Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea


Contact
Gesine.Mollenhauer [ at ] awi.de

Abstract

Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetratetraunsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such str atified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
41321
DOI 10.1111/1462-2920.13289

Cite as
Zhu, C. , Wakeham, S. G. , Elling, F. J. , Basse, A. , Mollenhauer, G. , Versteegh, G. J. M. , Könneke, M. and Hinrichs, K. U. (2016): Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea , Environmental Microbiology, n/a-n/a . doi: 10.1111/1462-2920.13289


Share


Citation

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item