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Adding fertiliser to sediments is an established way of studying the effects of eutrophication but a lack of consis-
tent methodology, reporting on enrichment levels, or guidance on application rates precludes rigorous synthesis
and meta-analysis. We developed a simple enrichment technique then applied it to 28 sites across an intertidal
sandflat. Fertiliser application rates of 150 and 600 g N m−2 resulted in pore water ammonium concentrations
respectively 1–110 and 4–580 × ambient, with greater elevations observed in deeper (5–7 cm) than surface
(0–2 cm) sediments. These enrichment levels were similar to eutrophic estuaries and were maintained for at
least seven weeks. The high between-site variability could be partially explained by the sedimentary environ-
ment and macrofaunal community (42%), but only at the high application rate. We suggest future enrichment
studies should be conducted in situ across large environmental gradients to incorporate real world complexity
and increase generality of conclusions.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Nutrient processing is deemed one of the most valuable ecosystem
services globally and themajority of this occurs in coastal soft sediments
(Costanza et al., 1997). This ecosystem service influences the supply and
flux of nutrientswithin and betweenmarine habitats and through deni-
trification in particular, can alleviate problems such as the loss of ecosys-
tem functionality and biodiversity associated with excess nutrients.
Indeed, excessive nutrient loading and eutrophication are stressing
coastal marine environments throughout the world (Levin et al.,
2015). The overabundance of nitrogen in particular the (nutrient usual-
ly limiting production (Herbert, 1999; Howarth and Marino, 2006))
causes changes in biomass, structure, and functioning of coastal com-
munities and food webs (Abreu et al., 2006; Howarth et al., 2011;
Rabalais et al., 2014). Yet, despite being of paramount importance to
global environmental wellbeing, nutrient processing in soft sediments
is still poorly understood and response toperturbations are rarely tested
experimentally in situ. Reliable techniques are needed to empirically
test the effects of excess nutrients, and its interactions with other
stressors in real world settings that embrace ecological complexity,
las).
tz Centre for Polar and Marine
hafen 12, 27570 Bremerhaven,
and thereby allow broad scale inferences regarding response to change
(Snelgrove et al., 2014).

Fertilisers have commonly been used to test the effects of increased
nutrient loading on marine soft sediment habitats, but methodological
development has been haphazard making cross-study comparisons
near impossible. We extended the review of Worm et al. (2000) to in-
clude the recent literature, and found 47 enrichment studies conducted
in intertidal and subtidal habitats (Appendix 1). Approximately half of
the studies tested nutrient limitation and growth in macrophytes
(mainly seagrasses), and half examined nutrient enrichment effects on
benthic communities and food webs. Slow release fertilisers, such as
Osmocote®, were used in 33 of 47 (70%) studies, but these fertilisers
varied considerably in their elemental makeup. Similarly, studies had
a very wide range of application rates (between 3 and 750 g N m−2

(Fig. 1)); while some were based on previously published experiments
or site-specific pilot studies (25 of 47), in N50% of studies application
rates were not justified (27 of 47). Applications of fertiliser to surficial
sediments were common; in 53% of studies additions were b5 cm
deep, and inmany studies (36%) only the top 1 cmof sediment received
fertiliser. Moreover, in only 20 of 47 studies were enrichment levels (i.e.
realised treatment effect) on sediment nutrient pore water concentra-
tions reported. Relative increases in pore water nitrogen concentrations
in these 20 studies ranged from 7 to 352 times ambient levels (Fig. 1)
but enrichment level comparisons are difficult to make because the
depth of sampling (0–20 cm) was not standardised. These inconsis-
tencies and methodological limitations indicate a need for a more
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Fig. 1. Normalised (relative to ambient) pore water nitrogen concentration as a function of
fertiliser application rate in the 20 studies for which such data were reported (Appendix 1).

Table 1
Sediment properties and macrofauna variables as a function of fertiliser application rate.
Values are medians with minimum and maximum in parentheses (n = 28).

Variable Control
(0 g N m−2)

Medium
(150 g N m−2)

High
(600 g N m−2)

Sediment properties
Seagrass (% cover) 16 (0–84) 20 (0–97) 21 (0–75)
OC (%) 0.9 (0.6–2.0) 0.9 (0.6–2.0) 1.0 (0.6–1.8)
Mud (% b63 μm) 1.78 (0–15) 0.62 (0–14) 0.42 (0−12)
GSM (μm) 215 (177–241) 220 (182–242) 219 (190–250)
Chl-a (μg g−1 sediment) 9.3 (3−23) 10.0 (5–32) 9.5 (5–28)

Macrofauna
S (taxa core−1) 26 (11–38) 23 (7–40) 26 (11–45)
N (n core−1) 107 (19–419) 58 (8–345) 62 (22–574)
H′ 2.4 (1.1–3.1) 2.4 (1.6–3.0) 2.4 (1.1–3.0)

OC=sediment organic content,Mud=sedimentmud content, GSM=grain sizemedian,
Chl-a = chlorophyll a content, S = number of species, N = number of individuals, H′ =
Shannon diversity.
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informed approach to enrichment experiments that justifies fertiliser
application rates, and improves understanding of the factors that may
influence the resulting pore water nutrient concentrations.

Firstly, when planningmanipulative field ormesocosm experiments
it is useful to consider potential enrichment levels for a given applica-
tion rate to avoid unrealistically high or undetectable pore water nutri-
ent concentrations. Secondly, Worm et al. (2000) showed that
enrichment level (i.e. pore water nutrient increase) could not be pre-
dicted by the initial fertiliser application rate, time since application
and application depth using multiple linear regression analysis of liter-
ature studies (overall r2 = 0.07, p = 0.53, n = 34). We repeated this
analysis on the larger set of literature and revealed a similar result
(r2= 0.01, p= 0.92, n= 48). The implication is that local environmen-
tal variables and variability in methods may strongly affect the enrich-
ment level. We also note that previous studies have frequently
overlooked co-variables or failed to assess their influence on the nutri-
ent treatment.

Marine soft sediment ecosystems vary greatly in their physical and
biological makeup, and consequently their biogeochemical processes
(Braeckman et al., 2014). For example, sediment properties are impor-
tant to consider in studies of benthic nutrient cycling since these influ-
ence diffusion and solute transport (e.g. Blackburn and Henriksen,
1983; Glud, 2008; Hohaia et al., 2013; Huettel et al., 2003), as well as
macrofauna behaviour and ecosystem functioning (e.g. Lohrer et al.,
2004; Pratt et al., 2013; Woodin et al., 2012). Benthic macrofauna are
known to influence nitrogen cycling (Aller, 1988; Kristensen et al.,
1991; Laverock et al., 2011), and the presence of macrophytes and
microphytobenthos is also expected to influence pore water nutrient
concentrations and the level of experimental enrichment. The majority
of enrichment experiments have been conducted in vegetated sedi-
ments (28 of 47) and only 10 of the 19 studies conducted in un-
vegetated sediments reported significant increases in pore water con-
centrations (Appendix 1). Our literature review shows that there is in-
sufficient information for researchers designing enrichment
experiments in un-vegetated sediments, and that there is a need to ex-
perimentally assess the role of habitat and biological processes in ame-
liorating pore water nutrient concentrations.

Our study develops protocols that are simple and cost-effective for in
situ nitrogen enrichment experiments. The method was developed
based on the published literature and a recent intertidal sandflat exper-
iment that encompassed a wide range of sediment types, macrophyte
coverage, and variations in benthic macrofauna community composi-
tion (Table 1). Our study design allowed us to document the degree to
which surface and sub-surface sediment pore water nitrogen concen-
trations were elevated as a function of fertiliser application rate and
time since application, in relation to environmental variables to serve
as a guide for future studies.
2. Methods

2.1. Experiment setup

A large scale nitrogen enrichment experiment was set up on a
300,000m2 area of intertidal sand flat on the Tapora Bank in the Kaipara
Harbour, northern New Zealand (36° 39′ S, 174° 29′ E). The study area is
composed mostly of permeable sediments of varying mud (particle
size b 63 μm) content (Table 1), and is subject to tidal flushing, wind
waves, and run off from a mostly agricultural catchment. Treatment
plots (1 m × 1 m) consisting of control (no addition), medium
(150 g N m−2) and high (600 g N m−2) nitrogen enrichment were
established at 28 sites (each in a 5 × 5 m area) across the study area.
These application rates were based on the median and upper quartile
values from the literature review (Appendix 1). We used Nutricote®
N (70 d, 40-0-0 N:P:K), a controlled release coated urea fertiliser con-
taining no phosphorus, potassium or trace elements. A nitrogen-only
fertiliser was used since it is typically the limiting nutrient in these sys-
tems, and urea quickly hydrolyses to ammonium (NH4

+) (Lomstein
et al., 1989), themost common form of nitrogen in New Zealand estuar-
ies (Tay et al., 2013).

Fertiliser was applied to each plot in a series of 20 evenly spaced
3 cm diameter 15 cm deep holes made in the sediment using a hand
held corer. Each hole received an equal volume of fertiliser and the in-
tact sediment core plugs were replaced immediately to minimise dis-
turbance to the sediment. For less cohesive sediments, an outer core
sleeve was used to prevent holes from infilling while fertiliser was
added. Control plots were similarly cored and received an equal volume
(as the high treatment) of pea gravel of similar diameter to the fertiliser
pellets.With this methodwewere able to establish 84 1m2 experimen-
tal plots across a 300,000 m2 study site in one low tide (4–5 h) with a
team of six people. In a preliminary study, this technique provided
even elevation of pore water NH4

+ throughout a 1 m2 plot (1.3–2.0
fold variation in concentration between the plot centre, edge and half-
way in between) when sampled four weeks after application, with en-
richment effects undetectable 0.5 m beyond the plot boundary.

2.2. Sampling

Samples were collected four weeks (pore water and sediment prop-
erties) and seven weeks after the fertiliser addition (pore water, sedi-
ment properties, macrofauna). Sampling times were chosen to allow
enough time for the system to respond (based on our literature review
andpilot study), andwerewithin the70 d release period of the fertiliser.
Replicate, randomly placed sediment cores (2.6 cm dia.) from each plot
were pooled and homogenised for analysis of sediment properties (n=
5, 0–2 cm depth) and pore water nutrients (n = 4, 0–2 cm and 5–7 cm
depths, separated). Sediment samples were kept in the dark and



289E.J. Douglas et al. / Marine Pollution Bulletin 111 (2016) 287–294
transported on ice to the laboratory. At the end of the experiment, two
cores (13 cm dia., 15 cm depth) were collected near the centre of each
plot for analysis of the benthic macrofaunal community. Cores were
sieved on a 500 μm mesh, preserved in 50% isopropyl alcohol, and
stained with Rose Bengal. All organisms were counted and identified
to the lowest possible taxonomic level (usually species).

In the laboratory, pore water was extracted immediately by centri-
fuge and filtered (1.1 μm,Whatman GC glass fibre filters) prior to freez-
ing (−20 °C) (Lohrer et al., 2010). Pore water samples were later
analysed for NH4

+ using a Lachat QuickChem 8000 Series FIA+
(Zellweger Analytics Inc. Milwaukee, Wisconsin, 53218, USA) using
standard operating procedures for flow injection analysis. Sediment
samples were frozen at −20 °C until analysis. Particle grain size was
measured after removal of organic matter with 10% hydrogen peroxide,
using a Malvern Mastersizer 2000 (particle size range 0.05–2000 μm)
(Singer et al., 1988). Sediment organic matter content was determined
by weight loss on ignition of dry sediments (550 °C for 4 h) according
to Parker (1983). Chlorophyll a (Chl a) was extracted from freeze-
dried sediment in 90% acetone, then fluorescence of samples was mea-
sured using a Turner Designs 10-AU flourometer (Arar and Collins,
1997). Prior to sampling, photographs of 0.25 m2 in the centre of each
plot were taken and a random point count method used to estimate
seagrass (Zostera muelleri Irmisch ex Asch.) coverage (%) (see Kohler
and Gill, 2006).

Summary statistics and univariate tests were carried out using
STATISTICA version 11 (StatSoft Inc., 2012) after first identifying and re-
moving outliers (n b 5 per treatment). Paired t-tests were used to test
for differences in pore water NH4

+ concentration between depth strata
four and sevenweeks after enrichment.Multivariate analyseswere con-
ducted using PRIMER 7.0 PERMANOVA+ (Clarke and Gorley, 2015). A
Euclidean distancematrix was generated using log (x+ 1) transformed
pore water concentrations from both depth strata. This matrix was then
used to run a repeated measures permutational multivariate analysis of
variance (PERMANOVA) to test the effects of application rate (fixed fac-
tor, 3 levels), sample time (fixed factor, 2 levels) and their interaction on
multivariate pore water NH4

+ concentration, plot was treated as a ran-
dom factor (84 levels) nested within treatment. Post-hoc
PERMANOVA pairwise t-tests were used to identify where significant
treatment and time effects occurred.

To investigate whether measured environmental variables (Table 1)
could explain variations in pore water NH4

+ concentration, a separate
Euclidean distance matrix of raw pore water concentration data
(using both depth strata) from week seven was generated for each
treatment. Distance-based linear models (DistLM) were run on thema-
trices to determine which variables were correlated with pore water
NH4

+ concentrations (e.g. as in Pratt et al. (2015)). This multiple regres-
sion analysis uses permutation and does not assume normality, so data
were left untransformed because we wanted to retain heterogeneity
(and transformations did not change results). Predictor variables were
however standardised (between 0 and 1) to account for differences in
the magnitude and range of units. Marginal tests were used to identify
individually significant correlations with pore water concentration,
followed by a backwards elimination procedure, using the corrected
Akaike information criterion (AICc) to select the best individual or com-
bination of variables. AICc was themost the appropriate selection crite-
rion since the sample size was small relative to the number of variables
(Burnham and Anderson, 2002).
3. Results

Our technique successfully elevated pore water NH4
+ concentrations

for the duration of the seven week experiment, with the depth-
averaged medium and high treatments respectively 1–110 and 4–580
times greater than ambient conditions (Fig. 2). These ranges are near
to (medium treatment) or greater than (high treatment) the range of
values from reviewed studies using application rates between 3 and
750 g N m−2 (Fig. 1).

Despite high within treatment variability, there was a highly signif-
icant effect of fertiliser application rate on pore water NH4

+ concentra-
tion (depth strata combined), and post-hoc tests revealed significant
differences between all treatment levels (Table 2). There was also a
weakly significant effect of sample date, with pore water NH4

+ concen-
trations higher in week seven than week four, although plots within
specific treatments did not all respond temporally in the same way
(i.e. the significant plot nested in treatment effect). The lack of a signif-
icant treatment × time interaction indicates that the temporal increase
in pore water NH4

+ concentrations was a general site phenomenon, and
not related solely to changes in release rate in fertilised plots. Four and
sevenweeks after enrichment, both fertiliser treatments showed higher
porewaterNH4

+ concentrations in deeper sediments (5–7 cm) than sur-
face sediments (0–2 cm) (paired t-tests p b 0.01). Ambient (control
plot) NH4

+ concentrations were also higher in deeper than shallower
sediments although the differences were not as pronounced (paired t-
tests p b 0.06; Fig. 2).

Sediment properties and indicators of macrofaunal community
structure varied widely across the experimental area (Table 1), but
none of these variables were significantly correlated with pore water
NH4

+ concentration in the control and medium addition plots
(Table 3). However, in the high addition treatment pore water NH4

+

concentration was negatively correlated with distance from shore, or-
ganic and mud content, seagrass coverage, and benthic macrofauna di-
versity (Table 3). Sediment Chl a content was the only variable
positively correlatedwith porewaterNH4

+ concentration. Themost par-
simonious model of pore water concentration in the high treatment in-
cluded Chl a and number of macrofauna taxa, which collectively
explained 42% of the total variation.

4. Discussion

In order to conduct experiments that simulate realistic eutrophic
sedimentary conditions, an adequate nutrient application technique is
required together with a benchmarked application rate to achieve the
desired level of enrichment. Since the Worm et al. (2000) review
15 years ago there has not been sufficient improvement inmethodology
available in the literature to help plan enrichment experiments. We de-
veloped a technique to enrich intertidal sediments in one application,
without disturbing the entire sediment profile, which can supply nutri-
ents for at least seven weeks. This technique provides an even spread of
nutrient concentrations throughout a 1 × 1m2 plot minimising nutrient
gradients. Our method is simple and cheap, can be used for both long
and short-term enrichment experiments, and allows high levels of rep-
lication. Fertiliser pellets appeared intact after 7 weeks, and we expect
that enrichment would have continued for at least 70 d (manufacturers
estimated release period). Longer term experiments could consider
using fertilisers with slower release rates to avoid repeat applications
(e.g. Nutricote® N 140 d). It proved easy to use in a range of intertidal
sediment types and could also be applied in other aquatic soft sediment
environments, including sub-tidal and lake sediments with the use of
SCUBA. Subtidal applications would be made easier with the use of
fertiliser packets such as mesh bags, however biodegradable materials
are recommended to avoid retrieval. The use of a duel core (i.e. an
inner and outer core sleeve) may be required to prevent holes infilling
and to ensure fertiliser is buried to the required depth. We recommend
for all aquatic deployments workers verify that their chosen fertiliser is
negatively buoyant and bury it to a depth beyond the expected mobile
sediment layer.

Fertiliser type, application rate, and depth need to be carefully con-
sidered in terms of the study aims, duration, and receiving environment.
We observed high variability in the enrichment level and despite mea-
suring a large number of site specific environmental variables, much of
this could not be explained. Our enrichment levels tended to be higher



Fig. 2. Sediment porewaterNH4
+ concentration as a function of time since fertiliser application (4 and 7weeks), application rate (0, 150, 600 gNm−2) and sampledepth (0–2 and 5–7 cm).

Boxes represent 25%, median and 75% distributions, with whiskers the non-outlier minimum and maximum (n= 28). Note log10 scale of y-axis.

Table 3
Significant predictors (marginal test results p b 0.1) of porewater NH4

+ concentration as a
function of fertiliser application rate after sevenweeks. Prop. is the proportion of variation
explained anddirection of correlation is given in parentheses. Variables in boldwere those
included in the best DistLM model of pore water concentration, and full model indicates
the proportion of explained variance attributed to each. Variable abbreviations are given
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than those measured in other studies, which could be due to shallow
enrichment techniques and/or differences in pore water sampling and
monitoring used in other studies (Appendix 1). Worm et al. (2000)
emphasised the importance of careful pore water sampling during ex-
periments to be sure of a consistent and quantifiable enrichment level.
A standardised sampling technique is also required since concentrations
of nitrogen species typically change throughout the sediment profile
(Vanderborght and Billen, 1975; Zhang et al., 2013). Depending on the
depth sampled, the values obtained could be very different to the de-
sired level; in our study enrichment levels were greater in deeper
than in surface sediments (Fig. 2). Sampling the surface sediments
may mean the measured enrichment is very low or undetectable, and
sampling too deep may render values that are unrepresentative of the
active benthos layer. Therefore, we recommend targeting a specific sed-
iment profile area of importance to the study, and/or pooling across sed-
iment depths which integrates the variability in enrichment level
throughout the sediment profile, reduces the amount of samples to an-
alyse, and gives more general, comparable values.

Our literature review showed that many studies (53%) applied
fertiliser to surface sediments (≤5 cmdepth),mimicking eutrophication
effects from the water column, but not the long term impacts of eutro-
phication on sediment pore water. Surface sediments are more likely to
be influenced by water column hydrodynamics and pore water advec-
tion processes (review by Santos et al., 2012) which may speed up nu-
trient release from the fertiliser. Our method enriched the sediment
profile at least from 0 to 7 cm depth, and is likely to elevate NH4

+ avail-
ability at the sediment water interface. This zone includes the rhizo-
sphere of seagrasses, and the layer of most macrofaunal activity in
marine soft sediment habitats (Gilbert et al., 1998; Teal et al., 2008).
Table 2
Results of a repeatedmeasures PERMANOVA comparing porewaterNH4

+ concentration as
a function of fertiliser application rate (treatment) and sample date (time). The
PERMANOVAwas based on Euclidean distance of log10 (x+ 1) porewater concentrations
at 0–2 and 5–7 cm depth. Post-hoc pair-wise tests are given for significant treatment
effects.

Source df SS MS Pseudo-F Perm-p Post-hoc

Treatment 2 1006 503 162 0.001 C b M b H
Time 1 9.68 9.68 4.82 0.021 4w b 7w
Plot (Treatment) 81 250 3.09 1.54 0.012
Treatment × Time 2 3.02 1.51 0.75 0.547
Residual 81 162 2.01

Treatments: C = 0, M = 150, H = 600 g N m−2.
Time: 4w= 4 weeks, 7w= 7 weeks.
The elevated pore water concentrations that our method delivered are
equivalent to the concentrations that are measured in enriched estuar-
ies globally (Appendix 2), simulating the long term effects of eutrophi-
cation. Unlike our method, in situ water column or surface sediment
enrichment methods cannot produce this effect due to dilution and
high variability in sediment-water coupling.

Many physical and biological factors influence the level of nutrient
enrichment, as well as the type and severity of consequences to an
ecosystem's functioning. Nutrient cycling and efflux from the sediments
are influenced by the sedimentary environment (Blackburn and
Henriksen, 1983; Glud, 2008; Santos et al., 2012), benthic macrofauna
(Bertics et al., 2010; Laverock et al., 2011), and macrophyte communi-
ties (Kenworthy et al., 1982). Our results show that primary consider-
ation should be given to benthic macrofauna and sediment properties
when estimating potential enrichment levels of experiments. In hetero-
geneous environments, researchers should consider the interactions
and variability of site environmental and biological variables and their
influence on enrichment levels. This is particularly important for studies
of biological community response to enrichment. If researchers wish to
achieve a specific level of enrichment, especially for studies
encompassing environmental variability, a pilot study is recommended
so that application rates can be tailored to achieve the desired pore
water concentrations and reduce variability.
in Table 1.

Treatment Variable Pseudo-F Prop. Full model

0 g N m−2 No individually significant predictors
150 g N m−2 No individually significant predictors
600 g N m−2 Distance to shore 5.42 0.20⁎⁎ (−)

OC 4.76 0.18⁎⁎ (−)
Mud 2.99 0.12⁎ (−)
Chl a 2.94 0.12⁎ (+) 16%
Seagrass 5.70 0.21⁎⁎⁎ (−)
S 7.84 0.26⁎⁎⁎ (−) 30%
H′ 7.93 0.26⁎⁎⁎ (−)

Total 42%

⁎ p ≤ 0.1.
⁎⁎ p ≤ 0.05.
⁎⁎⁎ p ≤ 0.01.
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In order to meaningfully progress eutrophication and nutrient cy-
cling research, more in situ experimentation is needed. An important
outcome of this work is that the same application rate can achieve
very different enrichment levels even within a single habitat; we mea-
sured high variability in enrichment level across a sandflat at a scale
b1 km. This scale of variability reflects real-world complexity and
should be incorporated into future experiments in order to increase
generality and application of conclusions. The way to achieve this is
through well replicated gradient designs that consider co-variables
(Eberhardt and Thomas, 1991; Ellis and Schneider, 2008; Hewitt et al.,
2007; Thrush et al., 1997). Many of the reviewed nutrient enrichment
studies had research questions that required categorical type designs;
the majority (68%) used only a single fertiliser application rate, the av-
erage number of treatment replicates was just five, and more than half
the studies (57%) were conducted across spatial scales much less than
1 km (Appendix 1). Although these past studies represent an invaluable
body of work, it would be complemented by experiments conducted
across environmental gradients and larger spatial scales. Combining in
situ assay techniques (such as sediment nutrient enrichment), with
novel interaction network approaches to data analysis will provide
valuable ecological tools for studies of multiple stressor effects, ecosys-
tem resilience, and tipping points in real world settings (Thrush et al.,
2014). Using previously employed methods this seems unachievable
and expensive in time and money. We have shown that such experi-
ments can be conducted relatively easily with a simple technique that:

1. can be used for a highly replicated experiment across a large area,
2. delivers nutrient enrichment for at least sevenweeks that scaleswith

application rate,
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3. requires only one initial set up,
4. has no need to build or install special diffusion devices, and
5. is inexpensive in time and money.
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Appendix A
Appendix 1

Summary of published literature of in situ sediment fertiliser enrichment studies.
Experimental design
 Fertiliser application
 Pore water enrichment
Source
 Purpose of
study
Substrate
 Sites
 Treatment
replicates
Spatial scale
(km)
Type
 Diffuser
device
Depth
(cm)
Rate (g N
m−2)
Effect
detected
Effect
size
rth (1977)
 SG
 Veg
 2
 40
 N5
 SR
 N
 0–1
 64–128
 NR
 –

ulthuis and Woelkerling
(1981)
SG
 Veg
 1
 3
 b1
 Inorg
 Y
 10
 100
 ↑
 4.8–30
ulich Jr. (1985)
 SG
 Veg
 2
 12
 N5
 SR
 N
 0–1
 20
 NR
 –

ennison et al. (1987)
 SG
 Veg
 2
 12
 b1
 Inorg
 Y
 0–10
 NR
 ↑
 –

illiams (1987)
 SG
 Veg
 1
 8
 b1
 SR
 Y
 0–5
 140
 ↑
 209–352

owell et al. (1989)
 SG
 Veg
 5
 5
 b1
 Org
 N
 0
 NR
 ↑
 –

ort et al. (1990)
 SG
 Veg
 1
 6
 b1
 SR
 N
 20–25
 NR
 NR
 –

illiams (1990)
 SG
 Veg
 1
 4
 b1
 SR
 Y
 0–5
 604
 ↑
 0.19–5.6

erez et al. (1991)
 SG
 Veg
 1
 1
 b1
 SR
 N
 0–1
 2150
 NR
 –

ulthuis et al. (1992)
 SG
 Veg
 5
 15
 N5
 SR
 Y
 10
 100
 ↑
 1.0–52.6

othmann and Werner
(1992)
EU
 Un-veg
 1
 6
 b1
 Inorg
 Y
 8
 NR
 ↑
 –
enworthy and Fonseca
(1992)
SG
 Veg
 3
 9
 1–5
 SR
 Y
 ?
 3.2–53
 NR
 –
urray et al. (1992)
 SG
 Veg
 1
 ?
 b1
 Inorg
 Y
 15
 100–200
 ↑
 1.3–2.0

illiams and Ruckelshaus
(1993)
SG
 Veg
 1
 7
 b1
 Inorg
 Y
 0–5
 54
 ↑
 5.0–9.3
rftemeijer et al. (1994)
 SG
 Veg
 3
 18
 N5
 SR
 N
 10–15
 4.9
 ↑
 1.2

nseca et al. (1994)
 SG
 Veg
 2
 2
 N5
 SR
 Y
 7.6
 694
 NR
 –

ller (1995)
 M
 Veg
 1
 3
 b1
 SR
 Y
 0–10
 30–135
 ↑
 6.8–61.0

cGlathery (1995)
 SG
 Veg
 2
 2
 1–5
 SR
 Y
 ?
 NR
 ?
 –

edersen (1995)
 A + SG
 Veg
 1
 1
 b1
 Inorg
 N
 ?
 NR
 NR
 –

osey et al. (1995)
 EU + FW
 Un-veg
 1
 15
 b1
 SR/Inorg
 Y
 0, 0–7.5
 2.3
 NR
 –

n Lent et al. (1995)
 SG
 Veg
 2
 8
 N5
 SR
 N
 10
 190
 ↑
 1.4–3.0

etter (1996)
 EU
 Un-veg
 1
 4
 b1
 Org
 N
 0
 NR
 ?
 –

eccherelli and Cinelli
(1997)
EU + A + SG
 Veg
 1
 6
 b1
 SR
 Y
 1–6
 10.4
 NS
 10.5
dy and Dennison (1997)
 SG
 Veg
 1
 3
 b1
 SR
 N
 0.5–1.0
 88
 ↑
 139

osey et al. (1999)
 EU
 Un-veg
 2
 14
 N5
 SR
 Y
 0–7.5
 69
 NR
 –

iceno and Lovell (2000)
 EU, B
 Veg
 1
 1
 b1
 Inorg
 N
 0
 16.3
 NS
 0.74–1.44

orm et al. (2000)
 Method

review

Un-veg
 1
 8
 b1
 SR
 N
 0–10
 150
 ↑
 17.5
(continued on next page)
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ppendix 1 (continued)
P
M

M

Fe

A
Le
A
G
P
St
O
Sa
O

O
P
C
Fi
O
B

G
C

P

Sa
C
P
D
Z
V
M
Lo
P
C
C
B
G
T

Experimental design
 Fertiliser application
 Pore water enrichment
Source
 Purpose of
study
Substrate
 Sites
 Treatment
replicates
Spatial scale
(km)
Type
 Diffuser
device
Depth
(cm)
Rate (g N
m−2)
Effect
detected
Effect
size
osey et al. (2002)
 EU, FW
 Un-veg
 2
 14
 N5
 SR
 Y
 0–7.5
 NR
 ↑
 –

orris and Keough
(2003b)
EU
 Un-veg
 1
 8
 b1
 SR
 Y
 0–1
 1579–3158
 NS
 –
orris and Keough
(2003a)
EU
 Un-veg
 2
 12
 N5
 SR
 Y
 1–2
 123–2467
 ↑
 –
rdie and Fourqurean
(2004)
SG
 Veg
 6
 24
 N5
 SR
 N
 0
 NR
 NR
 –
rmitage et al. (2005)
 SG, FW
 Veg
 6
 36
 N5
 SR
 N
 0
 NR
 NR
 –

ver and Valiela (2005)
 EU
 Un-veg
 3
 15
 1–5
 SR
 Y
 1
 196
 ↑
 20.4–34.6

rmitage et al. (2006)
 EU
 Veg
 4
 24
 N5
 SR
 N
 0
 NR
 NR
 –

il et al. (2006)
 EU
 Veg
 2
 12
 N5
 SR
 N
 0–1
 NR
 NR
 –

osey et al. (2006)
 EU, FW
 Un-veg
 4
 36
 N5
 SR
 Y
 0–7.5
 NR
 NR
 2.2

utes et al. (2006)
 EU
 Un-veg
 2
 20
 1–5
 QR
 Y
 10
 3.2–4.5
 ↑
 1.3–100

'Brien et al. (2009)
 EU
 Un-veg
 1
 24
 b1
 SR
 N
 4
 389
 ↑
 14.9–51.9

ntos et al. (2009)
 EU
 Un-veg
 1
 6
 b1
 QR
 N
 0
 NR
 NS
 –

'Brien et al. (2010)
 EU
 Veg +

Un-veg

1
 5
 N5
 SR
 N
 5
 750
 ↑
 7.0–16.0
lsen and Valiela (2010)
 SG
 Veg
 1
 6
 b1
 SR
 N
 0–20
 306
 ↑
 289

iehler et al. (2010)
 EU
 Un-veg
 1
 4
 b1
 Inorg
 N
 0
 NR
 NS
 –

ebrian et al. (2012)
 EU
 Un-veg
 2
 20
 1–5
 QR
 Y
 10
 NR
 ↑
 –

tch and Crowe (2012)
 EU
 Un-veg
 1
 8
 b1
 SR
 Y
 0–6
 10–20
 ↑
 4.8–7.6

'Gorman et al. (2012)
 EU
 Un-veg
 1
 8
 b1
 SR
 Y
 0–6
 10–20
 NR
 –

otter-Carvalho et al.
(2014)
EU
 Un-veg
 1
 6
 b1
 QR
 N
 0
 1200–2400
 NR
 –
uevara et al. (2014)
 EU, B
 Veg
 6
 36
 N5
 SR
 N
 0
 NR
 NR
 –

urrent study
 Veg +

Un-veg

1
 28
 b1
 SR
 N
 0–15
 150 & 600
 ↑
 1–580
urpose of study: EU; eutrophication/nutrient effects, SG; seagrass growth and nutrient limitation, FW; food web/community structure, M; mangrove growth, A; macroalgae
growth, B; bacterial community response. Fertiliser type: SR; slow release, QR; quick release, Inorg; inorganic salts or solutes, Org; organic nutrients. Rate: NR; application
rate not reported, or not reported in a comparable way. Pore water enrichment: ↑; pore water nutrient concentration increase, NS; no significant increase in pore water
nutrient concentration detected, NR; pore water concentration not reported, or not reported in a comparable way. Effect size: treatment concentration/ambient
concentration.
Appendix 2

Examples of sediment pore water NH4

+ concentrations from estuaries with developed (anthropogenically modified) catchments sampled from a range of sediment depths (0–100 cm),
compared to those observed during this study.
Source
 Estuary
 Country
 NH4
+ (μM)
ntos et al. (2014)
 Tauranga
 New Zealand
 6–52

abrita and Brotas (2000)
 Tagus Estuary
 Portugal
 18–40

ercuoco et al. (2015)
 Great Bay Estuary
 USA
 50–1400

e Vittor et al. (2012)
 Marano-Grado Lagoon
 Italy
 52–900

hang et al. (2013)
 Pearl River Estuary
 China
 64–321

idal and Morgui (1995)
 Alfacs Bay
 Spain
 100–600

agni et al. (2014)
 Shinkawa-Kasugawa Estuary
 Japan
 200–500

hrer et al. (2010)
 Mahurangi Estuary
 New Zealand
 257–1542

érez-Villalona et al. (2015)
 San Juan Bay Estuary
 Puerto Rico
 461–572

ook et al. (2004)
 Huon Estuary
 Australia
 500

lavero et al. (2000)
 Palmones River Estuary
 Spain
 500–3500

ally et al. (2004)
 Seine Estuary
 France
 1940

onçalves et al. (2012)
 Santos-Cubatao Estuarine System
 Brazil
 2495–4989

his study
 Application rate 150 g N m−2

Application rate 600 g N m−2

64–10,275
11–18,842
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