000 m) are constrained directly by depth measurements. These 18% can be 

broken down into: 9% constrained by multibeam data, 5% by singlebeam data, and 4% 

by other data such as seismic seafloor reflector and CTD maximum depths (Figure 7.2). 

Eighty-two percentages of the grid cells on the continental shelf remain unconstrained 

by depth measurements (Figure 7.2). Nearly 21% of the unconstrained grid cells are 

more than 5 km away from the nearest sounding, and 8% are more than 20 km away. 

Most of these unconstrained grid cells are located close to the coast, which has the 

lowest density sounding coverage of any location across the NEG continental shelf 

(Figure 7.2). At distances of less than 30 km from the NEG coast, only 8.6% of the grid 

cells are constrained directly by depth measurements. 

7.4.1 Cross-Shelf Troughs 

The new bathymetry model shows five prominent cross-shelf troughs which are deeper 

than the surrounding banks (Figure 7.4). From north to south, these are Westwind 

Trough, Norske Trough, Store Koldewey Trough, Dove Bugt Trough, and 

Hochstetterbugten Trough (Figure 7.1b). Together, the trough systems cover more than 

40% of the NEG continental shelf with Norske Trough alone covering approximately 

20% (Figure 7.4). The shallower shelf areas between the troughs have no names and 

hereafter are referred to as inter-trough areas. The area between Westwind Trough and 

Norske Trough is inter-trough area A (IT-A), the inter-trough area between Norske 

Trough and Store Koldewey Trough is inter-trough area B (IT-B), and the area between 

Store Koldewey Trough and Dove Bugt Trough is inter-trough area C (IT-C) (Figure 

7.1). 
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Figure 7.5: Bathymetric profiles of (a) Westwind Trough and (b) Norske Trough; grey insets are enlarged 
wedge-shaped bathymetric sills that we interpret as grounding-zone wedges; dotted line indicates that this 
part was not constraint by data. For locations, see Figure 7.4. 
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Figure 7.6: Bathymetric profiles of (a) Store Koldewey Trough, (b) Dove Bugt Trough, and (c) 
Hochstetterbugten Trough; grey insets are enlarged wedge-shaped bathymetric sills that we interpret as 
grounding-zone wedges; dotted line indicates that this part was not constraint by data. For location, see 
Figure 7.4. 
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7.4.1.1 Westwind Trough 

Westwind Trough is about 300 km long with a median width of approximately 40 km. 

The centerline of Westwind Trough curves roughly 908 from north to east in direction 

(Figure 7.4). The edges of the trough are defined by ridges and banks on either side. On 

the inner shelf, an elongate ridge is present in the western part of the trough (80°N, 

16.5°W). A cross section along Westwind Trough (Figure 7.4, a-a’; Figure 7.5a) shows 

that it has a reverse slope with a maximum water depth of more than 900 m underneath 

the ice shelf of 79°-Glacier and 300 m at the shelf edge. On the middle shelf, a wedge-

shaped sill is present with a minimum water depth of 240 m at its easternmost position 

(kilometers 250–280 in Figure 7.5a). A sill at 160 m depth at the entrance of the 

Djimphna Sund fjord system is the shallowest part of the long profile. 

7.4.1.2 Norske Trough 

Norske Trough is 350 km long and its width increases from 35 km on the inner shelf to 

90 km on the middle shelf and 200 km at the outer shelf (Figure 7.4). The centerline of 

Westwind Trough curves roughly 70° from a southward to a southeastward direction. 

Norske Trough has a reverse slope with 560 m maximum water depth at the inner shelf 

and 320 m at the shelf edge (Figure 7.5b). Close to the shelf edge, two shallower areas 

are present at 210 and 250 m water depth, respectively (Figure 7.4). On the middle 

shelf, a large 80 km long bathymetric sill is present where the maximum depth of the 

trough shallows from 490 to 360 m water depth (kilometers 120–200 in Figure 7.5b). 

Eastward of the sill, the edges of Norske Trough are defined by ridges (Figure 7.4 and 

7.8). The ridge in the north is 50 km long and 30 m high. The ridge in the south is 170 

km long and 100 m high. 

7.4.1.3 Store Koldewey Trough 

Store Koldewey Trough has a less pronounced trough morphology compared to the 

other four cross-shelf troughs (Figure 7.4). Its centerline is sinuous and oriented in a 

southeasterly direction over a length of 210 km. Its mean width is approximately 35 km. 

The cross section (Figure 7.4, c-c’; Figure 7.6a) shows that Store Koldewey Trough 

does not have a reverse slope but reaches its maximum depth at the shelf edge at 370 m 

water depth, shallowing to about 300 m on the inner shelf (Figure 7.8). 
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Figure 7.7: Detailed images of the Northeast Greenland bathymetry showing: (a) elongate depressions in 
inter-trough area A, (b) a guyot-like peak with a ring-shaped depression in Hochstetterbugten Trough, and 
(c) a wedge-shaped arcuate sill in Dove Bugt Trough. For locations, see Figure 7.4. 

7.4.1.4 Dove Bugt Trough 

Dove Bugt Trough trends southeastward until it merges with Hochstetterbugten Trough 

after about 120 km (Figure 7.4). The cross section (Figure 7.4, d-d’; Figure 7.6b) shows 

that Dove Bugt Trough has a reverse slope with a maximum water depth of about 490 m 

at the entrance to Dove Bugt and a minimum of about 300 m at the shelf edge. The 

northern limit of Dove Bugt Trough is defined by two banks with a ridge in between 

(Figures 7.4 and 7.8). The southern limit is defined by Shannon Island. A sill is present 

in Dove Bugt Trough (kilometers 70– 90 in Figure 7.6b). The sill has a relative 

elevation of about 40 m and has a wedge-like relief with a steeper slope in the offshore 

direction (Figure 7.6b). In plan view, the sill has an arcuate form (Figure 7.7c). 

7.4.1.5 Hochstetterbugten Trough 

Hochstetterbugten Trough is the continental shelf continuation of Bredefjord (Figure 

7.4). On the inner shelf, the trough is still constrained by a mountainous terrain and 

islands to the north and south until it merges with Dove Bugt Trough east of Shannon 
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Island. Hochstetterbugten Trough has a reverse slope with a maximum depth on the 

inner shelf of 450 m water depth and more than 550 m in Bredefjord (Figure 7.6c). At 

the shelf break, the maximum depth is 300 m (Figure 7.6c). South of Shannon Island, a 

sill and a single peak are present in the trough (Figure 7.7b). The sill is 80 m high, 

reaching a minimum water depth of 300 m (Figure 7.6c). The top of the peak is 

relatively flat at a minimum depth of 250 m, with its flanks dropping abruptly up to 100 

m into a ringshaped depression (Figure 7.7b). 

7.4.2 Shoals and Banks 

The Ob Bank in the very north of the study area is generally between 50 and 100 m 

deep (Figures 7.1b, 7.4, and 7.8). At its shallowest position, it reaches approximately 40 

m in depth. Northwind Shoal is the shallowest part of IT-A with average depths ranging 

from 20 to 80 m. Banks with an average depth of approximately 100 m are present 

along the trough edges north (AWI Bank) and south (Belgica Bank) of Northwind Shoal 

(Figures 7.1b, 7.4, and 7.8). Both banks are interrupted by sinks with depth changes of 

up to 300 m on AWI Bank and 100 m on Belgica Bank. In IT-B no banks are present. 

Two banks are present in IT-C, one in the west and one in the southeast. The shallowest 

point of the westerly bank is at about 45 m water depth. The bank is separated from the 

Greenland coast by an approximately 15 km wide and 200 m deep channel connecting 

Store Koldewey Trough with Dove Bugt Trough. The southeasterly bank is on average 

at 100 m depth. 

7.4.3 Undulating Seafloor 

The DBM reveals undulating seafloor topography on the central part of IT-A with 

knolls, sinks, ridges and smaller banks at depths ranging from 80 to 440 m (Figures 7.4 

and 7.8). The knolls are defined by a round shape of 10–15 km in diameter and are 

elevated by more than 100 m compared to the surrounding bathymetry. They appear 

mainly in the southwestern part of the central IT-A, but a single knoll is located in IT-B 

(77.4°N, 16.7°W). Features of similar size but not round in shape are present in the east 

and northeast of the central IT-A (close about 79.5°N, 10°W). They show similar 

elevation changes as the knolls, but, in contrast, are elongate in shape, have relatively  
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Figure 7.8: Schematic diagram of seafloor features on the Northeast Greenland continental shelf mapped 
from the digital bathymetric model. 
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flat tops and an average depth shallower than 100 m. For these reasons, we have 

classified them as banks rather than knolls (Figure 7.8). 

Sinks are abundant from about 81°N to 76.5°N on the middle shelf (Figures 7.4 and 

7.8). The bottom of the sinks varies from 200 to 440 m in depth. In the southern middle 

shelf part of IT-A (around 78.3°N, 12°W), a shallower (approximately 170 m average 

water depth) and less intensively undulating area is present (Figures 7.4 and 7.8). 

Instead of showing pronounced knolls and sinks, the seafloor here is hummocky with 

irregularly undulating elevation changes of about 30 m on average. 

The interpreted multichannel seismic profile AWI-99080 crosscuts several knolls and 

sinks on the undulating seafloor in the central IT-A area (Figures 7.4 and 7.9 for 

location). The data show subsurface structures down to 2–3 km in depth. Two types of 

seismic unit can be distinguished in the profile. Type I units are vertically oriented 

bodies with irregular internal reflectors. Three such bodies are visible in the data; the 

second reaches the seafloor (Figure 7.9), whereas the other two are draped by Type II 

seismic units that, in contrast to Type I, have well-laminated internal reflectors. In the 

proximity of Type I seismic units, the reflectors of Type II units tend to bend upward 

with the distance between internal reflectors decreasing. 

 

Figure 7.9: Seismic profile AWI-99080 crosscutting bathymetric knolls and sinks, showing that their 
formation is related to salt diapirism. For location, see Figure 7.4. 
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7.4.4 Middle Shelf Elongate Depressions 

In a north-south strip on the eastern side of IT-A (between 10°W and 7°W), the NEG-

DBM reveals the presence of elongate depressions (Figures 7.7a and 7.8). The 

depressions have a predominantly north-south orientation and often appear in close 

proximity to one another. They have U-shaped cross profiles. Compared to the adjacent 

seafloor, the depressions are on average 40 m deep with an average width of 1.5 km; 

ridges are present between depressions when they are located next to each other. Their 

maximum detected length is approximately 23 km. Accordingly, the minimum 

elongation ratio is approximately 1:15. Similar but much smaller elongate depressions 

are also present on the outer shelf of IT-B and IT-C (Figure 7.8). Hence, these elongate 

depressions are present from about 79°45’N to 75°15’N over a distance of 

approximately 500 km. No such features are detected in the cross-shelf troughs. 

7.4.5 Fjords 

Dijmphna Sund and Bredefjord (Figure 7.1) are the only coastal areas of the study area 

that are well covered by bathymetric soundings (Figure 7.2). In places, their depths are 

greater than 500 m. Most of the fjord bathymetry shows a relatively flat seafloor. 

Occasionally, however, their depth shallows abruptly to 100 m depth in Djimphna Sund 

and 150 m in Bredefjord within short distances. The other fjord systems are 

unconstrained by depth soundings, but the subaerial topography shows that they are 

surrounded mainly by the steep walls of adjacent mountains. In such locations, the 

fjords were modeled to 50 m water depth in the DBM with inferred contours (Figure 

7.2). 

The modern-day ice shelf of 79°-Glacier is located in a fjord (Nioghalvfjerdsfjorden; 

79.5°N, 21°W) and is approximately 80 km long (Figure 7.4). The seafloor beneath the 

central part of the ice shelf is at about 900 m deep (Figure 7.5; 30–60 km), with an ice 

thickness of about 300 m and a water-filled cavity of about 600 m [Mayer et al., 2000]. 

The northern ice front of 79°-Glacier terminates in Djimphna Sund at a maximum water 

depth of about 600 m. The eastern ice front is grounded on several ice rises and shows a 

shallower bathymetry with a maximum observed depth of about 250 m. The maximum 

depths of CTD stations, east of these ice rises (79.5°N, 19°W), show a deepening 

bathymetry. The next available depth information to the east is at 450 m water depth 

underneath the land-fast sea ice of the Norske Øer Ice Barrier (79.3°N, 17.5°W) 
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[Wadhams et al., 2006]. These few depth constraints suggest a deep (>250 m) 

representation of this very sparsely mapped area. Hence, we added inferred contours to 

model this area accordingly. The depths offshore of other glacier margins (Zachariae 

Isstrøm, Storstrømmen, and L. Bistrup Bræ; Figure 7.1b) have been manually steered 

down offshore of the ice front to the next reliable bedrock elevation present close to the 

ice front position. 

7.5 Discussion 

7.5.1 Digital Bathymetric Model 

The new DBM of the NEG continental shelf is based on the most comprehensive and up 

to date data base of bathymetric soundings and other depth information of this area 

(Table 1). This made it reasonable to select a grid cell size of 250 m × 250 m, which is 

twice that of IBCAO Version 3.0 [Jakobsson et al., 2012b]. The number of artifacts in 

the data set has been limited as much as possible by the iterative cleaning, gridding and 

quality check steps (Figure 7.3). The combination of bathymetric data with bedrock 

topography data, instead of ice surface topography, and high-resolution land 

topography, has led to a smooth ocean-land transition in the DBM (Figure 7.4). In the 

new bathymetric model, submarine morphological features on the NEG continental 

shelf are now better resolved or revealed for the first time. Their description and 

interpretation improves our knowledge of processes taking place on the NEG 

continental shelf. 

Despite the large data base of soundings, in some areas, data coverage is still sparse due 

mainly to year-round harsh sea-ice conditions linked to the cold East Greenland Current 

(Figure7. 1a). In these areas, the DBM suffers from reduced quality and reliability. This 

is most evident in areas close to the coast and in the vicinity of Norske Øer Ice Barrier 

(Figure 7.1), but also in a few parts of the continental shelf (Figure 7.2). The manually 

inferred contours attempt to give a realistic representation of the coastal bathymetry by 

estimating a continuation of the surrounding, better surveyed, bathymetry and 

topography. The inclusion of inferred contours at 50 m depth in major fjords based on 

neighboring steep fjord flanks yielded more realistic results than the otherwise <1 m 

deep fjords without manual steering. Nevertheless, we suggest that most of the fjords 



A new bathymetry of the Northeast Greenland continental shelf 
 

61 

are probably several hundred meters deep, based on observations from elsewhere in 

Greenland [e.g. Dowdeswell et al., 2010a; Dowdeswell et al., 2014], and require further 

detailed surveys. 

7.5.2 Past Ice Flow 

High-resolution swath-bathymetric data revealed the presence of mega-scale glacial 

lineations and recessional moraines in the middle shelf region of Westwind Trough 

(Figure 7.10) [Evans et al., 2009; Winkelmann et al., 2010]. These glacial-sedimentary 

landforms are produced subglacially and ice marginally, respectively, and provided the 

first direct seafloor geomorphological evidence for the expansion and presence of a 

grounded Greenland Ice Sheet on the NEG continental shelf during the late Quaternary. 

Furthermore, the presence of MSGL constrained to shelf trough areas indicates that this 

ice cover contained fast flowing ice streams that preferentially drained through these 

troughs. A review by Funder et al. [2011], utilizing the evidence from these two papers, 

suggested that the LGM Greenland Ice Sheet extended at least to the middle continental 

shelf of NEG (Figure 7.10). However, Bennike and Björck [2002] proposed that the 

Greenland Ice Sheet extended to the outer shelf, based on radiocarbon dates indicating 

late onshore deglaciation. This view is further supported by investigations of shallow 

sedimentary rocks along the East Greenland margin, which are predominantly of glacial 

origin [Berger and Jokat, 2008; Berger and Jokat, 2009; García et al., 2012; Wilken 

and Mienert, 2006]. Our new bathymetry reveals the presence of submarine features on 

the NEG continental shelf that we interpret to be formed by glacial processes. In 

addition, the presence of subglacial landforms and glacial sediments across the shoals 

and banks between troughs shows that they were probably influenced by grounded ice 

flow [Evans et al., 2009] and may have served as base for local marine ice domes that 

laterally constrained the direction of past ice flow within the troughs. 

7.5.2.1 Cross-Shelf Troughs 

Cross-shelf troughs are characteristic features of glaciated continental shelves 

[Batchelor and Dowdeswell, 2014]. The reverse slopes observed in the bathymetry of 

Westwind Trough, Norske Trough, Dove Bugt Trough, and Hochstetterbugten Trough 

are similar to overdeepened troughs present in other formerly ice-covered regions 

[Batchelor and Dowdeswell, 2014; Livingstone et al., 2012]. These troughs are 
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suggested to be produced by high erosion rates beneath ice streams and rapid sediment 

transport to the ice-sheet margin during repeated glacial advances and retreats [ten Brink 

and Schneider, 1995]. Thus, this also suggests that the overdeepened troughs visible in 

the NEG bathymetry indicate ice-stream activity and subglacial erosion during multiple 

glaciations. Some of the ridges found on the edges of the glacial troughs are also similar 

in size and shape to lateral moraines found at the margins of other glacially eroded 

cross-shelf troughs [e.g. Ottesen et al., 2005]. This similarity is most obvious for the 

two pronounced ridges in Norske Trough (Figures 7.4 and 7.10). Accordingly, we 

interpret these ridges as lateral moraines that were produced during one or multiple 

glaciations, probably including the LGM, at the lateral shear margins of former ice 

streams [Ottesen et al., 2005; Stokes and Clark, 2002]. 

In contrast to the other troughs, Store Koldewey Trough has no reverse slope and the 

edges of the trough are not well pronounced (Figure 7.4). The ridge identified to the 

south of Store Koldewey Trough is broader and not as streamlined as those in the other 

troughs. The land topography implies that the interior ice-sheet basin-area draining into 

Store Koldewey Trough was much smaller than for the other troughs of the study area 

and that Store Koldewey Trough only served as a minor drainage path for the Greenland 

Ice Sheet (Figure 7.10). The mountain ranges between Germania Land and 

Storstrømmen Glacier (77.3°N, 21°W) provided a north to south trending obstacle for 

the Greenland Ice Sheet to drain in an eastward direction into Store Koldewey Trough 

(Figures 7.1b, 7.4, and 7.10). Instead, the north-south oriented fjord of Storstrømmen 

directs the outflow to Jøkelbugten in the north and Dove Bugt in the south (Figures 7.1b 

and 7.10). Thus, the drainage-basin area to Store Koldewey Trough is limited to 

Germania Land. The Germania Land topography suggests that major parts of its ice 

cover were drained to the north via Skærfjorden as a tributary to Norske Trough and to 

the south directly into Dove Bugt Trough (Figures 7.1b and 7.10), as also concluded 

from direct observations from Germania Land [Landvik, 1994]. Hence, we suggest that, 

in contrast to the other studied troughs of NEG with reverse slopes, Store Koldewey 

Trough probably was not eroded by an ice stream during multiple glaciations. 
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Figure 7.10: Interpretation of the paleo-ice flow on the Northeast Greenland shelf based on morphological 
features in the digital bathymetric model. Grounding-zone wedges (GZW, green) are located at similar 
distances from the modern-day fronts of marine-terminating outlet glaciers of the Greenland Ice Sheet. 
Lateral moraines (LM, red) are found at the sides of Norske Trough. Areas below 120 m water depth 
(grey) were above sea level at the LGM and could have supported an ice dome (black dashed line) built 
up on the shelf. The LGM ice extent across the shelf from Funder et al. [2011] is shown as grey dashed 
line. 
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7.5.2.2 Grounding-Zone Wedges 

During still stands of the ice-sheet margin during regional deglacial retreat, the 

sediments transported to the terminus can build up sedimentary depositional centers, 

often referred to as grounding-zone wedges (GZWs) [e.g. Batchelor and Dowdeswell, 

2015; Dowdeswell and Fugelli, 2012]. GZWs are asymmetrical, with a steeper ice-distal 

side and a longer but low-profile ice-proximal slope [e.g. Ottesen et al., 2007]. 

Typically, they appear as subdued ridges perpendicular to the ice-flow direction over 

the entire width of the ice stream [e.g. Batchelor and Dowdeswell, 2015; Jakobsson et 

al., 2012a]. The morphology of the bathymetric sills offshore of NEG shows great 

similarity to the typical morphology of GZWs (Figures 7.5a, 7.5b, 7.6b, 7.6c, and 7.7c). 

In addition, since they are located in glacial troughs, we interpret the sills in Westwind 

Trough, Norske Trough, Dove Bugt Trough, and Hochstetterbugten Trough as GZWs 

(Figure 7.10). All four GZWs are located on the middle shelf at a similar distance from 

the modern-day ice margin. Their locations are more or less in accordance with the 

proposed LGM position of the ice sheet at Westwind Trough, Dove Bugt Trough, and 

Hochstetterbugten Trough (Figure 7.10) [Funder et al., 2011]. The GZW found in 

Norske Trough is further offshore compared to the proposed LGM ice-sheet margin. 

Batchelor and Dowdeswell [2015] mapped 10 buried or seafloor GZWs in Norske 

Trough from seismic data, including a seafloor GZW on the outer shelf. Nine buried or 

near-seafloor GZWs have also been mapped using seismic records from Store 

Koldewey Trough [Batchelor and Dowdeswell, 2015]. Hence, the LGM position around 

Norske Trough was probably located further offshore than suggested by Funder et al. 

[2011]. 

7.5.2.3 Local Marine Ice Dome 

Tuppiaq Qeqertaa (Tobias Island), located on the western edge of Northwind Shoal 

about 70 km off the NEG coast (Figure 7.1), is today covered by a small ice cap that 

rises to 35 m above sea level [Bennike et al., 2006]. The sea ice of the Norske Øer Ice 

Barrier develops each year around the island or around icebergs that ground in the 

shallow waters of Northwind Shoal [Hughes et al., 2011]. The shallow areas of the 

NEG shelf are clearly important in the buildup of landfast sea-ice today and, thus, may 

have acted as areas of initial buildup of marine-based ice sheets in the past [Berger and 

Jokat, 2009]. During LGM, global sea level was approximately 120 m lower than today 

[Rohling et al., 2009]. The DBM shows that large parts of the western IT-A are less 
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than 120 m deep (Figure 7.10). Hence, under such conditions, the shoals and banks 

mapped on the DBM would have been emergent above sea level and could have served 

as bases of local marine ice dome, probably building up at the location of the modern-

day small ice cap on Tobias Island (Figure 7.10). 

Lavoie et al. [2015] investigated a bathymetric compilation around the Antarctic 

Peninsula and inferred the presence of seven local marine ice domes. These ice domes 

served as lateral constraints that guided the ice stream outlets. The planform of the 

Westwind Trough and Norske Trough centerlines indicates that ice flow draining across 

the shelf from the Greenland Ice Sheet was most likely redirected in a northward and 

southward direction around Northwind Shoal (Figure 7.10). Hence, we suggest that this 

redirection was probably constrained by an ice dome on NWS, similar to the ice domes 

suggested for the Antarctic Peninsula. Evans et al. [2009] showed that ice flow was 

active directly northeast of Northwind Shoal (Figure 7.10). Thus, assuming a complete 

redirection of the ice flow at Northwind Shoal as suggested by the trough morphology, 

the separate marine ice dome on the shoal was the source of this ice stream activity. 

Given an elevation above full-glacial sea level and an ice thickness large enough to 

initiate streaming ice, this ice dome could have harbored a significant contribution to 

sea level change. Using a rough calculation for ice dome thickness as used by Lavoie et 

al. [2015] with an estimated ice temperature of -20°C, a precipitation rate of ~150 mm 

a-1 [Ohmura and Reeh, 1991], and an ice dome radius of 40–50 km yields an 

approximate thickness of 900 m in center of the dome. Estimating a more moderate ice 

thickness of 500 m for the entire inter-trough areas (~100,000 km2) would yield an 

equivalent sea level rise of about 0.14 m; this contribution would clearly vary with the 

actual thickness and extent of glacier ice. 

For verification of the ice dome presence, however, high-resolution bathymetric 

investigations of submarine glacial features in the area west of Northwind Shoal are 

necessary in order to determine if the ice flow from the Greenland Ice Sheet was 

crossing Northwind Shoal or if it was redirected into Westwind Trough and Norske 

Trough. However, the acquisition of such data has so far been impeded due to the 

persistence of the Norske Øer Ice Barrier. 
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7.5.2.4 Fjords 

All fjord systems in our study area were covered by the Greenland Ice Sheet during the 

LGM and probably a number of previous glaciations, a pattern similar to that elsewhere 

in East Greenland [e.g. Dowdeswell et al., 2010a; Dowdeswell et al., 1994b; Evans et 

al., 2002]. Thus, the deeply incised Dijmphna Sund and Bredefjord, as well as the other 

unsurveyed fjords in the area, are a result of glacial erosion from streaming ice that 

drained the expanded Greenland Ice Sheet during multiple Quaternary glaciations 

(Figure 7.10). Fjord systems can experience very high sediment accumulation rates, of 

up to 20 cm a21, when the ice is retreating, leading to sediment thicknesses of up to 

several hundred meters [e.g. Hjelstuen et al., 2009]. Thus, we interpret the flat seafloor 

in parts of Dijmphna Sund and Bredefjord as the uppermost layer of postglacial 

sediments that partially filled the deeply incised glacially eroded fjords after 

deglaciation. Predominantly, these sediments were transported to the fjord by glaciers 

and released at the ice-sheet margin or transported by drifting icebergs as observed in 

the more southerly Scoresby Sund [Dowdeswell et al., 1994a; Julian A. Dowdeswell et 

al., 2000; Ó Cofaigh et al., 2001; Syvitski, 1989]. However, it cannot be ruled out that 

the fjord sedimentary record also includes some fluvial and glacifluvial sediments that 

are transported along valleys in summer melting seasons in periods of a warmer climate 

and in modern conditions [Hasholt, 1996]. The steep rises and shallow intersections in 

fjord bathymetry are interpreted as bedrock outcrops [e.g. Dowdeswell et al., 2014]. 

7.5.3 Water Mass Pathways 

Satellite observations have revealed recent ice loss from marine-terminating glaciers in 

NEG [Helm et al., 2014; Khan et al., 2014]. Studies from elsewhere in Greenland and 

Antarctica have showed that the rate of ice loss by basal melting at marine-terminating 

glaciers is linked to the flow of warm water masses to the glacier that enhance basal 

melting, especially where a floating ice shelf or ice tongue is present [Christoffersen et 

al., 2011; Hellmer et al., 2012; Holland et al., 2008; Pritchard et al., 2012]. Warm 

Atlantic water, providing energy for basal melting, is also observed in several fjords 

around Greenland, including the 79°-Glacier [Straneo et al., 2012]. The pathway of the 

water masses on the continental shelf is crucial for the temperature of this Atlantic water 

due to atmospheric heat loss and increased mixing with Polar Water at shallow locations 

[Straneo et al., 2012]. Cross-shelf troughs with a reversed bathymetry have been 
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demonstrated elsewhere to act as deep pathways that can direct warmer water into ice-

shelf cavities, enhancing basal melting [Hellmer et al., 2012; Walker et al., 2007]. By 

contrast, bathymetric sills in a trough can also stabilize a retreating ice sheet in times of 

global warming by preventing the inflow of warmer water masses to the ice sheet 

margin [Jenkins et al., 2010] and also by acting as pinning points and reducing iceberg 

production in relatively shallow water. Thus, the bathymetry of the cross-shelf troughs, 

fjords, and their sills is a key parameter for modeling the water mass exchange from the 

ocean to the glaciers and its impact on basal melting. The DBM reveals that all four 

major marine-terminating glaciers in the survey area (79°-Glacier, Zachariae Isstrøm, 

Storstrømmen, and L. Bistrup Bræ; Figure 7.1) are located at the western end of cross-

shelf troughs with a reverse slope in bathymetry (Figure 7.4) that would allow the 

inflow of warm water to the ice front. Bathymetric sills in the troughs on the shelf and 

the fjord systems are obstacles in this pathway. The DBM defines these features and 

serves as an important morphological boundary condition for oceanographic modeling. 

7.5.4 Halokinesis 

The spatial distribution of knolls, sinks, and hummocky seafloor on the continental shelf 

of NEG (Figure 7.8) shows strong congruence to the previously mapped area of salt 

diapirism [Hamann et al., 2005]. Seismic line AWI-99080 crosses knolls and sinks in 

the central IT-A area (Figure 7.4). We interpret acoustic unit Type I as uplifted salt 

structures (Figure 7.9). Occasionally, these salt structures crop out at the seafloor 

(Figure 7.9). Here they can be dissolved by seawater and form sinks. The sedimentary 

layers between the salt bodies (acoustic unit Type II) are synclinal in form and thin 

toward the salt bodies. The seafloor reflector of the seismic line demonstrates that the 

undulating seafloor topography in this area is influenced by the salt tectonics active 

beneath (Figure 7.9). Synclinal reflectors in the top sedimentary layers have also been 

identified in subbottom profiler data in the northern part of IT-A [Evans et al., 2009]. 

These reflectors were linked to subaqueous sediment gravity flows at an ice-sheet 

margin or to glacitectonism of older unconsolidated sediments after an ice advance. The 

similarity of the top reflectors visible in the subbottom profiler data to those visible in 

the seismic data, however, suggests that both were caused by salt tectonics. Hence, we 

conclude that the undulating seafloor topography, where knolls, sinks, and hummocky 

seafloor were mapped from the DBM, is most probably related to salt diapirism active 
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underneath. Accordingly, we suggest that the area of salt tectonic activity is larger than 

previously estimated at approximately 33,000 km2 (Figure 7.8), extending further to the 

northwest than the previously estimated area, which was based on a limited number of 

seismic lines (Figure 7.8) [Hamann et al., 2005]. 

7.5.5 Elongate Depressions 

The mainly north-south trending elongate depressions on the middle to outer shelf of 

NEG, illustrated in Figure 7.7a and mapped in Figure 7.8, were only detected in areas 

with relatively dense bathymetric data coverage (Figure 7.2). The reduced length of the 

more southerly elongate depressions is likely due to the lower coverage with high-

resolution sounding data in that area. Here additional elongate depressions are probably 

present on the continental shelf but remain unresolved in the DBM. 

The elongate depressions appear in basins filled with several kilometer-thick sediments 

[Hamann et al., 2005]. They are located in the area of the north to south flowing EGC. 

While the major part of the EGC flows through the deeper western part of Fram Strait 

and along the continental slope, the EGC also flows over the middle to outer shelf of 

NEG at about 79°N and 8°W. Here a steady north to south water flow has been 

observed [Bourke et al., 1987; Budéus and Schneider, 1995; Rabe et al., 2009]. On the 

inner shelf, where no elongate depressions have been found, the currents are relatively 

less intense and show more fluctuations [Bourke et al., 1987; Budéus and Schneider, 

1995; Wadhams et al., 2006]. The location of the elongate depressions could coincide 

with a full-glacial ice margin close to the shelf edge. If this is so, the depressions could 

have been formed by ice-marginal processes, possibly in combination with erosion 

caused by the EGC. The depressions may have formed: (a) between ice-marginal 

sedimentary deposition centers or are landforms produced by proglacial and 

submarginal glacitectonics, e.g., moraines or composite ridges [Benn and Evans, 2010] 

or (b) by a strengthened EGC that eroded sediments along a stable past ice margin, 

similar to moat structures at the base of continental slopes [Rebesco et al., 2014]. The 

absence of elongate depressions in the cross-shelf troughs of NEG may be due to the 

presence of overconsolidated sediments, caused by ice flow in the troughs, that are less 

prone to erosional forces than noncompacted sediments. A systematic high-resolution 

bathymetric survey of the elongate depressions in combination of shallow seismic data 

acquisition across the depressions is needed to verify our interpretation. 
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7.5.6 Volcanic Remnants 

The flat-topped peak at the bathymetric sill in Hochstetterbugten Trough south of 

Shannon Island is interpreted to be of volcanic origin (Figure 7.7b). The NEG volcanic 

province stretches from 75°N to 72°N of the continental shelf [Hamann et al., 2005]. 

Eastern Shannon Island, 30 km north of the peak, and Pendulum Øer, 20 km south of 

the peak (Figure 7.7b), consist of basalts [Henriksen, 2003]. Voss et al. [2009] observed 

a significant seismic-velocity anomaly at the location of the peak. They also found no 

significant high-velocity lower crust which, in contrast, was observed further south, and 

that a positive magnetic anomaly is present at this location. They concluded that the 

observed surface basalts were related to a local volcanic event. We interpret the 

outcropping peak in the DBM as a remnant of this volcanic event. Eruption rates of the 

North Atlantic Igneous Province were highest between 56 and 55 Ma and later on were 

active only at the East Greenland margin between 66°N and 69°N [Storey et al., 2007]. 

Assuming 55 Ma as the timing of the volcanic event, the guyot-like flat top of the peak 

at 250 m water depth is most probably a result of subsequent erosion by waves together 

with erosion by ice during glaciations. 

7.6 Conclusions 

The new DBM of the NEG continental shelf shown in Figure 7.4 has improved our 

knowledge of the shelf bathymetry compared to previous maps and models. The 

detailed grid allows the identification of seafloor features that have not been mapped 

previously or have had their shape insufficiently resolved. Nevertheless, the coverage 

map reveals that parts of the NEG shelf, especially close to the coast (Figure 7.2), are 

still not or only sparsely covered by soundings and additional data are needed to further 

improve our description and understanding of the NEG shelf. 

The DBM reveals that the shape of the NEG continental shelf has been affected by a 

number of processes, including glacial erosion and deposition, salt tectonics 

(halokinesis), and past volcanism. The cross-shelf troughs were formed by glacial 

erosion by ice streams that drained an expanded Greenland Ice Sheet in full-glacial 

periods (Figure 7.10). Under modern conditions, these troughs act as potential pathways 

for relatively warm Atlantic waters to flow across the shelf to the margins of the 

marine-terminating glaciers and beneath any floating ice. Bathymetric sills (Figures 7.7c 
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and 7.8), located in the cross-shelf troughs, are interpreted as depositional grounding-

zone wedges that formed at the ice margin during phases of prolonged ice-sheet still 

stand (Figure 7.10), probably during deglaciation from the LGM. Salt tectonics formed 

the irregular seafloor on much of the middle shelf, represented by pronounced knolls, 

sinks, and hummocky areas (Figure 7.8). North-south trending elongate depressions 

have been mapped between the cross-shelf troughs on the middle to outer shelf (Figures 

7.7a and 7.8). They are probably related to ice-marginal processes and ocean currents. 

In central Hochstetter Bugten Trough, a guyot-like remnant of a former volcano has 

been detected (Figure 7.7b), which is linked to a single volcanic event that probably 

occurred 55 Ma ago. The DBM can be obtained from 

http://dx.doi.org/10.1594/PANGAEA.849313. 

7.7 Acknowledgments 

We thank crew and scientists onboard of each data contributing cruise. We thank TGS 

for contributing depth information along their seismic lines. We thank Paul Dodd from 

the Norske Polar Institut, Martin Jakobsson from Stockholm University, and Fiamma 

Straneo from Woods Hole Oceanographic Institution for their contributions of echo 

sounder data. We thank Peter Wadhams who was chief scientist of JR106 and Autosub-

II leg M365. We thank E. Domack and one anonymous reviewer for providing helpful 

comments on a previous version of this publication. 



 

71 

8. Ice sheet limits and retreat dynamics on the 
Northeast Greenland continental shelf 
during the last full-glacial period 

Jan Erik Arndt1, Wilfried Jokat1, Boris Dorschel1 

1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 

Bremerhaven, Germany 

 

Submitted to Quaternary Science Reviews 

 

Abstract 

The modern-day Northeast Greenland ice stream drains about 16% of the Greenland Ice 

Sheet area via the marine terminating outlet glaciers 79°-Glacier and Zachariae Isstrøm 

into the North Atlantic. In glacial periods these glaciers extended onto the shelf via two 

cross shelf troughs (Westwind Trough, Norske Trough). However, the extent and 

subsequent retreat dynamics of this ice sheet system during its last maximum extent has 

so far been underestimated, mainly due to limited marine geophysical data coverage. 

Improved understanding of the past Greenland Ice Sheet extent and its response to a 

warming climate in this area is needed in order to verify its contribution to global sea-

level rise and to constrain ice sheet models. We have investigated hydro-acoustic data 

acquired by R/V Polarstern on 20 marine research expeditions between 1985 and 2014 

in order to reveal submarine glacial landforms. The mapped distribution and 

orientations of these landforms enabled us to establish a more comprehensive picture of 

the ice sheet dynamics during last full-glacial conditions. The Greenland Ice Sheet 

extended at least until the shelf break in both cross-shelf troughs, most likely during the 

Last Glacial Maximum (26.5-19 kyrs B.P.). In Westwind Trough, the ice retreat was 

highly variable. The Northeast Greenland Ice Stream fed the southern part and the rapid 

subsequent ice retreat was intermittent by slow stepwise retreat along a 100 km long 

section of the trough on the middle shelf. The northern part, fed by a different, smaller 
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drainage system, likely was not filled by a grounded ice stream until the shelf break, but 

terminated in form of an ice shelf with its grounding line located on the middle shelf. In 

Norske Trough, an ice shelf was formed after a first deglaciation phase that released 

tabular icebergs during its decay. Finally, a separate ice stream system was active in the 

inter-trough area between Westwind and Norske Trough, probably fed by a local ice 

dome. After deglaciation the seafloor was modified by icebergs, which predominantly 

drifted in north-south direction creating numerous iceberg ploughmarks down to 850 m 

water depth. 
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8.1 Introduction 

The Greenland Ice Sheet is identified as one of the tipping elements in the Earth’s 

climate system [Lenton et al., 2008]. Recent changes observed in the Greenland Ice 

Sheet, however, need to be considered in the context of past Greenland Ice Sheet 

responses to a changing climate [Vaughan et al., 2013]. High-resolution swath 

bathymetry data from formerly glaciated continental shelves have the potential to 

provide constraints for the extent and the retreat dynamics of former ice sheets by 

mapping submarine glacial landforms [Jakobsson et al., 2014 and references therein; 

Livingstone et al., 2012]. 

For the Northeast Greenland (NEG) continental shelf we processed and interpreted 

swath bathymetric data from Westwind Trough, Norske Trough, and their inter-trough 

area in order to reconstruct the past ice extent and its retreat dynamics (Figure 8.1). 

Important outlet glaciers in our research area are the 79°-Glacier and Zachariae Isstrøm, 

which are located at the landward end of the troughs mentioned above. These glaciers 

are fed by the NEG ice stream, which is the longest ice stream in Greenland reaching 

approximately 700 km inland [Joughin et al., 2001]. Their drainage area sums up to 

approximately 16 % of the Greenland Ice Sheet [Zwally et al., 2012]. Thus, their 

dynamics have and had major consequences for the mass balance of the entire 

Greenland Ice Sheet, especially when considering the vast ~300 km broad continental 

shelf might have completely been covered by an ice sheet [Bennike and Björck, 2002]. 

In the last review on past Greenland Ice Sheet extents, Funder et al. [2011] suggested a 

LGM extent on the middle shelf in Westwind Trough (~10° W), based on studies on 

submarine glacial landforms [Evans et al., 2009; Winkelmann et al., 2010], and a 

conceptual extent on the inner shelf for Norske Trough (~17° W). However, Funder et 

al. (2011) interpret this as a minimum extent since the previously available swath 

bathymetric data revealed submarine glacial landforms in Westwind Trough, but did not 

provide constraints on their eastern terminations [Evans et al., 2009; Winkelmann et al., 

2010]. Furthermore, radiocarbon dates from the coastline of NEG indicate a late 

deglaciation (~9.3-9.7 kyrs) compared to deglaciation dates in the north and south 

(>10.2 kyrs) [Bennike and Björck, 2002]. Thus, Bennike and Björck [2002] supposed a 

grounded ice terminus at the continental shelf edge. However, marine evidence for this 

assumption has so far been missing. 
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Figure 8.1: Bathymetry of the Northeast Greenland continental shelf [Arndt et al. 2015] with multibeam 
data coverage used in this study shown in black; 79G = 79°-Glacier; ZI = Zachariae Isstrøm 

NEG is experiencing year-round harsh ice conditions as sea-ice from the Arctic Ocean 

is continuously exported via the East Greenland Current (EGC) through the western 

Fram Strait [Aagaard and Coachman, 1968]. This makes the area hardly accessible for 

research vessels and limits the availability of systematic marine geophysical data. 

Nevertheless, a new digital bathymetric model for the NEG shelf has been derived 

recently from available bathymetric data with a grid cell size of 250 × 250 m, thereby 

revealing past ice flow pathways and large scale glacial landforms, such as grounding-

zone wedges and lateral moraines, on the middle shelf of both troughs [Arndt et al., 

2015]. Previous investigations of high resolution hydro-acoustic data (~20 m grid cell 

size) from single cruises revealed mega-scale glacial lineations and recessional 
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moraines in Westwind Trough as well as more subtle lineations in the westernmost part 

of the inter-trough area [Evans et al., 2009; Winkelmann et al., 2010]. These submarine 

glacial landforms not only provided indications for the past ice extent but also indicate 

that ice retreat in Westwind Trough was highly variable and that fast flowing ice once 

also was present in the inter-trough area on Northwind Shoal. However, a more 

comprehensive reconstruction of the ice extent and retreat dynamics during the last 

deglaciation was impeded due to the limited amount of bathymetric data. 

 

Figure 8.2: 3D-views and stratigraphy of mapped types of glacial landforms: glacial lineations (a, b), 
recessional moraines (c, d), iceberg ploughmarks (e, f) 
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Here, we present different sets of submarine glacial landforms visible in swath 

bathymetric data (Figure 8.2 a, c, and e). Subbottom profiler data have been used to 

resolve the subbottom stratigraphy of the identified landforms (Figure 8.2 b, d, and f). 

Our investigation gives first direct evidence for ice streaming activity in Norske Trough, 

for more intense ice streaming in the inter-trough area and for an extension of the 

Greenland Ice Sheet at least until the shelf break in Westwind and Norske Trough. 

8.2 Data and Methods 

Multibeam bathymetric data from 20 cruises of R/V Polarstern have been compiled for 

this study (Table 8.1, Figure 8.1). The data were acquired in between 1985 and 2014. In 

this time period, four different hull-mounted swath bathymetry systems were installed 

(Table 8.1). Accordingly, the data differ in accuracy, density and swath width. All data 

have been checked and reprocessed with CARIS and QPS Fledermaus. The data have 

been gridded at a grid cell size of 20 × 20 m with a weighted moving average gridding 

algorithm in QPS Fledermaus. Data examination and mapping of submarine glacial 

features were performed in ESRI ArcGIS and QPS Fledermaus. 

Table 8.1: Swath bathymetric data and subbottom profiler data used in this study 

Cruise ID Year Swath System Subbottom Profiler 
ARK-III/3 1985 Seabeam  
ARK-IV/1 1987 Seabeam  
ARK-IV/3 1987 Seabeam  
ARK-VII/1 1990 Hydrosweep DS1  
ARK-X/1 1994 Hydrosweep DS1  
ARK-XI/2 1995 Hydrosweep DS1  

ARK-XIII/3 1997 Hydrosweep DS1 × 
ARK-XV/2 1999 Hydrosweep DS2 × 

ARK-XVII/1 2001 Hydrosweep DS2  
ARK-XVIII/1 2002 Hydrosweep DS2 × 
ARK-XVIII/2 2002 Hydrosweep DS2  
ARK-XIX/4a 2003 Hydrosweep DS2 × 
ARK-XIX/4b 2003 Hydrosweep DS2  
ARK-XX/2 2004 Hydrosweep DS2  
ARK-XX/3 2004 Hydrosweep DS2  

ARK-XXIV/3 2009 Hydrosweep DS2 × 
ARK-XXVII/1 2012 Hydrosweep DS3  

PS85 (ARK-XXVIII/2) 2014 Hydrosweep DS3 × 
PS86 (ARK-XXVIII/3) 2014 Hydrosweep DS3 × 
PS87 (ARK-XXVIII/3) 2014 Hydrosweep DS3 × 
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Sediment subbottom profiler data (PARASOUND) from 10 cruises of R/V Polarstern 

have been included (see Table 8.1). This system is using the parametric effect by 

sending two primary frequencies, usually at 18 and 23.5 kHz, that generate a secondary 

pulse of lower frequency, usually 5.5 kHz. Depending on the seafloor sediment type, the 

system can penetrate up to 100 m into the sediment. The vertical resolution of the 

system is approximately 30 cm. 

8.3 Results and Interpretation 

8.3.1 Distribution of submarine glacial landforms 

For this study, we mapped landforms that we interpret as glacial lineations, recessional 

moraines and iceberg ploughmarks (Figure 8.2). Glacial lineations and more elongate 

mega-scale glacial lineations are formed by fast flowing ice into a sedimentary till layer 

at the base of an ice stream (Figure 8.2a and b) [e.g. Clark, 1993; Dowdeswell et al., 

2004; Graham et al., 2009; King et al., 2009; Ó Cofaigh et al., 2002; Ottesen et al., 

2005]. Recessional moraines are formed at the ice stream margin by sub- and proglacial 

deposition during grounding line still stands or by bulldozed sediments during minor 

grounding line re-advances (Figure 8.2c and d) [Golledge et al., 2008; Winkelmann et 

al., 2010]. In terms of ice stream retreat behavior, the presence of glacial lineations is 

interpreted to be related to rapid retreat and the presence of recessional moraines is 

related to a slow and stepwise retreat [Dowdeswell et al., 2008]. Iceberg ploughmarks 

are formed by keels of drifting grounded icebergs that scour into the uppermost 

sedimentary substrate of the seafloor (Figure 8.2e and f) [Arndt et al., 2014; Belderson 

et al., 1973; Dowdeswell et al., 1993; Jakobsson et al., 2010]. 

8.3.1.1 Westwind Trough 

The distribution of submarine glacial landforms in Westwind Trough is shown in Figure 

8.3. The easternmost occurrence of glacial lineations is directly at the shelf break 

(Figure 8.4f). Glacial lineations are also present in the southern part of the trough 

(Figure 8.3 and 8.4d). Subbottom profiler data across these lineations show no 

postglacial sedimentary layer or this layer is too thin to be resolved by the bottom 

penetrating data. (Figure 8.4e). The lineations were formed in an up to 8 m thick layer 

of basal till. 
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Figure 8.3: Mapped submarine glacial landforms in Westwind Trough. Glacial lineations on the inner and 
outer shelf indicate the presence of an ice stream and fast retreat. The set of recessional moraines on the 
middle shelf indicate a slow stepwise retreat in this area. The dash-dot line indicates the position of the 
ridge that separates the northern part of the trough from the southern part. Data coverage is shown in light 
blue. 

The easternmost northern part of the trough has been intensely scoured by iceberg keels 

(Figure 8.3). The remaining northern part of the trough is relatively smooth and flat 

with only sparse appearance of iceberg ploughmarks (Figure 8.3). Subbottom profiler 

data of this area reveal that the deepest part of this area is covered by an approximately 

3 m thick lentoid sedimentary fill on top of a flat basal reflector that thins towards 

shallower water (Figure 8.4g). 

The southern part of the trough is characterized by a set of recessional moraines that are 

present in between 8°W and 13°W, thereby covering an area of ~1,100 km2 (Figure 8.3, 

4a and b). A thin drape of ~1 m or less is visible in between the moraines and 

indistinctly resolved on top of the moraines (Figure 8.4c). West and north of the 

innermost moraines, Westwind Trough is characterized by glacial lineations that align 

to the axis of the trough (Figure 8.3 and 8.4a). 
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Figure 8.4: Swath bathymetry and sub-bottom profiler data from Westwind Trough, for locations see 
Figure 8.3. (a) Glacial lineations and recessional moraines on the inner shelf; (b, c) Easternmost mapped 
recessional moraines; (d, e) Pronounced glacial lineations in the southern part formed in basal till; (f) 
Glacial lineations close to the shelf break; (g) Sedimentary drape in the northern part of the trough. 

8.3.1.2 Norske Trough 

The distribution of submarine glacial landforms in Norske Trough is shown in Figure 

8.5. Glacial lineations are present directly at the shelf break at about 300 m water depth 

in the northernmost part of the trough (Figure 8.6f). Subbottom profiles across the 

lineations reveal an up to 7 m thick acoustically transparent layer that can be interpreted 

as basal till (Figure 8.6e). The reflector at its base is relatively flat and continuous. The 

seafloor in the south does not show lineations, but is characterized by numerous iceberg 

ploughmarks (Figure 8.5). 

Further landwards, iceberg ploughmarks with widths of up to 800 m and a flat bottom 

between its berms are mapped in a depth range from 260 to 300 m (Figure 8.5 and 

8.6d). A set of mega-scale glacial lineations is mapped over a distance of approximately 

70 km in the northern part west of 10°W (Figure 8.5 and 8.6b). More subtle lineations 

are also present north of the trough edge (Figure 8.5). The sparse multibeam data in the 

central trough show some ridges aligned in the axis of the troughs that we interpret as 
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lineations (Figure 8.5). However, compared to the set of lineations present in the 

shallower northern part (Figure 8.6b) these are less distinct. 

 

Figure 8.5: Mapped submarine glacial landforms in Norske Trough. The glacial lineations indicate the 
presence of an ice stream and fast retreat in this area. The tabular iceberg ploughmarks indicate that an ice 
shelf once was present during deglaciation. Note the large data gaps that limit a thorough investigation. 
Data coverage is shown in light blue. 

Multibeam data of a trough transect at 15°W and 77°50’N show glacial lineations nearly 

over the entire width of the trough (Figure 8.6a). Their orientation is parallel to the axis 

of the trough. The lineations are up to 17 m in profile and are present from about 150 m 

at the northern trough edge down to 490 m in the trough center. The subbottom profiler 

data show that the lineations are formed in a basal till layer of about 10 m in average 

with an underlying flat basal reflector (Figure 8.6c). The lineations are draped by a thin 

postglacial sedimentary layer of ~1m thickness (Figure 8.2b). To the south the 

lineations are increasingly cross-cut by iceberg ploughmarks until the density of 

ploughmarks impeded the preservation of lineations (Figure 8.6a). 
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Figure 8.6: Swath bathymetry and sub-bottom profiler data from Norske Trough, for locations see Figure 
8.5. (a, c) Pronounced glacial lineations formed in basal till on the inner shelf and iceberg ploughmarks 
on the southern part; (b) Tens of km long mega-scale glacial lineations at the northernmost part of the 
trough; (d) Tabular iceberg ploughmarks; (e, f) Glacial lineations at the shelf break in the northernmost 
part of the trough, note the iceberg sheltering function of the heavily reworked rise in the north. 

8.3.1.3 Inter-trough area 

The distribution of glacial landforms in the inter trough area is shown in Figure 8.7. 

Iceberg ploughmarks are abundant on the shallower parts and on the outer shelf of the 

inter-trough area (Figure 8.7 and 8.8a). Subbottom profiles across an intensely scoured 

area show how deep the upper sedimentary layer has been reworked (Figure 8.8b). 

Seafloor depressions of the inter-trough area are left widely undisturbed by ploughing 

icebergs, but occasionally glacial lineations could be detected here (Figure 8.7). 

The westernmost set of lineations is located at 12.5°W and 79.5°N. These lineations 

strike southeastward and subbottom profiles reveal that the lineations are formed in a 

~10 m thick layer of basal till (Figure 8.8c). In the deepest part, the lineations are 

covered by an up to 3 m thick sedimentary layer. This layer is thinning in shallower 

water until it is below the resolution of the subbottom profiler data. Beneath the 

prominent basal reflector, dipping strata is visible in several subbottom profiler sections 
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(Figure 8.8c and g), which represent inclined layers of sedimentary bedrock affected by 

uplifting salt diapirs [Arndt et al., 2015]. To the southeast, further glacial lineations 

striking in the same direction are formed in a basal till layer (Figure 8.7, 8.8d and e). A 

thin lentoid sedimentary fill of ~2-3 m maximum thickness is visible in the deepest part 

on the lineations (Figure 8.8e). In a depression even further southeast, subtle lineations 

striking in similar direction are identified on its northern slope in ~250 m depth, but are 

absent in its center (9°W, 78.45°N, Figure 8.7). Subbottom profiles across this 

depression reveal two distinct lentoid layers of sedimentary fill, each up to ~3 m thick 

that are thinning in shallower waters until they are below data resolution (Figure 8.8i). 

 

Figure 8.7: Mapped submarine glacial landforms in the inter-trough area. Shallow parts and the outer 
shelf are widely covered by iceberg ploughmarks. Glacial lineations are preserved in sinks and indicate an 
ice stream with an northern west-east flowing branch and a southern northwest-southeast flowing branch. 
Data coverage is shown in light blue. 
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Eastward oriented subtle lineations up to 2 m in cross section are present in the north 

and northeast of the inter-trough area (Figure 8.5 and 8.8h). A subbottom profile of the 

more westerly lineations reveals an acoustically transparent layer that we interpret as 

basal till, into which the lineations were formed (Fig 8.8g). In contrast, the lineations 

further to the east do not show such a basal till layer or this layer is too thin to be 

resolved by the subbottom profiler data (Fig. 8.8i). 

 

Figure 8.8: Swath bathymetry and sub-bottom profiler data from the inter-trough area, for locations see 
Figure 8.7. (a, b) Reworked seafloor from numerous iceberg ploughing events; (c, d, e, g) Glacial 
lineations located in different parts of the inter-trough area formed in basal till that indicate past fast 
flowing ice; (f) Thick postglacial sedimentary fill in a depression without glacial landforms; (g, h) Subtle 
lineations on the outer shelf, note the absence of basal till. 

8.3.2 Iceberg Ploughmark orientation 

The majority of the iceberg ploughmarks are NNE-SSW oriented (Figure 8.9a). We 

have subdivided their orientations into different classes depending on their depths and 

regional appearance (Figure 8.9b-n). In deeper waters, the predominant orientation turns 

counterclockwise (Figure 8.9c-f). The deepest ploughmark is found in 850 m water 
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depth. The predominant ploughmark orientation of most regions is NNE-SSW (Figure 

8.9g-n). The ploughmarks observed in the northern parts of Westwind Trough and 

Norske Trough (Area 3 and 7) are an exception of this trend. Iceberg ploughmarks 

located here do not show a significant trend in orientation but are rather randomly 

orientated (Figure 8.9i and m). Another exception are ploughmarks observed on the 

outer shelf north of Westwind Trough (Area 5). Here, a northwest north to southeast 

south orientation similar to the observation of ploughmark orientations in deeper waters 

(Figure 8.9k and f). 

 

Figure 8.9: Iceberg ploughmark orientations in 5° steps for different areas and depth ranges. The diameter 
of the circles equals 10% of the observed orientations. (a) All orientations of ploughmarks; (b) Areas used 
as criteria, distribution of ploughmarks is shown in black; (c-f) Orientations for varying depth ranges; (g-
n) Orientations for different areas. 
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8.4 Discussion 

8.4.1 Reconstruction of past ice flow and retreat dynamics 

The mapped glacial lineations and recessional moraines are directly linked to ice stream 

activity and thus provide information on the retreat behavior of ice streams during the 

last deglaciation [Dowdeswell et al., 2008]. 

8.4.1.1 Westwind Trough 

The mapped glacial landforms show that the fast-flowing ice stream in Westwind 

Trough was grounded until the continental shelf edge in the southern part at some point 

in the past (Figure 8.10a). The freshness of the outermost glacial lineations (Figure 8.4d 

and f) as well as the visual absence of postglacial sediments on top of the lineations 

(Figure 8.4e) suggests that this ice extent may have been present during the LGM 

(Figure 8.10b). The well-preserved lineations on the outer shelf indicate an initial phase 

of rapid deglaciation (Figure 8.10c), since any depositional features, such as grounding-

zone wedges or moraines that would hint stand-still phases of the grounding zone, are 

absent. 

In the northern part of Westwind Trough, no glacial lineations have been mapped 

(Figure 8.3). The flat featureless morphology, mapped in some parts of this area, is 

underlain by a relatively thick sedimentary fill in the deeper parts (Figure 8.4g). This fill 

probably has been sedimented after the last deglaciation and could have buried subtle 

glacial landforms. However, also the basal reflector does not show indications of 

lineations. Hence, a possible scenario is the absence of grounded ice in this area during 

the last maximum ice extent. Instead, the ice stream possibly rested on the grounding 

zone wedge that has been suggested in landward direction [Arndt et al., 2015] and 

continued in the form of an ice shelf (Figure 8.10a).On the basis of the available data, 

however, we cannot entirely rule out the presence of grounded ice in the northern part of 

the trough, since large parts of this area are not mapped by multibeam data. 

Furthermore, iceberg ploughing on the outer shelf could have demolished any glacial 

landforms that would indicate the former presence of an ice sheet (Figure 8.5).  

The recessional moraines located on the middle shelf indicate that a change in retreat 

behavior occurred in this section of the trough. A small portion of these moraines were 

already described by Winkelmann et al. [2010]. After a first phase of fast retreat on the 
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outer shelf, the ice stream repeatedly halted in this area and the deglaciation speed 

slowed down (Figure 8.10c). We link this slow down to the trough morphology, as the 

trough bed changes its gradient from a more reverse gradient to a normal gradient, and, 

in addition, locally becomes even shallower in the trough section where moraines are 

observed [Arndt et al., 2015]. This observation is in line with the numerical simulations 

that state unstable grounding zones on reverse bed slopes [Schoof, 2007]. Similar bed 

observations, corresponding to increased and reduced ice stream retreat speeds, have 

been observed for paleao-ice streams that flowed along other trough or fjord systems 

[Briner et al., 2009; J A Smith et al., 2011], but also in concurrent ice streams such as 

the Pine Island ice stream in Antarctica [Jenkins et al., 2010]. Here, relatively warm 

(+1°C) Circumpolar Deep Water is upwelling onto the shelf and follows the cross shelf 

troughs towards the glacier cavity where it causes basal melting [Jenkins et al., 2010]. 

The modern equivalent on the NEG continental shelf is relatively warm Atlantic water 

with potential for basal melting that is present on the inner shelf [Straneo et al., 2012]. 

A similar upwelling process of Atlantic water in the past could have resulted in rapid 

retreat on the reverse-sloped sections of the NEG continental shelf. Contrasting this 

rapid response, a normal bed gradient rather triggered a slow grounding line retreat, 

thereby resulting in the deposition of recessional moraines within the southern trough 

sections, which characterizes a second phase of deglaciation in Westwind Trough 

(Figure 8.10d). The glacial lineations mapped on the reverse slope of the inner shelf 

rather indicate a fast grounding line retreat which we define as the final phase of 

deglaciation in Westwind trough. 

As demonstrated above, the glacial landforms mapped within Westwind Trough 

indicate a deviating maximum extent and retreat behavior of the northern and southern 

portions of the trough. Ice flow reconstructions based on a bathymetric model show that 

the ice discharging trough Westwind Trough did not only originate from the NEG ice 

stream, but probably also derived from an ice drainage system through Ingolf Fjord 

further north (Figure 8.10a) [Arndt et al., 2015]. The concurrent NEG ice stream 

reaches approximately 700 km inland and has one of the largest catchment areas in 

Greenland (274,220 km2) [Joughin et al., 2000; Zwally et al., 2012]. The NEG area is 

characterized by the lowest precipitation and snow accumulation rates of Greenland 

[Ohmura and Reeh, 1991]. Therefore, we suggest that in the past the ice discharge 

through Ingolf Fjord and in the northern portion of Westwind Trough, which was likely 

fed by a smaller drainage system in the north, was smaller than the ice discharge in the 
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southern portion, which was likely fed by the NEG ice stream. This difference in ice 

discharge between the northern and southern portions of Westwind Trough may explain 

the deviation in maximum extent and retreat behavior. 

 

Figure 8.10: (a) Generalized overview of glacial seafloor features and new LGM extent of grounded ice, 
question marks on the outer shelf show locations where iceberg ploughmarks may have overprinted 
evidence of the maximum ice sheet extent, with inferred ice stream flow from the Greenland Ice Sheet 
(modified from Arndt et al. [2015]). (b, c, d) Reconstructed ice stream setting during (b) LGM, (c) a first 
phase of deglaciation, and (d) a second phase of deglaciation. The timing of deglaciation phases is not 
fixed and possibly occurred independently from each other in the three ice stream systems. Grounded ice 
streams are shown in white. Ice shelves are shown as hatched area. Deglaciated areas are shown semi-
transparent with red outline. 
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8.4.1.2. Norske Trough 

The lineations mapped throughout the entire northern part of Norske Trough are giving 

evidence for a grounded ice stream until the shelf break (Figure 8.10a). The freshness of 

the outermost lineations and the absence of a postglacial draping layer in subbottom 

profiler data suggest that the Greenland Ice Sheet may have reached this extent during 

the LGM (Figure 8.6c and 8.10b). The subtle lineations mapped in the deepest part of 

the trough further to the west, indicate that most probably the entire trough was filled by 

grounded ice. However, more swath bathymetric data of the deeper parts east of 13°W 

are needed to ensure correct interpretation of these seafloor landforms (Figure 8.5). The 

subtle lineations north of Norske Trough at 10.5°W and 77.9°N indicate that during 

maximum glaciation ice either have overflown the lateral moraine found at the northern 

edge of Norske Trough [Arndt et al., 2015], or this lateral moraine has been deposited 

during a stage of deglaciation after its last maximum extent. We suggest the latter as 

otherwise the lateral moraine probably would have been removed by the overflowing 

ice stream (Figure 8.10b). 

The iceberg ploughmarks with exceptional widths (Figure 8.6d) were very likely created 

by grounded tabular icebergs that typically have a flat bottom [Kristensen et al., 1982]. 

Tabular icebergs are calved from floating ice shelves [Dowdeswell and Bamber, 2007]. 

The location of the tabular iceberg ploughmarks and the oceanographic setting give 

indications for their origin. The northern edge of Norske Trough continuously is 

shallower than the depths of the tabular iceberg ploughmarks. Thus, if they originated 

from outside Norske Trough they would have had to flow into the trough via the shelf 

break. From here, the icebergs would have had to drift approximately 90 km in 

northwest direction to arrive at the ploughmark locations. This direction, however, is in 

contrast to the observed dominant NNE-SSW direction of other icebergs. Even though 

palaeo-oceanographic currents could have been different, i.e. due to different sea level 

and ice extent on the shelf, the most likely iceberg drift direction for western Fram 

Strait is and was north to south [Arndt et al., 2014; Darby et al., 2002]. Subsequently, 

we suggest that these icebergs were calved from an ice shelf located in Norske Trough. 

A possible source is located ~70 km west of the ploughmarks. Here, a GZW has been 

suggested in the trough with a maximum depth of 390 m at its easternmost position 

(Figure 8.10a) [Arndt et al., 2015]. This seems a plausible source for tabular icebergs 

with sufficient draft and size. The tabular icebergs could have been calved from this ice 

shelf during a second phase of deglaciation (Figure 8.10d). The calving of tabular 
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icebergs could have either occurred continuously by single major calving events or at 

once during a rapid ice shelf breakup. 

West of the proposed GZW, Norske Trough was entirely filled by an ice stream as 

indicated by the glacial lineations that were formed at its base (Figure 8.6a and c). 

Furthermore, these lineations suggest that after the disintegration of the ice shelf glacial 

retreat was relatively rapid. Even though only high resolution swath bathymetric data 

from one transect of the trough is available, most likely the inferred rapid glacial retreat 

has occurred at least 50 km west- and eastward. In this section, the trough bathymetry 

shows that the ice stream bed had a continuous reverse gradient [Arndt et al., 2015], 

which is typically prone to fast retreat and the inflow of warmer water masses, as 

discussed for Westwind Trough [e.g. Jenkins et al., 2010; Schoof, 2007]. 

In contrast to Westwind Trough, in Norske Trough no recessional moraines have been 

observed in the studied swath bathymetric data. This could indicate that the retreat 

pattern during deglaciation after the last maximum ice extent in Norske Trough differed 

from the retreat pattern in Westwind Trough and underlines that the retreat behavior is 

likely controlled by trough morphology rather than climate fluctuations.  

8.4.1.3. Inter-trough area 

The mapped lineations in the inter-trough area are traces for the distribution and flow 

direction of palaeo-ice streams in the area between Westwind Trough and Norske 

Trough (Figure 8.10a). Ice stream activity extended at least 100 km to the east and 

southeast and followed the complex pattern of sinks and depressions visible in the 

bathymetry [Arndt et al., 2015]. The high density of iceberg ploughmarks on the outer 

shelf very likely has overprinted any seafloor relicts of an ice sheet presence until the 

shelf edge. Hence, the maximum extent of grounded ice remains unresolved for the 

inter-trough area as no landforms indication the ice sheet termination have been 

observed (Figure 8.10a). 

The orientation of the mapped lineations indicates that both inter-trough ice streams 

originate from the same area at the northeastern part of NWS (Figure 8.10a). Here, 

glacial lineations have been described by Evans et al. [2009]. The ice streams where 

either a) fed by the NEG ice stream that overflowed NWS from west to east or b) they 

drained a separate ice dome that likely was located on NWS [Arndt et al., 2015]. We 

favor the ice dome scenario since divergent ice flow around similar shallower parts of 
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glaciated continental shelfs has been observed at the Antarctic Peninsula [Lavoie et al., 

2015] and the Norwegian continental margin [Ottesen et al., 2005], which has been 

related to the presence of local marine ice domes. However, swath bathymetric data 

from west of NWS is needed to reveal glacial landforms that could indicate if ice flow 

from the Greenland Ice Sheet entirely diverged to the north into Westwind Trough and 

to the south into Norske Trough or if ice flow also continued across NWS to feed the ice 

stream system located in the inter-trough area. 

East of NWS at about 11°W and 79.5°N, the ice stream diverged into a northern and a 

southern branch (Figure 8.10b). The area east of the ice flow divergence is shallower 

than 120 m and hence most likely was above sea level during maximum glaciations 

[Rohling et al., 2009]. Possibly, also this area of the shelf was capped by an ice dome 

during glaciations, similar to the proposed ice dome on NWS, and accordingly 

constrained the divergent ice flow (Figure 8.10). 

The thin, up to 3 m thick postglacial coverage on some of the lineations in the deepest 

parts most likely was deposited after the last maximum ice extent. Typically 

sedimentation rates on formerly glaciated continental shelves are highest during 

deglaciation (e.g. > 200 cm kyrs-1) and are lower in inter-glacial periods (e.g. 1-3 cm 

kyrs-1) [Tore O. Vorren et al., 1984]. Estimating approximately 18 kyrs as timing for the 

onset of deglaciation after LGM in NEG [Fleming and Lambeck, 2004], the 3 m drape 

layer equals a linear sedimentation rate of 16.6 cm kyrs-1 which is reasonable in 

comparison to the typical sedimentation rates given above. The local differences in 

sediment thickness of the postglacial cover indicate sediment focusing into sinks and 

areas of deeper water, most likely induced by currents (e.g. the EGC). This highlights 

the spatial variability of postglacial sedimentation on top of the glacial landforms, the 

complexity of estimating the timing of glacial landform formation solely from a 

postglacial sediment layer and hence demands the need for geological constraints on the 

timing of landform formation. 

8.4.2. Iceberg ploughmark orientations 

Icebergs are steered by ocean currents and in addition by wind, waves, and sea-ice 

[Death et al., 2006]. The curved and irregular trajectories of the ploughmarks are due to 

changing external forces (i.e. tidal currents), rotation and rolling of the icebergs 

[Woodworth-Lynas et al., 1985]. The predominant orientation of the ploughmarks in 
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north-south direction shows a strong correlation to the flow direction of the EGC 

[Aagaard and Coachman, 1968], that exports and exported icebergs from the Arctic 

Ocean via Fram Strait [Darby et al., 2002]. This observation suggests that the EGC had 

this flow direction continuously since the last deglaciation of the shelf. The slight shift 

in orientation to NNW-SSE in the deeper parts and in the northern outer shelf area 

(Figure 8.9f and k) is supposed to be related to the SSE orientation of the shelf edge 

guiding the EGC along the shelf edge in this area. The maximum observed iceberg 

ploughmark depth of 850 m is well inside the depth range of iceberg ploughmarks that 

have been found elsewhere in and close to the Fram Strait [Arndt et al., 2014; 

Jakobsson et al., 2010]. 

The equal distribution of ploughmark orientations observed in the northern parts of 

Westwind Trough and Norske Trough (Figure 8.9i and m), which is in contrast to the 

predominant N-S orientation in the southern parts (Figure 8.9j and n), indicates that the 

ploughmarks found in the northern parts were not produced by icebergs transported in 

the EGC but instead resulted from icebergs with exceptional trajectories. The 

morphology of the east to west trending glacial troughs, with banks and ridges at their 

northern edge, sheltered the areas directly to their south from icebergs usually coming 

from northerly directions and impeded, or at least limited, overprinting of older glacial 

landforms (Figure 8.6a and f). A possible explanation for exceptional iceberg 

trajectories that led to ploughing events in these otherwise sheltered areas could be the 

presence of grounded ice on shallower areas of the continental shelf that temporarily 

could have redirected ocean currents. 

8.5. Conclusions 

We presented first geophysical evidence that the Northeast Greenland Ice Stream 

extended at least to the shelf break through Westwind Trough and Norske Trough 

(Figure 8.10a). This extent was most probably reached during the LGM. An at least 100 

km long ice stream system was active in the inter-trough area. This ice stream system 

was most likely fed by an ice dome located on Northwind Shoal. The ice stream 

diverged into a northern and a southern branch, most probably constrained by another, 

smaller ice dome. The mapped submarine glacial features indicate that the speed and 

pattern of ice retreat was variable in the troughs and occurred in different phases during 

deglaciation (Figure 8.10b-d):  
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Westwind Trough: 

Phase I - in the southern part, fast retreat from the shelf edge to about 8°W; in 

the northern part, possibly ice shelf decay. 

Phase II - in the southern part, slow stepwise retreat to about 13°W; in the 

northern part, stabilization at grounding zone wedge with possibly ice shelf 

decay 

Phase III - fast retreat into coastal areas in both parts 

Norske Trough: 

Phase I - fast grounding zone retreat from the shelf edge to stable position on the 

middle shelf at about 12°30’W and establishment of an ice shelf grounded at this 

location 

Phase II - ice shelf decay with release of large tabular icebergs, possibly by 

single breakup event 

Phase III - fast retreat into coastal areas 

Inter-trough area: 

Phase I - entirely fast retreat, no other indications found 

These phases did not have to occur simultaneously. Dated cores are needed to constrain 

the timing of the retreat. After deglaciation the entire continental shelf, except from 

bathymetrically sheltered areas, was heavily disturbed by ploughing events of icebergs. 

These icebergs were pre-dominantly steered by the north to south flowing East 

Greenland Current. 
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9. Conclusions and Outlook 

The Greenland Ice Sheet covered almost the entire NEG continental shelf during the 

LGM. At that time, Westwind Trough and Norske Trough were both filled by ice 

streams that reached at least until the shelf edge. These results confirm the suggested 

larger LGM ice extent from Bennike and Björck [2002] and significantly change the 

previous conceptual model of an ice sheet margin close to the coast. 

The retreat dynamics of the Greenland Ice Sheet on the NEG continental shelf were 

spatially variable and have occurred in phases of rapid and slow retreat. The type of 

retreat shows strong correlation to the slope of the trough. Submarine glacial landforms 

indicative for slower and stepwise retreat are observed where no reverse slope is present 

in the trough. In parts of the troughs with reverse slope, landforms indicative of rapid 

retreat are observed. The mapped grounding zone wedges in four troughs, each located 

in a similar distance to the modern day ice margin, could indicate simultaneous 

grounding zone stabilization and the presence of paleo-ice shelves. 

Due to the absence of dated cores on the NEG continental shelf, the timing of the ice 

retreat phases could only be roughly estimated based on their freshness in the swath 

bathymetric data and on observations of postglacial sedimentary layers on top of the 

submarine glacial landforms. Dated cores from the mapped submarine glacial landforms 

are needed to constrain the timing of the identified retreat phases and to resolve if the 

phases occurred synchronous or asynchronous in the different ice streams. A first step 

in this direction has been made during R/V Polarstern cruise PS93.1 in June 2015. Four 

gravity cores have been recovered from between the moraines located in Westwind 

Trough (Figure 9.1) to resolve the timing of the grounding line retreat in this sector. 

Paleo-ice stream pathways on the NEG continental shelf are reconstructed based on a 

new digital bathymetric model and on submarine glacial landforms indicative for ice 

stream direction. Ice streams have been present in all cross-shelf troughs. The 

reconstruction suggests that local marine ice domes built up on shallow parts of the 

continental shelf. These ice domes could have harbored a significant contribution to sea-

level change. An ice stream system with two ice stream branches is detected in the inter 

trough area between Westwind Trough and Norske Trough. This system was probably 

fed by an ice dome located on Northwind Shoal. 
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Figure 9.1: Bathymetric map of the Northeast Greenland continental shelf with core site of cruise PS93.1 
and focus areas to acquire hydro-acoustic data in the future. Area I: Reveal if ice flow from Greenland 
continued onto Northwind Shoal. Area II: Ice Stream retreat dynamics in Norske Trough. Area III: Ice 
flow pathways, ice retreat dynamics, and water mass pathways in the unsurveyed coastal areas. Greyish 
overlay shows coverage with multibeam and singlebeam data. 

Giant icebergs drifted southwards in Fram Strait, possibly during MIS 6 (190 to 130 

kyrs B.P.). A fraction of the largest ones grounded on Hovgaard Ridge in a modern-day 

water depth of >1200 m and left behind six ploughmarks. The very deep iceberg drafts 

give a new constraint on paleo-ice sheet thickness at the calving line. Dated cores from 

the iceberg ploughmarks are necessary to give a more accurate timing of the giant 
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iceberg export. Numerous iceberg ploughmarks in shallower depths are also mapped on 

the NEG continental shelf. Their dominant orientation is north to south, induced by the 

direction of the EGC. These traces of large iceberg export from the Arctic Ocean are 

indicating that a significant part of freshwater influx to the Greenland-Iceland-

Norwegian Sea was facilitated by large icebergs during deglaciations and was effecting 

the NADW formation. 

Large parts of the study area are still unmapped by hydro-acoustic systems. 

Subsequently, the complete distribution of submarine glacial landforms remains 

unknown. For an even more comprehensive reconstruction of ice stream pathways, their 

retreat dynamics and to further verify the pattern of iceberg ploughing events, more 

mapping efforts are needed. Complete mapping of the study area, however, will not be 

feasible within the next decades, at least for the scientific community. Nevertheless, 

focus areas for different research questions can be given (Figure 9.1). The central part of 

Norske Trough could yield important information to interpret the ice stream retreat 

dynamics that so far predominantly relies on data from the shallower northern part 

(Area II in Figure 9.1). The southern parts of the troughs as well as shallower parts of 

the inter trough areas most probably will not yield information on ice flow directions 

and retreat dynamics due to the higher rate of iceberg grounding and resulting 

perturbation of the seafloor. The coastal areas are nearly unmapped by hydro-acoustic 

systems. Data gathered in this area can yield valuable information to reconstruct the past 

glacial system and in addition is valuable to reveal possible pathways of water masses 

to marine terminating glaciers (Areas III in Figure 9.1). This is especially the case for 

the area west of Northwind Shoal (Area I in Figure 9.1). Here, swath bathymetric data 

most probably will instantly reveal if the NEG ice stream was entirely redirected to 

north and south direction into Westwind and Norske Trough or if ice flow continued 

across Northwind Shoal. This verify or respectively reject the theory of an ice dome 

located on Northwind Shoal that could have harbored a significant amount of ice above 

floatation with subsequent increase of sea level rise after its deglaciation. 
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Appendix 

A  Supplementary material, Deep water paleo-iceberg 
scouring on top of Hovgaard Ridge–Arctic Ocean 
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B Supporting Information, A new bathymetry of the 
Northeast Greenland continental shelf: Constraints on 
glacial and other processes  

B.1 

The NEG_DBM grid and the accompanying source identifier (SID) grid are available 

for download from: http://dx.doi.org/10.1594/PANGAEA.849313 

When using the data please cite the reference paper (doi: 10.1002/2015GC005931) 

B.2 

 

Figure B.0.1: Comparison of the NEG_DBM to the IBCAO V3.0 bathymetry; Note the large differences 
on the shelf and along the shelf edge especially north of 76°N. 
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B.3 

 

Figure B.0.2: Comparison of the NEG_DBM (500 m grid cell size) to the IBCAO V3.0 (2000 m grid cell 
size) source identifier grids (SID); Please note that due to the four times larger grid cell size, data 
coverage for IBCAO V3.0 appears up to 16 times larger; red = multibeam; black = singlebeam; grey = 
contours and inferred contours; blue = seismic first reflector; light green = topography; brown = under-ice 
topography 
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B.4 

SID number Data 
21 FS Polarstern multibeam data 
22 RV Oden multibeam data 
23 RRV JC Ross multibeam data 
31 FS Polarstern singlebeam data 
32 Norske Polar Institut singlebeam data 
33 Woods Hole Oceanographic Institut singlebeam data 
34 U.S. Naval Research Laboratory singlebeam data 
41 TGS-NOPEC first reflector picked from seismic data 
42 Ice shelf seismic data 
43 CTD maximum depths 
44 Autosub-II data (digitized from publication) 
51 Bedrock topography 
52 Icefree topography 
61 Inferred data for DBM steering 
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