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Abstract: The diatom species Fragilariopsis cylindrus produces antifreeze proteins (AFPs) of 
moderate thermal hysteresis. Two concepts are often used in order to describe a thermal hyster-
esis, on the one hand the irreversible nucleation growth described by the Gibbs-Thomson rela-
tion and on the other hand a nonlinear adsorption kinetics of the ice-binding proteins. We refer 
to the Landau’s phase transition theory and predict a saturation concentration of AFPs for the 
maximal freezing depression. The derived functional relation between temperature and AFP 
concentration is more complex than a simple power law as suggested by thermal hysteresis 
experiments. With the parameter set obtained for Fragilariopsis cylindrus the modelled curve 
is comparable with the often used square root law.

Keywords: antifreeze proteins, thermal hysteresis, phase transition

Introduction

Diatoms represent an important fraction of the sea-ice microbial community (Brown 
& Bowman 2001), which considerably contributes to the productivity of the polar 
oceans. They remain trapped in the ice during sea-ice formation, and survive and 
thrive within a porous system of brine channels and brine pockets (Thomas & Dieck-
mann 2002). The diatom Fragilariopsis cylindrus is one dominant species within sea-
ice microbial assemblages (Bartsch 1989, Günther & Dieckmann 2001, Lizotte 2001, 
Thomas & Dieckmann 2002, Roberts et al. 2007). As an adaptation to sea-ice condi-
tions, this species produces antifreeze-proteins (AFPs) (Bayer-Giraldi et al. 2010). 
These proteins have been shown to modify the microstructure of ice crystals, i.e. their 
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size and shape (Bayer-Giraldi et al. 2011, Fig. 1). Diatoms presumably secrete the 
proteins into the brine system to modify the surface of ice, in order to maintain and 
shape their habitat conveniently.

Antifreeze proteins have the characteristic property of shifting the freezing point 
of a solution below the melting point, therefore causing a thermal hysteresis (Barrett 
2001). The proteins attach to nascent ice crystals and inhibit further growth until a 
critical temperature, defined as freezing point, is reached (Kristiansen & Zachariassen 
2005). Ice growth is resumed at the freezing point. Antifreeze proteins are therefore 
also called thermal hysteresis proteins, ice-binding or ice-structuring proteins, due to 
their effect on ice microstructure. The interaction between the proteins and ice is 
based on an intimate surface-surface complementarity given by a spatial matching 

Fig. 1. Frozen samples of protein solutions observed by reflected light microscopy. (A) Nega-
tive control, frozen solution of bovine serum albumin (0.005 μM), (B) Frozen solution of AFPs 
from F. cylindrus (0.012 μM) (Reprinted with permission from Bayer-Giraldi et al. 2011).

(A)

(B)
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between the distance of the amino acids of the polypeptide chain and the lattice spac-
ing of the crystal. The equilibrium configuration of AFPs attached to ice results from 
an entropy-driven optimization process which minimizes the Gibbs free energy.

Two concepts are generally used when modeling thermal hysteresis due to AFPs. 
On the one hand there is the nucleation growth described by the Gibbs-Thomson 
equation (Kaptay 2011) and on the other hand a nonlinear adsorption kinetics of the 
ice-binding proteins. Li & Luo (1993) used the first approach. They proposed a mo-
del for the thermal hysteresis activity based on the first order Gibbs-Thomson relation 
using hard sphere theory by Reiss et al. (1959) and compared the results with experi-
mental data of the winter flounder (Psodeupleuronectes americanus) antifreeze pro-
tein type I (HPLC6). An example for the second approach is given by Liu & Li (2006). 
They applied a two-dimensional reversible adsorption kinetic model for thermal hys-
teresis activity on a hyperactive antifreeze protein of the insect Tenebrio molitor. Also 
the pinning or “stones on a pillow” model developed by Sander & Tkachenko (2004) 
assumed an adsorption kinetics and can therefore be counted among the second 
school.

In the following we use a novel approach to justify the thermal hysteresis due to 
AFPs and apply Landau’s phase transition theory. The two model approaches men-
tioned above describe a non-colligative behavior of the freezing point depression as a 
function of AFP-concentration, but do not always reflect the experimental values ad-
equately. The well-established Landau theory of first order phase transitions can be 
used to describes changes of the Gibbs free energy during the transition between the 
ordinary hexagonal ice I modification and the supercooled liquid. Therefore, a Landau 
model is best suited to describe the thermal hysteresis caused by AFPs. In a recent 
work (Kutschan et al. 2014) we applied Landau’s phase transition theory to study the 
dynamical aspects of the nucleation growth and calculated the critical size of the crys-
tallization seed as a function of the AFP concentration. Here we use Landau’s theory 
to describe the impact of AFPs on the lower limit of the supercooling region and cal-
culate the AFP concentration with the maximal possible freezing point depression. 

The outline of the paper is as follows. In the next section we introduce the Lan-
dau’s approach to phase transitions, according to which a single variable, the order 
parameter }, is introduced  to keep track of the phase change. The phase transition is 
modified due to AFPs, which we describe by a second variable, the AFP-concentra-
tion ρ. The description of the experimental conditions and the determination of the 
model parameters are presented in the second and third section, leading to the Landau 
free energy describing the thermal hysteresis due to the AFPs of Fragilariopsis cylin-
drus. The calculation of the AFP concentration with the maximal possible freezing 
point depression completes the fourth section. In the fifths section we summarize and 
conclude.



72 Kutschan, Thoms & Bayer-Giraldi

Landau theory of phase transition

General aspects

A crucial point in Landau’s theory plays the order parameter due to his duality of 
meanings. An order parameter } bridges the gap between a microscopic point of view 
and a macroscopic perspective (Errington & Debenedetti 2001, Medvedev & Na-
berukhin 1987) and describes a measure of the degree of order of a system (Fig. 2). 
Such a first order phase transition is associated with a symmetry change during the 
transition from liquid water to hexagonal ice in the classification of the point groups. 
It is assumed that the free energy density { can be described by a power series expan-
sion (Brokate & Sprekels 1996, Kittel & Krömer 2001). For a first order phase transi-
tion our approach enables a double welled function whose two minima correspond to 
two stable phases (Harrowell & Oxtoby 1987). We couple the order parameter with 
}+ the function of the AFPs b1(t) and obtain the Gibbs free energy density {
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derived in Appendix Eq. (33). The index j modifies only the constant K in the potential 
function (1) as shown in Fig. 9 in Appendix. We choose j = 1 because this case de-
scribes the supercooling process.

However, the case j = 0 characterizes the superheating process and the case j = 2 
connects both branches. The coefficient b2 = – p/C1 corresponds to the negative di-
mensionless AFP-concentration, whereby t designated the AFP-concentration which 
becomes dimensionless by the constant C1. Furthermore, b2 is a function of the tem-
perature and vanishes for the critical temperature T = Tc. The quadratic expression 

2
1 b2 

2} in Eq. (19) change its sign at this point due 

b ( ) .B T Tc2 = - (4)

Figure 3 shows the asymmetric potential with a saddle point for t = 0 and T = Tc. On 
the other hand we have a temperature T = T2 that coincides with the actual first-order 
transition temperature that corresponds to a symmetric potential (Figs. 3 and 4), i. e. 
the linear term in Eq. (1) have to vanish
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AFP concentration b1 and set b1 = 0

3( )T T T
T T

18
1

c

c

2
2

2

b b= -
-

(7)

with the special value 2( )T 18
1T

2 2 3
22b b b= = . The reason for this is, that we understand 

b2 as state variable dependent on the temperature only, whereas b1(t) describes an 
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for pure water (t = 0, phase 
transition at T = T2, tempera-
ture at maximal supercooling 
Tc = 233.15K) and for the 
saturation concentration of 
AFPs t = tc. 

Fig. 4. Dependence of the 
absolute minimum of the free 
energy (9) on temperature T 
for t = 0. The step at phase 
transition (T = T2) indicates 
the phase change if one 
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mum to the absolute one in 
Figure 3.
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The parameter b3 ≠ 0 is essential for a first order phase transition and determines the 
jump at T = T2. The coefficient b3 characterizes the jump for a first-order phase transi-
tion at the freezing point temperature T = T2 [see Eq. (7) and Fig. 4].
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Experimental conditions

Fragilariopsis cylindrus shows a moderate thermal hysteresis activity (Bayer-Giraldi 
et al. 2011). The thermal hysteresis experiments were performed at low salinity of S = 
10 g/kg using a recombinant protein (Bayer-Giraldi et al. 2011) with a broad concen-
tration range. The actual  physiological concentration is unknown, since no measure-
ments have been done in sea ice. The freezing point depression DTf on the basis of the 
salinity can be calculated from DTf = Kf S/MNacCl with the cryoscopic constant Kf = 
1.853 Kkg/mol for water and the molar mass for sodium chloride MNacCl = 58.45 g/mol 
and obtain DTf = 0.63K. Hence, one finds the freezing temperature for the salinity 
T2 = Tm − DTf = 272.52K for S = 10 with Tm = 273.15K.

Parameter identification

From the potential (1) it can be found a nonlinear relation (44) for the temperature 
depression ∆T due to AFP concentration t
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A nonlinear parameter fitting method provides always d = 1 for our measured values, 
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according to Eq. (45) in Appendix. There are two unknown values in equation (12), 
the parameter b3 and a scaling factor C1 for the AFP concentration. These parameters 
are determined for Fragilariopsis cylindrus using a nonlinear estimation method as 



76 Kutschan, Thoms & Bayer-Giraldi

shown in Figure 5. The model reflects the measured values except for a constant shift 
conditioned by ∆T+1~∆T. The Gibbs free energy density (1) can be expressed as
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Limit of maximal AFP concentration

The extreme values of the potential { (20) or (1) are determined by 
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an unstable region for c c1 1} } }- + + +  characterized by the dotted line in Figure 7.
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for a pure water/ice system without AFPs. The dashed lines in Figures 7 and 8 corres-
pond to the measured loop for the AFP concentration of 115 μM and the lines to the 
concentration of tc =279.02 μM that induce a maximal freezing point depression of 
∆T = 1.13 K as a maximal theoretic limit. Accordingly, the minima of the energy 
density change their shape and position, depending on the AFP concentration at the 
freezing temperature T2 in Figure 6. The minima are much smaller than the minimum 
for the supercooling temperature Tc of pure water without AFPs in Figure 3. The line 
of the value tc describes precisely the limit for the inflection points. The limit lies not 
so far away from the measured values (Bayer-Giraldi et al. 2011). AFP-concentrations 
up to 350 μM was measured and seems to converge to a saturation value, t = 275 μM 
corresponding to delta ∆T = 0.91 K.

The instability region of the loop shown in Figure 7 can also be understood as 
Maxwell construction. The line at t = 0 shown in Figure 8 disconnects the super-
cooled and the superheated region. It should be mentioned here that both Maxwell’s 
phase transition theory of real gases and Landau’s phase transition theory base on a 
polynomial approach.

Summary

Until now we considered an isotropic order parameter. This simplification was suffi-
cient in order to derive a suitable non colligative relation between temperature depres-
sion and AFP-concentration. The Landau approach can reproduce the experimental 
values except for a constant shift. Our function is more complex than a simple power 
law for the AFP concentration as suggested by thermal hysteresis experiments. How-
ever, with the parameter set derived for Fragilariopsis cylindrus the modelled curve 
is comparable with the often used square root law (Raymond & DeVries 1977). More-
over, we determined a theoretical limit for the maximal effective AFP concentration. 
It is recommended to confirm our theoretical limit by means of appropriate measure-
ments. It is useful to include an anisotropic order parameter with the aim to investigate 
the change of the symmetry elements of the point group of the ice crystal.
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The potential { can be expressed by a polynomial
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The potential is symmetric if 12
1

216
1 0 18

1 121 2 3 3
3

2 3
2

3

1&b b b b b b
b
b

- + = = +  and the 
equation (33) is simplified to
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for j = 2. The potential (20) depends on the zeros (27) and on d accordingly.
Therefore we solve the equation
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We obtain
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Fig. 9. Potential { ( j}
+ ) Eq. (33) for j = 0, 1, 2 with b3 = −3.2416, b2 = 18

1
3
2b , b1 = 0 (straight 

line) and b1 = −0.02 (dashed line).



Thermal hysteresis of antifreeze proteins 83

2

3 3

3 3 3 1 3 3 .

256
3

2
9

96
1

2048
1

32
9

1536
1 27 8

1
6912

1 0

4 2
1 3

2 2

6 4
1

4 2 2
1

2

b
d d

b b
d

b

d d d d d d

+ - - +

+ + - + - + =

3

4 4

6 6 2

b b

b b b b b b b b3 3 6

+ +U Z
(38)

The solution is
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for j = 0, 1, 2. The coefficient b2(T) implies the measured temperature T, the critical 
temperature Tc, and the actual freezing temperature T2
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with 2 T T
T

18
1

c
3
2

2

´b b D= -
 and 2 18

1
3
2´´b b= . Combining the equations (40) and (41) we get
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for b1 = –t/C1. The reflection across the x-axis and the dimensionless scaling factor
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or for j = 1

4b 3

3 ( )
( ) .cos arccosT

C
1 3

3456 9 8

3
1

3
2

8
9

2
3

4
1

3
2 2

2d

t
b d b d

f r
d

D + = -
- + -

+ + -
2

4

S X
(44)

The maximal supercooling is obtained for d = 1. For this case equation (44) is simpli-
fied to
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