

Implications on atmospheric dynamics and the effect on black
 carbon transport into the Eurasian Arctic based on the choice of
 land surface model schemes and reanalysis data in model
 simulations with WRF.

7 8

¹. Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany.

². Deutsches Zentrum f
ür Luft- und Raumfahrt (DLR), Institut f
ür Physik der Atmosph
äre, Oberpfaffenhofen,
 10 Germany.

11 ³. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Bremerhaven, Germany.

12 ⁴. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Germany.

13 Correspondence to: Carolina Cavazos-Guerra (carolina.cavazosguerra@iass-potsdam.de)

14

15

16 Abstract

17 A realistic simulation of physical and dynamical processes in the Arctic atmosphere and its feedbacks with the surface 18 conditions is still a challenge for state-of-the-art Arctic climate models. This is of critical importance because studies of, 19 for example, transport of pollutants from middle latitudes into the Arctic rely on the skill of the model in correctly 20 representing atmospheric circulation including the key mechanisms and pathways of pollutant transport. In this work the 21 performance of the Weather Research and Forecast model (WRF) with two land surface model schemes (Noah and 22 NoahMP) and two reanalysis data sets for creation of lateral boundary conditions (ERA-interim and ASR) is evaluated 23 focusing on meteorological surface properties and atmospheric dynamics. This includes the position and displacement of 24 the polar dome and other features characterizing atmospheric circulation associated to sea ice maxima/minima extent 25 within the Eurasian Arctic. The model simulations analyzed are carried out at 15-km horizontal resolution over a period 26 of five years (2008 to 2012). The WRF model simulations are evaluated against surface meteorological data from 27 automated weather stations and vertical profiles from radiosondes. Results show that the model is able to reproduce the 28 main features of the atmospheric dynamics and vertical structure of the Arctic atmosphere reasonably well. The influence 29 of the choice of the reanalyses used as initial and lateral boundary condition and of the LSM on the model results is 30 complex and no combination is found to be clearly superior in all variables analyzed. The model results show that a more 31 sophisticated formulation of land surface processes does not necessarily lead to significant improvements in the model 32 results. This suggests that other factors such as the decline of the Arctic sea ice, stratosphere-troposphere interactions, 33 atmosphere-ocean interaction, and boundary layer processes are also highly important and can have a significant 34 influence on the model results.

⁵ Carolina Cavazos Guerra¹, Axel Lauer², Andreas B. Herber³, Tim M. Butler¹, Annette Rinke⁴,
6 Klaus Dethloff⁴

36 The "best" configuration for simulating Arctic meteorology and processes most relevant for pollutant transport (ASR + 37 NoahMP) is then used in a simulation with WRF including aerosols and chemistry (WRF-Chem) to simulate black 38 carbon (BC) concentrations in and around the Arctic and to assess the role of the modeled atmospheric circulation in the 39 simulated BC concentrations inside the Arctic domain. Results from simulations with chemistry are evaluated against 40 aerosol optical depth from several Aeronet stations and BC concentrations and particle number concentrations from 41 several stations from the EBAS database. The results with WRF-Chem show a strong dependency of the simulated BC 42 concentration on the modeled meteorology and the transport of the pollutants around our domain. The results also show 43 that biases in the modeled BC concentrations can also be related to the emission data. Significant improvements of the 44 models and of our understanding of the impact of anthropogenic BC emissions on the Arctic strongly depends on the 45 availability of suitable, long-term observational data of concentrations of BC and particulate matter, vertical profiles of 46 temperature and humidity and wind.

48 1 Introduction

49

50 The Arctic atmosphere is often characterized by a stable boundary layer and strong near-surface temperature inversions, 51 which limit turbulent mixing and vertical transport due to the combined effects of efficient cooling by upward long wave 52 radiation and reflection of short wave at the surface as a result of the high sea ice concentration and relatively flat and 53 homogeneous surface in the inner part of the Arctic Ocean. This negative radiation budget at the surface is amplified by 54 the typically low atmospheric moisture and cloud free conditions (Anderson and Neff, 2008). This effect is most 55 pronounced during winter when there is little or no sunlight and the surface is frequently covered by snow or ice 56 (Bradley et al., 1992). Consequently, a 'dome' forms that is characterized by low and constant potential temperatures and 57 isolates the Arctic lower troposphere from the rest of the atmosphere by acting as a barrier (the so-called Arctic front). 58 The Arctic front separates the cold Arctic air from warmer air in the south and can reach as far south as 40°N during the 59 coldest periods of the year (Stohl, 2006). The pronounced seasonal cycle of these atmospheric features strongly 60 determines transport mechanisms and pathways of pollutants into the Arctic (Schnell, 1984; Sharma et al., 2006).

61

62 Sea ice is part of a complex system that acts as an interface between the atmosphere and the ocean: the ice inhibits 63 vertical heat transfer between the atmosphere and the ocean, and contributes to the ice-albedo feedback mechanism. The 64 Arctic summer sea ice extent which has been observed over the last 30 years by satellites (Meier et al, 2006) has an 65 effect on the atmospheric temperature gradient in the lower atmosphere (Serreze et al., 2000). For example, a larger sea 66 ice-free area results in an increase in absorbed heat in the upper ocean, leading in in turn to the increase in the near-67 surface temperature maximum (Jackson et al. 2010). This pattern affects atmospheric circulation by modifying weather 68 patterns in the Arctic and beyond, an effect also referred as the Arctic amplification (e.g. Screen and Simmonds, 2010; 69 Cohen, et al., 2014). These changes in atmospheric circulation connected to the decline of Arctic sea ice and changes in 70 continental snow-cover may also disturb temperature and precipitation patterns and increase the likelihood of extreme 71 weather events in mid-latitudes (Overland and Wang, 2010; Jaiser, et al., 2012; Handorf et al., 2015). The Arctic is 72 usually dominated by low pressure in winter forming a "Polar Vortex" of counter-clockwise circulating winds around the 73 Arctic. In a warming Arctic, high pressure replaces the low pressure, weakening the Polar Vortex and reversing the 74 circulation in which cold air flows southwards and warm air moves poleward (Honda, et al 2009; Petoukhov and 75 Semenov, 2010). This happened in winter 2009/2010 leading to unusually cold and snowy winter conditions in China, 76 Eastern Asia, the eastern United States and Europe, whereas West Greenland and the Bering Strait experienced 77 anomalous warm temperatures (Seager et al., 2010).

78

The pronounced seasonal cycle of the extent of the Arctic front plays a key role in the transport of black carbon (BC) and other pollutants from source regions in mid-latitudes including Asia, Russia, North America and North Europe into the Arctic. The maximum advection of pollution into the Arctic occurs usually in winter and early spring (*i.e.*, the 'Arctic haze' season) and the minimum in summer when the Arctic aerosol is diminished by clouds and precipitation. In winter (particularly in January), northern Eurasia is one of the major source regions for the Arctic pollution. Polluted air masses from densely populated areas over East-Asia and North America are typically too warm and moist to directly penetrate the polar dome, but they can descend into the Arctic middle or upper troposphere creating the Arctic haze (Stohl, 2006).

An important aim of many Arctic modeling studies is to improve our understanding of the causes, governing mechanisms, and effects of Arctic amplification in order to better characterize the relevant physical processes in the Arctic ocean-atmosphere-cryosphere system (in particular atmospheric boundary-layer processes). However, the complexity of these processes and their interactions are still a challenge for modeling the Arctic (Vihma et al., 2014) leading to a large spread in model results and a large sensitivity to a wide set of parameters regarding model configuration and initialization.

93

94 Model biases in global climate models (GCMs) used for present-day and future climate simulations are partly related to 95 the horizontal and vertical resolution (e.g. Duffy et al., 2003; Wehner et al., 2010). Coarse horizontal resolution, for 96 example, can lead to the overestimation in sensible heat fluxes (Schmittner et al., 2002). In recent years Regional 97 Climate Models (RCMs) have gained popularity as they are computationally less expensive and are capable of 98 capturing mesoscale coupled processes and regional climatic evolution due to the ability to run at very high spatial and 99 temporal resolutions (Dethloff et al., 1996).

100

101 Model parameterizations play an important role in representing the vertical stratification and atmosphere-surface 102 energy exchange in model simulations (Dethloff et al., 2001). For example, some differences in regional model 103 simulations can be attributed to the boundary layer and surface parameterizations used, which result in surface flux 104 differences, and to the lateral moisture forcing, both of which affect moisture availability in the atmosphere (Rinke et 105 al., 2000). Therefore, it is critical to choose schemes suitable for the relevant Arctic processes as the application of non-106 suitable schemes may introduce biases into the model outputs (Misenis and Zhang, 2010). This is particularly relevant 107 for Arctic studies as model parameterizations are typically developed and tested for mid-latitude conditions which may 108 not be suitable for use in the Arctic. Optimizing the model configuration for Arctic simulations is also needed in order 109 to be able to reduce the uncertainties in high-resolution projections of future Arctic climate and to be able to better 110 assess the impacts of climate change over the Arctic and beyond. For example, Land Surface Models (LSMs) 111 implemented in climate models (designed to calculate processes at the surface-atmosphere interface) play a critical role 112 in the representation of the heat budget.

113

Data used as initial and lateral boundary conditions also play an important role in the results of a RCM as the quality of
the data used have direct implications on the quality of the model outputs (Denis et al., 2003; Diaconescu et al., 2007).
However, the quality of a reanalysis may also vary regionally in some variables, especially in areas where observations
are sparse. Despite these limitations, reanalysis data provide gridded, self-consistent datasets suitable for model
evaluation and to perform a comprehensive examination of climate variability (Trenberth et al., 2008).

119

120 In addition to these challenges for numerical modeling of the Arctic atmosphere, deficiencies in the treatment of aerosols 121 and clouds may reduce the accuracy in climate model projections (Overland and Wang, 2013). The wide spread of model 122 results for the distribution of aerosols over the Arctic can be attributed to, for instance, differences in emissions, 123 chemistry and transport schemes (Shindell et al., 2008). Even though simulations of BC concentrations in the Arctic from 124 recent studies are in better agreement with observations, the amplitude of the seasonal cycle of BC is still underestimated 125 by most models (Eckardt et al., 2015). Because of the strong dependency of the radiative forcing by aerosols on the 126 surface albedo (Haywood and Shine, 1997), uncertainties in the surface albedo in the models translate directly into 127 uncertainties in estimates of the absorption of solar radiation by BC over high albedo surfaces (Myhre et al., 2009).

128

129 In this work we assess the performance of the Weather and Research Forecasting (WRF) model in representing 130 surface/atmosphere dynamics depending on the selection of the Land Surface Model (LSM) parameterization and 131 reanalysis datasets for initialization and provision of lateral boundary conditions (ERA-Interim and Arctic System 132 Reanalysis). The meteorological study is conducted over a five year period (2008-2012) for two seasons: February, 133 March and April (hereafter FMA) and July, August and September (hereafter JAS) coinciding with the maximum and 134 minimum sea ice extent in the region, respectively, within the Eurasian Arctic region. In particular, we assess the 135 magnitude of model biases on the surface meteorology including air temperature, wind speed, geopotential, the 136 evolution of the planetary boundary layer (PBL) and the position of the Arctic dome over the Eurasian Arctic. We then 137 investigate the implications of these model biases on the atmospheric circulation influencing concentrations of black 138 carbon in and advected towards the Eurasian Arctic by comparing results for aerosol optical depth (AOD) and 139 concentrations of black carbon from corresponding simulations with WRF-Chem with observations. The selected case 140 studies using the WRF-Chem are conducted for periods characterized by the minimum (warm period) and maximum 141 (cold period) observed tropospheric concentrations of BC over the Arctic north of 66°N (Stohl, 2006). 142 143 The paper is organized as follows: In section 2, the model configuration, experimental design and observational data 144 used for model validation are described. In section 3 we present the analysis of biases between model outputs and observational data for the set of simulations with the WRF model focusing on meteorology, followed by results from 145 146 selected case studies using a model configuration including air chemistry and aerosols (WRF-Chem). The discussion

and conclusions are presented in section 4.

149 2 Methodology

- 150 **2.1. Model description and simulations**
- 151
- 152 2.1.1 The weather research and forecasting model (WRF)
- 153

154 For the sensitivity analyses we use the Advanced Research version 3.7.1 of the weather research and forecasting model 155 (WRF). WRF is a mesoscale forecast model and assimilation system developed by the National Center for 156 Atmospheric Research (NCAR) together with several partners. More details about the development of WRF can be 157 found in Michalakes et al. (2005). The WRF model is designed for a wide range of applications from idealized research 158 to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. Several physics options 159 in the form of different packages are available for relevant physical processes including microphysics of clouds and 160 precipitation, cumulus convection, planetary boundary layer and surface layer physics, turbulence and diffusion and 161 radiation (longwave and shortwave). All of these schemes consist of solver-dependent routines approximating or 162 parameterizing physical processes that are too complex or too computationally costly to be explicitly represented 163 (Skamarock, 2005).

164

165 The model physics packages used in this study for the meteorological WRF model set up (also defined in Table 1) are: 166 (1) the atmospheric surface layer scheme which calculates momentum and heat fluxes at the surface uses the MM5 167 similarity scheme based on Monin-Obukhov with Carslon-Boland viscous sub-layer and standard similarity functions

168 from look-up tables (Beljaars, 1994), (2) convective processes following the Grell 3D parameterization, a multi-closure, 169 multi-parameter ensemble method which is an improved version of the Grell-Devenyi ensemble scheme for horizontal 170 grid sizes larger than 10 km (Grell and Devenyi, 2002), (3) the PBL (Planetary Boundary Layer) parameterization 171 implemented is the non-local Yonsei University (YSU) scheme (Hong, 2010) which calculates atmospheric tendencies 172 of temperature, moisture with clouds, and horizontal momentum (4) Lin et al. (1983) cloud microphysics including 173 cloud ice, snow and graupel processes, (5) radiative processes are parameterized using the Rapid Radiative Transfer 174 Model for Long Wave (LW) radiation (Mlawer et al., 1997) and the Dudhia (1989) scheme for short wave (SW) 175 radiation, and finally (6) the land-surface parameterization (hereafter LSM) which characterizes heat, moisture and 176 radiation fluxes at the surface and resulting feedbacks with the atmosphere. Sensitivity analyses were conducted using 177 two available LSM schemes, the Unified Noah Land Surface Model (Chen and Dudhia, 2001) and the Noah-MP Land 178 Surface Model (Niu et al., 2011; Yang et al., 2011). A more detailed description of both LSM schemes is given in the 179 next section. 180 181 Land Surface Models (LSMs) 182 183 LSMs simulate surface/atmosphere dynamics and the land surface variability by including the relevant land 184 surface/hydrology processes. The variables resolved in the LSM parameterization interact directly with other physical 185 parameterizations in WRF such as cloud microphysics and cumulus schemes, radiation schemes and certain land and

ocean variables that impact the vertical transport (surface layer) and the PBL. LSMs also calculate sea ice processes
affecting ice temperature, skin temperature, snowpack water content, snow depth, and surface energy (note that LSMs
in WRF currently do not include sea ice generation, melting, and change in thickness).

189

Some modeling studies (e.g. Misenis and Zhang, 2010) have suggested that there is a higher sensitivity of WRF to the LSM schemes than to PBL schemes for simulating standard meteorological variables including surface temperature, relative humidity and wind vectors, due to differences in surface fluxes. This fact may affect performance of the atmospheric model over the Arctic. Thus, we performed sensitivity studies with both LSM schemes to investigate their strengths and limitations for Arctic applications and the implications in reproducing important meteorological variables. The experimental design of the simulations performed in this work is well detailed in section 2.1.4 and also shown in Table 1b.

197

198 The two tested LSM schemes used in this work are the Noah Land Surface Model (Noah LSM) developed by the 199 Oregon State University and a more detailed and updated version, the Noah Multi-Physics (NoahMP). The Noah 200 scheme calculates the soil temperature, as well as the soil and canopy moisture in four layers (10, 30, 60, and 100 cm 201 thick) and includes fractional snow cover and frozen soil physics (Chen and Dudhia, 2001; Ek and Mitchell, 2003). The 202 surface skin temperature is calculated with a single linearized surface energy balance equation representing the 203 combined ground-vegetation surface. Soil temperature is calculated solving the thermal diffusion equation, soil 204 moisture is predicted using the Richards equation (Richards, 1931). Known limitations of the Noah LSM model include 205 the tendency of the Noah scheme to produce too little snow cover during spring (e.g., Barlage et al., 2010), significant 206 biases in surface temperature due to structural limitations when heterogeneities exist at the surface (Miguez-Macho et 207 al., 2008; Fan et al., 2007) and larger seasonal variations in snow water equivalent compared to other LSM schemes 208 (Chen et al., 2014). As a side note, one of the reasons for using the latest version of WRF 3.7.1 is due to the fact that in

209 previous versions, the Noah LSM was overestimating surface temperature over sea ice in case of snow melt over ice, 210 particularly in late spring and summer as found by Marelle et al (2016). This can interfere with the air mass exchange 211 with mid-latitudes, and increased vertical mixing from lower stability.

212

213 The other LSM model used in this study is the NoahMP scheme (Yang et al., 2011). NoahMP contains a multi-layer 214 snow pack with liquid water storage and melt/refreeze capability and a snow-interception model describing 215 loading/unloading, melting/refreezing, and sublimation of the canopy-intercepted snow (Niu, et al., 2011). It considers 216 equations for the snow albedo, snow temperature, density, total water content and content of liquid water which help to 217 improve simulations of the diurnal variations of the snow skin temperature, which is critical for computing available 218 energy for melting (Chen et al., 2014; Niu, et al., 2011). Studies comparing Noah and NoahMP (e.g. Miguez-Macho 219 and Fan, 2012) have shown that NoahMP tends to show larger daytime biases in the diurnal cycle of the 2-m 220 temperature and dew point during wet months compared to dry moths. The same studies also indicated that monthly 221 absorbed SW radiation and sensible heat shows that less solar radiation is absorbed in Noah then in NoahMP resulting 222 in a colder surface and a lower (or negative) sensible heat flux.

223

224 2.1.2 Initial and lateral boundary conditions

225

High quality data are needed in order to minimize the uncertainties introduced by the initialization of the model and the provision of the lateral boundary conditions required during run-time. Reanalysis datasets used for initialization and to create lateral boundary conditions are created from a combination of both observed (assimilated) variables (e.g., temperature,) obtained from different sources (e.g. ground-based observations and radiosondes), and derived fields (e.g., precipitation and cloudiness). These variables are assimilated into a global, gridded, and temporally homogeneous dataset making the best possible use of a large number of observations (Dee et al., 2014).

232

233 In this work two reanalysis datasets are used for the model initialization and to recreate the lateral boundary conditions: 234 the ERA-Interim reanalysis (Dee et al., 2011) produced by the European Centre for Medium-Range Weather Forecasts 235 (ECMWF) and the Arctic System Reanalysis (ASR) (Bromwich et al., 2010). ERA-Interim is a global reanalysis of 236 recorded climate observations over the last 30 years with an improved atmospheric model and assimilation system and 237 replaces its predecessor ERA-40 using four-dimensional variational data assimilation (4D-Var). ERA-interim is 238 available as a gridded data set at approximately 0.7° spatial resolution and 37 atmospheric pressure levels (Dee et al., 239 2011). Some studies have shown that ERA-Interim agree well with observations of sea level pressure, near-surface air 240 temperature, surface shortwave and longwave radiative fluxes, precipitation, and wind speed when compared against 241 other reanalysis datasets (refer to Lindsay et al., 2014). However, global reanalyses like ERA-interim have many 242 known problems at high latitudes for different reasons including the scarcity of observational data at these remote 243 areas.

244

On the other hand, the ASR, developed by the Polar Meteorology Group (PMG) of the Byrd Polar Research Center (BPRC) at the Ohio State University in collaboration with several other institutions is a reanalysis recently developed which implements parameterizations optimized for the Arctic. It consists of a high-resolution version of the Polar Weather Forecast Model (PWRF) and the WRF-VAR and High Resolution Land Data Assimilation (HRLDAS) (Bromwich et al., 2016). PWRF is available through the NCAR Research Data Archive (NCAR, 2015). In this study,

we use the ASRv1 30-km consisting of a gridded dataset at a spatial resolution of 30 km and with 29 pressure levels. The data set consists of 27 surface and 10 upper air (measurements in the part of the atmosphere above Earth's surface) variables and 3 soil variables. Differences in the reanalyses used to create the forcing data for our WRF simulations might have a significant impact on the modeled meteorological fields. A comparative analysis of both reanalyses is given in the following section whereas the results from the WRF model simulations to assess the differences resulting from the initial and boundary conditions are presented in section 3.

256

257 Comparison between ERA-interim and ASR reanalysis

258

259 The capability of both reanalysis to represent the Arctic atmosphere has been recently compared and documented (e.g. 260 Wesslén et al., 2014; Bromwich et al; 2016). For example, Wesslén et al. (2014) found that while ERA-Interim has a 261 systematic warm bias in the lowest troposphere, ASR has on average a cold bias of about the same magnitude. These 262 authors also found that improvements in the modeled cloud properties, radiation budget, and surface temperature in 263 ASR were not significant in spite of its more sophisticated parameterizations of cloud microphysics. In a more 264 comprehensive assessment of the differences between both reanalysis, Bromwich, et al (2016) found that in higher 265 latitudes throughout Europe, Siberia and North America, the ASR biases are small and cool, whereas ERA-Interim 266 shows warm biases across much of the domain, particularly across Siberia, Alaska and western North America. The 267 authors argue that this trend is probably related to the complex topography in these regions. This is because accurate 268 simulation of near-surface winds over complex terrain is particularly challenging due to highly variable small scales 269 resulting in winds that are not always well represented on a coarse model grid.

270

271 In our study, we evaluate the differences in four important variables (2m temperature and 10m wind speed, sea ice 272 fraction and sea level pressure) between both reanalyses over our studied domain. Fig. 1 shows the differences between 273 both reanalyses for the five-year average for the summer (JAS) and winter (FMA). Biases in the near-surface variables 274 are generally smaller and temperatures are generally colder in the ASR than in ERA-interim. This agrees with the 275 typical biases described in Bromwich et al. (2016) who also found a good agreement in the near-surface moisture and 276 wind fields when compared against observational data. ERA-Interim tends to show larger values than ASR of 10m 277 wind speed over the high Artic Ocean characterized by sea-ice covering, whereas 10m wind speed tends to be 278 underestimated over continental area, specifically over the east coast of Greenland (Fig. 1). This is consistent with the 279 findings from Moore et al (2013). In their study they found that ERA-Interim has surface wind speeds over the 280 Scoresby Sund region of east Greenland that are too low and not entirely consistent with observations of 281 topographically forced drainage flow in this region. However, when compared against observations in our study, both 282 reanalyses tend to slightly underestimate wind speeds (see section 3.2). Previous model studies have demonstrated that 283 ERA-Interim leads to overly strong turbulent mixing (i.e. Jung et al., 2010), which leads to weak inversions, warmer 284 temperatures near the surface and stronger horizontal wind. As for sea-ice (fourth row in Fig. 1), both datasets are very 285 consistent for both FMA and JAS seasons. However, in the ERA-Interim reanalysis, several locations near the Russian 286 coastline and in some water bodies in North Europe have a larger sea-ice fractions (~0.3) compared to the ASR, 287 especially during the FMA period. This can be explained by the fact that ASR uses MODIS sea ice data. Also the sea 288 ice thickness and snow cover on sea ice vary in ASR whereas these values are fixed in ERA-Interim. Not included in 289 our analyses are the differences at all atmospheric levels; Bromwich et al (2016) found that temperatures are similar 290 with annual mean biases within $\pm 0.2^{\circ}$ C at nearly all levels from both reanalyses. However, Jakobson et al. (2012)

291 found that during spring and summer over the Arctic Ocean most reanalyses (including ERA-Interim) have large errors

- 292 in the vertical profiles of air temperature as well as specific and relative humidity.
- 293

294

295

297

296 2.1.3 The WRF-Chem model

298 We also conduct selected case studies with the Advanced Research WRF (ARW) including chemistry and aerosols 299 (WRF-Chem) version 3.7.1. WRF-Chem is capable of calculating chemical processes online including the feedback of 300 radiatively active trace gases and aerosols on atmospheric dynamics. Additional processes simulated by WRF-Chem 301 include emissions, transport of chemical species and aerosols, chemical transformation of species, aerosol physics (e.g., 302 nucleation, condensation and coagulation), interaction of particles with radiation (photolysis and heating rates), 303 aerosol-cloud interactions (cloud condensation nuclei), and wet and dry deposition to the surface (Grell et al., 2005; 304 Peckhman et al., 2011). In earlier versions of the model, the Noah LSM was overestimating surface temperatures over 305 sea ice in case of snow melt over ice leading to possibly increased exchange with the mid-latitudes and increased 306 vertical mixing from lower stability. This may be one of the reasons why concentrations of BC have been simulated 307 poorly in versions of WRF-Chem prior to v3.7 such as the results published in Eckhardt et al (2015).

308

309 For the case studies with the WRF-Chem model, we use the same physical parameterizations summarized in Table 1 310 plus the input data and chemistry/aerosols configuration (Table 2) applied in previous modeling studies over the Arctic 311 (e.g., Grell, et al., 2011; Marelle et al., 2016). For the simulation of aerosol processes, we use the MADE/SORGAM 312 scheme (Modal Aerosol Dynamics model for Europe, Ackermann et al., 1998 / Secondary Organic Aerosol Model, 313 Schell et al., 2001). The MADE/SORGAM scheme simulates the aerosol size distribution using a modal approach with 314 three overlapping log-normal modes. Within each mode, all particles are assumed to have the same chemical 315 composition (internal mixture). This is important factor because the interaction of aerosols with chemistry or 316 atmospheric processes depends on their size and the chemical composition (Baklanov et al., 2014). The aerosol 317 processes are coupled to the clouds and radiation, including photolysis, and gas-phase chemistry. Aerosol and 318 chemistry variables are initialized from the global chemistry model MOZART. More details on WRF-Chem can be 319 found in Peckham et al. (2011), Grell et al. (2005) and Fast et al. (2006).

320

321 Emissions

322

323 Emission data are an important model input as their quality determines to a great extent the results when modeling air 324 pollutants. In this study, anthropogenic emissions are obtained from the EDGAR HTAP v2.2 inventory (EDGAR: 325 Emission Database for Global Atmospheric Research), created in joint collaboration between the European 326 Commission, and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). EDGAR HTAP v2.2 reports 327 monthly anthropogenic emissions of greenhouse gases (e.g. CO₂, CH₄ and N₂O), precursor gases (e.g. CO, NO_x and 328 SO_2) and aerosols (PM10) per source category at country level on $0.1^\circ \times 0.1^\circ$ grid maps from the energy, industry, 329 transport and residential sectors and annual emissions from shipping and aviation. Emission data from small 330 agricultural fires are not included in v2.2 and were taken from the previous version EDGAR HTAP v1.0. Information 331 about methodology and emission factors used for the EDGAR emission calculations is well documented in Janssens-

Maenhout et al. (2015). Biological emissions are included applying MEGAN (Model of Emissions of Gases and Aerosols from Nature), which calculates biogenic emissions online based on simulated temperature, leaf area index and land use data (Guenther et al., 2006). For biomass burning emissions, we used the Fire Inventory (FINN) version 1 also developed by NCAR. FINN is based on daily satellite observations of fires and land cover, combined with emission factors and estimated fuel loadings (Wiedinmyer et al., 2011).

337

338 2.1.4 Model domain and simulations

339

340 The WRF model setup used in this study consist of a single domain covering the Eurasian Artic region at a horizontal 341 resolution of 15 km over an area of approximately 4000 x 3800 km (centered at 70°N and 40°W), which includes large 342 parts of northern Europe and North-west Russia (Fig. 2). The atmosphere is vertically resolved in 30 full σ -levels with 343 15 model levels below $\sigma = 0.9$. The lowest model level in this configuration is centered at 10 meters, whereas the 344 model top-level pressure is set at 100 hPa. The reason for such high vertical resolution in the lowermost troposphere is 345 based on the premise that vertical mixing and turbulent fluxes which are key processes in the PBL may be affected by 346 the total number of vertical levels and in particular by the number of vertical levels close to the surface. For example, 347 recent studies suggest a strong sensitivity to the modeled 10-m wind speed on the model's vertical resolution (i.e. 348 Chou, 2011; Kleczek et al., 2014).

349

350 Simulations with the atmosphere -only model WRF were performed over 5 cold (February, March and April) and 5 351 warm (July, August and September) seasons from the year 2008 to 2012 coinciding with the maximum and minimum 352 sea ice extent in the region. These periods are also characterized with the minimum (warm period) and maximum (cold 353 period) observed concentrations of BC over the Arctic above 66°N (Stohl et al., 2013). Four different sensitivity 354 analyses were performed and named according to the configuration chosen, as described later and also shown in Table 355 1b. The sensitivity analyses are aiming at quantifying the impact of the different LSMs and reanalyses used for the 356 creation of the initial and lateral boundary conditions on model biases compared with surface measurements as well as 357 observed vertical profiles of meteorological variables from stations in the Eurasian Arctic.

358

359 Finally, we analyze a suite of selected cases using WRF-Chem (summarized in Table 2) to assess how the model 360 simulates BC transport into the domain. This is important to estimate the uncertainty of the climate impact of BC 361 transported into the Arctic when assessing different emission scenarios. These case studies with WRF-Chem include 1-362 month simulations for April 2008, July 2008, April 2009 and July 2010. The case studies were selected based on the 363 availability of observational data used for comparison with the model results. The year 2008 coincides with the Polar 364 International Year in which several ground and aircraft campaigns took place. Also, some authors have described 365 exceptionally high forest and agricultural fire activity in Russia, Kazahkstan and Southeast Asia in April 2008 366 (Warneke et al., 2009; Fisher et al., 2010). We therefore also include April 2009 as an additional case study for 367 comparison with the previous year. July 2010 was an exceptionally hot summer (the hottest summer since the year 368 1500) impacting in particular Western Russia and resulting in a historical heat wave which triggered 500 wildfires 369 around Moscow (Barriopedro et al., 2011). Such wildfires could be important emission sources of BC transported into 370 the Arctic. Previous studies have demonstrated that fires in Eastern Europe and Russia can lead to substantial increases 371 in the atmospheric loading of pollutants at several surface sites in the European Arctic (Stohl et al., 2007) which we 372 aim to confirm with the simulations carried out in the present study.

373

374 2.2 Observational data for model evaluation

2.2.1 Meteorological data

375 376

377

378 Surface meteorology in the model is evaluated against observations from 24 weather stations in North Europe and 379 Russia spread throughout the model domain with data available for the studied period and acquired from the Met 380 Office Integrated Data Archive System (MIDAS) (Fig. 2). The southernmost station is "Leningrad" at 59.95°N, located 381 in the city of Saint Petersburg, whereas the northernmost station is "Krenkelja" at 80.64°N in the Franz Josef Land 382 located between the Arctic Ocean, and the Barents and Kara Seas. The MIDAS dataset comprises daily and hourly 383 weather observations including hourly wind parameters, maximum and minimum air temperature, soil temperature, 384 sunshine duration and radiation fluxes as well as daily, hourly and sub-hourly precipitation measurements, some 385 climatological data and marine observations. The reporting frequency varies among the different stations. At best the 386 data are hourly although some stations report only at 0600, 1200 and 1800 local time (Met Office, 2012). In this study 387 we evaluate the root mean square error (RMS) of both reanalysis used for creating the initial and boundary conditions 388 (ERA-Interim and ASR) together with the time series from the different WRF sensitivity experiments for temperature, 389 wind speed, water vapor mixing ratio and snow depth. Bias and RMS are calculated from the comparison between 390 model simulations and surface observations over the five year period 2008-2012. In order to facilitate the analysis, the 391 24 observational stations where divided into two groups: 1) stations located inside the Arctic Circle (here defined as 392 66°N 34') and 2) those stations located below the Arctic Circle (Table 3).

393

394 We also use observed vertical profiles of temperature, wind speed and relative humidity from the enhanced version of 395 the Integrated Global Radiosonde Archive (IGRA) (http://www1.ncdc.noaa.gov/pub/data/igra/) to examine both the 396 variability during the five year period and to assess the model performance and the reanalyses in reproducing the 397 vertical structure of these variables. The IGRA dataset consists of quality-controlled radiosonde and pilot balloon 398 profiles, freely available at more than 1500 globally distributed stations covering varying time periods, many with 399 observations extending from the 1960s to the present (Durre et al., 2006). Upper air data are usually measured by twice 400 daily by radiosonde soundings, taken at 00 and 12Z (Greenwich time). As can be seen in Fig. 2, there are only very few 401 long-term surface measurements in the high Arctic, especially in the North Russian Arctic. Nevertheless, the available 402 stations are helpful to provide a snapshot of the vertical structure of the Arctic atmosphere and to test model 403 performance.

404

405 2.2.2 Aerosol observations

406

407 Routine measurements to monitor atmospheric chemistry components in the Eurasian Arctic are very scarce. The 408 limited availability of long-term measurements results in a high uncertainty of the estimated climate impacts of 409 aerosols in the Arctic. In order to help filling these gaps and to improve our understanding of Arctic pollution, intensive 410 field campaigns including surface and aircraft observations have been conducted in recent years. In addition, surface 411 based sun photometer instruments like the AERosol NETwork (AERONET) provide information on aerosol loading 412 and aerosol optical depth as well as other physical properties. AERONET is an optical ground-based aerosol-413 monitoring network and data archive consisting of identical automatic sun-sky scanning spectral photometers operated

414 by national agencies and universities (Holben et al., 1998). There are, however, only very few long-term observations 415 from the AERONET network available close to the Arctic Circle. Seven AERONET stations were selected in this study 416 (Fig. 2) for an initial evaluation of the model performance. In addition, available observations of Equivalent Black 417 Carbon and measurements of the size integrated aerosol particle number concentration (PNC) measured by a 418 Condensation Particle Counter (CPC) from the monitoring EBAS database (EBAS, 2013) operated by the Norwegian 419 Institute for Air Research (NILU) are used for comparison with our model simulations. All data are available from the 420 EBAS database (http://ebas.nilu.no/).

421

422 3 Results

423

424 3.1 Meteorological analyses

425 3.1.1 Large scale atmospheric circulation

426

427 The pattern of the large scale circulation during the five year period is shown for two sensitivity experiments 428 (noahmp_asr and noahmp_ecmwf) in Fig. 3 for winter (February, March and April) and in Fig. 4 for summer (July, 429 August, September) averaged over five years (2008-2012). The position of the polar dome in our domain is also 430 calculated given its importance as proxy for studying the transport of pollutants and its implications (Stohl, 2006). Here 431 we define the polar dome following Jiao and Flanner (2016) by calculating the maximum latitudinal gradient of the 500 432 hPa geopotential height. The reasoning for this approximation is that where the latitudinal geopotential height gradient 433 is largest, the zonal component of the geostrophic wind is likely to be strongest, and this narrow band of strong 434 geostrophic wind plays an important role for tracer transport in the middle troposphere (we refer to Jiao and Flanner 435 (2016) for further details). Jiao and Flanner (2016) also suggest that the northward expansion of the polar dome 436 correlates with warming in some regions in Alaska and Chukchi Sea. In this work, the calculated isopleth defining the 437 polar dome (gray line in Figs. 3 and 4) extends to middle-latitude regions in the winter months (FMA) when the jet 438 wind speed reaches its maxima as a result of the stronger temperature gradient between low- and high-latitude regions.

439

440 In general, the differences between both reanalyses used to drive the model (see section 2.1.2) are also noticeable in the 441 model outputs. The persistence of the Icelandic Low (the low-pressure center located usually between Iceland and 442 southern Greenland) is visible in both WRF experiments. The low pressure area generally has an elliptic shape and is 443 located near 90°N and 30-50°W, also described by Sahsamanoglou (1990). The low pressure weakens and splits into 444 two centers in summer, one near Davis Strait and the other west of Iceland during the FMA period in the experiments 445 using the ASR data (left column), whereas this pattern is highly variable in the experiments using ERA-Interim 446 reanalysis for initialization and as lateral boundary conditions (right column). For the winter period FMA (Fig. 3), there 447 is a particularly strong average low pressure region in the year 2011, also reflected in high wind speeds at 850hPa (~17 448 m/s) over a large portion of the North Atlantic Ocean over the model domain. In the model experiments using ASR 449 data, wind speeds tend to be higher than in the experiments using ERA-Interim data during all years analyzed. High 450 wind speeds are also simulated over central Russia in both experiments during 2008. As for the summer period (JAS) 451 shown in Fig. 4, the low pressure region is less well defined. Notice that in summer 2010, cyclonic activity tends to be 452 high with a significant increase in wind speed, particularly over the Kara Sea, with 10m wind speeds as high as 11m/s

453 over a vast area of North-West Russia. The year 2010 was characterized by a strong heat wave that affected a large 454 part of North-West Russia. This event was linked to a combination of a very strong low pressure system near Iceland 455 and a less intense than usual low pressure system located near the North Pole (Trenberth and Fasullo, 2012). This is 456 also reflected in the position of the Polar Dome which is displaced further south in winter time, particularly in the 457 *noahmp_ecmwf* experiment (Fig. 3).

458

459 It has been noted in previous research that this anomalously cold winter in 2009/2010 was followed by an abrupt shift 460 to a warmer-than-normal early growing season (the Russian heat wave took place in summer 2010) which was 461 consistent with a persistently negative phase of the North Atlantic oscillation (NAO) (Wright et al, 2014). This cold 462 winter was characterized by unusually cold and snowy conditions over China and eastern Asia, the eastern United 463 States and Europe that lasted until February 2010. In contrast, other regions such as west Greenland and the Bering 464 Strait experienced anomalous warm temperatures (Seager et al., 2010).

465

466 3.1.2 Surface meteorology

467

468 Fig. 5 shows the spatial distribution of the planetary boundary layer height (PBLH) calculated by the model for all 469 sensitivity experiments for the winter (Fig. 5a) and for summer months (Fig. 5b). The PBLH from the model is 470 calculated by the PBL scheme and is based on the bulk Richardson number method. A detailed description of the 471 methods used to calculate the PBLH in the scheme can be found in Hong (2010). The Arctic atmosphere is stably 472 stratified most of the year with the lowest kilometer of the atmospheric column north of 70°N almost permanently 473 stably stratified. This is more pronounced during winter than in summer as seen, for instance, in the representation of 474 the planetary boundary layer height in Fig. 5. In winter the average modeled PBLH oscillates around 1000 m over the 475 ocean in the North Atlantic sector between the Svalbard Archipelago and the Nordic countries (Fig. 5a). However, 476 there are significant differences in the PBLH close to 90°N, where the model experiments using the ASR data simulate 477 a deeper PBLH (~250 m) compared to those obtained using the ERA-Interim reanalysis (~150 m). In summer (Fig. 5b), 478 the PBLH is deeper over the continents due to the large insolation during this period resulting in convective mixing. 479 The PBLH over the Arctic Ocean continues to be lower than in winter due to the increasing solar radiation over high 480 latitudes. In the experiments using the NoahMP scheme, the PBLH is generally deeper over the continent than in those 481 using the Noah LSM scheme in both seasons. Particularly over the Nordic countries and Russia in winter, the values 482 are between the 400-450 m compared with a shallower PBLH obtained with the Noah scheme (~200-350 m) 483 independent of the reanalysis used. The differences in PBLH between the two LSMs occurs at the time of day when the 484 PBL becomes a shallow layer after sunset as also reported by previous studies (e.g. Pino et al., 2006; Milovac et al., 485 2016). Misenis and Zhang (2010) suggest that NoahMP simulates a later daily collapse of the PBL of at least 30 min 486 which might also be related to wind shear at the top and bottom of the PBL. This may have important implications on 487 other meteorological variables as described by Misenis and Zhang (2010).

488

The differences in the main meteorological variables analyzed here, i.e. sea level pressure (SLP), 2m temperature and 10m wind speed are summarized for the individual sensitivity experiments in Table 4. All sensitivity analyses tend to show stronger cold biases in 2m temperature than the reanalyses used to create the initial and lateral boundary

492 conditions. These cold biases over the region have been also found by other authors (i.e. Déqué et al., 2007, Katragkou, 493 et al 2015). Katragkou et al (2015) suggest that coldest mean temperature bias in northern Europe is related to an 494 underestimation of SW radiation at the surface and an overestimation of cloud cover. This is particularly seen in WRF 495 model configurations using the Grell convective scheme (also used in our experiments). The spatial distributions (Fig. 496 6) of the modeled 2m temperature, 10m wind speed and SLP match those estimated from the observational data at the 497 24 stations dispersed throughout the domain (colored circles in Fig. 6) reasonably well for the winter months (left 498 column) and summer months (right column).

499

500 In order to investigate the temporal agreement between the simulated and observed meteorological variables from the 501 24 stations used to validate the model simulations, Taylor plots are used. These diagrams provide a statistical summary 502 of how well observed and simulated 3-month time series match each other in terms of their temporal correlation (R) 503 and normalized standard deviation (NSD) (Taylor, 2001). In the Taylor diagram R and NSD are given in this polar 504 projection by the angular and the radial coordinate, respectively (Fig. 7). The reference point (observations) is located 505 at x=1, y=0. The linear distance between a model and the reference point is proportional to the RMS error making it 506 easy to identify the stations for which the model experiments perform well. The correlation in 2m temperature ranges 507 between 0.45 and 0.85 depending on the model simulation and the station. In general, there is a large spread among the 508 different model experiments and measurement stations with no model configuration being clearly superior at all 509 measurement stations. Also the temporal standard deviation of the model experiments varies widely among the 510 different experiments and for the different stations. This large spread is even more pronounced for the time series of 511 10m wind speed. For 10m wind speed, the NSD from the model results is typically much larger than 1 with maximum 512 values of up to 4. This overestimation in 10m wind speed in the model experiments can also be seen in Fig. 6, with the 513 overestimation being particularly pronounced over the continent.

514

515 Given the sparsity of available long-term surface measurements, it is difficult to assess which model experiment 516 performed better compared to observations using only Taylor diagrams. We therefore also calculated biases and RMS 517 (shown in Table 4) in which we separate the stations in two groups, those below and those above the 60°N, and also 518 include both reanalyses (ERA-Interim and ASR) in the comparison with observations. In general for the studied 519 domain both reanalyses are slightly warmer in the winter months (FMA) with ERA being 0.40°C and ASR 0.18°C 520 warmer at stations above the 66°N and slightly negative biases in stations outside the polar circle with -0.12°C and -521 0.28°C, respectively. A slightly negative bias in the summer months (JAS) in all the model experiments is persistent for 522 all the stations. In Bromwich et al (2016), the authors indicate that ASR may be little cold over sea ice. Our model 523 experiments also show a similar negative bias tendency as the ASR reanalysis for all variables. For 10m wind speed, 524 the ERA-Interim data show slightly positive biases of less than 1 m/s at all the stations in the two seasons. ASR biases 525 are quite small but tend to be negative. With regard to sea level pressure, both reanalyses generally show slightly 526 negative biases in all seasons ranging from -0.03 to -0.59 hPa.

527

528 3.1.3 Atmospheric vertical structure

529 Vertical gradients in potential temperature and wind speed are good diagnostics to estimate the transport pathway of 530 emissions as shown for example in Aliabadi et al. (2015). Fig. 8 shows the radiosonde profiles at three stations around

531 our domain for temperature, wind speed and relative humidity at 12UTC (the most data are available at this time of the

532 day) averaged of the winter months (February, March and April) for the five years of study. The overall performance 533 statistics for these meteorological variables is also summarized in Table 5. Radiosonde observations of the vertical 534 structure of temperature and wind speed typically show stable profiles with a temperature inversion caused by the lack 535 of surface heating by the sun. Temperature inversions inhibit convection so emissions are not lifted to higher altitudes 536 and pollutants from the surface can become trapped close to the ground. The comparison of the vertical temperature 537 profiles shows generally good agreement of the model experiments with observations. However for some stations (i.e 538 Ostrov Dikson) the modeled profiles when using simple Noah scheme show closer proximity with observations than 539 when using Noah-MP. The overestimation of the vertical temperature may be caused by a possible overestimation 540 of the turbulent sensible heat flux towards the surface causing premature warming along the vertical column. 541 This may not be the case of stations located in urban areas such as Leningrad station which shows more consistency in 542 modeled profiles compared to the observations. Wind speeds tend to be overestimated in the model. These positive 543 biases in wind speed have been reported in other locations with complex terrain and can introduce systematic errors to 544 the simulations (i.e. Jiménez and Dudhia, 2012; Santos-Alamillos, et al 2013). For example, Jiménez and Dudhia 545 (2012) reported a positive bias in wind speed simulated with WRF over plains and valleys whereas negative biases may 546 be present over hills and mountains. The unresolved topographic features can produce additional drag, which is not 547 parameterized in the WRF, in addition to the drag generated by vegetation. The magnitude of this bias is related to the 548 differences between the actual and the elevation of the stations in WRF (Santos-Alamillos, et al 2013). Again, there is 549 no particular model configuration that clearly outperforms the other WRF sensitivity simulations. The radiosonde 550 observations are close to the lateral boundaries of the model domain. As measurements are very sparse in this region, 551 also the reanalysis data used as lateral boundary conditions are subject to large uncertainties translating directly into the 552 model results and can possibly overcompensate the effect of other model configuration options such as the choice of 553 LSM.

554

555 For the model simulations with WRF-Chem, we therefore use the configuration that includes the most processes 556 relevant to modeling BC transport into the Arctic, the configuration using the ASR reanalysis and the NoahMP LSM 557 scheme. Even though the ASR/NoahMP configuration shows slightly smaller biases in simulated wind speed than the 558 other configurations, the evaluation of the simulated meteorology did not show a clearly superior configuration for all 559 variables analyzed. We regard this slightly small bias in wind speed as an advantage because of the importance to 560 simulated transport pathways of pollutants.

561

562 3.2 Case studies using WRF-Chem in the Eurasian Arctic

563 Atmospheric chemistry models have struggled for a long time to capture the observed distribution of aerosols in the 564 Arctic (Shindell et al., 2008; Koch et al., 2009, Eckard, et al 2015). The concentrations of BC during the Arctic Haze 565 season (winter to early spring) are typically underestimated whereas summer concentrations are sometimes 566 overestimated, in some cases by more than an order of magnitude (Shindell et al., 2008). In this study, several cases 567 covering the periods of maximum and minimum BC over this region coinciding with the availability of measurement 568 data for the model evaluation were selected within the five years used to evaluate the meteorology. The aim is to assess 569 the performance of the model in calculating concentrations of specifically BC over our model domain and to analyse 570 possible linkages with the modeled atmospheric circulation during this period.

571

572 3.2.1 Aerosol Optical Depth

573 We first assess the model AOD at 550 nm against observations from AERONET sun-photometers for the four case 574 studies using WRF-Chem to investigate the model's performance in representing spring/summer high/low aerosol 575 loadings. The aerosol loadings are expected to include a significant contribution from BC, especially at sites close to 576 urban or industrialized centers. Fig. 9 shows the modeled spatial distribution of AOD for the four cases April and July 577 2008 and April 2009 and July 2010. High aerosol loadings over northern Europe and western Russia are modeled with 578 monthly mean values typically in the range of 0.1-0.2. Maximum AOD values are modeled in April 2008 with values 579 exceeding 0.35 particularly over parts of western Russia. Several authors have reported that the Arctic AOD is mostly 580 dominated by sulfate in spring and organic carbon (from fires) in summer (Breider et al., 2014). Our model results 581 agree reasonably well with AOD observations in July 2008 at most of the selected stations (colored circles in Fig. 9a), 582 but overestimates AOD by about 0.1 in April 2008 and underestimates AOD by up to 0.1 in July 2010. Besides the 583 lateral boundary conditions for aerosols, also the emissions play a crucial role in the modeled aerosol loadings resulting 584 in differences between modeled and observed AOD. The modeled AOD also strongly depends on the relative humidity 585 as particles taking up water are more efficient in scattering light. Particularly in the range of high relative humidities, 586 even small errors in the modeled relative humidity can result in significant differences in the modeled AOD.

587 Also shown in Fig. 9b is a Taylor diagram comparing the observed time series of AOD at the AERONET stations with 588 the model results. The temporal correlation between model results and observations depends strongly on the month 589 simulated and ranges between 0.2 for April 2008 and 0.75 for July 2010. In most cases, the model overestimates the 590 temporal standard deviation of AOD which is related to a general overestimation of AOD at these stations, The only 591 exception is for July 2010, where the model tends to underestimate AOD values, as also observed in the spatial 592 distribution in Fig 9a. This fact can be highly dependent on the fire emission data which causes the model to under 593 predict amounts of burned areas, particularly for those stations located in west Russia which results in model 594 underestimating non-dust AOD. This problem could potentially be solved by testing another more advanced biomass 595 inventory of monthly burned area (e.g. the latest Global Fire Emissions Database, Version 4 (GFEDv4.1) biomass 596 inventory, also described in Randerson et al 2015).

597

598 3.2.2 Black Carbon

599

600 The highest modeled BC loadings in Russia typically correspond to the large urban areas (i.e. Moscow and St. 601 Petersburg) and less to locations close to the Barents Sea where oil exploration and exploitation sites are located (Fig. 602 10). Koch et al. (2009) found that many models underestimate BC at northern latitudes because of an overestimation of 603 BC scavenging (especially wet deposition) and vertical mixing during poleward transport. Observed high 604 concentrations of BC in April are characteristic for the high aerosol loadings typically found in late winter and early 605 spring, which is qualitatively reproduced by the model (Fig. 10). During this period of the year, conditions are 606 generally favorable for the transport of air pollutants into the Arctic forming the Arctic haze. For example, in April 607 2009 the atmosphere over the European and North American Arctic was often characterized by hazy conditions with 608 transport of air pollutants mainly from Eurasia (Stone et al., 2010). In Fig. 10 we show how concentrations for BC vary 609 in the different months simulated. The high BC concentrations observed in Russia are currently not captured by model 610 suggesting an underestimation of BC emissions in Russia in current emission inventories (Stohl et al., 2013; Eckardt et

al., 2015). Warneke et al. (2009) reported a substantial contribution from Russian forest fires and central Asian
agricultural burning to atmospheric pollution over the Arctic.

613

614 Long-term measurements of BC in the Arctic are very sparse, but data from measurements performed at Zeppelin 615 station (475 m a.s.l), near Ny-Ålesund are available for comparison with the model results for April and July 2008. The 616 modeled BC is averaged over the 3 × 3 nearest grid points surrounding the measurement station and calculated from 617 the concentrations in the lowest two model layers, centered around about 30 m above the ground.

618

619 The Zeppelin station observations (Fig. 11a) show 3-5 times higher BC concentrations in April compared to July. This 620 difference is qualitatively reproduced by the model. The vertical distribution of BC (Fig. 11b) shows that 621 concentrations larger than 20 ng/kg are simulated in April up to 200 hPa, whereas there is little to no BC simulated 622 above 500 hPa in July. This is consistent with the idea that BC from source regions outside the Arctic is transported 623 most efficiently into the Arctic in spring, whereas the is little to no long-range transport in summer. The model results 624 suggest that a considerable amount of BC aerosols originating from Europe and East Asia have been lifted into higher 625 altitudes (middle and upper troposphere) and transported over the northern oceans (Fig. 11b). BC aerosols in these 626 high-latitude areas are relatively long-lived due to lower wet scavenging compared to the mid- and low latitudes. The 627 WRF-Chem simulations performed in this study show a mean BC concentration in spring of $0.1 \pm 0.1 \ \mu g/kg$ north of 628 60°N, which is consistent with model simulations done by other authors (Breider et al., 2014 with $0.12 \pm 0.05 \,\mu\text{g/kg}$).

629

Fig. 11c shows the probability density functions (PDFs) calculated from the observed and modeled BC concentrations at Zeppelin station. The model clearly overestimates the cases with very low BC concentrations in April and in July and does not reproduce the highest observed BC concentrations. In April, the shape of the PDF for values above 0.02 μ g/m³ is qualitatively reproduced by the model even though the absolute values are underestimated by a factor of 5. This is, however, not the case in July where the observations and modeled PDF are relatively flat for BC concentrations no larger than 0.015 μ g/m³ for the model This might indicate a missing close-by BC source in the model that could be the reason for the observed larger occurrences of BC up to 0.045 μ g/m³ compared to those in the model.

637

638 Measuring the atmospheric concentration of BC is subject to higher uncertainties than, for example, sulfate 639 measurements (e.g. Sharma et al., 2004). Because of this, among other reasons, only few atmospheric BC 640 measurements in the Arctic are currently available. Cavalli et al. (2010) pointed out that the BC atmospheric 641 concentration can vary by a factor 5 depending on the observation protocol; on the model's part, both, errors in 642 emissions and in the deposition parameterizations can strongly affect the results. In our simulation, we used monthly 643 emissions from fossil fuel combustion and daily emissions from large forest fires. This relatively coarse time resolution 644 of the emissions certainly contributes to our simulation biases. In the real world, emissions can be quite variable, with 645 substantial implications for the BC concentration observed throughout the atmosphere. Other complex physical 646 processes are coarsely represented in our model and are expected to also contribute to our model biases.

647

648 4 Summary, Conclusions and Outlook

649 In this work, we assessed first the role of the choice of the land surface model (Noah and NoahMP), which is part of 650 the physical parameterization suite of WRF together with the choice of reanalyses used for initialization and to create 651 lateral boundary conditions. Biases in the modeled meteorology (e.g. wind speed and direction, boundary layer height) 652 are expected to influence the modeled BC concentrations. As the modeled meteorology strongly depends on the model 653 configuration used, the impact of the choice of data used for initialization and lateral boundary conditions and the 654 choice of LSM scheme was systematically investigated in several model experiments. The results showed that no 655 particular model configuration clearly outperforms the other model configurations when compared to available Arctic 656 observations. Usage of the higher resolution ASR data or a more sophisticated formulation of land surface processes 657 (NoahMP) did not systematically improve model performance in the Arctic. The results suggest that there are other 658 factors to consider such as, for example, the accurate simulation of the Arctic sea ice decline, stratosphere-troposphere 659 interactions, atmosphere-ocean interaction, and boundary layer processes. Improvements of surface albedo, for 660 example, could be achieved by taking more advantage of continuous and reliable satellite and ground-based data for 661 calibration and comparison purposes. This study can therefore also be seen as a starting point for further, systematic 662 sensitivity studies to assess the impact of individual factors such as meteorological model performance, model 663 resolution, boundary conditions, soil characteristics, and the various parameterizations within the physical schemes on 664 the model results for air pollutants in the Arctic.

665

This study is a contribution to ongoing work aiming to evaluate the capability of WRF-Chem to simulate BC around 666 667 the Eurasian Arctic. While the modeled BC concentrations are qualitatively consistent with observations in terms of 668 spatial distribution and time series, the modeled concentrations of BC are too low in the Russian Arctic as noted by 669 (Eckardt et al., 2015). Several factors are likely to influence the modeled BC concentration besides biases in modeled 670 meteorology. For example, Kuik et al. (2015) and Eckard (2015) found that underestimations in modeled BC 671 concentration in WRF-Chem are also related to the low quality of the emissions data. This has important implications 672 for the projected changes in Arctic climate when model natural dynamics are interacting with anthropogenic emissions. 673 Reliable emission inventories with a high temporal and spatial resolution are critical to improve the modeling of 674 aerosols and air chemistry. Especially for this region, model simulations are an important tool to assess the 675 contributions of individual source categories to the total BC concentrations (such as energy or industrial origin). Also, 676 for deepening the analysis of the different impacts of anthropogenic BC it is crucial to have good observational data, 677 e.g. for BC and particulate matter, vertical profiles of temperature and humidity. Other problems leading to systematic 678 errors include those already found in the model. For example, Marelle, et al. (2016) found that a bug in older versions 679 of the Noah LSM scheme that has been fixed in the current version used for this study (WRF3.7) in combination with 680 an underestimation lack of aerosol wet removal by subgrid-scale clouds, may be one of the main factors contributing to 681 the simulated low BC concentrations over areas dominated by an sea-ice/ atmosphere interface.

682

683 5 Data availability

The two external model data sets used in this work, ERA-Interim is available from http://apps.ecmwf.int/ (Dee et al., 2011) and Arctic System Reanalysis (ASR) available from http://rda.ucar.edu/ (Bromwich et al., 2016). The Met Office Integrated Data Archive System (MIDAS) is available at the British Atmospheric Data Centre,

Atmospheric Chemistry and Physics Discussions

- 687 http://catalogue.ceda.ac.uk/. The radiosonde data from the Integrated Global Radiosonde Archive (IGRA) are available
- 688 at <u>ftp.ncdc.noaa.gov/pub/data/igra/</u> (Durre, et al 2006).

- 690 6 Acknowledgements
- 691 All model simulations used in this study were performed at at the high performance cluster computer of the German
- 692 Climate Computing Center (DKRZ). For data processing and figures we used the open-source software NCAR
- 693 Command Language (NCL) also available at https://www.ncl.ucar.edu/.
- 694
- 695 7 References
- 696
- Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S. and Shankar, U.: Modal aerosol dynamics
 model for Europe: Development and first applications, Atmospheric environment, 32, No.17, 2981-2999, 1998
- Aliabadi, A. A., Staebler, R. M., de Grandpré, J., Zadra, A., and Vaillancourt, P. A.: Comparison of estimated
 atmospheric boundary layer mixing height in the Arctic and Southern Great plains under statically stable conditions:
 experimental and numerical aspects, Atmos-Ocean., doi:10.1080/07055900, 2016.
- 703
- Anderson, P. S., and Neff W.D.: Boundary layer physics over snow and ice, Atmos. Chem. Phys., 8, 3563-3582, doi:10.5194/acp-8-3563-2008, 2008.
- Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J.,
 Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M.,
 Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A.,
 Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen,
 B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in
 Europe: current status and prospects, Atmos. Chem. Phys., 14, 317-398, doi:10.5194/acp-14-317-2014, 2014.
- Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J., Rasmussen, R., Livneh, B., Ek, M., and Mitchell,
 K.: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains, J.
 Geophys. Res., 115, D22101, doi:10.1029/2009JD013470, 2010.
- 717
 718
 719
 719
 710
 710
 710
 710
 711
 711
 712
 712
 713
 713
 714
 714
 714
 715
 714
 714
 715
 715
 714
 715
 715
 715
 716
 717
 717
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 719
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
 718
- Beljaars, A. C. M.: The parameterization of surface fluxes in large-scale models under free convection, Q. J. R.
 Meteorol. Soc., 121, 255–270, 1994.
- Meteorol. Soc., 121, 255–270, 1994.
 Breider, T. J., Mickley, L. J., Jacob, D. J., Wang, Q., Fisher, J. A., Chang, R. Y. W., and Alexander, B.: Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption, J. Geophys. Res.Atmos., 119, 4107–4124, 2014.
- Atmos., 119, 4107–4124, 2014.
 Bromwich, D.H., Kuo Y-H, Serreze M, Walsh J, Bai L-S, Barlage M, Hines, K..M. and Slater A.: Arctic system reanalysis: Call for community involvement. Eos Trans. Am. Geophys. Union 91: 13–14, 2010.
- Bromwich, D. H., Wilson, A. B., Bai, L., Moore, G. W. K. and Bauer, P.: A comparison of the regional Arctic System
 Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Q. J. R. Meteorol. Soc., 142, 644-658, doi:
 10.1002/qj.2527, 2016.
- Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., and Putaud, J.P.: Toward a standardised thermal-optical protocol for
 measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79-89,
 doi:10.5194/amt-3-79-2010, 2010.
- 738

© Author(s) 2016. CC-BY 3.0 License.

739 Chou S.H.: An example of vertical resolution impact on WRF-Var analysis, Electron J. Oper. Meteorol., 12, 1-20., 740 2011.

741

742 Cohen J, Screen J A, Furtado, J.C., Barlow M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D. 743 and Overland, J.: Recent Arctic amplification and extreme mid-latitude weather Nat. Geosci. 7 627-37, 2014. 744

745 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., 746 Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, 747 R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, 748 749 M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553-597, 2011.

750 751 752 753 754 Dee, D. P., M. Balmaseda, G. Balsamo, R. Engelen, A. J. Simmons, and J.-N. Thépaut: Toward a consistent reanalysis of the climate system, Bull. Amer. Meteor. Soc., 95, 1235-1248, doi: http://dx.doi.org/10.1175/BAMS-D-13-00043.1., 2014.

755 756 757 758 Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., Castro, M., and Hurk, B.: An intercomparison of regional climate simulations for Europe assessing uncertainties in model projections, Clim. Change, 81, 53-70, doi:10.1007/s10584-006-9228-x, 2007.

759 760 Denis, B., Laprise, R. and Cava, D.: Sensitivity of a regional climate model to the resolution of the lateral boundary 761 conditions, Clim. Dyn., 20, 107-126, 2003.

762 763 Dethloff, K., Rinke, A., Lehmann, R., Christensen, J.H., Botzet, M., Machenhauer, B. : A regional climate model of the 764 Arctic atmosphere. J Geophys Res 101:23401-23422, 1996. 765

766 Dethloff, K., Abegg, C., Rinke, A., Hebestadt, I.. And Romanov, V. F.: Sensitivity of Arctic climate simulations to 767 different boundary-layer parameterizations in a regional climate model. Tellus A, 53: 1-26. doi:10.1034/j.1600-768 0870.2001.01073, 2001. 769

770 Diaconescu, E. P, Laprise, R. and Sushama, L. : The impact of lateral boundary data errors on the simulated climate of a 771 nested regional climate model. Clim Dyn 28:333-350, 2007. 772

773 774 Dirmeyer, P. A.: The terrestrial segment of soil moisture-climate coupling, Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268, 2011.

775 776 Dudhia, J.: Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-777 778 dimensional model, J. Atmos. Sci., 46, 3077-3107, 1989.

779 780 Duffy, P. B., Govindasamy, B., Iorio, J. P., Milovich, J., Sperber, K. R., Taylor, K. E., Wehner, M. F., Thompson, S.: High-resolution simulations of global climate, part 1: present climate, Clim. Dyn., 21, 371–390, 2003. 781

782 Durre, I., R. S. Vose, R.S. and Wuertz, D.B.,: Overview of the integrated global radiosonde archive, J. Clim., 19, 53-783 68, 2006. 784

785 EBAS: Observation data of atmospheric chemical composition and physical properties (http://ebas.nilu.no/) accessed 786 787 13 November 2015.

788 Fan, Y., G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock: Incorporating water table dynamics in climate 789 modeling, Part I: Water table observations and the equilibrium water table simulations. Journal of Geophysical 790 Research-Atm, doi:10.1029/2006JD008111, 2007.

791 792

Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., and Grell, G. A.: 793

- Evolution of ozone, particulates, and aerosol direct forcing in an urban area using anew fully-coupled meteorology, 794 chemistry, and aerosol model, J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721,
 - 795 796 2006.

797 Grell, G. A, and Devenyi, D.: A generalized approach to parameterizing convection combining ensemble and data 798 assimilation techniques, Geophys. Res. Lett., 29(14), doi:10.1029/2002GL015311, 2002.

© Author(s) 2016. CC-BY 3.0 License.

800 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled 801 "online" chemistry within the WRF model, Atmos. Environ., 39, 6957-6975, 2005. 802

- 803 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene 804 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-805 3210, doi:10.5194/acp-6-3181-2006, 2006.
- 806

807 Handorf, D., Jaiser, R., Dethloff, K., Rinke, A. and Cohen, J. : Impacts of Arctic sea-ice and continental snow-cover 808 changes on atmospheric winter teleconnections, Geophys. Res. Lett., 42, 2367-2377, 2015. 809

810 Hines, K. M., and Bromwich, D. H.: Development and testing of Polar WRF. Part I. Greenland Ice Sheet Meteorology, 811 Mon. Wea. Rev., 136, 2008.

- 812
- 813 Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. 814 Nakajima, F. Lavenu, I. Jankowiak, and Smirnov, A.: AERONET - a federated instrument network and data archive 815 for aerosol characterization, Remote Sens. Environ., 66(1), 1–16, doi: S0034-4257(98)00031-5, 1998.
- 816 817 Honda, M., Inoue, J., and Yamane, S.: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. 818 Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079, 2009.
- 819

Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, O. J. R. Meteorol. Soc., 136, 1481-1496, doi:10.1002/gj.665, 2010.

819 820 821 822 823 823 824 Jackson, J. M., Carmack, E. C., McLaughlin, F. A., Allen, S. E. and Ingram, R.G.: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993-2008, J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265, 2010.

825 826 827 828 Jaiser, R., Dethloff, K., Handorf, D., Rinke, A. and Cohen, J.: Planetary and synoptic scale feedbacks between tropospheric and sea ice cover changes in the Arctic, Tellus 64A, 11595., 2012.

- 829 830 Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., and Jaagus, J.: Validation of atmospheric reanalyses over 831 the central Arctic Ocean, Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591, 2012.
- 832

833 Janjic, Z.: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP mesomodel, NCEP 834 Office Note No. 437, National Centers for Environmental Prediction: Camp Springs, MD, USA, 2001. 835

836 Janssens-Maenhout, G., M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, G. Pouliot, T. Keating, Q. Zhang, J. 837 Kurokawa, R. Wankmüller, H. Denier van der Gon, Z. Klimont, G. Frost, S. Darras, and B. Koffi, M. Liu, J.J.P. 838 Kuenen, HTAP_v2: a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric 839 transport of air pollution, Atmos. Chem. Phys. 15, 12867-12909, 2015. 840

- 841 Jiménez, P. A., and Dudhia, J.: Improving the representation of resolved and unresolved topographic effects on surface 842 wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300-316, doi:10.1175/JAMC-D-11-084.1, 2012. 843
- 844 Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., 845 Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., 846 Tegoulias, I., Tsikerdekis, A., and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: 847 848 evaluation of a WRF multi-physics ensemble, Geosci. Model Dev., 8, 603-618, doi:10.5194/gmd-8-603-2015, 2015.

849 Kleczek, M. A., Steeneveld, G., and Holtslag, A. A. M.: Evaluation of the Weather Research and Forecasting 850 mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up, Bound.-Lay. 851 Meteorol., 152, 213-243, 2014.

852

853 Jiao C., and Flanner, M.G.: Changing black carbon transport to the Arctic from present day to the end of 21st century, 854 J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD023964, 2016.

855

856 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., 857 de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., 858 Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K.: Recent decline in the global land 859 860 evapotranspiration trend due to limited moisture supply. - Nature, 467, 7318, 951-954, 2010.

© Author(s) 2016. CC-BY 3.0 License.

861 Lin, Y.-L., R. D. Farley, and H. D. Orville: Bulk Parameterization of the Snow Field in a Cloud Model, J. Climate 862 Appl. Met., 22, 1065-1092, 1983.

863

864 Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of Seven Different Atmospheric Reanalysis 865 Products in the Arctic, Journal of Climate, 27, 2588-2606, doi:10.1175/JCLI-D-13-00014, 2014

- 866 Marelle, L., Thomas, J. L., Raut, J.-C., Law, K. S., Jalkanen, J.-P., Johansson, L., Roiger, A., Schlager, H., Kim, J.,
- 867 Reiter, A., and Weinzierl, B.: Air quality and radiative impacts of Arctic shipping emissions in the summertime in 868 northern Norway: from the local to the regional scale, Atmos. Chem. Phys., 16, 2359-2379, doi:10.5194/acp-16-2359-869 2016, 2016. 870
- 871 Met Office: Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-872 current), NCAS British Atmospheric Data Centre, http://catalogue.ceda.ac.uk/, 2012.
- 873 874 Meier, W. N., Stroeve, J.C. and Fetterer, F.: Whiter Arctic sea ice? A clear signal of decline regionally, seasonally and 875 extending beyond the satellite record, Annals of Glaciology, 46, 428-434, 2006. 876
- 877 Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., and Wang, W.: The Weather Research 878 and Forecast Model: Software Architecture and Performance, To appear in proceeding of the Eleventh ECMWF 879 Workshop on the Use of High Performance Computing in Meteorology, 25-29 October 2004, Reading, U.K., Ed. 880 George Mozdzynski, 2005. 881
- 882 Miguez-Macho, Li, G., H. and Fan, Y.: Simulated water table and soil moisture climatology over North America. 883 Bulletin of the American Meteorological Society 5: 663-672, doi: 10.1175/BAMS-89-5-663, 2008.
- 884 885 Miguez-Macho, G. and Fan, Y.: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal stream-886 flow, flooding and wetlands, J. Geophys. Res., 117, D15113, doi:10.1029/2012JD017539, 2012. 887
- 888 Misenis, C., and Zhang, Y.:An examination of sensitivity of WRF/Chem predictions to physical parameterizations, 889 horizontal grid spacing, and nesting options, Atmospheric Research, 97, 315-334, doi:10.1016/j.atmosres.2010.04.005, 890 2010. 891
- 892 Mlawer, E., J., Steven. J. Taubman, Patrick. D. Brown, M. J. Iacono, and Clough, S. A.: Radiative transfer for 893 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663-894 16682, 1997. 895
- 896 Moore, G.W.K., Renfrew, I.A., Cassano J.J.: Greenland plateau jets. Tellus A 65: 17468, doi: 897 10.3402/tellusa.v65i0.17468, 2013. 898
- 899 NCAR, National Center for Atmospheric Research Staff (Eds), The Climate Data Guide: Arctic System Reanalysis 900 (ASR), https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr, last modified 26 May 2015. 901
- 902 Niu, G.-Y., Z.-L. Yang, K. E. Mitchell, F. Chen, Ek, M. B., Barlage, M., Kumar, A., K. Manning, D. Nivogi, Rosero, 903 E., Tewari, M. and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah–MP): 904 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, 2011. 905
- 906 Nygård, T., T. Valkonen, T., and Vihma, T.: Characteristics of Arctic low-tropospheric humidity inversions based on 907 radio soundings, Atmos. Chem. Phys., 14, 1959-1971, doi:10.5194/acp-14-1959-2014, 2014
- 908
- 909 Overland, J. E., and M. Wang: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic 910 sea ice, Tellus A., 62, 1-9, doi:10.1111/j.1600-0870.2009.00421, 2010.
- 911
- 912 Peckam, S. E., Grell, G. A., McKeen, S. A., Barth, M., Pfister, G., Wiedinmyer, C., Hewson, M., Freitas, S. R., Fast, J. 913 D., Gustafson, W. I., Ghan, S. J., Zaveri, R., Easter, R. C., Barnard, J., Chapman, E., Schmitz, R., and Salzmann, M.:
- 914 WRF/CHEM Version 3.4 User's Guide, available at: ruc.noaa.gov/wrf/WG11/Users guide.pdf, 2011.
- 915 Petoukhov, V., and V. A. Semenov: A link between reduced Barents-Kara sea ice and cold winter extremes over 916 northern continents, J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568, 2010.
- 917
- 918 Pino, D., Jonker, H., Vilà-Guerau De Arellano, J., and Dosio, A.: Role of Shear and the Inversion Strength During 919 Sunset Turbulence Over Land: Characteristic Length Scales, Bound.-Lay. Meteorol. 121, 537-556,
- 920 doi:10.1007/s10546-006-9080-6, 2016.
- 921

922 Randerson, J.T., van der Werf, G.R., Giglio, L. Collatz, G.J. and Kasibhatla, P.S.: Global Fire Emissions Database, 923 Version 4, (GFEDv4). ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1293, 924 2015.

- 925 926 Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1 (5): 318-333. 927 928 doi:10.1063/1.1745010, 1931.

929 Rinke, A., A. H. Lynch, and K. Dethloff: Intercomparison of Arctic regional climate simulations: Case studies of 930 January and June 1990, J. Geophys. Res., 105(D24), 29669-29683, doi:10.1029/2000JD900325, 2000. 931

932 Santos-Alamillos, F. J., Pozo-Vázquez, D., Ruiz-Arias, J. A., Lara-Fanego, V., and TovarPescador, J.: Analysis of 933 WRF model wind estimate sensitivity to physics parameterization choice and terrain representation in Andalusia 934 (Southern Spain), J. Appl. Meteorol. Clim., 25 52, 1592-1609, doi:10.1175/JAMC-D-12-0204.1, 2013. 935

936 Sahsamanoglou, H. S.: A contribution to the study of the action centers in the North Atlantic, Int. J. Climatol., 10, 247-937 261, 1990.

938

939 Screen, J. A., and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, 940 941 Nature, 464, 1334-1337, 2010.

942 Schnell, R.C., ed.: Arctic Haze Special Issue, Geophys. Res. Lett., 11, 359-472, 1984. 943

944 Schell B., I.J. Ackermann, H. Hass, F.S. Binkowski, and A. Ebel: Modeling the formation of secondary organic aerosol 945 within a comprehensive air quality model system, Journal of Geophysical research, 106, 28275-28293, 2011. 946

947 Schmittner, A., Yoshimori, M., Weaver, A.J.: Instability of glacial climate in a model of the ocean-atmosphere-948 cryosphere system. Science 295, 1493-1498, 2002.

949

950 Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik: Northern hemisphere winter snow anomalies: ENSO, 951 952 NAO and the winter of 2009/10, Geophys. Res. Lett., 37, L14703, doi:10.1029/2010GL043830, 2010.

953 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers: A description of the 954 Advanced Research WRF Version 2. NCAR Tech Notes-468+STR, 2005. 955

956 Serreze, M. C., Walsh, J. E., Chapin, F. S., III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., 957 Morison, J., Zhang, T. and Barry, R. G.: Observational evidence of recent change in the northern high-latitude 958 environment, Climatic Change, 46(1-2), 159-207, 2000.

959 Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res., 111, D11306, 2006. 960

961 Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183, 962 doi:10.1029/2000JD900719, 2001.

963

964 Trenberth, K. E., Koike, T., and Onogi, K.,: Progress and Prospects for Reanalysis for Weather and Climate, Eos Trans. 965 AGU, 89(26), 234-235, doi:10.1029/2008EO260002, 2008. 966

967 Trenberth, K. E., and Fasullo, J. T.: Climate extremes and climate change: The Russian heat wave and other climate 968 extremes of 2010, J. Geophys. Res., 117, D17103, doi:10.1029/2012JD018020, 2012.

969

970 Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernström, M., Lüpkes, C., Nygård, T., Notz, D., Weiss, J., 971 Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.: Advances in understanding and 972 parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 973 14, 9403-9450, doi:10.5194/acp-14-9403-2014, 2014.

974

975 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez,

976 J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in 977 winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-2011, 2011.

978 979

980 Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., De Gouw, J., Fahey, D. W., Froyd, K. D., Holloway, J. S., 981 Middlebrook, A., Miller, L., Montzka, S., Murphy, D. M., Peischl, J., Ryerson, T. B, Schwarz, J. P., Spackman, J. R., 982 and Veres, P.: Biomass burning in Siberia and Kazakhstan as an important source forhaze over the Alaskan Arctic in

983 April 2008, Geophys. Res. Lett., 36, L02813, doi:10.1029/2008GL036194, 2009.

© Author(s) 2016. CC-BY 3.0 License.

984 985 Wehner M., Smith, R., Bala, G. and Duffy, P.: The effect of horizontal resolution on simulation of very extreme US 986 precipitation events in a global atmosphere model, Clim. Dyn., 34, 241-247, 2010.

988 Wesslén, C., Tjernström, M., Bromwich, D. H., de Boer, G., Ekman, A. M. L., Bai, L.-S., and Wang, S.-H.: The Arctic 989 990 summer atmosphere: an evaluation of reanalyses using ASCOS data, Atmos. Chem. Phys., 14, 2605-2624, doi:10.5194/acp-14-2605-2014, 2014. 991

992 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire 993 994 INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625-641, doi:10.5194/gmd-4-625-2011, 2011.

995 996

987

Wright, C.K., K.M. de Beurs and G.M. Henebry: Land surface anomalies preceding the 2010 Russian heat wave and a 997 link to the North Atlantic oscillation. Environmental Research Letters, 9, 2010.

998 999 Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D.,

1000 Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 2.

1001 Evaluation over global river basins, J. Geophys. Res., 116, D12110,doi:10.1029/2010JD015140, 2011.

1002

1004 List of Tables

1005 Table 1. Model configuration and sensitivity experiments.

a) Model physical set up						
Model	WRF (ARW) version 3.7.1					
Simulation period	Years 2008-2012					
-	Winter: January, February, March (JFM)					
	Summer: July, August, September (JAS)					
Domain	270 X 252 grid points (175°W-175°E and 45°N-90°N)					
Projection	Polar stereographic, center at 70°N, 40°E					
Horizontal Resolution	15 km x 15 km					
Vertical levels	30 σ -levels (11 levels below $\sigma = 0.9$)					
Physical configuration ^a :						
Shortwave radiation:	Goddard scheme					
Longwave radiation:	RRTM scheme					
Cloud microphysics:	Purdue Lin scheme					
Cumulus scheme:	Grell-3D ensemble scheme					
PBL scheme:	Yonsei University Scheme (YSU)					
Surface Layer:	MM5 Similarity					
Land Surface Model (LSM):	 * Unified Noah 					
	* NoahMP					
Data for initialization and lateral	* ERA-Interim					
boundary conditions:	* Arctic System Reanalysis (ASR)					
b) Experiments and Description:						
Noah_ecmwf	Noah LSM + ERA-Interim reanalysis					
NoahMP_ecmwf	NoahMP LSM + ERA-Interim reanalysis					
Noah_asr	Noah LSM + ASR reanalysis					
NoahMP_asr	NoahMP LSM + ASR reanalysis					

1006 ^a See text for references

1007 1008 * Sensitivity analyses

1010 Table 2. Model set up for the WRF-Chem runs with chemistry and aerosols (physical parameterizations and 1011 domain settings as for the meteorology-only WRF runs given in Table 1).

Model	WRF-Chem version 3.7.1
Simulation period	April 2008
_	July 2008
	April 2009
	July 2010
Chemistry	RADM2+CMAQ scheme
Aerosols	MADE/SORGAM scheme
Dust	GOCART on-line dust emissions
	(AFWA modification)
Input data	
Boundary conditions	MOZART (Global CTM)
chemistry	
Anthropogenic emissions	EDGAR HTAP v2.2 (resolution 0.1°x0.1°)
Fire emissions	NCAR FINN v1.0
Biogenic emissions	MEGAN (online)
Time profiles	Yearly cycle (monthly data)

Station	Code	Latitude	Longitude	WMO	
1. Krenkelja, RU *	KRE	80.64 °N	58.049 °E	20046	
2. Ostrov Golomjannyj RU	GOL	79.55 °N	90.617 °E	N/A	
3. Ny-Alesund, NO	ALE	78.92 °N	11.93 °E	01004	
4. Danmarkshavn GRE	DAN	76.76 °N	18.66 °W	04320	
5. Ostrov Dikson, RU	DIK	73.50 °N	80.42 °E	20674	
6. Popova RU *	POP	73.33 °N	70.05 °E	N/A	
7. Malye Karmakuly, RU	MAL	72.38 °N	52.73 °E	20744	
8. Murmansk, RU	MUR	68.98 °N	33.12 °E	22113	
9. Sojna RU	SOJ	67.87 °N	44.17 °E	22271	
10. Narian Mar, RU	NAR	67.65 °N	53.02 °E	23205	
11. Bodo, NO	BOD	67.26 °N	14.366 °E	01152	
12. Kandalaksa, RU	KAN	67.15 °N	32.35 °E	22217	
13. Sale-Khard , RU	SAL	66.53 °N	66.66 °E	23330	
14. Turukhansk, RU	TUR	65.78 °N	87.95 °E	23472	
15. Lulea-Kallax, SWE	LUL	65.55 °N	22.13 °E	02185	
16. Arhangel'Sk,RU	ARH	64.58 °N	40.5 °E	22550	
17. Orland, NO	ORL	63.70 °N	9.60 °E	01241	
18. Timra, SWE	TIM	62.51 °N	17.45 °E	02365	
19. Syktyvkar, RU	SYK	61.66 °N	50.85 °E	23804	
20. Samarovo, RU	SAM	60.97 °N	69.07 °E	23933	
21. Jokioinen, FIN	JOK	60.82 °N	23.50 °E	02963	
22. Ivdel, RU	IVD	60.68°N	60.43 °E	23921	
23. Leningrad, RU	LEN	59.95 °N	30.70 °E	26063	
24. Moscow, RU	MOC	55.75 °N	37.57 °E	27612	

1019 Table 3. List of stations used for model evaluation (in bold , stations located north of 6
--

1022
1025
1024

Table 4. Biases and RMS error of 6-hourly values from the ERA-Interim and ASR reanalyses and the 4 WRF 1024 1025 experiments compared against surface meteorological observations from AWS.

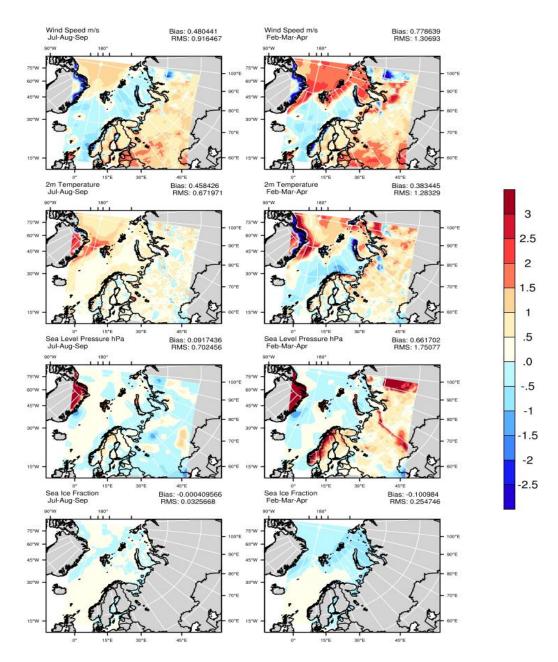
1026

	Stations	Stations above 66°N stations				Stations below 66°N			
Temperature (°C)	FMA		JAS		FMA	FMA		JAS	
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis	•			•		•			
ERA-Interim	0,40	2,40	-0,25	1,81	-0,12	1,78	-0,10	1,81	
ASR	0,18	1,53	-0,25	1,06	-0,28	1,18	-0,19	0,85	
WRF Experiments								•	
noah_ecmwf	-0,70	6,08	-1,74	3,15	-3,21	5,80	-1,64	2,94	
noahMP_ecmwf	0,53	6,19	-1,57	3,11	-1,23	5,62	-1,03	2,99	
noah_asr	0,83	6,79	-0,87	3,09	-1,77	5,75	-0,99	3,20	
noahMP_asr	1,99	6,96	-0,84	3,05	-0,01	5,88	-0,59	3,15	
Wind Speed (m/s)	FMA		JAS		FMA		JAS		
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis		I		I			I		
ERA-Interim	0,81	2,57	0,38	1.89	0,78	2,01	0.90	1,85	
ASR	-0,17	1,99	0,02	1,43	-0,32	1,63	-0,15	1,38	
WRF Experiments									
noah_ecmwf	0,74	3,31	0,63	2,78	0,84	2,42	0,94	2,19	
noahMP_ecmwf	0,55	3,26	0,38	2,58	0,61	2,23	0,61	1,99	
noah_asr	0,89	3,75	0,67	2,91	0,79	2,54	0,93	2,22	
noahMP_asr	0,70	3,66	0,50	2,83	0,62	2,41	0,61	2,04	
SLP (milibars)	FMA		JAS		FMA		JAS		
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis	·			•		•		•	
ERA-Interim	-0,06	0,56	-0,01	0,49	-0,03	0,46	-0,09	0,41	
ASR	-0,59	0,63	-0,24	0,52	-0,43	0,60	-0,08	0,42	
WRF Experiments									
noah_ecmwf	0,28	5,79	-0,19	4,94	0,57	4,65	-0,39	3,38	
noahMP_ecmwf	0,12	5,74	-0,11	4,20	-0,03	4,56	-0,54	2,93	
noah_asr	-2,69	7,80	-1,45	5,57	-0,99	5,82	-0,59	3,73	
noahMP_asr	-2,93	7,89	-1,17	5,51	-1,68	5,64	-0,37	3,43	

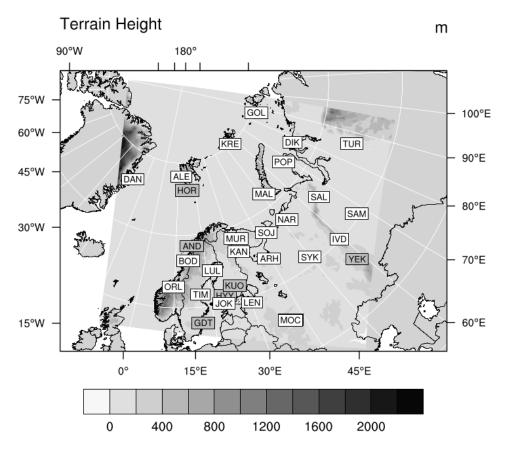
1034

1035

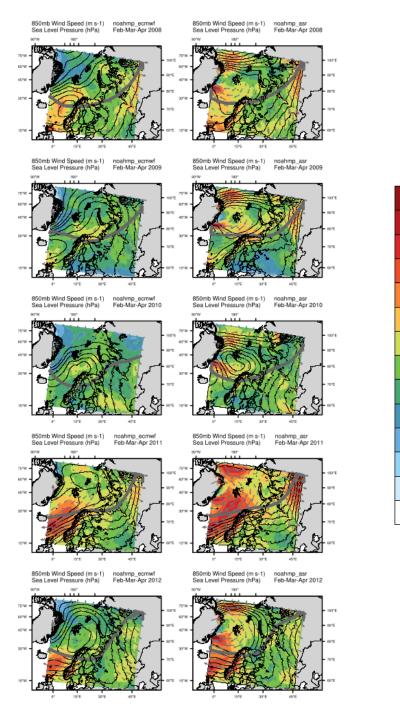
Atmospheric Chemistry and Physics Discussions


	Stations	Stations above 66°N				Stations below 66°N			
Temperature (°C)	FMA		JAS		FMA		JAS		
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis									
ERA-Interim	1,15	1,50	0,42	0,58	1,73	2,10	0,33	0,66	
ASR	0,46	0,73	-0,58	1,49	0,73	0,97	-1,58	2,47	
WRF Experiments									
noah_ecmwf	0,26	0,92	0,27	0,97	0,06	1,19	0,27	0,83	
noah_asr	0,51	1,43	0,43	1,21	0,82	1,35	0,58	0,91	
noahMP_asr	1,07	2,04	0,43	1,24	1,60	1,91	0,78	1,06	
noahMP_ecmwf	0,89	1,33	0,40	1,01	0,97	1,34	0,54	0,89	
Wind Speed (m/s)	FMA		JAS		FMA		JAS		
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis	ł								
ERA-Interim	-0,67	1,00	-0,42	0,67	-0,34	0,92	-0,36	0,73	
ASR	-0,45	0,82	0,00	0,71	-0,26	0,645	-0,10	0,84	
WRF Experiments									
noah_ecmwf	0,97	1,55	0,52	1,01	0,89	1,388	0,40	1,04	
noah_asr	1,34	1,94	0,55	1,11	0,93	1,493	0,38	1,10	
noahMP_asr	1,18	1,82	0,53	1,03	0,68	1,351	0,19	1,04	
noahMP_ecmwf	0,85	1,47	0,33	0,86	0,47	1,176	0,31	1,01	
% Humidity	FMA		JAS		FMA		JAS		
	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	
Reanalysis	·								
ERA-Interim	7,05	8,94	2,24	4,41	5,71	8,07	1,76	4,06	
ASR	-2,15	4,15	1,22	3,78	-0,64	3,28	2,75	5,38	
WRF Experiments				- r	- 1	- r		1	
noah_ecmwf	-3,92	7,43	-0,22	5,97	0,20	7,13	0,07	6,77	
noah_asr	-1,54	8,00	1,69	6,56	0,08	6,96	1,1	5,92	
noahMP_asr	-3,58	8,93	1,84	6,78	-3,24	6,64	-0,4	5,73	
noahMP_ecmwf	-5,96	8,38	-0,77	5,84	-3,56	6,70	-1,63	5,99	

1037Table 5. Mean vertical profiles statistics: biases and RMS for the ERA-Interim and ASR renalyses and the 41038WRF experiments against radiosonde observations from the IGRA database.

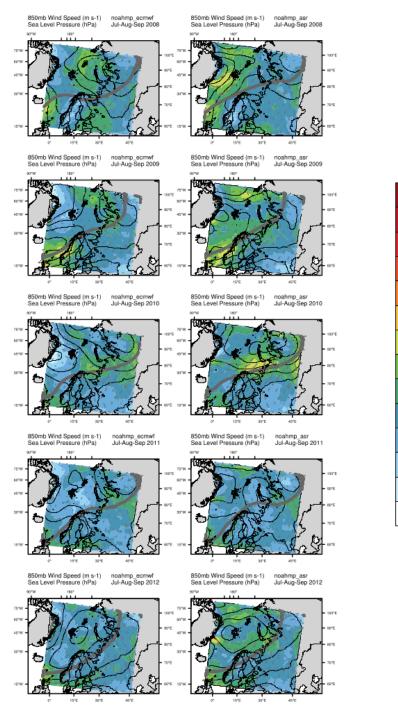

1041 List of Figures

1043Figure 1. Differences between the ERA-Interim and the ASR reanalyses for a) 10m wind speed in m/s, b) 2m1044temperature in °C, c) sea level pressure in hPa, and d) sea ice in fractional units for summer (JAS; left column)1045and winter (FMA; right column) averaged over five seasons (2008-2012). The root mean square (RMS) error1046and mean bias are given above each panel as a measure of the differences between the two reanalyes.

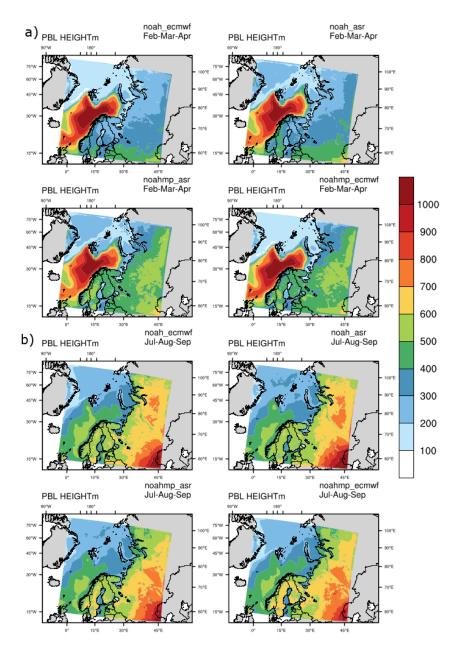


1048

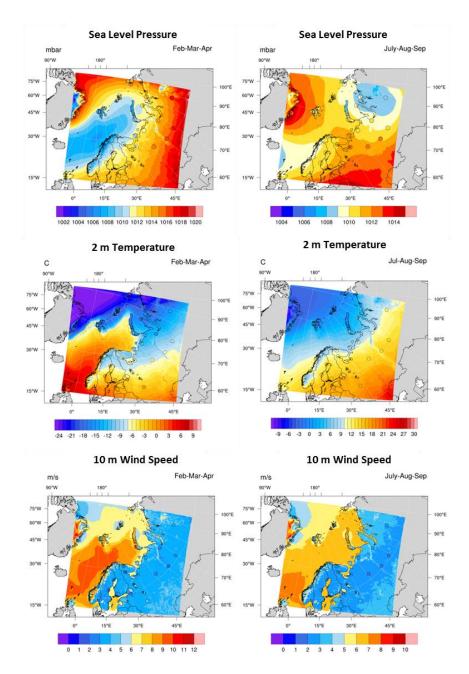
1049Figure 2. Model domain, topographic height (m), and location of the observational stations from WMO (white1050labels) and AERONET (grey labels) used for the model evaluation



1053Figure 3. Modeled 3-month means of the sea level pressure and 850 hPa winds for winter months (February,1054March, April) from 2008-2012. Left column represents experiment *noahmp_ecmwf* and right column for1055experiment *noahmp_asr*. Solid lines are isobars (contours from 1004-1020 hPa), color shading is wind speed at1056850 hPa in ms⁻¹ and gray arrows represent wind direction. The maximum gradient in geopotential height at 5001057hPa (thick gray contour line) is used here as an approximation of the Arctic dome.

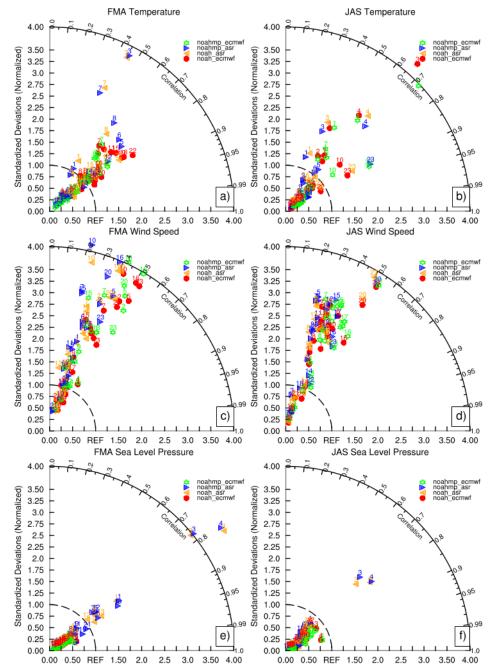


1059 Figure 4. Same as Figure 3 but for summer months (July, August, September).


1061

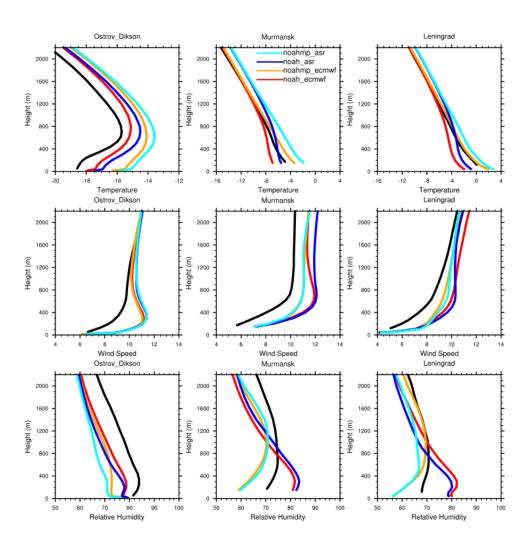
1062Figure 5. Five year averages of the planetary boundary layer height for a) winter months (February, March and1063April) and for b) summer months (July, August and September) from the four meteorology-only WRF1064experiments (noah_ecmwf, noah_asr, noahmp_ecmwf, and noahmp_asr).

1065



1067

1068Figure 6. Mean modeled spatial distribution (colored fields) and station observations (colored circles) of sea level1069pressure (hPa), 2m temperature (°C) and 10m wind speed (m/s) from from the meteorological experiment1070noahmp_ecmwf for winter (left column) and summer months (right column).

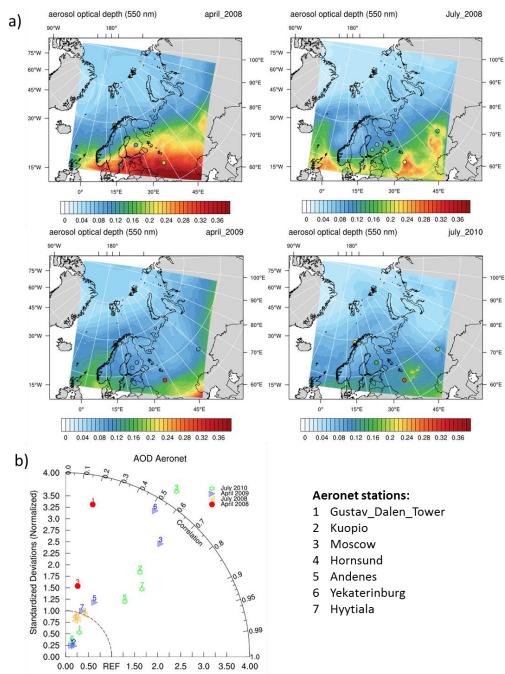


10720.000.000.00REF1.502.02.53.03.504.001073Figure 7. Taylor diagrams comparing surface observations from 22 stations with the four meteorology-only1074model experiments calculated from time series of daily means over the five year period 2008-2012 for the winter1075months (FMA; left column) and summer (JAS; right column) for 2m temperature (a-b), 10m wind speed (c- d)1076and sea level pressure (e-f).

1078

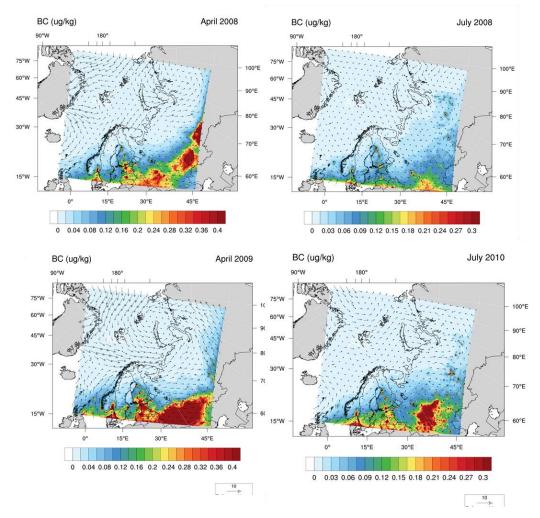
1079

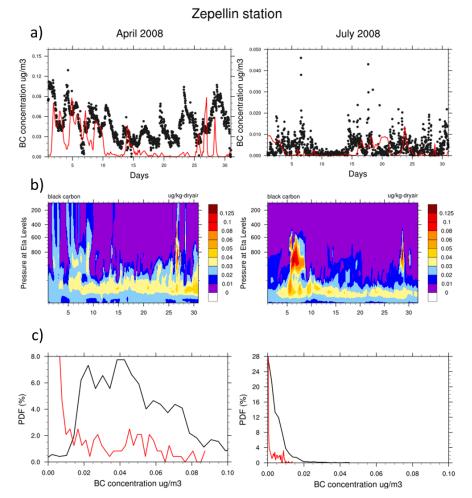
1080Figure 8. Radiosonde and modeled mean profiles at midday readings from the 4 meteorology-only WRF model1081runs compared with radiosonde measurements (black line) at three selected stations for winter months1082(Febrero, March and April) for temperature in °C (first row) wind speed in m/s (middle row) and relative1083humidity in % (last row).


1084

1085

1086




1094

1095Figure 10. Simulated monthly mean BC concentrations near the surface (colored fields) and 10m wind (arrows)1096from WRF-Chem for April 2008, July 2008, April 2009 and July 2010.

1097

1100Figure 11. Time series of April and July 2008 a) modeled (red line) and observed (black dots) surface BC1101concentrations at Zeppelin station in Ny-Ålesund, b) vertical distribution of modeled BC and c) probability1102density function of BC calculated from hourly values of BC concentrations for the studied periods for the model1103(red line) and observations (black line).