CHARACTERIZATION AND FATE OF DISSOLVED ORGANIC MATTER IN THE LENA DELTA REGION, SIBERIA

INTRODUCTION

- Lena River – one of the largest rivers in the world → high riverine input into Arctic Ocean
- Fresh water: ~20% total fresh water in the Arctic (Cauwet & Sidrov, 1996)
- High amounts of sediments and organic matter
- Greatest discharge of organic matter in the Arctic Ocean (Stedmon et al., 2011)
- Large, shallow, dynamic and high diverse ecosystem (Kraberg et al., 2013)
- Under climate changing pressure (Yang et al., 2002)
 - Increasing temperatures → permafrost thaw
 - Increase in river discharge and riverine material export to the Arctic Ocean

DOM DYNAMICS IN THE LENA DELTA

- Previous works: conservative mixing of DOM
 - Cauwet & Sidrov (1996)
 - Kattner et al. (1999)
- Non-conservative mixing (Alting et al., 2010)
 - Removal up to 50%
- Changes in molecular composition
 - Dubinenkov et al. (2014)

OBJECTIVES

- to characterize FDOM components
- to assess the DOM mixing behavior and reactivity
- to investigate the processes modulating DOM transformation and mixing

RESULTS AND DISCUSSION

- Hydrography, DOC and CDOM distribution

 - DOM decreases with salinity increase
 - Hydrography influence: Surface sal <10 & >10
 - Two mixing regimes: below/above pycnocline
 - Non-conservative mixing at surface → removal
 - Conservative removal below pycnocline

- Optical indices of DOM modification

 - Strongly humified region (mostly humic-like compounds)
 - Molecular weight/reactivity decreases with salinity
 - Indication of photodegradation → surface waters plume stations (high S, low DOM)

- Conclusions

 - Strongly humified region
 - DOM, humic-like content and reactivity decrease with salinity
 - Sharper decrease in DOM at surface, low salinity layer removal
 - Photodegradation & flocculation

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

RESULTS AND DISCUSSION

- Hydrography, DOC and CDOM distribution

 - DOM decreases with salinity increase
 - Hydrography influence: Surface sal <10 & >10
 - Two mixing regimes: below/above pycnocline
 - Non-conservative mixing at surface → removal
 - Conservative removal below pycnocline

- Optical indices of DOM modification

 - Strongly humified region (mostly humic-like compounds)
 - Molecular weight/reactivity decreases with salinity
 - Indication of photodegradation → surface waters plume stations (high S, low DOM)

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification

METHODS

 - 4 transects – 18 oceanographic stations – 60 samples
- Sensors: CTD casts → Temperature, salinity, UMLD and stratification
- Water samples: CDOM (colored DOM), FDOM (fluorescent DOM) and DOC
- Analyses: EEM/PARAFAC modeling for DOM (Stedmon & Bro, 2008; Murphy et al., 2013)
 - DOM modification indices: CDOM slope (S_{CDOM}), Slope ratio, specific UV abs (SUVA), humification index (HIX), biological index (BIX)
- Theoretical conservative mixing (gray dashed lines): average of each parameter at high and low salinity end-members

CONCLUSIONS

- Strongly humified region
- DOM, humic-like content and reactivity decrease with salinity
- Sharper decrease in DOM at surface, low salinity layer removal
- Photodegradation & flocculation

DISCUSSION

- Hydrography, DOC and CDOM distribution

- Optical indices of DOM modification