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Abstract. A high-resolution (1km line spacing) aerogeo-
physical survey was conducted over a region near the East
Antarctic Ice Sheet’s Dome C that may hold a 1.5 Myr cli-
mate record. We combined new ice thickness data derived
from an airborne coherent radar sounder with unpublished
data that was in part unavailable for earlier compilations, and
we were able to remove older data with high positional un-
certainties. We generated a revised high-resolution digital el-
evation model (DEM) to investigate the potential for an old
ice record in this region, and used laser altimetry to confirm
a Cryosat-2 derived DEM for inferring the glaciological state
of the candidate area. By measuring the specularity content
of the bed, we were able to find an additional 50 subglacial
lakes near the candidate site, and by Doppler focusing the
radar data, we were able to map out the roughness of the bed
at length scales of hundreds of meters.

We find that the primary candidate region contains el-
evated rough topography interspersed with scattered sub-
glacial lakes and some regions of smoother bed. Free sub-
glacial water appears to be restricted from bed overlain by
ice thicknesses of less than 3000 m. A site near the ice divide

was selected for further investigation. The high resolution of
this ice thickness data set also allows us to explore the nature
of ice thickness uncertainties in the context of radar geometry
and processing.

1 Introduction

The oldest recovered stratigraphically intact record of
Antarctic ice is located in the EPICA Dome C ice core,
collected near the joint Italian—French Concordia Station
in Wilkes Land, Antarctica (EPICA Community Members,
2004). The interpreted section of this ice core, which ex-
tends back to 800ka, records the isotopic and gas imprint
of eight glacial cycles with a periodicity of ~ 100 kyr. Ma-
rine records of oxygen isotopes, however, reveal that prior
to 800ka, the global climate system was driven by shorter,
lower-amplitude obliquity-driven ~40kyr cycles, with an
approximately 400 kyr transition between the two states. A
key goal of the international ice core community is to collect
a deep ice core that samples both a local climate history of
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Antarctica and a global record of greenhouse gas concentra-
tion going back to 1.5 Ma (Fischer et al., 2013).

The requirements for a stratigraphically intact ice column
covering the required epoch are (1) low accumulation, to re-
strict vertical thinning rates and increase temporal coverage;
(2) low geothermal heat flow, to restrict basal melt rates; (3)
proximity to an ice divide, to limit disturbance due to lateral
flow, and simplify the altitude history of the surface; (4) lim-
ited basal roughness, in order to restrict disruption of basal
ice; and (5) ice thicknesses of about 2500 m, in order to limit
thermal insulation of the basal ice. Items 1 and 2 interact, as
low accumulation limits the downward advection of cold sur-
face temperatures, requiring low geothermal heat flow to pre-
vent melting. Items 3 (implying elevated ice surface height),
4 (smooth subglacial topography), and 5 (implying limited
ice thickness) lead to the somewhat contradictory require-
ment of a flat subglacial mountain. Given the significant lo-
gistical requirements of ice core recovery, another important
criterion for any old ice site is accessibility.

Based on ensemble ice sheet modeling, tuned by the then
known distribution of subglacial lakes, Van Liefferinge and
Pattyn (2013) identified a number of potential regions of
frozen bed that might hold ice with old basal ages (Fig. 1). A
key constraint on this prediction was the use of the Bedmap2
ice thickness compilation (Fretwell et al., 2013), which in-
cluded ice thickness data collected up to 2009. Several of
the predicted sites were clustered within 50 km of Concordia
Station.

The European-led Beyond EPICA group identified these
sites as being of significant interest for old ice access, and
requested the ongoing ICECAP (International Collaborative
Exploration of the Cryosphere through Airborne Profiling,
Young et al., 2011) project survey these sites. The follow-
up US—Australian ICECAP II project was successful in con-
ducting a systematic aerogeophysical survey of the Old Ice
A site (OIA) in late January 2016. This paper reports on the
preliminary results of this survey.

2 The Dome C region

Dome C (Fig. 1) is a local topographic high in the East
Antarctic Ice Sheet (EAIS), rising to 3250 m above sea level,
located 1100 km from the East Antarctic coast. Dome C sep-
arates ice flowing to Totten Glacier to the northwest of ice
flowing to the George V Coast to the east and to Byrd Glacier
to the south. A topographic saddle connects Dome C to the
higher ice overlying subglacial Lake Vostok to the southwest,
through Ridge B and Dome A, the highest part of the EAIS.

2.1 Previous data sets
The topography of Dome C (Fig. 1) was first defined from the

joint SPRI/NSF/TUD airborne surveys of the 1970s (Drewry
and Jordan, 1983). These pioneering airborne radar altimetry
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Figure 1. The East Antarctic ice sheet showing the Van Liefferinge
and Pattyn (2013) frozen bed candidates and the location of Dome
C; the region of interest is in the red box. Other potential old ice tar-
gets include Dome F, Dome A, Ridge B, and Titan Dome. Surface
elevation and slope are from Cryosat-2 (Helm et al., 2014). Projec-
tion is Antarctic Polar Stereographic, (EPSG:3031) with latitude of
true scale at —71°.

and radar sounding observations predated GPS, and aircraft
positions were constrained by pressure altimetry and inertial
navigation systems with large uncertainties; however, sub-
sequent ground-based traverses and satellite radar altimetry
(Bamber, 1994) confirmed the presence of the dome. As a
site of thick ice, low accumulation, and slow ice flow, it was
a promising site for ice coring, with the first cores in the re-
gion acquired in 1977-1978 (Lorius et al., 1979). These early
surveys also revealed the presence of an extensive population
of subglacial lakes in this region (Oswald and Robin, 1973;
Wright and Siegert, 2012).

Site selection work for the EPICA Dome C ice core took
place in the mid 1990s with an Italian survey grid cover-
ing the Dome C region (Tabacco et al., 1998). This work,
a combination of ground and airborne (Twin Otter) based
surveys using a 60 MHz incoherent radar system with a 1 ps
pulse width, covered most of the Dome C region with 10 km
line spacing. Ice thickness measurements from these surveys
form the bulk of the data coverage for this region in the
Bedmap?2 compilation (Fretwell et al., 2013; see Fig. 2a and
b).

The coarse subglacial geography revealed by the Italian
survey is comprised of a deep subglacial trough (the Con-
cordia Subglacial Trench) to the northeast of Dome C (see
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Figure 2. Dome C in the context of the Van Liefferinge and Pattyn (2013) frozen bed candidates and Concordia Station. A threshold of
—5°C was used for selecting candidates. Bedmap2 bed elevation and ice thickness contours (Fretwell et al., 2013) are shown in (a), along
with subglacial lakes known as of Wright and Siegert (2012). Regions where trends seen in surface data are absent in Bedmap?2 are shown
by the yellow boxes in all panels. Coverage used to constrain Bedmap?2 (orange) is shown in (b), with the 1970s SPRI/NSF/TUD data set
being the sparse, dotted lines. Surface elevation and slope from Cryosat-2 (Helm et al., 2014) is shown in (c), with older ICECAP tracks
(Cavitte et al., 2016) in black and a green line showing the ice divide profile shown in Fig. 3. ICECAP Old Ice A data discussed in this paper
(black), as well additional modern data sets are shown in (d). Contours in (c¢) and (d) are Bedmap? ice thickness. Projection is Antarctic

Polar Stereographic, and the region corresponds to the red box in Fig. 1.

lower left of Fig. 2a), with indications of a flat subglacial
plateau near mean sea level under the center of the primary
dome, and a massif to the southwest along the line of north-
eastward ice flow. EPICA Dome C targeted the center of the
dome on the basis of apparently flat topography and its isola-
tion from surrounding ice flow (Tabacco et al., 1998). Addi-
tional analysis (Rémy and Tabacco, 2000), however, revealed
broad, shallow channels trending north—south within the sub-
glacial plateau region.

The final EPICA Dome C ice core succeeded in obtain-
ing ice dated as old as 800 kyr; however, the lower 75 m of
the ice column was either undatable or not drilled to prevent
contamination of a wet bed (Tison et al., 2015), and extrap-
olation of the borehole temperatures indicated that melting
was likely occurring at the bed (Lefebvre et al., 2008). Anal-
ysis of the composition and structure of the lower portion of
the ice core showed that focusing of ice flow by the broad
channels on this plateau may have resulted in stretching and
recrystallization of the lower part of the ice column, implying
that an ideal old ice target may require a very flat ice-bed in-
terface around a flowline tracing back toward the ice divide,
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characterized by a horizontal size of several ice thicknesses
(Tison et al., 2015).

In 2008, 2009, and 2011, the ICECAP project conducted
survey flights using the HICARS family of radar sounders
(Young et al., 2016), mounted on a DC-3T Basler. These
radar systems provided coherent, focusable 60 MHz data
with a 0.08 us pulse width. The goal of these flights was im-
proving the radar stratigraphy between the EPICA Dome C
and Vostok ice core sites (Cavitte et al., 2016). Included in
these ICECAP flight lines was a transect along the ice di-
vide from Dome C to subglacial Lake Vostok, which was also
flown by a range of other radar sounders, as well as a number
of sparse lines of the Vostok—Concordia—Dumont d’Urville
corridor (VCD), typically 20 to 40 km apart, parallel to the
ice divide.

2.2 The Candidate A site

Van Liefferinge and Pattyn (2013) developed an ensemble
model for predicting regions of frozen bed using a combina-
tion of remote sensing and teleseismic estimates for geother-
mal heat flow combined with a thermomechanical ice sheet
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model calibrated by observations of subglacial lakes. When
thresholds for ice thickness (> 2000 m) and of the horizontal
component of the ice velocity (< 2myr~!) were applied, a
map of possible old ice candidates was produced (Fig. 1).

In the Dome C region, five candidate sites exist, which we
term A, B, C, D, and E (Fig. 2). Notably, none of these sites
overlaps with the EPICA Dome C ice core site near Concor-
dia Station — consistent with the likely basal melting there
implied by extrapolation of borehole temperatures. Sites B,
C, and D are located on the steep and poorly sampled sub-
glacial peaks on the northeastern side of the Concordia Sub-
glacial Trench; basal ice in this region has likely traversed
the deep, wet Concordia Subglacial Trench. Site E lies on a
small subglacial high downstream on the Totten Glacier side
of the dome; this site also lies down flow of a deep subglacial
trough, thus raising substantial doubt to its suitability as an
old ice coring site.

Candidate A is by far the largest site in the Dome C area
and lies under the ice divide on a subglacial massif, minimiz-
ing both ice thickness and ice velocity. The ice surface above
Candidate A forms a topographic extension to the south of
Dome C informally termed “Little Dome C”. The central part
of Candidate A lies 40km southwest of Concordia Station.
The size of Candidate A compared to the 5km model cell
size also makes it more likely that the Van Liefferinge and
Pattyn (2013) model captured basal temperatures correctly.
Because of its characteristics, Candidate A represents a near-
term primary goal of European and Australian old ice site
selection.

The 2011 airborne survey line (VCD/JKB2g/DVDO01a; lo-
cation shown in green in Fig. 2) crossed the middle of the
Candidate A site. Focusing of the radar data showed that the
southern flank of the Candidate A massif ended in a steep
cliff over which englacial layers dive (Fig. 3). Coherent, con-
tinuous englacial reflectors are present in the upper 80 %
of the ice column (Cavitte et al., 2016), while in the bot-
tom 500m, a region of more diffuse englacial scattering is
present. This distinct zone of basal ice is also apparent in Op-
eration IceBridge (OIB) radar data that operates at a higher
frequency (Cavitte et al., 2016; Leuschen and Allen, 2011a),
and in appearance is similar to the “valley wall” accretion ice
seen in Dome A (Bell et al., 2011).

2.3 The need for new data

Uncertainties in the older data sets, a lack of resolution ap-
propriate for the small-scale processes near the base of the
ice sheet, and inadequate knowledge of subglacial hydrology
and geothermal heat flow drive a need for greatly increasing
resolution over these old ice targets.

2.3.1 Poorly positioned data

Figure 2 demonstrates the requirement for additional new
data. Surface slopes from high-resolution digital elevation
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models (DEMs; for example, Helm et al., 2014) often cor-
relate with structure in the subsurface (e.g., Ross et al., 2014,
Jamieson et al., 2016); however, in the Dome C region, we
see regions of Bedmap?2 (outlined in yellow) in which struc-
tural bedrock trends significantly disagree with those inferred
from ice surface slopes. These regions are either poorly sam-
pled (right yellow box) or, of more concern, only constrained
by poorly positioned, pre-GPS SPRI/NSF/TUD radar sound-
ing (left yellow box, over the Concordia Subglacial Trench).
Positioning quality for these older sounding data has been
reported to be ~ 5km; however a 15km offset along-track
would be required to reconcile the surface slope structure
and Bedmap?2 bed elevation data at this location (as the
flight line crosses the trough, the interpolated topography
is not sensitive here to cross track errors on this line). The
SPRI/NSF/TUD data, along with Soviet data with similar po-
sitioning issues, are especially problematic for Bedmap2 in
the deep interior of the ice sheet where most old ice candi-
dates are found.

2.3.2 Small-scale relief

Initial radargrams such as that shown in Fig. 3a show consid-
erable small-scale bed roughness, not captured by Bedmap?2.
As Bedmap2 was designed for a continent-wide interpola-
tion of the data, reproducing the small-scale variability of
the bed was not a priority (Fretwell et al., 2013). However,
correct positioning of old ice coring efforts will be highly
sensitive to small-scale structure (Tison et al., 2015). Radar
data that take advantage of the additional resolution possi-
ble through Doppler focusing are essential for understanding
the along-track small-scale structure of these mountainous
regions, while close line spacing is important for constrain-
ing cross-track variability.

2.3.3 Subglacial lakes

Subglacial lakes identified from radar are a key constraint on
models of basal heat flux (Pattyn, 2010) and are employed
by Van Liefferinge and Pattyn (2013) in their model of basal
frozen ice. The identification of subglacial lakes is compli-
cated by variations in englacial attenuation that modifies the
strong radar reflection due to an ice—water interface (Mat-
suoka, 2011; Carter et al., 2007); however, new methods in-
dependent of radar echo strength that examine the scattering
properties of the bed (Schroeder et al., 2015) allow for rapid
identification of these “radar” lakes (Young et al., 2016) in
focused phase-coherent data (Peters et al., 2007).

2.4 The Old Ice A (OIA) survey

Key objectives of the survey were to define the ice thickness
at high resolution, infer basal roughness across the target re-
gion, and map the distribution of subglacial water. Improv-
ing the englacial stratigraphy (especially deep layers; Cavitte
et al., 2017) and correlating it to the existing EPICA Dome

www.the-cryosphere.net/11/1897/2017/
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Figure 3. (a) HiCARS2 2D focused and depth corrected radargram along the ice divide across the Candidate A target (line
VCD/JKB2g/DVDOla from Blankenship et al., 2014, and shown in green in Fig. 2). Geographic south is to the right, Dome C and ge-
ographic north is to the left, color scale is relative power (geometrically corrected) in dB. Near surface layers have superposed surface
scattering. No vertical exaggeration. Echoes appearing below the bed are actually coming from up to a kilometer on either side of the track.
(b) MARFA line from OIA survey (line OIA/JKB2n/X45a) parallel to VCD/JKB2g/DVDO01a, showing distance from Concordia, the location
of Candidate A, and the EPICA/DMC site. Vertical exaggeration is 25x, and orientation is the same as above.

C core site were also high priorities. In addition to the radar
data, we acquired laser altimetry, gravity, and magnetics data,
along with complementary GPS and inertial measurement
unit (IMU) data. Instruments are detailed in Table 1.

2.5 Follow-up ground campaign

The results of this survey have been used for follow-up
high-resolution ground work, using the BAS DOLORES
ground radar (King et al., 2009) for further bedrock map-
ping, ApRES phase-tracking radar (Lok et al., 2015) to track
vertical strain rates, and the BAS Rapid Access Isotope Drill
(UK-RAID; Triest et al., 2014) to acquire thermal gradients
in the upper ice sheet, for geothermal heat flow inversions.
A location just northeast of the ice divide in central Can-
didate A (122°12'E, 75°18’S) was selected for further in-
vestigation. If the ground investigation proves fruitful, the

www.the-cryosphere.net/11/1897/2017/

SUBGLACIOR drilling probe (Alemany et al., 2014) will be
deployed to measure the in situ oxygen isotope record, as a
pathfinder for a full eventual ice core retrieval.

3 Methods
3.1 Survey design

The OIA survey was designed to sample Candidate A at high
resolution, with 110 km long longitudinal-to-slope “Y” sur-
vey lines at separations of down to 1km cutting across the
ice divide, and ~ 65 km long transverse-to-slope “X” tie lines
with separations of 5 km parallel to the ice divide (Fig. 2d).
Some of the X lines extend true northeast to cross the Con-
cordia Subglacial Trench and candidates B, C, and D, while
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Table 1. ICECAP (OIA) instrument suite.
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Measurement Instrument

Date (UTC) Reference

Ice thickness
Ice surface range
Ice surface range

MARFA coherent ice penetrating radar
Riegl LD90 laser distance meter

Magnetics field Geometrics G823 A scalar magnetometer
Gravity field CMG GT-2A airborne gravity meter
Position Javad Delta four-antenna GPS
Orientation Novatel SPAN integrated IMU/GPS

Sigma Space ALAMO photon counting lidar

24, 28,29 Jan 2016

24, 28,29 Jan 2016

24, 28,29 Jan 2016

24, 28,29 Jan 2016

28,29 Jan 2016

28, 29 Jan 2016; partial on 24 Jan
28, 29 Jan 2016; partial on 24 Jan

Young et al. (2016)
Young et al. (2015)
Young et al. (2015)
Aitken et al. (2014)
Greenbaum et al. (2015)
Greenbaum et al. (2015)
Young et al. (2015)

the Y lines extend far enough to the true northwest to cover
Candidate E.

Two lines were added to cut obliquely across the grid: one
that tracked over the EPICA Dome C site in order to con-
nect the ice chronology to the grid and a second line to better
constrain an oblique topographic ridge crossing the divide.
Flight lines were designed to avoid Concordia’s clean air sec-
tor to the south of the station, as well as to allow the aircraft to
make very high frequency (VHF) communications with the
station before landing. Typical aircraft speeds were 85 ms™!,
and flights at altitude were typically 4 h in duration.

3.2 Survey implementation

Four flights of 4h each were carried out from Concordia
Station in late January 2016 — the first two (ICP7/F11 and
ICP7/F12) focused on 2 km line spacing Y lines over Candi-
date A, followed by one flight (ICP7/F13) targeting X lines
extending past Concordia to Candidate B, and lastly one
flight (ICP7/F14) focused on increasing the line density over
the primary target to 1 km line spacing. Initial interpretation
of the radar data was performed during the field program, and
helped to refine the later flight plans. GPS base station data
were collected during the survey flights.

3.3 GPS and laser altimetry processing

After the field season, GPS data were processed using Way-
point Inertial Explorer, using precise point positioning (PPP)
loosely coupled to the acceleration and roll rate data from
the SPAN IMU system. Internal estimates of uncertainty
for these data have a 2cm vertical standard deviation and
a 4 cm horizontal standard deviation. Apparent surface ele-
vation differences between survey lines at crossovers were
minimized to obtain laser altimeter pointing biases (using the
methods described in Young et al., 2015).

3.4 Radar processing

Radar data were stacked in acquisition 32 times and were
coherently recorded at 196Hz; these data were range-
compressed resulting in a range resolution in ice of 8.4 m
(Cavitte et al., 2016). The radar data were first processed us-
ing a very short synthetic aperture (Holt et al., 2006; Young
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Figure 4. The OIA extracted bed data projected into the hydraulic
head (the water level equivalent to the pressure imposed by the ice
overburden), and viewed in the projected northing plane (b, look-
ing across the ice divide) and projected easting plane (a, looking
along the ice divide). Regions of high specularity content (sub-
glacial lakes) are highlighted in blue. Note that lakes are flat, in-
dicating hydrostatic equilibrium. Many of the subglacial lakes lie in
valleys that cut into the primary surface that envelopes the local sub-
glacial topography; only one is found above the 2950 m head level.
Projection for the horizontal axis eastings and northings is Antarctic
Polar Stereographic.

et al., 2011) to extract the surface return and for initial qual-
ity control. This processing (called “pik1”’) retains the unmi-
grated along-track hyperbolae that characterize many earlier
radar sounding data sets. The data were then processed us-
ing the 1-D focused synthetic aperture radar (SAR) approach
of Peters et al. (2007), where focusing of the along-track
Doppler phase variations within each range resolution cell
was employed to improve the along-track resolution to ap-
proximately 10-20m for scattering targets. The data were
resampled to 4 Hz along-track sampling (~ 22 m along-track
sampling), and the logarithm of signal power was displayed
for manual interpretation.

www.the-cryosphere.net/11/1897/2017/
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3.5 Radar ice thickness and bed elevation extraction

To obtain ice thicknesses, we systematically select a window
around the earliest bed return, and then automatically select
the best fitting pulse waveform within that window (assumed
to be a paraboloid power profile in decibels), for both the sur-
face and the bed. The surface time delay is subtracted from
the bed time delay to obtain the two way travel time in the
ice column and, using an appropriate refractive index for ice
(+/3.15), we convert to ice thickness. We choose not to apply
a firn correction to ice thicknesses; as shown in Peters et al.
(2007), a firn correction is not required for our focusing, and
will not affect the conclusions in this paper (firn correction
is however critical for isochrone interpretation Cavitte et al.,
2016; Winter et al., 2017). Bed elevations are derived by sub-
tracting the ice thickness from concurrently collected laser or
radar altimetry; all elevations are referenced to the WGS-84
ellipsoid.

We do not attempt to reconcile ice thickness interpreta-
tions at crossover points, and maintain a strict first return
policy. The first return represents a stable interface to inter-
pret in radar, but has a high likelihood of selecting off nadir
echoes in steep topography. As detailed in Appendix A, pre-
serving crossover differences provides important information
on understanding the interactions between radar geometry,
processing, and bedrock roughness, and allows us to extrapo-
late these statistics to intervals without crossover constraints.

3.6 Subglacial lake detection

Specularity content of the basal return was extracted by com-
paring the echo strengths of the bed from 1-D focused SAR
to the results of range-migrated 2-D focused SAR, follow-
ing the approach outlined in Schroeder et al. (2015). Regions
with a specularity content of greater than 0.2 were classified
as subglacial lakes.

Hydrostatic pressure is important for the context for sub-
glacial lakes, and is often represented by hydraulic head
(equivalent to the height of a water column with the same
basal pressure as the ice load). Gradients in hydraulic head
control basal water flow direction; the magnitude of the
slope of hydraulic head controls the expression of water flow.
In this case, hydrostatic equilibrium, indicated by zero hy-
draulic head gradient, was not used for subglacial lake iden-
tification (as was the case for the “lake detector” in Carter
et al., 2007); however all subglacial lakes that were identi-
fied had low hydrostatic gradients (Fig. 4).

3.7 Ice thickness compilation

We combined the OIA results processed as described above
with older data sets from Italy (Tabacco et al., 1998), Ger-
many’s Alfred Wegener Institute (AWI; Steinhage et al.,
2001), Operation IceBridge (OIB) data (Leuschen and Allen,
2011b), and British Antarctic Survey (BAS) data from Jordan
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Table 2. Bed elevation data set comparison to an OIA focused data
grid, with mean offset and standard deviation o of bed elevation
difference.

Provider Processing Mean* o
BAS (Jordan et al., 2010) focused —34m 60m
OIB (Leuschen and Allen, 2011b)  focused —212m 42m
Italy (Tabacco et al., 1998) unfocused —354m 44m
AWI (Steinhage et al., 2001) unfocused 46.6m S55m
OIA full-resolution data focused —04m 27m

* Bed elevation difference; positive is higher than the OIA-only grid

et al. (2010; of these data sets, much of the Italian data and
AWI data had been included in Bedmap2). We excluded the
poorly positioned SPRI/NSF/TUD data.

We compared these surveys to a 1 km resolution grid de-
rived from OIA focused bed elevation data, and found good
visual matches between the coherent, focused BAS and OIB
data (see Table 2). The negative bias in OIB data is likely
due to the resolution of small-scale valleys in the OIB profile
data that are not resolved in the 1 km grid we used for this
comparison.

Both the Italian and AWI data sets were acquired inco-
herently without focusing or migration, which will induce
range hyperbolae in the radargram that will tend to reduce the
measured ice thickness. This does not appear to have been
a major effect on the biases, however. For the Italian data,
the lower mean value is due to the coarse resolution of the
pulse, combined with noise in the picker used for the Tabacco
et al. (1998) survey; for incorporation into the compilation,
we select the shallowest return in each 1 km block of data.
For AWI, ice thickness measurements at peaks are systemat-
ically ~ 50 m smaller than for OIA. This corresponds to the
length of the high energy pulse used for deep ice sounding.
We add 50m to the AWI ice thicknesses for incorporation
into this grid. In all cases, the standard deviation of the track-
line data compared to the OIA-only grid was better than the
comparison to Bedmap?2 (see Table 3), likely related to the
loss of spatial resolution in Bedmap?2.

A compiled grid using all of these data were generated by
first extracting the median value for the data at 500 m cells,
and used a natural neighbor interpolator (nnbathy; Sakov,
2016) on the data. We apply a 2 km Gaussian filter, and mask
out data more than 5 km from a data point.

4 Results

We use the new and compiled sounding data to evaluate the
roughness of the interface and the subglacial hydrological
context for the region and to investigate the stress state of
the ice.
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Figure 5. The Dome C old ice candidates in the context of updated data sets. New subglacial lakes, identified using specularity content,
are shown as black crosses; regions of surface—bed disagreement in Bedmap2 are shown in yellow. (a) Driving stresses using the new ice
thickness data and the Cryosat-2 surface DEM (Helm et al., 2014; smoothed by 15 km to remove longitudinal stress gradients) show that all
of the candidates aside from the innermost portion of Candidate A lie over regions of relatively high (20-30kPa) driving stress (note that
surface slope is the primary driver on driving stress here). (b) Compiled ice thickness data provided by ICECAP, AWI, BAS, and INGV. (c)
RMSD of the bed at 800 m length scale using OIA data only, superimposed on new bed elevations (in grayscale). The region tends to be
rougher toward the center of the Candidate A region, and smoother toward the edges and in the troughs. Concordia Station (green triangle)
lies in a particularly smooth area. Projection is Antarctic Polar Stereographic.

Table 3. Bed elevation data set comparison to Bedmap2?, with
mean offset and standard deviation o of bed elevation difference.

Provider Bedmap?2 inclusion Mean® o
BAS absent 20m 110m
OIB absent 34m 77 m
Italy partial 63 m 62 m
AWI included —5.6m 77 m
OIA full res.  absent 9m 133m

4 Bed elevation difference; positive is higher than Bedmap2
b All data were converted to the WGS84 datum

4.1 Ice thickness and bedrock topography

While the outlines of the terrain at the 10km length scale
were visible in Bedmap2 (Fig. 2a), which was largely de-
rived from the Tabacco et al. (1998) survey (Fig. 2b), the ad-
dition of the OIA data set delineates the key features of this
landscape (Fig. 5b, c). The Concordia Subglacial Trench is
bound by a sharp, west-facing dissected escarpment approx-
imately 2000 m relief that hosts Candidates B, C, and D. In
this new compilation, with the pre-GPS data removed, this
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escarpment is no longer discordant with the surface data (left
yellow box in Fig. 5). Instead we see an array of hanging
valleys, consistent with a glaciated terrain. The minimum ice
thickness of 2383 m in this region occurs on a sharp peak
between two of these hanging valleys.

The massif underlying Candidate A is bound by a south-
west facing 200-300 m high system of scarps to the south-
west, which capture a system of perched lakes. The massif
dips gently to the northeast, and is marked by a series of
200 m deep, 2-3 km wide valleys running toward the north,
divided by occasionally large ridges. Under the divide, there
is a local 700 m elevation peak where ice thickness is un-
der 3000 m. The minimum ice thickness within Candidate A
(2600 m) occurs on a local peak adjacent to the southern es-
carpment.

To the southeast, a complex series of troughs with exten-
sive water bodies emerges from the Candidate A massif and
opens out into the Concordia Subglacial Trench.

4.2 Additional subglacial lakes

Using specularity content, we map out 54 subglacial lakes in
the OIA survey, 50 of which were not included in the Wright
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Figure 6. The selected target within Candidate A. Compilation bed elevation with imaged subglacial lakes superposed. Target region for
further ground work lies near the highest point on the bed, northeast of the ice divide.

and Siegert (2012) compilation. Details on these lakes are
provided in the Supplement. The largest of these lakes is
11.5km long and lies in a hanging valley on the northeast
side of the Concordia Subglacial Trench (located at 1310 km,
—915km). A second large lake, at least 4.5km long, lies
within the Candidate A region, in the escarpment to the
southwest of the massif that underlies Little Dome C (located
at 1367 km, —852 km); 50 % of segments of specular bed that
were 1km or greater in length had hydraulic head gradients
less than 0.1 %, meeting the criteria for a lake in Carter et al.
(2007), and 71 % were less than 0.2 %. This result is consis-
tent with flexural support of small gradients around the edges
of these small lakes (Carter et al., 2007). In all, 19 lakes are
now observed in the region predicted to be at least as cold as
—5°C, only one of which was known to Van Liefferinge and
Pattyn (2013).

4.3 Small-scale roughness

Small-scale roughness, at length scales of the line spacing
and below, is relevant for four reasons: (1) roughness gives
insight into the pathways that basal ice must traverse; (2)
roughness may provide information on past ice sheet behav-
ior and basal conditions, (3) roughness is a key control on
the uncertainties inherent in profiling radar systems, and (4)
basal roughness forces the overriding ice sheet to develop a
complex deformation pattern in the lower part of the ice col-
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umn, and this deformation field could disturb stratigraphic
continuity of the ice core record.

We calculate the along-track roughness as the deviation in
detrended elevation between points of a given length scale
(Shepard et al., 2001; Young et al., 2011). For a given cell
size, we calculate the root mean square deviation (RMSD).
We choose 800 m length scale for this investigation, as it both
provides insight into sub-line spacing roughness, but is also
relevant for the cross-track beam pattern for understanding
uncertainties in the ice thickness data (see Appendix A).

Typical RMSDs at 800 m length scale are 40 to 50 m to-
ward the center of Candidate A, and are lower toward the
margins (Fig. 5¢), although locally smoother regions 3-5 km
across exist in places. One of these locations is the EPICA
Dome C ice core site. Much of the base of the Concordia
Subglacial Trench, and the regions surrounding the massif,
are very smooth, consistent with deformable sediments.

On the massif, smoother regions also tend to correlate with
regions of subglacial lakes, although subglacial lakes are also
found in extremely rough regions with deep incisions (for ex-
ample location 1320 km, —860 km in Fig. 6). Much of the re-
gions of higher roughness in central Candidate A are sinuous,
and appear to follow local valleys, with smoother regions be-
tween.

The Cryosphere, 11, 1897-1911, 2017
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Figure 7. Histograms comparing two surface elevation DEMs
(largely derived from radar altimetry) and OIA altimetry. Expected
accuracy of OIA altimetry is 15 cm (Young et al., 2015).

4.4 Surface DEM validation from laser altimetry

We used the OIA laser altimetry to validate available
satellite-based DEMs, using the WGS84 datum. We com-
pared this with both the Bedmap2 surface DEM (Fretwell
etal., 2013), which in the interior is largely based on the com-
bined ICESat/ERS radar altimetry product of Bamber et al.
(2009), and the Cryosat-2 DEM (Helm et al., 2014), wholly
derived from radar altimetry. We transformed all DEMs into
WGS-84, and used the Generic Mapping Tools (GMT) grd-
track (Wessel and Smith, 1998) to extract points of compar-
ison for each laser point (we removed one anomalous point
over Concordia Station itself). Results are shown in Fig. 7.

We find that both DEMs have a significant bias, outside
the previously demonstrated accuracy of the ICECAP laser
system, with the laser altimetry at Dome C (consistent with
some penetration by the radar altimeters); however both have
very low levels of noise in this very flat region. There is a
slight preference for the Cryosat-2 DEM, which is what we
used as our reference ice surface for this paper and for cal-
culating the driving stresses in the following section (e.g.,
Fig. 5¢).

4.5 Stresses in the Dome C region

Disturbed ice at the basal interface will be more likely if
the ice is under horizontal gravitational stress due to surface
slopes; however, decreased horizontal stresses may also be
due to basal melting, which would also destroy the sought
climate record. We calculate the driving stress to investigate
this potential impact on old ice.
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We derived surface slopes from a smoothed version (15 km
Gaussian filter) of the Cryosat-2 DEM, and combine this with
the new ice thickness compilation to derive driving stress (t,
Fig. 5a) using the following formula:

T = piceghsin(0), (D

where pice is 910kg m3, g is the acceleration due to grav-
ity of 9.8 ms~2, A is the ice thickness, and @ is the slope of
the ice sheet surface. Surface slopes (compare with Fig. 2c)
dominate the driving stress map.

5 Discussion

The results of these data have implications for locating old
ice. We discuss them in the context of the five requirements
laid out in the introduction.

5.1 Accumulation history

The englacial reflectors imaged as part of this survey rep-
resent isochrones that can be dated at the existing EPICA
Dome C site using the methods outlined in Cavitte et al.
(2016), and inverted for basal age. This work is now in
progress, with the stratigraphy developed by Cavitte et al.
(2016) being propagated through the entire OIA survey, and
is the subject of follow-up papers (Parrenin et al., 2017;
Cavitte et al., 2017).

5.2 Geothermal heat flow implications

Van Liefferinge and Pattyn (2013) used the presence of sub-
glacial lakes to calibrate their geothermal heat flow model,
and the significant amount of free water in the Candidate
A area may cause some doubt as to the prediction of basal
freezing. However, it is clear that most of these lakes lie
within local valleys in the bed rock. Most lakes do not lie
under ice less than 3000 m thick (Fig. 5b), and Fig. 4 demon-
strates that the majority of lakes lie below the enveloping sur-
face of the massif.

When projected in terms of hydraulic head (the height of
water consistent with the overburden pressure at the bed),
few lakes appear above 2950 m head, implying the presence
of a limiting hydraulic or thermal “water table” (Fig. 6). The
implication for these lakes on regional geothermal heat flow
may be limited by local topographic focusing, which may lo-
cally double basal heat flow (van der Veen et al., 2007). This
factor is not taken into account in the Van Liefferinge and
Pattyn (2013) model due to its 5km spatial resolution, but
may be significant in the interpretation of subglacial lakes in
this deeply incised region. Notably, there should be conser-
vation of energy; geothermal heat flow will be reduced in the
regions between valleys, and latent heat absorbed by melt-
ing ice in the valleys will not be available for melting on the
highs between valleys.
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The primary target for ground work is 10 km upstream
from the nearest subglacial lake at a similar hydraulic level
(Fig. 6), further indicating the need for high-resolution work
in this area.

5.3 Glaciological context

Only Candidate A lies over the divide. The other frozen bed
candidates lie well off the divide, and lie downstream of sig-
nificant subglacial topography. In addition, observed driving
stresses (derived using a validated surface elevation DEM),
provide additional context, although the interpretation is not
straightforward.

Without reliable velocity data, a formal inversion for basal
shear stress is not useful; however, driving stress and basal
shear stress are often well correlated (Sergienko et al., 2014).
We see in Fig. 5 elevated driving stresses correlated with
thinner ice (Fig. 5b) and elevated bed topography (Fig. 5c).
The relationship with bed structure implies that this configu-
ration of driving stresses have not evolved much over time in
response to divide migration.

We see elevated driving stresses over Candidates B, C, D,
and E, as these candidates lie on local mountains, and over
the southern edge of the Candidate A massif. Basal ice in
these locations may be disturbed by the application of these
elevated driving stresses. Within Candidate A, regions with
low driving stress on either side of the ice divide have a pop-
ulation of subglacial lakes, implying an element of basal lu-
brication, and thus melting may have modified the base of
the ice. In the upland region on the divide, driving stresses
increase over the southern escarpment. The targeted region
(Fig. 5a) has intermediate to high driving stresses that may
be an unavoidable consequence of targeting a shallow area
where the ice surface is at its highest.

5.4 Basal roughness

While the results of Tison et al. (2015) indicate that basal ice
may be sensitive to elevated basal roughness, conversely low
basal roughness may also indicate conditions not favorable to
the preservation of coherent basal ice. We observe a spatial
relationship between subglacial lakes and larger smoother ar-
eas, including near the EPICA Dome C ice core site (Fig. 5).

Areas of elevated basal roughness appear to be associated
with valleys in the topography, and again subglacial water.
However, there does appear to be regions between the in-
cised, rough valleys with reduced roughness, in the interior
of Candidate A on the order of 5 km across.

5.5 Ice thickness

In the Dome C region, we found no ice thinner than 2500 m
that lay over subglacial topography that was appropriately
flat. However, we found a significant region with overlying
ice thinner than 3000 m that was lacking in free water bodies
and contained kilometer-scale flat regions. This was consis-
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tent with the coldest region of the Van Liefferinge and Pattyn
(2013) model.

5.6 Prospects for old ice at Dome C

The Dome C region, as mapped by the OIA survey, chal-
lenges intuition regarding old ice targets. Subglacial lakes are
common, the bed is rugged in key places, and the ice is not as
thin as suggested (Fischer et al., 2013), although this general
guideline was to help avoid meltwater, which is here identi-
fied by specific means. However, a detailed inspection of the
data is encouraging.

The best compromise target is the center of the massif,
near the ice divide of Little Dome C, in the Candidate A re-
gion (Fig. 6). Flatter regions lie between incised, rough val-
leys that serve to capture geothermal heat flow and melt wa-
ter; and thus the rough topography of the Candidate A region
may serve to preserve old ice on elevated areas between the
valleys.

However, a trade off is that maintaining a simple flow path
for basal ice in such an rough environment will be diffi-
cult, and the mountainous region also induces relatively large
driving stresses in the overlying ice. The paths taken by basal
ice elements in such an environment may be torturous, and
result in stratigraphic complexity. These compromises may
be a requirement of finding the necessary “flat mountain” for
ice from 1.5 Ma. Detailed site selection work (currently in
progress), and careful, 3-D modeling of geothermal heat flow
in the context of rough topography will be required.

6 Conclusions

An international program conducted a successful high reso-
lution, multi-instrument survey of a key old ice region in the
Dome C region of East Antarctica. We found that Candidates
B, C, D, and E lie either on extremely steep and rough to-
pography or downstream of deep, smooth troughs, implying
transport and melt may have compromised the old ice record.

Candidate A has some promising sites, including a shal-
low peak directly under the divide; however, a large num-
ber of subglacial lakes and generally rough terrain present
challenges to site interpretation and selection. Ongoing mod-
eling of these data (including englacial structure) and high-
resolution surveying are in progress to evaluate these targets.

Data availability. NetCDF3 files of the compiled bed elevation, ice
thickness and bed roughness are included in the Supplement. ASCII
comma-delimited tables of the new subglacial lakes, and ice thick-
ness point data in a shared ASCII space-delimited format for each
contributor are also included.
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Appendix A: Quantifying uncertainty in focused radar
data

Crossover differences in ice thickness (or equivalently bed
elevation) between radar lines are often reported as a metric
of uncertainty in the quality of the ice thickness data. How-
ever, given the geometry and processing of radar sounding
data, the information contained in these crossovers must be
carefully considered. As well as the inherent science interest
in the uncertainties in the data, the density of orthogonal lines
over thick ice and a rough bed target presents an opportunity
to better understand the nature of uncertainties in this kind of
data set in general.

Crossover bed elevation statistics were computed using
just the orthogonal X and Y lines of the OIA survey. For fo-
cused (focl) data, the RMS difference is 80 m; for unfocused
(pik1) data, it is 54 m. The result is counterintuitive; the more
intensive processing has higher crossover differences. This
difference can be explained by understanding the geometric
controls on the radar signal and the interactions with bedrock
roughness.

Al Incoherent sounding crossover differences

In the case of the incoherent pikl processing, the processed
radargram effectively shows the range to the nearest bed in-
terface, and the direction of travel does not affect that range.
Approaching the crossover point from either direction, a
similar range is seen, even if the reflecting target is not un-
der the aircraft. If the first return is coming from a range-
compressed target, an incorrect (and likely too thin) ice thick-
ness will be inferred; this is an error that will not be indicated
by the crossover difference. In general, in rough terrain, un-
focused data will provide a considerable underestimate of ice
thickness of up to tens to hundreds of meters in valleys.

A2 Focused sounding crossover differences

In focused radar data, discontinuities are often seen in
crossovers, especially where terrain is rough or steeply slop-
ing. These discontinuities are due to the asymmetry in res-
olution between the fine along-track resolution (10-20m),
determined by the synthetic aperture generated by motion of
the radar, and the coarser across-track field of view, deter-
mined by the real aperture of the two under-wing dipoles.
The across-track beam at the bed covers approximately 1 km
either side of the nadir point.

Due to the refraction of ice, the wavefronts propagating
to the bed are wide parabolae, meaning that small-scale to-
pography projecting above the nadir bed can lay over the
nadir return. The result is that the first return will tend toward
the minimum ice thickness within the aircraft beam pattern;
however the measured thickness at the site of reflection will
be slightly overestimated. The primary uncertainty will be in
the cross-track position of the bed echo. Alternatively, if it is

The Cryosphere, 11, 1897-1911, 2017

D. A. Young et al.: Boundary conditions of an old ice target

Crossovers versus roughness

400 L L1
0
focl

350 B

300 B
E
3 250 B
H .
g
£ 200 . -
2 150 . -
o
5 .

100 o' R o . B

e 2 S ee” " .
. s .: . .
50 Py A R L -
T K ) .
LT SRR X .’
0 \.~ s e e B I —

T 1
0 10 20 30 40 50 60 70 80 90 100 110 120
RMS deviation (m)

Figure A1l. Relationship between RMSD at 800 m length scale (as
measured in the focused bed elevation data) and crossover differ-
ence in bed elevation. The focused data (foc1) has larger outliers in
rough terrain, as one direction is actually more correct; for the un-
focused data (pik1), the crossover is smaller, as both directions are
equally wrong.

assumed that the echo is from nadir, the inferred ice thickness
will tend to be underestimated.

A3 Roughness control on crossover differences

The apparent large-scale roughness of a radar profile will be
dominated by along-track roughness, but smoothed by lay-
over contributions from the side. Figure Al shows the rela-
tionship between RMSD at 800 m length scale (as measured
in the focused bed elevation data) and crossover difference
in bed elevation. In both processing approaches, there is a
roughness correlation on maximum crossover difference. A
stronger relationship is seen for the focused data than for the
unfocused data, primarily due to the geometric arguments
given earlier. In the case of the unfocused pikl data, it is a
case of both survey lines being equally wrong. Therefore,
empirically, the uncertainty in ice thickness for both focused
and unfocused data is about 3 times the observed local along-
track roughness at 800 m.

The key result of this analysis is that maximum crossover
discontinuities may be predicted from along-track roughness
measurements, and assuming isotropic landscapes, the spa-
tial variation in ice thickness uncertainty may be inferred
from sparse, non-crossing lines. For areas of large roughness
values, the horizontal position of the aircraft GPS cannot be
assumed to represent the location of the ice thickness. This
knowledge may help guide future data acquisition, as well as
how ice sheet models ingest profile data.
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