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Abstract. We report annual snow accumulation rates
from 1959 to 2004 along a 250km segment of the
Expéditions Glaciologiques Internationales au Groenland
(EGIG) line across central Greenland using Airborne
SAR/Interferometric Radar Altimeter System (ASIRAS)
radar layers and high resolution neutron-probe (NP) density
profiles. ASIRAS-NP-derived accumulation rates are not sta-
tistically different (95 % confidence interval) from in situ
EGIG accumulation measurements from 1985 to 2004.
ASIRAS-NP-derived accumulation increases by 20 % below
3000 m elevation, and increases by 13 % above 3000 m eleva-
tion for the period 1995 to 2004 compared to 1985 to 1994.
Three Regional Climate Models (PolarMMS5, RACMO2.3,
MAR) underestimate snow accumulation below 3000 m by
16-20 % compared to ASIRAS-NP from 1985 to 2004. We
test radar-derived accumulation rates sensitivity to density
using modeled density profiles in place of NP densities.
ASIRAS radar layers combined with Herron and Langway
(1980) model density profiles (ASIRAS-HL) produce accu-
mulation rates within 3.5 % of ASIRAS-NP estimates in the
dry snow region. We suggest using Herron and Langway
(1980) density profiles to calibrate radar layers detected in
dry snow regions of ice sheets lacking detailed in situ den-
sity measurements, such as those observed by the Operation
IceBridge campaign.

1 Introduction

Estimating ice sheet mass balance requires knowledge of
the gains and losses to the system. The IPCC estimates
a 0.40£0.15m sea-level rise by the year 2100 (scenario
RCP2.6 IPCC, 2014). Assumptions in assessing snow accu-
mulation (the primary positive input to ice sheets) account
for a portion of the uncertainty in potential sea-level rise.
Studies using ice cores (Anklin and Stauffer, 1994; Bales
et al., 2001, 2009; Banta and McConnell, 2007; McConnell
et al., 2001; Mosley-Thompson et al., 2001) provide records
of past accumulation, while climate models (Box et al., 2004;
Bromwich et al., 2001; Burgess et al., 2010; McConnell
et al.,, 2000) reconstruct accumulation in regions lacking
in situ measurements. Regional Climate Models (RCMs)
provide widespread spatial coverage of recent annual snow
accumulation (1958-2015), but these estimates interpolate
between ground-truthed point locations (Burgess et al., 2010;
Noél et al., 2015; Tedesco et al., 2015). The simplification
of accumulation rates from point-based measurements may
be overcome using ice-penetrating radar. Radar stratigraphy
studies (Arcone et al., 2004, 2005; Eisen et al., 2008; Haw-
ley et al., 2006, 2014; de la Pena et al., 2010; Spikes et al.,
2004; Medley et al., 2013, 2014) measure snow accumula-
tion by combining in situ measurements (snow density, ice
core chemistry) with continuous isochronal layers within the
dry-snow zone of ice sheets. The depth of a given radar layer
depends on the density of the snowpack through which the
radar signal travels. Using density to calculate the depth and
age of these layers allows for the estimation of an accumula-
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tion rate. Given this density and signal propagation relation-
ship, we assume that the most accurate radar-derived snow
accumulation rates result from radar surveys collected simul-
taneously with in situ density measurements.

The European Space Agency’s 2006 Airborne
SAR/Interferometric Radar Altimeter System (ASIRAS)
campaign detected annual accumulation layers along the
Expéditions Glaciologiques Internationales au Groenland
(EGIG) traverse across central Greenland (Hawley et al.,
2006; de la Pena et al.,, 2010). Previous accumulation
estimates using ASIRAS layers along EGIG incorporate
a maximum of two density profiles to calculate ASIRAS
travel time (and thus determine ASIRAS layer depth)
(Hawley et al., 2006; de la Pena et al., 2010). Concurrent
to the 2006 radar campaign, Morris and Wingham (2011)
conducted detailed measurements of near-surface density to
13 m depth using a neutron-probe (NP). Eight NP sites along
a 250 km segment of the EGIG route provide ground-truthed
density measurements for calculating ASIRAS travel time
through the ice sheet’s surface (Fig. 1). We present annual
accumulation rates from 1959 to 2004 derived from NP
density-adjusted ASIRAS layers (ASIRAS-NP accumula-
tion record). We compare our ASIRAS-NP accumulation
record to previous measurements of annual accumulation
from shallow cores (Anklin and Stauffer, 1994; Fischer
et al., 1995) and three RCMs. Detailed density, collected
in conjunction with an airborne radar survey, offers the
opportunity to understand radar-derived accumulation rates’
sensitivity to density. We test the ASIRAS accumula-
tion rate’s sensitivity to density using simple Herron and
Langway modeled density profiles in place of NP density
measurements (ASIRAS-HL). Modeled density combined
with radar layers may offer an alternative for deriving
accumulation rates from radar layers lacking ground-truthed
density.

2 Background
2.1 EGIG line

Major joint European expeditions across central Greenland
were conducted in 1958-1959 (EGIG1) and 1967-1968
(EGIG2) (Renaud et al., 1963; Merlivat et al., 1973). Shal-
low cores drilled along the route led to the first isotopic cli-
mate curves produced by Dansgaard (2004). Merlivat et al.
(1973) report a tritium based mean annual accumulation
from 1959 to 1969 of 0.329m water equivalent accumu-
lation per year (m w.e.a~!) at site T31 (Station Centrale)
and 0.243 (mw.e.a~!) at site T43 (Créte). Benson (1962)
found mean annual accumulation from 1946 to 1955 of 0.355
(mw.e.a”!) at T31.

A 1990-1992 reconstruction of the EGIG line by Technis-
che Universitidt Braunschweig led to glacio-meteorological,
isotopic/chemical, and snow accumulation studies (Anklin
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and Stauffer, 1994; Fischer et al., 1995). These studies
found accumulation rates between 0.47 and 0.44 mw.e.a™!
at the western portion of EGIG, decreasing to 0.25 to 0.20
(mw.e.a!) along the eastern edge of the EGIG line. Fischer
et al. (1995) report no long-term temporal changes in accu-
mulation rates from 1955 to 1995.

Site T21 marks the approximate transition to the dry snow
zone, with air temperatures upslope from T21 rarely ex-
ceeding 0°C (Fig. 1) (Morris and Wingham, 2011). Mor-
ris and Wingham (2011) observed a transition in surface
conditions approximately 10km uphill from site T31. Ele-
vations upslope from T31 experience less persistent winds,
leaving a smooth surface with undisturbed summer surface
hoar (Morris and Wingham, 2011). Down-slope from T31
the upper snow layer appears to be wind-packed, with sas-
trugi marking the surface (Morris and Wingham, 2011).

2.2 ASIRAS radar

The European Space Agency originally designed ASIRAS
to serve as a prototype for the CryoSat Mission (Stenseng
et al., 2007). ASIRAS uses a Ku-band radar altimeter to
measure ice sheet surface elevation and detect sub-surfaces
layers. Stenseng et al. (2007) described the internal reflec-
tion horizons observed by ASIRAS as corresponding to den-
sity interfaces. ASIRAS radar has a carrier frequency of
13.5GHz and instrument bandwidth B = 1 GHz. The radar
transect discussed in this paper was collected using low alti-
tude mode (LAM). ASIRAS-LAM has Ny = 4096 echo sam-
ples, an uncompressed pulse length of 7T = 80us, an in-
strument sampling frequency of Fy = 37.5 MHz, resulting in
a range bin resolution of AR =0.109 m, using the range-
resolution equation from (Cullen, 2010):

_ Tuckse
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where c is the speed of light, ~ 299792458 ms~!.

Hawley et al. (2006) measured annual accumulation from
1995 t0 2002 at site T21 using ASIRAS radar. The study used
a single NP density profile, T21, to calculate radar travel time
through snowpack and depth to the sub-surface layers. Haw-
ley et al. (2006) establish ASIRAS internal reflection hori-
zons as annual accumulation layers, correlating high density
winter peaks with local peaks in radar power return. ASIRAS
accumulation layers, examined down to 10m depth, pro-
duced a mean annual accumulation of 0.47 mw.e.a~! (simi-
lar to Anklin and Stauffer, 1994; Fischer et al., 1995). Haw-
ley et al. (2006) found decreasing accumulation with increas-
ing elevation and short-scale variability in line with Fischer
et al. (1995) and Box et al. (2004). Hawley et al. (2006) ob-
serve upward curved reflectors in areas of steep slope and
accumulation-driven layering, in agreement with Black and
Budd (1964).

Helm et al. (2007) collected simultaneous ground-based
density measurements and ASIRAS overflights in the perco-
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Figure 1. Field locations along a portion of the Expédition Glaciologique Internationale au Groenland (EGIG) traverse. The 250 km segment
of ASIRAS radar data discussed in this paper spans 2700 to 3200 m elevation. Black crosses # show neutron-probe density T-sites from
Morris and Wingham (2011). White squares [J show Anklin and Stauffer (1994) shallow cores. The filled triangle A shows the location of
Summit Station for reference. 100 m contour intervals are displayed. Scale bar accurate at 71° N latitude.

lation zone along EGIG (downslope from this study). The
dominant second peak observed in the ASIRAS waveform
results from a heterogeneous zone of metamorphosed snow
and ice lenses below the winter snowpack (Helm et al.,
2007). From this finding, Helm et al. (2007) demonstrate
ASIRAS’s ability to derive winter accumulation rates. Sim-
ilar to Black and Budd (1964); Hawley et al. (2006), Helm
et al. (2007) found a strong correlation between surface gra-
dient and accumulation rate, with higher accumulation rate
in the plateau areas and lower accumulation rate on slopes.
de la Pena et al. (2010) presented mean accumulation
rates for the period 1998-2003, calculated from six ASIRAS
layers along 200km of the EGIG route. de la Pena et al.
(2010) used published T21 NP density values from Hawley
et al. (2006) and a Summit density profile (located 150 km
north of the EGIG line) to linearly interpolate density val-
ues, calculate radar travel time through snow/firn layers, cal-
culate layer depth and accumulation rates along the EGIG
line. de la Pena et al. (2010) report an average accumula-
tion of 0.36 mw.e.a~! with high spatial and temporal vari-
ability, and a decreasing accumulation gradient from west to
east along EGIG consistent with previous studies of Anklin
and Stauffer (1994), Fischer et al. (1995), Burgess et al.
(2010), and the interannual variability observed by Fischer
et al. (1995). de la Pena et al. (2010) presented a 15-20 %
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increase in accumulation above 3000 m over the past 20—
25 years compared to Anklin and Stauffer (1994).

Simonsen et al. (2013) use ASIRAS layers down to ap-
proximately 15m depth along EGIG to assess firn com-
paction. They use an automatic method to identify ASIRAS
layers and confirm the layers represent isochrones spaced 1
year apart (Simonsen et al., 2013). Accumulation rates are
not reported, as the study focused on firn compaction.

2.3 EGIG-Ground in situ measurements
2.3.1 Shallow core accumulation

Anklin and Stauffer (1994) drilled 11 shallow firn cores
(referred to as T-sites, Fig. 1), 8 to 10m depth, spaced
50km apart along the EGIG line. Using hydrogen peroxide
(H20,) analysis and snow density to identify the seasonal
signal, Anklin and Stauffer (1994) report annual accumu-
lation from 1969 to 1989 for T-sites along the EGIG line.
Their accumulation rates fit with the general understanding
of water vapor transport and snow accumulation across the
Greenland Ice Sheet: higher accumulations near the coast
(0.44mw.e.a”") gradually decreasing with increasing ele-
vation (0.25mw.e.a~! at the east end of EGIG). Anklin and
Stauffer (1994) found large variations of local annual accu-
mulation rates from 1979 to 1989, with typical standard de-
viations of 10 to 25 %. Changes in annual accumulation cor-
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related from site to site. Temporally, annual accumulation in-
creased slightly in central Greenland and decreased slightly
at middle and low elevations.

Fischer et al. (1995) drilled 18 shallow firn cores along
the EGIG line during field campaigns in 1990 and 1992. An-
nual accumulation rates from 1984 to 1989 were determined
by counting seasonally varying tracers §'80 and major ions.
Measurements were collected at approximately eight sam-
ples per year. The 1990 campaign used seasonally varying
hydrogen peroxide (HO3) analysis (in collaboration with
Anklin and Stauffer, 1994) to determine summer maxima
of flourimetric profiles. Fischer et al. (1995) observed dis-
tinct winter/summer pairings in the upper snow. Fischer et al.
(1995) found layer thickness and accumulations similar to
Anklin and Stauffer (1994) (0.47-0.43mw.e.a”!), along the
western portion of EGIG , decreasing to the east (0.25 to
0.20mw.e.a~!, though fewer measurements exist to support
the eastern accumulation rates). Fischer et al. (1995) argue
for accumulation variations along EGIG due to large scale
topographic valleys and ridges. The short timespan of the
study, 1984 to 1989, limited the identifiable temporal trend
(Fischer et al., 1995).

2.3.2 Neutron-probe densities and accumulation

Morris and Wingham (2011) collected near-surface in situ
neutron-probe (NP) density measurements along a 365 km
section of the EGIG line in the spring and autumn of 2004
and spring and summer of 2006 (Morris and Wingham,
2014). The 2006 traverse coincided with airborne observa-
tions of sub-surface layers using ASIRAS. The probe used by
Morris and Wingham (2011) consists of an annular radioac-
tive americium-241/beryllium source of fast neutrons around
a cylindrical detector of slow (thermal) neutrons (Morris and
Cooper, 2003). The fast neutrons lose energy by scattering as
they move through the snow. The count rate of slow neutrons
arriving back at the detector per unit time relates to the den-
sity of the snow (Morris and Wingham, 2011). Morris (2008)
derived theoretical calibration equations for count rate and
snow density. See Morris and Wingham (2011), Morris and
Wingham (2014) for descriptions of NP data collection.
Morris and Wingham (2011) collected 17 “T-site” NP den-
sity profiles and accumulation rates spanning ice-sheet ele-
vations of 1940 to 3201 m, (eight NP T-sites of this study
are mapped on Fig. 1). The NP measured snow density from
the surface down to approximately 13 m depth at the T-sites
along the EGIG traverse. Morris and Wingham (2011) snow-
pit data show that very thin ice layers can occur at all sites but
are not resolved by the NP measurements. Morris and Wing-
ham (2011) observe “that the density peaks lie in winter snow
but are formed during the following summer, when warmer
temperatures promote densification in the near-surface layer
(e.g., Zwally and Li, 2002)” (Morris and Wingham, 2011).
Zwally and Li (2002) describe two primary phases of
the seasonal density cycle in the dry-snow region: temper-
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ature driven densification and accumulation rate driven com-
paction. Densification increases late spring to early summer
as temperatures warm, with rates decreasing after a period of
maximum firn compaction ends in late summer. The snow ac-
cumulation rate then dominates compaction through winter.
This transition in near-surface snow from late-summer to au-
tumn marks the annual seasonal change detected by ASIRAS
(Hawley et al., 2006; de la Pena et al., 2010). The snow
thickness between density peaks, adjusted to mean water-
equivalent using density measurements, defines the NP es-
timate of annual accumulation (Hawley et al., 2008; Morris
and Wingham, 2011).

3 Methods
3.1 ASIRAS-traced layers

We focus on a 250km segment of the EGIG line span-
ning eight NP T-sites (Fig. 1). We trace 48 layers down to
20 m depth from a 29 April 2006 ASIRAS flight radargram
(Fig. 2). Our radar profile starts at T21la (Okm distance)
2700 m elevation and ends 250km to the east beyond the
ice divide (3200 m elevation). Using SAR processed level _1b
ASIRAS data, we apply the following signal processing tech-
niques: waveform alignment, stacking, and gain. Each col-
umn of the radargram represents the centered mean of the
surrounding 100 columns (hence 100 columns “stacked” into
one record, representing approximately three horizontal me-
ters). The ASIRAS signal weakens with increasing depth
through the snowpack; thus we apply a ramped gain to the
signal to enhance the visual contrast of the radargram. The
ramped gain resembles an exponential gain, resulting in a 3 x
enhancement of layer intensity at 15 m depth and an 8 x en-
hancement at 20 m depth.

We trace layers by tracking the maximum reflected power.
The trace progresses by searching the adjacent column for
a maximum power reflected within the vertical range of
a moving window. Automated layer tracing occurs one layer
at a time with visual inspection and user approval of the final
traced layer. The shallowest (1st) layer represents the 2005
accumulation surface and the deepest (48th) traced layer
represents the 1959 accumulation year (October 1958 to
September 1959) (Fig. Al). Layers fade in intensity around
16 m depth along the western section of EGIG (0-75 km)
and at 14m depth along the rest of the line (75-250km).
The exact depth depends on the ASIRAS electromagnetic
wave speed v (ms~!) through the snowpack. Electromag-
netic wave speed v relates to the real part of the dielectric
permittivity €; (dimensionless) which in the near-surface can
be related to density p (kg m™3) by (Kovacs et al., 1995):

== @)
Ve
&= (1+8.45x107p)?, 3)
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Figure 2. ASIRAS radargram of a portion of the 47 traced internal
reflection horizons, or layers, down to 20 m depth. The uppermost
layer represents the 2005 accumulation year. Distance along EGIG
corresponds with gray line in Fig. 1, with O km starting at 2700 m on
the western slope and 250 km ending below 3200 m on the eastern
slope of the Greenland Ice Sheet. The left axis shows depth for NP
and layers. The right axis shows two-way travel time of an ASIRAS
radar pulse. See Appendix Fig. Al for full extent of layers across
EGIG.

where ¢ is the
(~299792458 ms™1).

Signal travel time will change based on the density of
the snowpack. Dense coastal snowpack slows the signal
speed compared to a less dense interior snowpack. Near
the coast 45 nanoseconds (ns) of travel time equals 5.10 m
depth, while the same travel time in the interior would equal
5.15 m depth. ASIRAS corrected with a coastal density pro-
file gives a depth of 20.03 m at 190 ns. The same 190 ns travel
time reaches 20.24 m depth using the interior NP profile.
The near-surface difference in travel time being unresolvable
given ASIRAS’s 0.109 m range-bin resolution (Sect. 2.2).

ASIRAS-NP and ASIRAS-HL accumulation rates have
the same radar-time layer positions. The records differ only
in the snow density used to adjust the radar signal propa-
gation, which determines the depth, and therefore thickness
of an annual accumulation layer. ASIRAS-NP, discussed in
Sect. 3.3.1, interpolates densities between eight NP density
profiles (Sect. 3.2) to calculate layer depths. ASIRAS-HL,
discussed in Sect. 3.2.2, uses ASIRAS layers with HL den-
sity profiles to calculate layer depths.

speed of light in a vacuum

3.2 Density profiles
3.2.1 Neutron-probe density

Detailed density profiles allow for more accurate calculations
of ASIRAS radar travel time through the snowpack. Previ-
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ous studies along EGIG (de la Pena et al., 2010; Hawley
et al., 2006) rely on a maximum of two density profiles to
constrain radar travel time for determination of layer depth.
We expand the range of ground-truthed NP density measure-
ments by combining 16 previously published (Morris and
Wingham, 2011) density profiles from eight T-sites (T21a,
T23, T27, T31, T35, T39, T41) in the dry-snow zone above
2700m (Fig. 2). The deepest NP measurements are 11 m,
while our deepest ASIRAS layer reaches 30 m depth. We
calculate densities below 11 m using the centimeter resolu-
tion density GISP2 B-core (NSIDC, 1997) at Summit. The
easternmost NP density measurement (T41) at 10 m depth
(0.538 gm™3) is similar to the GISP2 B-core density value at
10 m core depth (0.529 gm—3). The western edge of EGIG, at
2700 m elevation, has a 10 m density of 0.559 gm™3. We as-
sume similar rates of densification below 10 m depth at T21a,
T41, and GISP2. We append the GISP2 profile at 10 m depth
to start where T21a NP density profile ends.

3.2.2 Herron and Langway model density

Logistical challenges for both ice coring and NP logging
limit spatially detailed density measurements. Herron and
Langway (1980)’s simple empirical model of polar snow
densification provides an alternative for estimating ice sheet
density in the absence of in situ measurements. The model al-
lows us to generate a density profile at any point along EGIG
with three input parameters: mean annual accumulation A,
mean annual temperature 7', and initial surface snow den-
sity po. The model has two stages of densification for depths
above and below the “critical density” p =0.55Mgm™3.
The “critical density” marks the transition from first-stage
rapid densification due to grain settling and packing to
second-stage slowed densification with depth (Herron and
Langway, 1980). The model equations used for density p at
depth A for the two stages of densification:

Post-critical:

on = pid1
1+4

Pre-critical:
_ pid

Ph = m

(h — ho.s5)

¢o = exp[ pikoh 203

+ln( Gl )]
0i— Po

{1 =exp [Pikl

in 0.55
pi —0.55

—10160 —21400
ko=11-exp  ——r ki =575-exp [ ——r ).
0 exp( R-T ) : eXp( R-T )
where  hgs5 = _Pilko [In —pi(l?).SSS -2 ko and Ky

are Arrhenius-type rate constants, and gas constant
R =8.314JK 'mol~!, T = temperature in Kelvin and the
density of ice p; = 0.917 Mgm 3.

We calculate densities along EGIG using mean annual ac-
cumulation from Burgess et al. (2010), temperatures calcu-
lated using latitude and elevation dependent lapse rates from
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Steffen and Box (2001), and Morris and Wingham (2011)’s
T-site surface densities as inputs to Herron and Langway
(1980)’s model. We use densities generated from Herron and
Langway (1980)’s model to adjust radar travel time and de-
rive the ASIRAS-HL accumulation rate as a comparison to
the NP-derived ASIRAS-NP accumulation rates.

3.3 Accumulation rates from ASIRAS

3.3.1 ASIRAS-NP: accumulation rate using
neutron-probe densities

The 16 NP density profiles at eight T-sites (T21a, T23, T27,
T31, T35, T39, T41) bound by the combined T21la and
GISP2 b-core densities on the west and the T41 and GISP2
b-core on the east, provide the anchor points for interpolating
depth-density values at every point along the EGIG line. We
calculate annual accumulation rates from 1959 to 2004 at the
T-sites (Table A1). We refrain from calculating a 2005 annual
accumulation due to its proximity to the April 2006 ice sheet
surface at time of radar and NP collection. The NP densi-
ties represent the most detailed density measurements along
EGIG, correcting ASIRAS travel time through the snowpack
to create the ASIRAS-NP accumulation rates.

3.3.2 ASIRAS-HL: accumulation rate using Herron
and Langway densities

Taking detailed NP density measurements remains beyond
the scope of most radar surveys. We explore using simple
Herron and Langway (1980) model densities (HL) to produce
accumulation rates from ASIRAS radar layers (ASIRAS-
HL). We examine the accumulation rate difference when
using modeled density data (ASIRAS-HL) and using NP
density (ASIRAS-NP). Using spatially continuous input pa-
rameters of accumulation, temperature, and surface density,
we generate HL density profiles for each radar trace (one
approximately every 3 m horizontally, Sect. 3.1) along the
250 km segment of EGIG.

We examine accumulation rate sensitivity to density by
reducing the number of HL density profiles used to cor-
rect layer depth along the 250km EGIG segment. Dis-
tance intervals and their corresponding number of density
profiles per the 250km EGIG segment are the following:
250km (HL250, 1 profile), 125km (HL125, 2 profiles),
50km (HL50, 5 profiles), 30km (HL30, 8 profiles), and
15km (HL15, 17 profiles). We linearly interpolate between
the HL profiles to obtain a density profile at every point along
EGIG.

3.4 EGIG-Ground accumulation measurements

We combine shallow firn core records from Anklin and
Stauffer (1994) and NP based accumulation rates calculated
by Morris and Wingham (2011) to establish EGIG-Ground
records spanning 1978-2004 at T21, T27, T31, T41. Site
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T43 has 12 annual accumulations from 1976 to 1988 but
no NP measurements (Anklin and Stauffer, 1994). Anklin
and Stauffer (1994) cores generally span 1978 to 1988 while
the Morris and Wingham (2011) accumulation rates span the
mid-1980s to 2004. We use the mean of the two records at
site T41 where the studies overlap. Sites T21, T27, and T31
do not have overlapping records, with no accumulation rates
for years 1989 and 1990 at T21 and T27 and 1989 for T31.
These EGIG-Ground records serve as a basis for comparison
of accumulation rates derived from ASIRAS layers (Fig. 3).

3.5 ASIRAS-NP comparison to Regional Climate
Models

We validate ASIRAS-NP accumulation rates using EGIG-
Ground point accumulation records (Anklin and Stauffer,
1994; Morris and Wingham, 2011), then compare our results
to accumulation rates from three Regional Climate Models
(RCMs): Modele Atmosphérique Régional (MAR) (Tedesco
et al., 2015), the polar version of the Regional Atmospheric
Climate Model (RACMO2.3) (Noél et al., 2015), and the cal-
ibrated Fifth Generation Mesoscale Model modified for polar
climates (Polar MMS5) (Burgess et al., 2010).

As discussed in Sects. 2.3 and 3.1, ASIRAS waveform
results from a heterogeneous zone of metamorphosed snow
and thin ice lenses below the winter snowpack (Helm et al.,
2007; Morris and Wingham, 2011). Therefore we define
the ASIRAS-NP accumulation year as representing Octo-
ber to September. Comparisons between ASIRAS-NP and
the RCMs occur by sampling ASIRAS-NP at the RCM grid
points along the 250 km EGIG segment (Fig. 4). MAR an-
nual snow accumulation spans 1958 to 2013 (Tedesco et al.,
2015). Data obtained for this study defines the accumulation
year as January to December. MAR has a 25 km spatial res-
olution, resulting in approximately 11 MAR accumulation
estimates along the 250 km EGIG line.

RACMO?2.3 estimates monthly cumulated total surface
mass balance (SMB) (with SMB defined as precipitation mi-
nus sublimation, snow erosion, and runoff) for the period
1958-2013 (Noél et al., 2015). We sum RACMO2.3 monthly
accumulation values from October to September to align an-
nual accumulation with the ASIRAS-NP defined accumula-
tion year of (Sect. 3.1). The RACMO?2.3 spatial resolution of
11 km results in 24 modeled accumulations along EGIG.

Burgess et al. (2010) re-sample the Polar MMS5’s 24 km
horizontal grid output to a 1.25km equal-area grid using
bilinear interpolation (Burgess et al., 2010; Rignot et al.,
2008). Polar MMS5’s hydrologic year spans from 14 Septem-
ber to 15 September. The 24 km original spacing results in
approximately 11 Polar MMS5 data points along the 250 km
EGIG line. The Burgess et al. (2010) 1.25km grid down
sampled to our 2 km grid results in 125 points along EGIG.
Using generic mapping tools (GMTs) (Wessel et al., 2013)
nearneighbor command with bilinear interpolation we
interpolate from the 1.25 km grid to a 2 km grid spacing.
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Figure 3. Mean annual accumulation rates at T21, T27, T31, and T41 from ASIRAS-NP, three Regional Climate Models (MMS5, MAR,
RACMO2.3), and combined EGIG-Ground measurements from Anklin and Stauffer (1994) and Morris and Wingham (2011). ASIRAS-
NP and EGIG-Ground accumulation rates from 1985 to 2004 are not statistically different at the four sites. The RCMs underestimate
accumulation compared to ASIRAS-NP, but succeed in tracking the general accumulation trend across the 250 km EGIG segment.

4 Results
4.1 ASIRAS-NP accumulation rate

The layers detected by ASIRAS with depths calculated using
NP profiles, provide a spatially continuous record of accumu-
lation across 250 km of the EGIG route. We trace layers to
30 m depth and report accumulation rates for 46 layers span-
ning 1959-2004 (Fig. Al). The mean accumulation rate for
the entire 250 km EGIG segment is 0.337mw.e.a~! from
1959 to 2004. We focus our reported results on the period
1985 to 2004, during which EGIG-Ground measurements ex-
ist for comparison. Figure 2 displays spatial and temporal
variations in layers across the EGIG segment.

Temporally, accumulation rates increase over time,
with the onset of increase occurring in the mid-
1970s. From 1959 to 1964, mean accumulation was
0.277mw.e.a~!. From 1965 to 1974, mean accumulation
was 0.270mw.e.a~ . From 1975 to 1984, mean accumula-
tion was 0.327 mw.e.a~!. Mean ASIRAS-NP accumulation
from 1985 to 1994 was 0.328 mw.e.a~!'. Accumulation
for the period 1995 to 2004 (0.382mw.e.a~!) increases
by 16 % compared to the previous 10-year period. Table 1
summarizes the 10-year mean accumulation results. See
Table Al for detailed accumulations from 1959 to 2004.
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Table 1. Summary table of mean accumulation rates (meters water
equivalent) 1959-2004.

Period ASIRAS-NP MMS5 MAR RACMO

1959-2004  0.3374+0.03 0.288+0.04 0.3294+0.03 0.27940.06
1995-2004  0.3824+0.03 0.307+0.05 0.3474+0.02 0.30640.04
1984-1995 0.328£0.02 0.279+0.04 0.326+0.02 0.279 £0.06
1975-1984  0.3274+0.01  0.2994+0.04 0.3454+0.03 0.2834+0.06
1965-1974  0.270£0.01 0.2724+0.04 0.3164+0.03  0.257£0.06
1959-1964  0.2774+0.01 0.276+0.04 0.3004+0.02  0.2634+0.05

Spatially, accumulation decreases with increasing eleva-
tion and distance from the coast. Mean annual accumulation
for 1985 to 2004 at T21a (0km) is 0.455mw.e.a~!, gradu-
ally decreasing to 0.378 mw.e.a~! at T31, 0.297 mw.e.a™!
at T41, and 0.254 mw.e.a~! at the 250 km mark (Table 2).
Using the transition in surface conditions occurring near
T31 to divide EGIG, we examine accumulation rate changes
over time above and below T31. Below T31, mean accumu-
lation increased by 20 % over the 10-year period 1995 to
2004 (0.465mw.e.a”") compared to the 1985 to 1994 pe-
riod (0.387 mw.e.a~!). Above T31 accumulation increased
by 13 % over the 10-year period 1995 to 2004 (0.335ma™")
compared to the 1985 to 1994 period (0.296 ma1).

The Cryosphere, 10, 1679-1694, 2016
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Figure 4. Mean water-equivalent accumulations rates from 1985 to 2004 along EGIG line. The solid blue line shows this study’s ASIRAS-NP
accumulation derived from ASIRAS layers and NP densities. Black squares depict mean accumulation from T-sites with NP/Core EGIG-
Ground measurements from Anklin and Stauffer (1994) and Morris and Wingham (2011) spanning 1985-2004 (T21, T27, T31, T41). Snow
accumulation from three Regional Climate Models, Polar MM5, MAR, and RACMO?2.3 is plotted for comparison. The models generally
underestimate accumulation compared to ASIRAS-NP and EGIG-Ground in situ estimates. Radar-derived accumulation rates are highest
near the coast where density values have the largest range. Standard uncertainties displayed are for accumulation values from 1985 to 2004.

4.2 ASIRAS-NP and RCMs vs. EGIG-Ground

The published EGIG-Ground in situ accumulation records
discussed in Sect. 3.4 serve as the “known” accumulation
rate to which we compare our ASIRAS-NP record and the
RCMs. We focus on four sites (T21, T27, T31, T41) that have
accumulation records from both Anklin and Stauffer (1994)
and Morris and Wingham (2011). Figure 3 presents these
comparisons at the four T-sites. We compare the full records
year by year using a nonparametric Wilcoxon sign-rank test
designed for two populations with paired observations. The
differences of the paired observations will have a distribu-
tion whose median is zero at the 5% significance level if
the two populations are not statistically different. The zero
median of the paired and differenced records indicate the
ASIRAS-NP and EGIG-Ground accumulations come from
identical populations. The paired yearly accumulations for
RCMs and EGIG-Ground at the four T-sites are significantly
different based on a Wilcoxon signed-rank test. In addition
to the year-to-year comparisons, no statistical difference ex-
ists between EGIG-Ground and ASIRAS-NP mean accumu-
lation from 1985 to 2004 at sites T21, T27, T31, T41 (Ta-
ble 2). We conducted an analysis of variance test to compare
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means of the 20-year (1985-2004) annual snow accumula-
tion for ASIRAS-NP and EGIG-Ground, and the RCMs and
ASIRAS-NP accumulation for 1978 to 2004. Significance
differences were determined for alpha < 0.05. Pearson’s cor-
relation coefficients for ASIRAS-NP and EGIG-Ground and
RCM accumulations for the entire record (1959-2004) range
from 0.56 to 0.19 (Table A2).

4.3 ASIRAS-NP vs. Regional Climate Models

Regional Climate Models RACMO?2.3, MAR, and Polar
MMS, generally underestimate mean annual snow accu-
mulation along EGIG compared to ASIRAS-NP (Fig. 4).
ASIRAS-NP and the RCM accumulation rates from 1978 to
2004 positively correlate at T-sites T21, T23, T27, and T41
for MAR, MM5, and RACMO2.3 (Table A2). An ANOVA
comparison of means for 1959 to 2004 shows RCM and
ASIRAS-NP mean accumulations are statistically different
at T-sites T21, T27, T31, and T41. Using a Wilcoxon signed-
rank test, year-to-year comparisons show significant statisti-
cal differences between all three RCMs and ASIRAS-NP at
the T-sites. RCM mean accumulations along EGIG are sig-
nificantly lower for the time period coincident with EGIG-
Ground measurements, 1985 to 2004 (Fig. 4). We focus on
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Table 2. Summary table of mean accumulation rates (m w.e. a_l), 1985-2004, for Fig. 4.

Study T21 T27 T31 T41

EGIG-Ground 0.488+0.03 0.405+£0.02 0.385+0.02 0.294+0.01
ASIRAS 0.455+£0.02 0.409+£0.02 0.378+£0.01 0.297+0.01
MM5 0.370£0.01 0.333+£0.01 0.311+0.06 0.257+0.06
MAR 0.373£0.02 0.357+£0.02 0.344+0.01 0.3224+0.01
RACMO2.3 0.390£0.02 0.348+£0.02 0.318+0.01 0.2334+0.01

Table 3. Mean percentage difference between ASIRAS-NP and
RCMs for periods 1985-1994, 1995-2004, 1985-2004.

Period RACMO MAR  MM5
EGIG

1985-2004 18 % 3% 17 %

1995-2004 17 % 4% 13 %

1985-1994 13% —4 % 21 %
Below T31

1985-2004 16 % 16 % 20 %

1995-2004 17 % 17 % 16 %

1985-1994 9% 8 % 25 %
Above T31

1985-2004 18 % —4 % 15 %

1995-2004 17 % —3% 12 %

1985-1994 16 % —10% 19%

the period 1985 to 2004 to calculate standard uncertainty
(Jiﬁ, where o = standard deviation and n = 20).

Mean RACMO accumulation (0.297 mw.e.a~!) from
1985 to 2004 across the entire 250 km EGIG segment is 18 %
lower than ASIRAS-NP (0.356mw.e.a~!) (Table 3). Mean
ASIRAS-NP and RACMO accumulations rates from 1985 to
2004 differ spatially along EGIG (Fig. 4). Using the tran-
sition in surface conditions occurring near T31 (3000 m el-
evation) to divide EGIG, RACMO underestimates accumu-
lation by 16 % downslope from T31 compared to ASIRAS-
NP. Above T31, mean RACMO accumulation is 18 % lower
than ASIRAS-NP. Accumulation rates change over time with
differing rates above and below T31. RACMO underesti-
mates accumulation down-slope of T31 by 17 % compared
to ASIRAS-NP from 1995 to 2004. Below T31 from 1985
to 1994 RACMO accumulation estimates are 9 % lower than
ASIRAS-NP. Above T31, RACMO underestimates accumu-
lation by 16 % for the 1985-1994 period and 17 % for 1995—
2004, relative to ASIRAS-NP.

Mean MAR accumulation (0.336 mw.e.a~ 1) from 1985 to
2004 across the entire 250km EGIG segment is 3 % lower
than ASIRAS-NP (0.355mw.e.a~!). Spatially, MAR both
underestimates and overestimates accumulation along EGIG.
MAR underestimates accumulation by 16 % downslope from
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T31 compared to ASIRAS-NP. Above T31, mean MAR ac-
cumulation rates are 4 % higher than ASIRAS-NP. Accumu-
lation rates vary over time with differing rates above and be-
low T31. MAR accumulations from 1995 to 2005 are 17 %
lower than ASIRAS-NP accumulations down-slope of T31.
Below T31 from 1985 to 1994 MAR accumulations are 8 %
lower than ASIRAS-NP. East of T31, MAR accumulation is
10 % higher for 1985-1994 and 3 % higher for 1995-2004,
relative to ASIRAS-NP (Table 3).

Mean Polar MM5 accumulation (0.293 mw.e.a~!) from
1985 to 2004 across the entire 250 km EGIG segment is 17 %
lower than ASIRAS-NP (0.356mw.e.a~'). Mean ASIRAS-
NP and Polar MMS5 accumulations rates from 1985 to 2004
differ spatially along EGIG. Using the transition in surface
conditions occurring near T31 (3000 m elevation) to divide
EGIG, Polar MMS underestimates accumulation by 20 %
downslope from T31 compared to ASIRAS-NP. Above T31,
mean Polar MM5 accumulation is 15 % lower than ASIRAS-
NP. Accumulation rates change over time with differing rates
above and below T31. Polar MMS5 underestimates accumula-
tion down-slope of T31 by 16 % compared to ASIRAS-NP
from 1995 to 2004. Below T31 from 1985 to 1994 Polar
MM5 accumulation estimates are 25 % lower than ASIRAS-
NP. Above T31, Polar MMS5 underestimates accumulation by
12 % for the 1985-1994 period and 19 % for 1995-2004, rel-
ative to ASIRAS-NP.

4.4 ASIRAS-NP vs. ASIRAS-HL: accumulation rate
sensitivity to density

Mean percentage accumulation differences between
ASIRAS-NP and ASIRAS-HL decrease with increasing
age/depth of the layers (Fig. 5). Figure 5 plots the mean
difference between ASIRAS-NP and ASIRAS-HL for the
upper five layers (2000-2004), period (1985-1989), and the
20-year period 1985-2004 layers. On average the deeper
the layer, the lower the difference between ASIRAS-NP
and ASIRAS-HL accumulation rates. The upper five
layers differ by 4% on average. The 1985-1989 period
differs by 3.2 %. Overall, for the period 1985-2004, mean
ASIRAS-HL accumulation is 4.5 % lower than ASIRAS-NP
accumulation.

We test sensitivity to density by limiting the number of HL
density profiles along EGIG and interpolating density values

The Cryosphere, 10, 1679-1694, 2016
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Figure 5. Mean percentage accumulation difference between ASIRAS-NP and ASIRAS-HL for the upper five (2000-2004), lower five
(1985-1989), and 1985-2004 layers. In general, differences in accumulation decrease with increasing depth/age of the layers. ASIRAS-HL
accumulation differs from ASIRAS-NP accumulation by 4.5 % for the 1985-2004 period. The low mean differences across the 250 km
EGIG segment indicate that modeled densities provide accurate accumulation estimates in radar survey regions lacking in situ density

measurements.

between the profiles. Using one density profile (HL250 km)
for the entire 250 km EGIG segment results in a 10 % dif-
ference in ASIRAS-NP and ASIRAS-HL. Incorporating two
density profiles (HL125 km) halves the accumulation differ-
ence from 10 to 5 %. The ASIRAS-NP and ASIRAS-HL ac-
cumulation difference reduces to 3 % for HL50km (5 pro-
files), HL30 km (8 profiles), and HL.15 km (17 profiles).

5 Discussion
5.1 ASIRAS-NP accumulation rate

The ASIRAS layers combined with NP density data improve
understanding of accumulation between T-sites, showing de-
tailed peaks and valleys in accumulation as seen and at-
tributed to topography by Arcone et al. (2005), Hawley et al.
(2006), Black and Budd (1964), Miége and et. al. (2013).
The undulating layers observed in Fig. 2 reinforce ice core
observations of high spatial variability (Spikes et al., 2004).
Spatial variability decreases with increasing depth, as layers
undergo compaction. The fluctuations of layer depth and ver-
tically aligned dips and peaks may indicate surface accumu-
lation anomalies (Arcone et al., 2005). A gradual horizontal
migration of undulations over time could produce spatially
periodic accumulation rates, as described by Arcone et al.
(2005). Undulations preserved from year to year are visible
east of T27 at 60 km and from 125 to 175 km along the EGIG
line (Fig. 2 and Fig. Al). The oscillations are visible along
the 250km EGIG segment in the long term mean temporal ac-
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cumulation rate in Fig. 4. Visual inspection of layer thickness
for a given year (Figs. 2 and A1) allows us to argue for high
confidence in the extreme values measured by ASIRAS-NP.

In comparison to historical records, de la Pena et al. (2010)
and Hawley et al. (2014) observed accumulation increases
of 19 and 10 % over the last 30 and 52 years, respectively,
in high-elevation interior Greenland. We report a 16 % in-
crease in accumulation for the period 1995-2004 compared
to 1985-1994 and a 41 % increase in accumulation for the
period 1965-1974 (Table 1). We observe an east—west gradi-
ent along EGIG of increasing accumulation, with lower ac-
cumulation increases in the east and higher increases to the
west. The east—west gradient strengthens from 1995 to 2004,
when ASIRAS-NP is 20 % higher than ASIRAS-HL below
T31 and 13 % higher above T31.

5.2 ASIRAS-NP vs. EGIG-Ground

The patterns observed by Anklin and Stauffer (1994), Fischer
et al. (1995), Morris and Wingham (2011) at the T-sites align
with the overall trend observed by de la Pena et al. (2010)
along EGIG of decreasing accumulation from the coast to
the interior. The year-to-year comparisons from Fig. 3 us-
ing Paired Wilcoxon signed-rank span every year with ob-
servations for both ASIRAS-NP and EGIG-Ground. Year-to-
year comparisons show that ASIRAS-NP tracks the EGIG-
Ground measurements consistently. EGIG-Ground accumu-
lation minima and maxima are not always consistent across
the EGIG route for a given year (e.g., the T31 record’s max-
ima occurs in 1995, while T27 and T41 records have near
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minimum values for 1995). We attribute site to site accumu-
lation fluctuation in the EGIG-Ground record to the limited
spatially extent of a given shallow core or snowpit. Accumu-
lation extremes seen in the ASIRAS-NP record are consistent
across the T-sites (low in 1998, high in 1996).

5.3 ASIRAS-NP vs. Regional Climate Models

Polar MMS5 underestimates accumulation relative to
ASIRAS-NP and EGIG-Ground (Fig. 4). Mean Polar MM5
accumulation from 1985 to 2004 along EGIG is 0.06 m
(17 %) lower than ASIRAS-NP measurements. The mean
0.06 m difference falls within Polar MMS5’s standard devi-
ation of accumulation along EGIG (0.025-0.075) (Burgess
et al., 2010). Polar MM5'’s consistent underestimate of ac-
cumulation relative to ASIRAS-NP and EGIG-Ground may
be explained by the measurements used to tune Polar MMS5.
Burgess et al. (2010) added spatial and temporal resolution
to Greenland ice sheet accumulation by calibrating the Polar
MMS5 using firn cores and meteorological stations data.
Burgess et al. (2010) re-sample the Polar MM5’s 24 km hori-
zontal grid output to a 1.25 km equal-area grid using bilinear
interpolation (Burgess et al., 2010; Rignot et al., 2008).
The 24 km original spacing results in approximately eight
Polar MMS5 data points along the 250 km EGIG line. These
eight Polar MMS points were tuned from a network of cores
and automatic weather stations and thus were not forced
to correspond exactly with cores along EGIG. Burgess
et al. (2010) omit the majority of the T-site accumulation
rates along EGIG, including only sites T31, T41, and T43.
ASIRAS-NP provides detailed accumulation measurements
every 3 m, nearly continuous tracking along EGIG relative to
Polar MMS5. The increased spatial resolution may contribute
to the difference in accumulation rates.

Yearly comparisons of the entire record of ASIRAS-NP
and Polar MMS5 snow accumulations (Fig. 3) show positive
correlations for T21a, T23, T27, T41, T43 (Table A2). Cor-
relations between ASIRAS-NP and Polar MM5 demonstrate
the model’s utility for predicting the relative year-to-year ac-
cumulation trend. ASIRAS-NP and Polar MMS5 both track
the general coast to interior accumulation gradient as ele-
vation increases (Fig. 4). Morris and Wingham (2011) de-
scribe a noticeable change in surface conditions near site
T31. Above T31, summer surface hoar appears undisturbed,
possibly from less persistent winds. Down-slope from T31
katabatic winds pack the upper snow layer and form sastrugi,
which may influence spatial variability and preservation of
accumulation layers. Signal preserved in the upper ASIRAS-
NP accumulation layers would be absent in the Polar MM5
record, possibly explaining Polar MMS5’s 25 % accumula-
tion underestimate compared to ASIRAS-NP below T31. El-
evations upslope from T31 experience less persistent winds,
leaving a smooth surface with undisturbed summer surface
hoar, with a mean Polar MM5 accumulation 18 % lower than
ASIRAS-NP. The spatial gradient has a noticeable temporal
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component when comparing ASIRAS-NP and Polar MM5.
From 1985 to 1994, Polar MMS5 accumulation is 28 % lower
below T31 and 21 % lower above T31 compared to ASIRAS-
NP. The east—west gradient along EGIG strengthens from
1995 to 2004, when Polar MMS5 is 23 % lower than ASIRAS-
NP below T31 and 16 % lower above T31. Polar MM5’s re-
cent accumulation rates near EGIG rely on firn cores drilled
prior to 1995 and limited automatic weather stations at high
elevation. Thus recent observed increases in accumulation
at high elevation due to increased moisture availability from
warming (de la Pena et al., 2010; Hawley et al., 2014) may
not appear in the Polar MMS5 record.

5.4 ASIRAS-NP vs. ASIRAS-HL: accumulation rate
sensitivity to density

Subtracting the ASIRAS-HL and ASIRAS-NP accumulation
rates tests the radar-derived accumulation rate’s sensitivity to
density. The ASIRAS layers’ position in radar time remains
constant between the ASIRAS-NP and ASIRAS-HL. Den-
sity, which determines radar velocity and therefore water-
equivalent depth, is the lone variable between ASIRAS-NP
and ASIRAS-HL accumulation records. The largest differ-
ences in accumulation occur where NP and HL densities dif-
fer most. NP density profiles provide detailed vertical reso-
lution of seasonal density fluctuation. Seasonal density fluc-
tuations are most prominent in the near surface layers and in
areas with large variability in temperature and accumulation
(e.g., coastal, lower elevations). Though the simple three pa-
rameter Herron and Langway (1980) model cannot capture
the detailed seasonal density variations, the model’s gener-
alized density in the near-surface generates ASIRAS-HL ac-
cumulation rates within 4.5 % of ASIRAS-NP. NP and HL
densities resemble each other most at deeper depths as com-
paction smooths seasonal fluctuations in density. Thus the
deeper layers have the smallest mean percentage accumula-
tion difference (3 %) (Fig. 5). The low (4.5 %) mean accumu-
lation differences along EGIG indicate that modeled density
values provide reasonable accumulation estimates in areas
with low variability in density and where detailed density
profiles are unavailable. Below 11 m depth, differences are
related to Summit GISP2b-Shifted and Summit GISP2b shal-
low density core bounding the west (0 km) and east (250 km)
margins, respectively, of the EGIG line. No dominant spa-
tial pattern of accumulation differences emerges from west
to east. The mean of the lower five accumulation years
(1985-1989) account for the smallest accumulation differ-
ences from 60 to 250 km. The largest differences along EGIG
occur on the east end (225-250km) where ASIRAS-NP is
constrained by a Summit density core. Abrupt jumps in mean
percent accumulation difference occur where the number of
layers is included in the average change.

Recall the spatially continuous nature of the density in-
puts for the ASIRAS-HL accumulation record (HL density
profiles spaced 3 m apart). These density inputs were driven
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by highly resolved HL. model inputs of accumulation, tem-
perature and surface density. ASIRAS-HL accumulation ac-
curacy relative to ASIRAS-NP may be due to these model in-
puts. We test this possibility with the HL250 km, HL.125 km,
etc., accumulation records, which rely on a limited number
of density profiles and interpolation. The moderate reduction
from 10 to 5 % accumulation difference for HL250 km and
HL 125 km is likely due to the linear gradients (increasing ac-
cumulation downslope, decreasing elevation, increasing tem-
perature) of the HL model input parameters along the 250 km
EGIG segment. The two density profiles of HL125 km cover
both the lower and upper range of the gradients. The in-
terpolation between these two contain the majority of den-
sity variation seen in the ASIRAS-NP, thus accounting for
the 4 % mean accumulation difference between ASIRAS-
HL125km and ASIRAS-NP. An average 3.2 % percent ac-
cumulation difference can be obtained using 5 HL profiles at
50 km spacing. This finding stands to improve accuracy for
radar-derived accumulation rates and serve as a guideline for
correcting the wealth of IceBridge radar data.

6 Conclusions

Point-based measurements such as ice cores and weather
stations provide the basis for current accumulation esti-
mates. Models and interpolation between these points pro-
vide spatially continuous estimates of accumulation. Radar-
detected annual accumulation layers offer a physical obser-
vation connecting point-based measurements. Detailed NP
density measurements provide accurate radar travel time
velocities and exact densities for water-equivalent conver-
sion, improving accuracy of annual accumulation rates from
ASIRAS. We report spatially continuous annual accumu-
lation rates from 1959 to 2004 along a 250km segment
of EGIG. Our ASIRAS-NP rates are not statistically dif-
ferent from EGIG-Ground point measurements spanning
1985-2004. Polar MM5 and RACMO2.3 consistently un-
derestimate accumulation by 17 % along EGIG compared
to ASIRAS-NP. MAR underestimates by as much as 16 %
and overestimates by 10 %. Overall, Regional Climate Mod-
els Polar MMS5, MAR, and RACMO2.3 succeed in capturing
the general trend of accumulation seen by ASIRAS-NP, but
they underestimate the total amount of snow. The ASIRAS-
NP observed increases in mean accumulation may relate to
increased warming and availability of moisture at higher el-
evations.
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The similarity between ASIRAS and EGIG-Ground
demonstrates that the ASIRAS layers, adjusted with NP den-
sity, produce accurate estimates of accumulation along a con-
tinuous 250 km segment of the EGIG line. We recognize the
challenge of obtaining detailed density measurements and
demonstrate the use of simple HL. models to derive adequate
accumulation estimates in the dry snow region. Using Her-
ron and Langway (1980) profiles at 50 km intervals produces
ASIRAS-HL accumulation rates within 3 % of ASIRAS-NP
estimates. High resolution airborne radar systems operated in
dry snow regions of ice sheets, such as those onboard Opera-
tion IceBridge, calibrated with a minimal number of Herron
and Langway (1980) modeled density profiles, may produce
accumulation rates within the uncertainty of accumulation
best-estimates using detailed density profiles.

7 Data availability

The original raw ASIRAS data must be accessed via the
European Space Agency’s EO Data Access site: https://
earth.esa.int/web/guest/data-access/how-to-access-eo-data/
how-to-access-earth-observation-data-distributed-by-esa
(ESA-EarthOnline, 2016), https://directory.eoportal.org/
web/eoportal/airborne-sensors/asiras (ESA-ASIRAS, 2016).

The neutron probe data can be accessed by contacting
Elizabeth (Liz) Morris http://www.spri.cam.ac.uk/people/
morris/ (emm36@cam.ac.uk).

See the Assets tab for DOIs for the ASIRAS-NP and
ASIRAS-HL accumulation rates and ASCII versions of Ta-
ble 1, Table 2, and Table A1l.
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Appendix A

Table A1. Mean annual ASIRAS-NP accumulation (mw.e.) at T-sites along EGIG.

Year T21 T21a T23 T27 T31 T35 T39 T41 T43
Lat 70.54 70.59 70.62 70.78 7091 70.98 71.04 71.08 7112
Lon  —43.03 —42.79 —42.58 —41.54 —40.64 —39.55 —38.46 ~37.92 —37.32
2004 0.64£0.01 0.67+£001 064001 0.56+001 049£0.01 040£001 036+0.01 0.33£001 031+0.01
2003 0.56+0.01 0.58+0.01 0.61+£0.01 048+001 043£0.01 037£001 033+£001 030001 031£0.01
2002 0394001 041+£001 039+0.01 038+001 038+0.01 0.34+001 030+£0.01 0324001 035+001
2001 0.56+0.01 0.58+001 048+0.01 041+001 036+0.01 036+001 032+001 0294001 028001
2000 0.56+£0.01 054001 052+001 0424001 035+£0.01 028+0.01 0294001 025+0.01 0.23+0.01
1999 0494003 041+003 052+£0.01 054£001 047001 046+0.01 0.39+001 038+£0.01 037+0.01
1998  0.40+0.01 042+001 040+£0.01 031£0.01 031£001 025+001 0.23+001 024+0.01 021+0.01
1997 045+0.01 044+001 046+0.01 042+0.01 0394002 033+001 031+001 0294001 0.26+0.01
1996  050+0.01 0514001 0.50+£0.01 046+0.01 047+0.04 047+001 044+001 039+£0.01 0.41+0.01
1995 0.614+0.02 0.55+0.02 0594001 053+£0.02 043+£0.03 041+001 034+001 033+£0.01 030+0.02
1994 0.34£001 032£0.01 035+001 034£0.01 0.32£001 026£0.01 0.26+001 025+£0.02 0.21£0.01
1993 0.36+£0.01 036+0.01 0.34+001 028+0.01 027+001 023+£001 023£001 023£001 0.25+0.01
1992 0294001 033+£0.01 0324001 030£001 0294001 0294001 0294001 0.26+0.01 0.26+0.01
1991 0.58+0.01 053£0.01 0.50£0.03 040+£0.01 0394002 039+£001 034001 035+001 0.33£0.01
1990 0444001 046+001 049+£0.02 046+0.01 042£0.02 039+£001 036+001 034+0.01 033£0.01
1989 0404001 040+001 041+£0.01 040+£0.01 038+001 030£001 030+£001 028+0.01 027+0.01
1988 0.40+0.01 040+001 041+£0.01 034£001 030£001 026+001 027+001 024+0.01 024+0.01
1987 0394001 039+001 038+£0.01 033£0.02 034001 033+£001 0.28+001 028+0.02 026+0.01
1986 - - 0334005 043+£0.02 040+001 034+001 032+£001 034+£001 0.30+0.01
1985 - - 0.66+0.08 0494002 044+001 043+£001 031+£0.01 026+001 0254001
1984 - - 0474001 0424004 0324001 0264002 027+0.01 0274001 0.28+0.01
1983 - - 0474001 051£0.01 048+0.02 035+£0.01 034+001 035+£0.01 031001
1982 - - 0324001 0294003 027+002 027+£0.01 0.28+001 025+0.01 0.28+0.01
1981 - - 0414001 0334002 0294002 027£0.01 021+0.02 022+0.01 0.20+0.01
1980 - - 0274001 038+0.02 033+001 0294001 0.29+0.02 026+0.01 0.24+0.01
1979 - - 0324001 023£0.02 0294001 0.26+001 028+0.02 026+0.01 0.28+0.01
1978 - - 046+0.01 043+£001 035+001 034+001 028+0.01 028+0.01 0244001
1977 - - 0574001 0514+001 038+001 035+£001 034+£001 0274002 0284001
1976 - - 040+0.01 0394001 038+001 037+£001 028+0.02 031001 0244001
1975 - - 0424001 054001 0424002 0274002 030£0.01 031001 0344001
1974 - - 0314001 030001 043+001 037+£001 034+001 028+001 0254001
1973 - - 033£001 031£0.01 029+001 026+0.01 0.24£001 023£0.01 0.26+0.01
1972 - - - - 0324002 033002 028+001 031001 031001
1971 - - - - 0324001 031£0.01 0.26+001 025+0.01 0.25+0.01
1970 - - - - 0284001 028+0.01 028+001 027+0.01 0.25+0.01
1969 - - - - 0414001 0324£001 023+001 024+0.01 0.22£0.01
1968 - - - - 030+0.01 028+001 0.28+001 026+0.01 025+0.01
1967 - - - - 0294001 0284001 0.28+001 028+0.01 0.26+0.01
1966 - - - - 0274001 0314£0.02 022+001 023+0.01 0.19+0.01
1965 - - - - 024£0.01 0224001 023+001 0224001 0.23+0.01
1964 - - - - 034£0.01 035+001 034+001 034+0.01 0.28+0.01
1963 - - - - 0314001 031£0.01 0294001 029£0.01 0.29+0.01
1962 - - - - 0244001 0242001 020+£001 023£0.01 023001
1961 - - - - 0234001 024+0.01 024+001 025£0.01 0.23+0.01
1960 - - - - 0284001 028+0.01 027+001 027+0.01 0.24+0.01
1959 - - - - 0344001 035+£0.01 032+001 033£0.01 0.30+0.01
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Table A2. Pearson’s correlation coefficients for EGIG-Ground, ASIRAS-NP, and RCM accumulation rates. Number of rates compared
appears in parentheses.

Paired T21 T27 T31 T41 T43

Pearson’s R

ASIRAS-NP and EGIG-Ground  0.46 (16)  0.19 (21) 0.21 (24) 0.42(27) 0.56 (13)
ASIRAS-NP and Polar MM5 0.55(18) 0.53(32) 0.40 (46) 0.56 (46)  0.49 (46)
ASIRAS-NP and MAR 037 (18) 0.32(32) 0.32 (46) 0.40 (46) 0.41 (46)
ASIRAS-NP and RACMO2.3 0.24 (18) 0.35(32) 0.28 (46) 0.41 (46)  0.40 (46)

141
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£ &
E :
20 190
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1] 50 100 150 200 250 300 350
Distance along EGIG (km)

Figure Al. ASIRAS radargram of the 47 traced internal reflection horizons (IRHs), or layers, down to 30 m depth. The uppermost layer
represents the 2005 accumulation year. The deepest layer represents 1959. Distance along EGIG corresponds with T21 in Fig. 1, with O km
starting at 2700 m on the western slope and extending beyond 350 km where layer visibility decreases on the eastern slope of the Greenland
Ice Sheet. High coastal accumulation rates, evident from thicker western layers from 0 to 50km, gradually thin with increasing elevation
and orographic deposition of accumulation approaching the ice divide at 210 m distance. Topographic effects related to local surface features
(described by Black and Budd, 1964) may explain layer undulations. Vertical gray lines indicate the position and depth of Morris and
Wingham (2011) NP density measurements.
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