On the state dependency of the equilibrium climate sensitivity during the last 5 Myr
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It is a still open question how equilibrium warming in response to increasing radiative forcing — the specific
equilibrium climate sensitivity S — is depending on background climate. We here bring palaeodata-based
evidence on the state dependency of S by using CO» proxy data together with 3-D ice-sheet-model-based
reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land-ice albedo forcing
depends non-linearly on the background climate, while any non-linearity of CO> radiative forcing depends
on the CO; data set used. This non-linearity was in similar approaches not accounted for due to previously
more simplistic approximations of land-ice albedo radiative forcing being a linear function of sea level change.
Important for the non-linearity between land-ice albedo and sea level are the more complex models including
more ice sheet physics, from which we also find a latitudinal dependency in ice sheet area changes. In our
setup, in which the radiative forcing of CO» and of the land-ice albedo (LI) is combined, we find a state
dependency in the calculated specific equilibrium climate sensitivity S[COZ,LI] for most of the Pleistocene (last
2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods S[co,,L| is on average
50% larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP)
the CO, data uncertainties prevents a well-supported calculation for Sico, i, but our analysis suggests that
during times without a large land-ice area in the northern hemisphere (e.g. before 2.82 Myr BP) the specific
equilibrium climate sensitivity S[COZ‘LI] was smaller than during interglacials of the Pleistocene. We thus find
support for a previously proposed state change in the climate system with the wide appearance of northern
hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land
ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate
sensitivity. If we develop for S an equation as a function of AR|co, i) We find S(co,,1y) in interglacials to be
2-2.7 x larger than during glacial maxima, potentially indicating that equilibrium warming for CO> doubling
might be in the upper range of results compiled in the IPCC ARA4.

Main parts published as: Kohler et al., 2015. Climate of the Past, 11, 1801-1823.
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