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Abstract 

The last transition from a full glacial to a full interglacial state is of special importance to 

investigate processes that control the Earth’s climate evolution. Out of phase 

interhemispheric climate variability over the last deglaciation has been associated with orbital 

induced insolation changes as well as with the “bipolar seesaw”, hence related to changes in 

the strength of the Atlantic Meridional Overturning Circulation (AMOC). The Southern 

Ocean (SO) as only water territory connecting the Pacific, Atlantic and Indian Ocean, plays a 

crucial role as southern limb of the AMOC in propagating signals within its basins and into 

the different world oceans. The Antarctic Circumpolar Current (ACC), steered by the strong 

Southern Westerly Winds (SWW), redistributes heat, salt and nutrients via wind-driven 

upwelling and thus has the high potential of regulating atmospheric CO2 concentration via the 

biological pump as well as surface and deep-water ventilation. Sea surface temperature and 

sea-ice extent are important surface water parameters related to the oceanic frontal and 

current systems as well as to water mass formation via brine release and bioproductivity 

changes.  

Despite numerous marine studies from the Pacific sector of the SO, the (sub)antarctic 

realm is still underrepresented in paleoceanographic research. This thesis examines the 

environmental changes of the last 30,000 years (30 kyr) in the Pacific sector of the SO using 

diatom-based transfer function estimates of summer sea surface temperature (SSST) and 

winter sea-ice (WSI) concentrations reconstructed from 17 selected sediment cores. Including 

available sea surface temperatures and sea-ice records from the Pacific sector the thesis 

objectives are primarily a basin and circum-Antarctic wide comprehension of last glacial, 

deglacial and Holocene climate variability with respect to forcing mechanisms, lead-lag 

conditions and ice-ocean-atmosphere-ocean feedbacks. 

The first manuscript deals with the reconstruction of temperature and sea-ice signals 

during the Last Glacial Maximum (LGM; 19-23 kyr before present, BP) in the Pacific sector 

of the SO using new diatom data from a total of 17 cores. Consistent with estimates from 

previous studies, the Pacific sector shows a distinct basin-wide cooling with a temperature 

decrease of ≥4 K in the present Subantarctic Zone. Most prominent is an E-W gradient 

concerning the cold-water expansion and the maximum extent of winter sea ice (WSI) that 

results from strong topographic forcing also steering the frontal system. Hence, the frontal 

system was characterized by colder SSSTs Atmospheric forcing mechanisms such as the 

SWW and the El Niño Southern Oscillation (ENSO) are proposed to amplify the E-W 
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gradient and to have a high regional impact in the Pacific sector. Regarding the average 

latitudinal expansion of the cold-water realm and the WSI extent in the different SO sectors, 

a coherent and uniform circum-Antarctic picture of the LGM time slice arises.  

The second manuscript carefully examines the deglacial history of the Pacific sector of 

the SO, based in the same set of sediment cores. A major outcome is a decoupling of the 

eastern Pacific sector to its western counterpart and the other SO sectors, which has not been 

shown before. An early deglacial warming around 22 kyr BP observed in the eastern sector is 

in close agreement with a warming in the adjacent West Antarctic Ice Sheet (WAIS), and is 

most likely related to the rising Southern Hemisphere insolation. Hence, the synchronous 

CO2 rise recorded in East and West Antarctica might have been triggered by the shutdown of 

the AMOC, rapid sea-ice retreat due to intense warming and strong upwelling due to 

strengthened SWW. Over the course of the deglaciation, the Pacific records show the 

common “Antarctic timing” consisting of increasing temperatures until the Antarctic 

Holocene Optimum (AHO; ~12-9 kyr BP) only interrupted by the Antarctic Cold Reversal 

(ACR; ~14.5-12.5 kyr BP). A sole contribution of the WAIS to meltwater pulse 1 A (14,400 

yr BP) can not be ascertained as less cooling occurred during the ACR than expected by 

model simulations. 

The Holocene climate in the SO is of special importance in deciphering small-scale 

changes induced by atmospheric forcings, which allos to infer possible present climate 

changes. The sediment cores, presented in the third manuscript, are relatively high resolved 

for SO sediments (8-34 cm/kyr) and were retrieved in the western Pacific’s Antarctic Zone. 

The SSST and WSI estimates show a Mid-Holocene cooling which corroborates results from 

model simulations of freshwater shedding from the rapid WAIS retreat. This sea surface 

cooling, most likely originating in the Pacific sector is propagated via the “cold water route” 

into the other SO sectors. The variability of warm and cold periods during the Mid- and Late 

Holocene reveals a strong dependence to regional influencing factors such as the close 

vicinity to the sea ice edge as well as to the atmospheric shift of a SWW-to a ENSO-

goverend climate state.  

In summary, this thesis provides for the first time SSST and winter sea-ice estimates in the 

Pacific sector of the SO on a wide spatial range and for time slices whose paleoceanographic 

history is crucial for the understanding of global climate change. The investigated 

environmental parameters point to the sensitivity of this SO sector, concerning the drainage of 

the WAIS and the impact of atmospheric changes, that has the high potential of triggering 

climate change. 
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Kurzfassung 

Der Übergang von vollen Glazial- zu vollen Interglazialbedingungen ist von 

besonderer Bedeutung für die Untersuchung von Prozessen, welche die Entwicklung des 

Erdklimas kontrollieren. Die phasenverschobenen Klimaschwankungen der beiden 

Hemisphären während der letzten Deglaziation werden mit Veränderungen der 

Sonneneinstrahlung in Verbindung gebracht, die von Orbitalparametern gesteuert werden, 

sowie mit der “bipolaren Wippe” und darausfolgenden Änderungen in der Stärke der 

“Atlantischen Meridionalen Umwälz-Zirkulation” (AMOC). Der Südozean (SO), welcher als 

einziges Wassergebiet den Pazifischen, Atlantischen und Indischen Ozean verbindet, spielt 

eine entscheidende Rolle als südliche Komponente der AMOC, da er Signale innerhalb seiner 

Becken, sowie in den verschiedenen Weltozeanen, verbreitet. Der Antarktische 

Zirkumpolarstrom, der um die Antarktis zirkuliert und durch die starke südliche 

Westwinddrift (SWW) angetrieben wird, verteilt Wärme, Salz und Nährstoffe durch 

Tiefenwasserauftrieb um. Hierdurch besitzt er das große Potenzial, durch die “biologische 

Pumpe” sowie durch Oberflächen- und Tiefenwasserdurchlüftung, den CO2-Gehalt der 

Atmosphäre zu regulieren. Meeresoberflächentemperatur und Meereisausdehnung sind 

wichtige Oberflächenparameter, die sowohl mit den ozeanischen Fronten- und 

Strömungssystemen assoziiert sind, als auch, durch Salzfreisetzung und Veränderungne der 

Bioproduktivität, mit Wassermassenbildung. 

 Trotz zahlreicher Studien aus dem pazifischen Sektor des SO ist der (sub)antarktische 

Bereich immer noch hinsichlich paläozeanographischer Untersuchungen unterrepräsentiert. 

Diese Dissertation rekonstruiert Oberflächentemperaturen des Sommers (SSST) und 

Meereiskonzentrationen des Winters (WSI), mit Hilfe von Diatomeen-basierten 

Transferfunktionen. Im Vergleich mit verfügbaren Oberflächentemperaturen und 

Meereisaufzeichnungen des pazifischen Sektors werden Änderungen in den 

Umweltbedingungn der letzten 30.000 Jahre untersucht. Hauptziele dieser Dissertation sind 

vor allem das becken- und zirkumantarktischweite Verständnis der Klimavariabilitat des 

letzten Glazials, Deglazials und des Holozäns, mit Fokus auf Steuerungsmechanismen, vor- 

bzw. nachlaufender Bedingungen und Eis-Ozean-Atmosphären-Rückkopplungen.  

 Das erste Manuskript beschäftigt sich, unter Benutzung neuer Diatomeendaten von 

insgesamt 17 Sedimentkernen, mit der Rekonstruktion von Temperatur- und Meereissignalen 

während des letzten Glazialen Maximums (LGM; 19.000 – 23.000 Jahre vor heute). 

Übereinstimmend mit Ergebnissen aus vorhergegangenen Untersuchungen zeigt der 
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pazifische Sektor eine ausgeprägte beckenweite Abkühlung, mit Temperaturabnahmen von 

≥4 K in der Subantarktischen Zone. Besonders markant ist ein Ost-West Gradient hinsichtlich 

der Kaltwasserausbreitung und der maximalen Meereisausbreitung im Winter, der durch 

starke topographische Restriktion, welche auch das Frontensystem steuert, hervorgerufen 

wird. Daraus resultierend war das Frontensystem durch kältere SSST charakterisiert. Es wird 

angenommen, dass die atmosphärische Beeinflussung, etwa durch die SWW und die El Niño 

Südoszillation (ENSO), den Ost-West Gradienten verstärkt hat und eine starke regionale 

Bedeutung im pazifischen Sektor inne hatte. In Bezug auf die durchschnittliche Ausdehnung 

der Kaltwasserbereichs und der WSI Ausdehnung der einzelnen Südozeanbecken, entsteht 

ein einheitliches und gleichförmiges zirkumantarktisches Bild der LGM-Zeitscheibe .  

 Das zweite Manuskript untersucht die deglaziale Geschichte des pazifischen Sektors 

basierend auf derselben Sedimentkernauswahl. Eines der wichtigsten Ergebnisse ist die 

deglaziale Entkopplung des östlichen pazifischen Sektors zum westlichen Pendant und der 

anderen Sektoren des Südozeans, die bisher nicht bekannt war. Ein frühes deglaziales 

Erwärmen um 22.000 Jahre vor heute, das im östlichen Sektor beobachtet werden kann, steht 

in enger Beziehung zu der Erwärmung des angrenzenden Westantarktischen Eisschildes 

(WAIS), und ist höchstwahrscheinlich an die ansteigende Insolation in der Südhemisphäre 

gekoppelt. Folglich könnte der gleichzeitige CO2-Anstieg, der sowohl aus der Ost- wie auch 

Westantarktis bekannt ist, vom Stillstand der AMOC sowie dem raschen Meereisrückgang, 

aufgrund von intensiver Erwärmung und starkem Tiefenwasserauftrieb, ausgelöst worden 

sein. Im Verlauf der Deglaziation zeigen die pazifischen Aufzeichnungen einen typischen 

„Antarktischen Zeitablauf“, welcher bis zum Antarktischen Holozänen Optimum (AHO; 

~12.000-9.000 Jahre vor heute) aus ansteigenden Temperaturen besteht, die nur durch den 

Antarktischen Kälteumschwung (ACR; ~14.500-12.500 Jahre vor heute) unterbrochen 

wurden. Eine alleinige Beteiligung des WAIS zum Schmelzwasserpuls 1A (14.400 Jahre vor 

heute) kann nicht bestätigt werden, da eine geringere Abkühlung während des ACR stattfand 

als von Modellierungen erwartet wurde. 

Von besonderer Wichtigkeit ist das holozäne Klima des Südozeans, um kleinmaßstäbliche 

Veränderungen zu entschlüsseln, welche durch atmosphärischen Einfluss gesteuert werden. 

Damit können mögliche aktuelle Klimaänderungen abgeleitet werden. Die im dritten 

Manuskript untersuchten Sedimentkerne zeigen eine relativ hohe Auflösung (8-34 cm/1000 

Jahre) und stammen aus dem antarktischen Bereich des westlichen Pazifiks. Die SSST und 

WSI Berechnungen zeigen eine Abkühlung während des mittleren Holozäns, welche 

Ergebnisse aus Modellierungen eines Frischwassereintrags des rasch zurückweichenden 
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WAIS bestätigen. Diese Abkühlung des Oberflächenwassers, die sehr wahrscheinlich im 

pazifischen Sektor ihren Ursprung hat, wird über die Kaltwasserroute in die übrigen Sektoren 

des Südozeans verbreitet. Die Schwankungen zwischen warmen und kalten Abschnitten  

während des Mittleren und Späten Holozäns zeigen eine starke Abhängigkeit von regional 

beeinflussenden Faktoren, wie etwa der Nähe zur Meereisgrenze und zum atmosphärischen 

Wechsel zwischen SWW und ENSO gesteuertem Klimazustand.  

 Insgesamt zeigt diese Dissertation zum erstem Mal SSST und WSI Berechnungen im 

pazifischen Südozean auf weiter räumlicher Ausdehnung und für Zeitscheiben, deren 

paläozeanographische Vergangenheit essentiell für das Verständnis des globalen 

Klimawandels ist. Die untersuchten Umweltparameter weisen auf eine Sensitivität dieses 

Südozeansektors, hinsichtlich der Entwässerung des WAIS und des Einflusses 

atmosphärischer Änderungen hin, welche auf das hohe Potential des pazifischen Sektors 

hindeutet, Klimaveränderungen auszulösen.  
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Chapter 1 – Introduction 

1.1 General introduction and motivation 

The Earth’s climate is strongly influenced by the interaction of ocean and atmosphere 

via heat, gas and moisture exchange and associated feedbacks. Thus, knowledge of the 

behavior of the oceans interior processes and their changes on millennial time scales is crucial 

for the understanding of transitions between warm and cold climate end members. The 

understanding of feedback processes causing and associated with global climate transitions is 

crucial regarding the prediction of future changes with respect to the recent anthropogenic 

influence (IPCC, 2014). During the Late Quaternary the Earth´s climate was characterized by 

glacial/interglacial cycles that have been associated with insolation changes triggered by 

variations of the Earth´s orbital parameter and changes in the atmospheric CO2 content (e.g. 

Hays et al., 1976; Huybers and Denton, 2008). However, the Northern and Southern 

Hemispheres show a decoupling of millennial scale climate variability over the last ~30,000 

years (Blunier et al., 1998; EPICA Community Members, 2006). The asynchronous climate 

evolution is characterized by a lead-lag situation of abrupt cold periods in the Northern 

Hemisphere and corresponding warm events in the Southern Hemisphere known as the 

“bipolar seesaw” (e.g. Broecker, 1998) that is commonly related to the strength of the Atlantic 

Meridional Overturning Circulation (AMOC) redistributing heat between the two 

hemispheres (e.g. McManus et al., 2004). The Southern Ocean represents the lower cell of the 

AMOC and the only connection of the three largest global oceans, thus acts as important 

exchange area of water masses (Fig. 1.1; Lumpkin und Speer, 2007; Talley 2013). Hence, it is 

a key area for the propagation of climate change among all ocean basins. 

The last glacial/interglacial climate transition has frequently been investigated in the 

Southern Hemisphere (e.g. CLlMAP, 1976, 1981; Gersonde et al., 2003a; Kilian and Lamy, 

2012; Bostock et al., 2013 and references therein), but only limited information of climate 

evolution since the last glacial is available from the Pacific, even though this area represents 

the largest portion of the Southern Ocean. The Pacific sector is majorly important for deep 

and intermediate water mass formation (e.g. Orsi et al., 1995) and the exchange of water 

masses with the Atlantic sector via the “cold-water route” in the Drake Passage (Rintoul, 1991). 

Furthermore, the largely marine-based West Antarctic Ice Sheet (WAIS) that drains particularly 

into the Pacific sector, is strongly considered to disintegrate rapidly under rising global water 

temperatures and to contribute up to 3.20 m to the global sea level rise (Bamber, et al. 2009).  
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Figure 1.1: Schematic illustration of the modern global ocean meridional overturning circulation from a 
Southern Ocean perspective (after Talley, 2013).  
 

Sea surface temperature (SST) cooling in the Pacific sector via meltwater intrusion from 

Antarctic ice shelves (Bintanja et al., 2015), particularly connected to WAIS retreat during the 

deglacial and the Holocene (Larter et al., 2014), has not been observed yet. Additional 

atmospheric forcing mechanisms such as the Southern Annular Mode (SAM) and the El Niño 

Southern Oscillation (ENSO) also exhibit high impacts on southern Pacific SST and sea-ice 

distribution. The dependency of the recent increase in sea-ice extent of the Ross Sea area on a 

positive SAM index (Turner et al., 2009; Thompson et al., 2011) might also be assumable for 

the Last Glacial Maximum (LGM). Furthermore, representing a High Nutrient-Low 

Chlorophyll (HNLC) area, higher dust-borne iron input during the LGM (Lamy et al., 2014) 

probably turned the Pacific’s seasonal Sea Ice Zone into a carbon sink, lowering the 

atmospheric CO2 content (Abelmann et al., 2015). The investigation of impact and response 

of the above mentioned atmospheric and oceanographic influences in the Pacific sector since 

the last glacial are of major importance with respect to recent climate change. Thus, it was the 

essential goal of the BIPOlar Climate MAChinery project (ANT-XXVI/2-BIPOMAC), the 

first R/V Polarstern cruise across the South Pacific, to decipher the role of the Pacific sector 
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of the Southern Ocean in triggering, amplifying and propagating climate signals related to 

ocean-ice-atmosphere processes (Gersonde, 2011). In this thesis, diatom-based SSTs and sea-

ice concentrations derived from sediment cores recovered during ANT-XVIII/5a and ANT-

XXVI/2-BIPOMAC are used to provide insights into the glacial to interglacial development 

of the Pacific sector. As diatoms are belonging to the photosynthesizing phytoplankton, 

restricted to the euphotic zone, and represent the major contributor to the primary productivity 

as well as to the biogenic sedimentation in the opal-belt of the Southern Ocean, they are ideal 

candidates for the reconstructions of surface parameters through time. 

The following subchapters highlight important oceanographic and environmental 

conditions of the Southern Ocean (Chapter 1.2.1) and the Pacific sector in particular (Chapter 

1.2.2). An overview of relevant paleoceanographic research related to the emphasis of this 

thesis is provided (Chapter 1.2.3) as well as basic information on diatoms and the particular 

advantage of their application as paleoceanographic proxy (Chapter 1.3). Chapter 1.4 and 

Chapter 1.5 outline the objectives that will be approached by this thesis and specify the 

authors contribution to the subsequent manuscripts. In Chapter 2 the studied sediment 

material and the applied proxies are introduced. Further methods used to gain basic core 

parameters for age determination are described as well as a short introduction into the applied 

multiproxy approach for the establishment of age models is given. Chapters 3, 4 and 5 

represent the manuscripts with the main results of this thesis and are either under review or in 

preparation for submission. The main objectives of Chapter 3 is the paleoceanographic 

reconstruction of the Last Glacial Maximum in the Pacific sector of the Southern Ocean, 

followed by the study of the Pacific’s deglacial history (Chapter 4) and by regional 

observations of the Holocene in the western Pacific sector (Chapter 5). Chapter 6 provides a 

conclusion compiling the major outcomes of the previously discussed time slices and future 

perspectives. 
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1.2  The Southern Ocean 

1.2.1 Modern oceanographic and environmental conditions 

 Today, the Southern Ocean (latitudes south of ca. 50°S) represents the Earth’s largest 

continuous current system, connecting the Atlantic, Pacific and Indian Oceans. Subsequently 

it acts as an important exchange area for gas, heat, and nutrient transport between the different 

water masses and ocean basins (Fig. 1.1; Rintoul et al., 2001).  

 
Figure 1.2: Map of the Southern Ocean sectors with (a) the northern (SAF) and southern (SACCF) boundary of 
the Antarctic Circumpolar Current (ACC), arrows indicate the eastward current direction of the ACC; and (b) 
the maximum winter and summer sea-ice (WSI/SSI) extent during September and February, respectively. ACC: 
Antarctic Circumpolar Current; AF: Africa; AUS: Australia; SA: South America; APF: Antarctic Polar Front; 
EAIS: East Antarctic Ice Sheet; NZ: New Zealand; RS: Ross Sea; SAF: Subantarctic Front, SACCF: southern 
ACC Front; STF: Subtropical Front; WAIS: West Antarctic Ice Sheet; WS: Weddell Sea. Oceanic fronts 
according to Orsi et al., (1995); Sea-ice extent after Reynolds et al. (2002, 2007). 

 

The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current 

(ACC) that maintains the exchange of heat and water masses within the Atlantic, Pacific and 

Indian sectors and is mainly driven by strong eastward blowing Southern Westerly Winds 

(SWW) (Fig. 1.2). The ACC represents the largest ocean current with a mean volume 

transport of ~130 Sverdrup through the Drake passage (1Sv = 106m3s-1; Whitworth et al., 

1982; Olbers et al., 2004) and is defined by deep reaching circum-polar fronts, mainly the 

Subantarctic Front (SAF), the Antarctic Polar Front (APF) and the Southern ACC Front 

(SACCF) (Fig.1.2 a; Orsi et al., 1995; Sokolov and Rintoul, 2009). The SAF and SACCF are 

traditionally specified as northern and southern ACC boundaries. The latter front further 

resembles roughly the average winter sea-ice expansion in the Southern Ocean (Fig.1.2 a, b; 

Reynolds et al., 2002, 2007). Additionally to the ACC fronts, the Subtropical Front (STF) 
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separates the cold and fresh subantarctic water from the warm and salty subtropical water, 

representing the only discontinuous front (Fig. 1.2 a; Orsi et al., 1995). The different fronts 

are generally defined by pronounced gradients of temperature, density and salinity, for 

instance the APF is associated with ~4°C SST (e.g. Orsi et al., 1995; Belkin and Gordon, 

1996; Dong et al., 2006). Modern SSTs in the ACC region range between 0 and 8°C during 

summer and -1.5 and 6°C during winter (Olbers et al., 1992; Locarnini et al., 2010). 

The currents within the ACC are of major importance for the recirculation of deep and 

bottom water masses to the surface maintaining the southern part of the global meridional 

overturning circulation (Fig. 1.1). The deepest water mass in the Southern Ocean, the 

Antarctic Bottom Water (AABW), is formed at the shelf regions of predominantly the 

Weddell and Ross Seas where water is cooled below the freezing point in shelf ice cavities 

and gets enriched with salt via brine rejection during ice formation. The newly formed cold, 

high saline, and dense water mass mixes with ambient Circumpolar Deep Water (CDW) and 

sinks down along the shelf break driving deep convection (Orsi et al., 1999). CDW is the 

most important water mass within the ACC regarding its volume and results from mixing of 

North Atlantic Deep Water (NADW) with Indian and Pacific deep waters (e.g. Orsi et al., 

1995). Upwelling of nutrient-rich CDW around Antarctica is facilitated by so-called Ekman 

transport, which is caused by vertical northward water movement to the primarily eastward 

blowing SWW (Speer et al., 2000; Marshall and Speer, 2012). This upwelled water is 

transported northward and is eventually downwelled at the APF, forming Antarctic 

Intermediate Water (AAIW). Similarly, at the SAF downwelling of Subantarctic Mode Water 

(SAMW) occurs, overlaying the AAIW (McCartney, 1977; Orsi et al., 1995).  

A major role in the entire Southern Ocean plays the seasonally largely varying extent 

of sea ice that impacts sea surface temperature, bioproductivity and export as well as ocean-

atmosphere gas exchange (Figs. 1.2b, 1.3; e.g. Thomas and Dieckmann (Eds.), 2010 and 

references therein). Generally, for the growth of sea ice, SSTs below the freezing point of -

1.8°C for seawater are necessary (Petrich and Eicken, 2010). The threshold for the presence 

of sea ice and, thus the maximum sea-ice edge is defined as 15% sea-ice concentration (Fig. 

1.2b; Zwally et al., 2002) whereas the average sea-ice edge, representing consolidated sea ice, 

is at 40% sea-ice concentration (Gloersen et al., 1992). Based on this definition, sea ice 

reaches its maximum extent in September during the Southern Hemisphere (SH) winter (July-

September), covering an area of ca. 19 x 106 km2. The extent decreases significantly during 

February (austral summer) to approximately 3.5 x 106 km2 (Comiso, 2010). The five-fold 

difference between summer and winter sea-ice cover has a huge impact on water column 
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stratification and primary productivity. Besides the earlier described formation of AABW 

under the shelf ice, the seasonal formation of sea ice contributes to a lesser extent to the 

bottom water formation via brine release. The rejection of salt during the freezing process 

forms saline and dense water masses causing vertical convection and preventing stratification 

(Fig. 1.3; Comiso, 2010). In contrast, during spring and summer, sea-ice retreat results in 

fresh meltwater lenses that favor upper water column stratification (Fig. 1.3; Comiso, 2010). 

Additionally, the release of dust-borne iron into the stratified surface water during sea-ice 

melt fuels prominent diatom blooms (Fig. 1.3; Arrigo and Thomas, 2004). With increasing 

sea-ice concentration the phytoplankton abundance decreases significantly. Thus, in areas 

covered by perennial sea ice, primary productivity reaches its minimum due to light and 

nutrient limitation. Extensive sea-ice cover can further act as an amplifier of global climate: 

by covering large ocean areas, the exchange between ocean and atmosphere is reduced and 

CO2 can be stored in the deep ocean. Additionally, the high surface albedo of sea ice and the 

sustained snow cover on the sea ice support a cooler atmosphere during winter.  
 

Figure 1.3: Schematic representation of sea-ice influence on oceanography, environment and climate (after 
Collins et al., 2012).  
 

 Although the Southern Ocean surface waters are repleted with nutrients such as 

nitrate, phosphate and silicate, relatively low productivity is observed, characterizing the 

Southern Ocean as largest HNLC regime (Arrigo et al., 1998, 2003). The low phytoplankton 

abundance is explained by the limiting factor of micronutrients, primarily the deficiency of 



Chapter 1 – Introduction 

 
 

7 

iron (Martin et al, 1990). Prominent phytoplankton blooms are thus restricted to regions with 

higher iron supply via windblown dust or fluvial discharge (Sullivan et al., 1993). An 

important mechanism called the “biological carbon pump” is closely aligned to the HNLC 

regime (Smetacek et al., 2004). Iron-fertilizing experiments showed that episodic iron supply 

resulted in extensive phytoplankton blooms dominated by weakly silicified diatoms, whose 

export to the seafloor sequesters CO2 in the ocean’s interior turning the Southern Ocean into 

an important carbon sink (Smetacek et al., 2004). In contrast, when iron is limited diatom 

species with heavily silicified shells prevail, causing higher accumulation of biogenic opal at 

the seafloor, and driving the silicon pump (Smetacek et al., 2004). The latter mechanism 

dominates in the modern ACC surface waters leading to the production of approximately one 

third of the global biogenic silica in the Southern Ocean (Tréguer and De La Rocha, 2013). 

Biogenic silica burial occurs south of ca. 60°S in the so-called “opal belt” that spans around 

the entire Antarctic continent between the APF and the SACCF (Fig. 1.4; Lisitzin, 1985; 

Geibert et al., 2005; Diekmann, 2007). North of the opal-dominated regime the carbonate 

amount in sediments increases, slowly replacing siliceous phytoplankton as primary sediment 

contributors. South of the WSI edge, export and preservation of opal is significantly reduced 

due to less productivity and considerable dissolution in the water column (Esper and 

Gersonde, 2014a). Here, the sediments contain higher terrigenous input from the Antarctic 

continent (Fig. 1.4; Lisitzin, 1962; Diekmann, 2007).  
 

 
 
Fig. 1.4: Lithology of modern sediments in the Southern Ocean (after Diekmann, 2007). 
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1.2.2 The Pacific sector of the Southern Ocean  

 The basic processes such as modern oceanic circulation, bioproductivity and sea-ice-

ocean interactions described in Chapter 1.2.1 apply to the Pacific sector in the same manner 

as for the entire Southern Ocean (Fig. 1.5). However, certain conditions described below are 

unique in this Southern Ocean sector and influence the ACC-dominated circulation, the SST 

and sea-ice distribution pattern, and teleconnections with lower latitudes.  

Figure 1.5: Frontal system of the Pacific Southern Ocean with a schematic view of the main currents. ACC: 
Antarctic Circumpolar Current; HCS: Humboldt Current System; SPC: South Pacific Current; WSI 40%/SSI 
40%: modern winter/summer sea-ice edge with 40% sea-ice concentration (Reynolds et al., 2002, 2007); oceanic 
fronts according to Orsi et al. (1995) and Crundwell et al. (2008); TF: Tasman Front and associated current; 
STF: Subtropical Front; SAF: Subantarctic Front; APF: Antarctic Polar Front; SACCF: Southern Antarctic 
Circumpolar Current Front; STZ: Subtropical Zone; SAZ: Subantarctic Zone; PFZ. Polar Front Zone; POOZ: 
Permanent Open Ocean Zone; SIZ: Sea Ice Zone; sSIZ: seasonal Sea Ice Zone; U-F: Udintsev Fracture Zone 
System; E-T-F: Eltanin Tharp Fracture Zone System; NZ: New Zealand; SA: South America. 
 

 North of 50°S the Pacific Ocean is dominated by the anticyclonic South Pacific Gyre, 

that transports water from the tropical and subtropical Pacific and along the Tasman Front 

into subtropical and subantarctic regions via its southern limb the South Pacific Current (Fig. 

1.5; Crundwell et al., 2008). In the eastern SAZ northern ACC water is deflected northward 

along the South American Coast exporting cold surface water via the Humboldt Current 

System (HCS) into the equatorial Pacific. However, the larger portion of the ACC is 

constricted eastward to its narrowest extent in the Drake Passage supplying the Atlantic sector 

by the so-called “cold-water route” with relatively cold and fresh surface water (Fig. 1.5; 
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Rintoul, 1991). Another important oceanographic feature is the cyclonic Ross Gyre caused by 

interactions between easterly and westerly winds as well as the Antarctic continental shelf, 

forming a cyclonic wind-stress field on the oceans surface (Gouretski, 1999). It favors the 

extent of sea ice and a greater northward expansion of the cold-water realm in the western 

Pacific sector. The AABW formed at the Ross Sea shelf spreads eastward within the ACC 

into the Atlantic sector and to a smaller extend into the Southwest Pacific Basin (Fig. 1.5).  

The frontal system of the ACC as described in Chapter 1.2.1 can be further classified 

into different zones that are from north to south the Subtropical Zone (STZ) and the 

Subantarctic Zone (SAZ), north of the STF and SAF. The APF is the southern boundary of 

the Polar Front Zone (PFZ) and the northern limit of the Permanent Open Ocean Zone 

(POOZ) that extends to the WSI edge (Fig. 1.5). The sea-ice influenced area is divided into 

the permanently sea-ice covered Sea Ice Zone (SIZ) and the seasonal SIZ (sSIZ). 

Oceanographic fronts and zones of the ACC are generally strongly influenced by the 

prominent bottom topography (Sokolov and Rintoul, 2009), represented in the Pacific sector 

especially by the Pacific-Antarctic Ridge and the East Pacific Rise (Fig. 1.5). The topographic 

steering of the ACC and the associated fronts leads to a gradient between the eastern and 

western Pacific sectors, regarding the latitudinal position of the frontal system and the sea-ice 

edges. In the western sector the three major ACC fronts, SAF, APF and SACCF are closely 

aligned north of the Pacific-Antarctic Ridge following its extent until the Udintsev and 

Eltanin-Tharp Fracture Zone systems (Fig. 1.5, Udintsev (Ed.), 2003). These fracture zones 

act as the only pathways for deep reaching fronts and currents between the Pacific-Antarctic 

Ridge and the East Pacific Rise. Further to the east, the frontal system passes the Amundsen 

Abyssal Plain that lacks distinct bottom topography, until reaching the Atlantic sector via the 

Drake Passage. Resulting from the topographic forcing, the fronts in the western sector 

remain relatively stable with narrow zones, that get even more contracted while crossing the 

fracture zones, whereas in the eastern sector the Amundsen Abyssal Plain favors higher 

seasonal and interannual variability (Sokolov and Rintoul 2009). Similar to the northward 

expansion of the cold-water realm in the western Pacific sector, the average winter sea-ice 

(WSI) extent (40% sea-ice concentration; Gloersen et al., 1992), reaching to approximately 

60°S, is strongly influenced by the Ross Gyre and is further favored by southerly katabatic 

winds from the Antarctic Continent (Harangozo, 2004). Furthermore, the average WSI edge 

mirrors the trend of the Pacific-Antarctic Ridge and of the SACCF, both influenced by 

topographic forcing. In the eastern sector the WSI edge bends southward to ca. 65°S due to 

the lack of distinct bottom topography and a less pronounced northward cold-water realm 
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(Fig. 1.5; Reynolds et al., 2002, 2007). The average summer sea-ice (SSI) edge closely 

follows the coastline of Antarctica showing its farthest extent to ca. 65°S in the westernmost 

Pacific and around the Antarctic Peninsula in the Drake Passage (Fig. 1.5; Reynolds et al., 

2002, 2007). 

The east-west gradient in the Pacific sector is also related to the two main atmospheric 

climate modes of the Southern Hemisphere, SAM and ENSO (e.g. Lefebvre et al., 2004; 

Yuan, 2004; Sallée et al., 2008; Turner et al., 2009). A positive (negative) SAM index is 

related to lower (higher) sea level pressures at high latitudes and higher (lower) sea level 

pressures at low latitudes. A positive SAM mode is associated with increasing sea-ice extent 

in the Ross and Amundsen Sea sectors and less sea-ice extent in the Bellingshausen and the 

Weddell Seas (Lefebvre et al., 2004). Such dipole between the eastern Pacific and western 

Atlantic sector also forms in response to ENSO events, expressed by warmer temperatures 

and less sea ice in the Amundsen sector during years with warm El Niño events and colder 

conditions with more sea ice during cool La Niña events (Yuan, 2004). Additionally, the 

occurrence of a positive SAM together with La Niña events leads to an amplification of both 

mechanisms and thus a stronger response of the Antarctic dipole (Stammerjohn et al., 2008). 

Of special importance in the Pacific sector is its role as major catchment area of the 

WAIS drainage. Housing the drainage of the Ross, Amundsen and Bellingshausen Seas that 

account for the majority of the total WAIS drainage (Ó Cofaigh et al., 2005; Mosola and 

Anderson, 2006; Smith et al., 2011), makes the Pacific sector an exceptional area to study 

impacts of meltwater intrusion caused by significant ice sheet retreat. As marine-based ice 

sheet, the WAIS reacts very sensitive to oceanographic and atmospheric changes (Joughin 

and Alley, 2011). Disintegration of the WAIS under a warming climate will not only cause 

global sea level rise (e.g. Bamber et al., 2009) but may also favors SST decrease and sea-ice 

formation in the adjacent areas due to the release of cold and fresh meltwater (e.g. Bintanja et 

al., 2015).  

 

1.2.3 Relevant paleoceanographic research related to this thesis 

Estimates of SST and sea-ice concentration are ideal parameters to monitor relatively 

rapid climate changes and their circum-Antarctic propagation. Marine microfossil studies in 

the Southern Ocean focusing on the estimation of SSTs and sea-ice concentration or duration 

were mainly conducted on sediment material retrieved from the Atlantic sector or restricted to 

continental margins (e.g. Pahnke et al., 2003; Bianchi and Gersonde, 2004; Gersonde et al., 
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2003a, 2005; Pahnke and Sachs, 2006; Divine et al., 2010; Caniupán et al., 2011; Collins et 

al., 2012; Ho et al., 2012; Kilian and Lamy, 2012). Remote areas such as the (sub)polar 

Pacific are yet relatively underrepresented regarding open ocean records that would allow for 

comprehensive basin-wide reconstructions of last glacial, deglacial and Holocene 

environmental conditions as well as enabling circum-Antarctic comparison.  

Primal estimates of SSTs in the Pacific sector were accomplished by Luz (1977) and 

Moore (1980), calculating winter SSTs derived from foraminiferal assemblages that were 

subsequently used for the first global LGM reconstructions (CLIMAP, 1976, 1981). Those 

reconstructions resulted in widespread, yet unevenly distributed cooling of up to 4 K in the 

Pacific sector and a latitudinal shift of the winter sea-ice (WSI) edge by approximately 5° 

northward based on sediment facies changes (CLIMAP, 1981). The CLIMAP reconstructions 

were later contradicted by diatom-derived summer SST (SSST) and winter sea-ice (WSI) 

estimates of Gersonde et al. (2005), proposing less cooling and a minor WSI extent in the 

Pacific sector. However, those results displayed overall low spatial coverage and low 

chronological control. Additional studies from the Pacific sector focusing on the LGM time 

slice were derived from lower latitudes, covering predominantly the STZ and the eastern 

equatorial Pacific (Barrows and Juggins, 2005; Kucera et al., 2005b) and showing prominent 

LGM cooling of up to 8 K during the LGM off New Zealand and 3K off Peru. Similar glacial 

values were found in single core studies accomplished at the Campbell Plateau and the 

Chatham Rise off New Zealand, as well as along the Chilean coast (Kim et al., 2002; Sikes et 

al., 2002; Pahnke et al., 2003; Pahnke and Sachs, 2006; Romero et al., 2006; Kaiser et al., 

2008; Kaiser and Lamy, 2010; Caniupán et al., 2011; Ho et al., 2012). In the latter region, 

major cooling was suggested to result from the advection of cold subantarctic water, 

contradicting the low glacial cooling assumed by Gersonde et al. (2005). Thus, the Pacific 

sector may also have experienced stronger cooling comparable to those in the Atlantic sector 

(e.g. Gersonde et al., 2003a). However, subantarctic and antarctic SSST and sea-ice 

reconstructions are comparatively rare, comprising only two cores from the westernmost 

Pacific sector (~140°W) (Crosta et al., 2004; Ferry et al., 2015a, b) and two cores from the 

central Pacific (~120°W) (Mashiotta et al., 1999; Tapia et al., 2015), that point to a similar 

cooling and WSI expansion initially proposed by Gersonde et al. (2005). Besides proxy-based 

reconstructions, there are numerous coupled climate model simulations aiming at determining 

the sea-ice expansion during the LGM (e.g. Ballarotta et al., 2013; Goosse, et al, 2013; Zhang 

et al., 2013). Those model-based sea-ice reconstructions in the Pacific sector show a large 

variability regarding the maximum extent, and validation of these estimates is pending.  
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 Most of the investigated cores from the Pacific’s continental margins represent long-

term records comprising besides the LGM also Termination I and the Holocene (e.g. 

Mashiotta et al., 1999; Pahnke and Sachs, 2006; Ferry et al., 2015b; Kaiser and Lamy, 2010). 

The general SST trend in the Pacific recorded at these core sites closely follows the 

“Antarctic timing” known from East Antarctic ice cores (EPICA Community Members, 2004; 

Jouzel et al., 2007) with the start of deglacial warming after ca. 19,000 years before present 

(yr BP). However, recent studies from the WAIS showed significant shelf ice retreat before 

the end of the LGM around 22 kyr BP (1000yr = 1 kyr) (e.g. Klages et al., 2014) and 

deglacial warming already beginning between 22 and 20 kyr BP (WAIS Divide Project 

Members, 2013). As retreat and melting of the WAIS can strongly influence the Pacific sector 

(see Chapter 1.2.2) such pattern might also be found in SST and sea-ice reconstruction from 

the adjacent ocean. However, none of the mentioned studies yet focused on a possible early 

warming. If a similar early deglacial evolution emerges from records in the Antarctic Pacific, 

this would imply a decoupling of the deglacial onset from the synchronous CO2 rise recorded 

in Antarctic ice cores (Marcott et al., 2014). A similar out of phase relationship between 

antarctic and subantarctic records might as well occur over the entire deglaciation.  

 Although the Holocene period is of great importance to study climate variability 

regarding the recent warming, the recovery of sediment records from the open Pacific Ocean 

resolving this time slice is rather rare (Crosta et al., 2004; Ferry et al., 2015b). Exceptional 

sediment cores come from the antarctic shelf regions in the western Ross Sea and off Adélie 

Land (Cunningham et al., 1999; Denis et al., 2006; Crosta et al., 2008). Of special interest is 

an Early to Mid-Holocene cooling (10-8 kyr) that might be induced by a freshwater intrusion 

of the retreating WAIS (Mathiot et al., 2013). According to the feedback mechanisms 

between ocean and ice sheet, such cooling should be recorded within reach of the ACC. As 

the available records from lower and higher latitudes show to some extent contrasting results 

between cold and warm periods, regional factors may play a significant role, e.g. a close 

vicinity to the WSI edge or to the Antarctic continent as well as the influence of warmer 

northern water masses. 

Overall, it has not yet been revealed whether similar impacts of the SWW, the ENSO 

and the SAM on sea ice and SSTs in the Pacific’s Antarctic Zone occurred during the LGM, 

the deglacial and the Holocene as observed today (Yuan, 2004; Thompson et al., 2011). 
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1.3 Diatoms as paleoclimate archive 

For temperature proxies from sediments with low or absent biogenic carbonate content 

but distinctly higher biogenic opal burial like the ones underlying the Southern Ocean, 

diatoms are one of the most promising species. Generally, diatoms are microscopic unicellular 

algae that occur in all aquatic environments representing a highly divers phytoplankton group 

with up to 100.000 species (Round et al., 1990). They consist of an extracellular skeleton, the 

silicified cell wall called frustule. This frustule is separated into two valves (Epivalve and 

Hypovalve) and the girdle (Cingulum) that eventually can get fossilized in sediments. The 

variability of structural features and the symmetry of the valves are the basic principles for 

diatom taxonomy. Diatoms with axial symmetry are called pennate diatoms, further 

subdivided into two groups with or without a raphe, whereas diatom species with radial 

symmetry are called centric diatoms. Characteristic patterns and arrangements of processes 

and perforations (Areolae) on the valvar plane are additional criteria for the identification on 

species or species group level.  

As phototrophic organisms, diatoms are highly dependent on favorable growth 

conditions regarding sufficient nutrients and a certain amount of light. Thus, most diatom 

species dwell in the upper 50m of the water column (euphotic zone) and represent 

environmental conditions such as SST, nutrient, sea-ice concentration and water column 

stratification. Detailed phytoplankton studies from Southern Ocean surface waters found a 

close relationship between diatom assemblages and predominantly SST and sea-ice presence 

(e.g. Kozlova, 1966, Hargraves, 1968; Burckle et al., 1987). Related to these environmental 

parameters, roughly three species assemblages can be distinguished: the Antarctic, 

Subantarctic and the warm-temperate water diatom species. The Antarctic species comprise 

cold-water and sea-ice related species living in SSTs of -1.9 to 1.5°C, whereas the 

Subantarctic assemblage is dominated by open ocean species with SSTs reaching up to 5°C. 

Diatom species of the warm-temperate zone are typical for the PFZ and SAZ associated with 

SSTs over 5°C. The boundaries between the zones are yet transitional to a certain degree 

(Kozlova, 1966; Burckle et al., 1987). Similarly to surface water assemblages, the diatom 

distribution pattern in surface sediments of the Southern Ocean exhibits a zonal structure, 

dominated by cold-water and sea-ice related diatom species in the Southern Antarctic Zone 

close to the Antarctic continent, temperate species assemblages in the Northern Antarctic 

Zone around 60°S and warm diatom species in the SAZ (Fig. 1.6; Esper and Gersonde, 2014b 

and references therein). 
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Generally diatom growth in the Southern Ocean is exceptionally high during the 

spring-summer period under iron-replete conditions (see Chapter 1.2.1), forming massive 

blooms and resulting in the predominance of diatoms in the phytoplankton community. But 

even though diatoms contribute about 50-75% to the global primary productivity (Nelson et 

al., 1995; Tréguer et al., 1995; Tréguer and De la Rocha, 2013) only ~3% of the net biogenic 

opal production is exported to the sea floor as major dissolution occurs in the water column 

and subsequently in the sedimentary sequence (Lisitzin, 1985; Nelson et al., 1995). However, 

the biogenic opal content of up 72% in Southern Ocean sediments (Fig. 1.3; Lisitzin, 1985; 

Dieckmann, 2007), allows for the development of environmental reconstructions on the basis 

of the biogeographical distribution of diatom species. From the 1970s on first attempts were 

made using the relationship between the distribution patterns of diatom species and 

oceanographic parameters such as SST and sea ice in the Southern Ocean as models for the 

past (e.g. Burckle, 1972; DeFelice, 1979; Burckle, 1984a). One of the first numerical methods 

was the transfer function technique developed by Imbrie and Kipp (1971) transferring SST 

via factor analysis and regression of factor loadings to a preserved microfossil assemblage at 

the same location. A further attempt for a different transfer function approach was made by 

Hutson (1980) with the Modern Analog Technique (MAT) that searches for the best analogs 

between the assemblages of a surface sediment and a down-core sample. Since then various 

transfer functions based on diatom assemblages have been successfully used for 

paleoenvironmental reconstructions of SSTs and sea-ice concentration (e.g. Zielinski et al., 

1998; Bianchi and Gersonde, 2004; Crosta et al., 1998a, b, 2004; Gersonde et al., 2005; Esper 

and Gersonde, 2014a, b; Ferry et al., 2015a, b). 
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1.4 Aims of the thesis 

Using diatom transfer function-derived SSTs and sea-ice concentrations, this thesis 

provides for the first time reconstructions of the late Quaternary climate variability in the 

Pacific sector of the Southern Ocean on a wide spatial coverage (Chapters 3-5). The new SST 

and sea-ice estimates are used to cover the gap in paleoceanographic reconstructions 

concerning temperature and sea-ice patterns from Pacific and circum-Antarctic 

reconstructions of the LGM (Chapter 3). The following transition between the last 

glacial/interglacial, Termination I, was investigated to decipher a possible Southern Ocean 

interbasin asynchrony at the onset of the deglaciation, the impact of Pacific warming on the 

development of the “cold water route” and ocean/atmosphere exchange, as well as feedback 

mechanisms with the WAIS (Chapter 4). For the Holocene period, representing the present 

interglacial, SSTs and sea-ice concentration of high-resolved cores were analyzed for the 

detailed investigation of millennial-scale changes in the western Pacific sector. The results 

were interpreted within the context of a Mid-Holocene cooling associated with rapid WAIS 

retreat and the shift of a SWW- to ENSO-governed atmospheric circulation (Chapter 5). 

Combined with previously published temperature and sea-ice records based on various 

proxy results from the Pacific, Atlantic and Indian sectors of the Southern Ocean this thesis 

addresses the following questions: 

 

Question 1: Do SST and sea-ice distribution in the Pacific sector of the Southern 

Ocean corroborate the previously suggested minor cooling during the LGM compared to 

the Atlantic and Indian sector or do they contribute to a uniform circum-Antarctic SST and 

sea-ice pattern? 

(see Chapter 3) 

 

Question 2: Are commonly applied coupled climate models able to reproduce proxy-

based sea-ice extent during the LGM in the Southern Ocean? 

(see Chapter 3) 

  

Question 3: How does topographic and atmospheric forcing influence the 

temperature and sea-ice expansion during the LGM and the deglacial and to what extent 

does it add to the configuration of the ACC, its frontal system and the cold-water route?  

(see Chapter 3 and 4) 
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Question 4: How significant is the impact of Southern Ocean waters on heat and 

nutrient conditions in the eastern Pacific mid- and low latitudes during the LGM? 

(see Chapter 3) 

 

Question 5: What is the timing of the deglacial onset in the Subantarctic and 

Antarctic Pacific regarding SST increase and sea-ice retreat and of the paleoceanographic 

changes during Termination I? 

 (see Chapter 4) 

 

Question 6: To what extent might the deglacial warming in the Pacific sector have 

been decoupled from the other Southern Ocean basins and from the synchronous deglacial 

atmospheric CO2 rise observed in Antarctic ice cores? 

(see Chapter 4) 

 

Question 7: How large is the potential of SST and sea-ice reconstruction from the 

Pacific sector to decipher the contributions of the West Antarctic Ice Sheet to meltwater 

pulse 1 A and less prominent sea-level changes in the Holocene? 

 (see Chapter 4 and 5) 

 

Question 8: Do Holocene SST and sea-ice estimates support the simulated Early to 

Mid-Holocene cooling, suggested to be induced by meltwater shedding from the WAIS? 

(see Chapter 5) 

 

Question 9: Do temperature and sea-ice estimates from high-resolution cores from the 

western Pacific sector mirror Holocene temperature trends associated with the 

Hypsithermal and Neoglacial and what are possible drivers of the sequence?  

(see Chapter 5) 
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1.5 Author’s contribution 

Manuscript 1 (Chapter 3) 

I performed the sample treatment, diatom slide preparation and counting of the 

majority of cores (see Table 2.1) as well as the transfer function calculation described in this 

chapter. Oliver Esper provided diatom analyses for cores PS58/270-5, PS58/271-1, PS58/274-

1, PS75/054-1 and PS75/072-4. For stable isotope measurements of cores PS75/072-4, 

PS75/073-2 and PS75/085-1 and AMS14C measurements (see Chapter 3.3.5, Table 3.3) I 

picked major parts of the samples and was responsible for the instruction and evaluation of 

samples picked by students. I established all presented age models including and refining 

previously published 14C ages and age models (see Chapter 3.3.5). I conducted major parts of 

the XRF measurements of studied cores that were used for the inter-core correlation. 

I wrote the entire draft of the manuscript. Oliver Esper, Rainer Gersonde, Frank Lamy 

and Ralf Tiedemann contributed to the interpretation of the data and the fine-tuning of the age 

models. All co-authors reviewed the draft version and contributed to the discussion. 

 

Manuscript 2 and 3  (Chapter 4, 5) 

I performed the sample treatment, diatom slide preparation and counting as well as the 

transfer function calculation described in these chapters (see Table 2.1) for all cores except 

PS58/270-5, PS58/271-1, PS58/274-1, PS75/054-1 and PS75/072-4 that were provided by 

Oliver Esper. I performed the Principal Component Analysis (PCA) presented in Chapter 4. 

The core descriptions used for the facies changes over Termination I were done by myself for 

cores PS75/064-1, PS75/082-1, PS75/085-1, PS75/091-3, PS75/093-1, PS75/096-4 and 

PS75/097-4. 

 I wrote the entire draft of the manuscripts. All co-authors contributed to the data 

interpretation and discussion. Oliver Esper and Rainer Gersonde reviewed the draft versions.  
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Chapter 2 – Material and Methods 

2.1 Sediment material 

The estimation of sea surface temperatures and sea-ice concentrations focuses on 17 

sediment cores retrieved in the Pacific sector of the Southern Ocean, covering the area 

between 100° and 180°W and south of 50°S (Fig. 2.1; Tab. 2.1). The cores are located in all 

oceanographic zones with the majority of core sites located between the SAF and the winter 

sea-ice edge, covering the zone of strongest opal burial in the Southern Ocean. The intervals 

chosen for investigation focus on the last 30 kyr covering the last glacial to Holocene climate 

variability. In this time slice, the northernmost cores in the SAZ consist mainly of diatom- 

and foraminifera-bearing nannofossil ooze. Further to the South in the vicinity of the SAF, 

the content changes from foraminifera-bearing nannofossil-diatom-ooze to nannofossil-

bearing diatom ooze. In the PFZ, between SAF and APF, the predominant facies is diatom 

ooze (Lisitzin, 1985; Gersonde, 2011). 

Figure 2.1: Locations of cores analyzed in this study (red circles, see also Tab. 2.1). WSI 15%/SSI 15%: 
modern winter/summer sea-ice edge with 15% sea-ice concentration, WSI 40%/SSI 40%: modern 
winter/summer sea-ice edge with 40% sea-ice concentration (Reynolds et al., 2002, 2007); oceanic fronts 
according to Orsi et al. (1995); STF: Subtropical Front, SAF: Subantarctic Front, APF: Antarctic Polar Front, 
SACCF: Southern Antarctic Circumpolar Current Front; STZ: Subtropical Zone SAZ: Subantarctic Zone, PFZ: 
Polar Front Zone, POOZ: Permanent Open Ocean Zone, sSIZ: seasonal Sea Ice Zone, SIZ: Sea Ice Zone. 
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Tale 2.1. Studied cores in the Pacific sector of the Southern Ocean  

Core Latitude Longitude 
Water 

depth (m) 
Coring 
devicea 

Oceanographic 
Zoneb 

Recovery 
[cm] Studied section [cm] Cruise 

PS58/270-5 62°01.68’S 116°07.38’W 4981 PC POOZ 2295 2 – 2282 (OE)c ANT XVIII/5a 

PS58/271-1 61°14.58’S 116°02.82’W 5214 PC PFZ 2442 6 – 2440 (OE)c ANT XVIII/5a 

PS58/274-1 59°12.42’S 114°53.28’W 5136 PC PFZ 2328 TC 3 – 33, 1 – 2315  
(OE)c ANT XVIII/5a 

PS75/051-1 52°48.73’S 107°48.33’W 3949 PC SAZ 1873 0–50 ANT XXVI/2 

PS75/054-1 56°09.11’S 115°07.98’W 4113 PC SAZ 2238 TC 2 – 82, 1 – 302 (OE)c ANT XXVI/2 

PS75/056-1 55°09.74’S 114°47.31’W 3581 GC SAZ 1021 3.75–213.75 ANT XXVI/2 

PS75/059-2 54°12.90’S 125°25.53’W 3613 PC SAZ 1398 0.5–90.5 ANT XXVI/2 

PS75/064-1 61°00.74’S 139°27.85’W 4600 TC/PC SSIZ 1543 TC 5–25, 2–306 ANT XXVI/2 

PS75/072-4 57°33.51’S 151°13.17’W 3099 GC POOZ 961 1.5 – 761.5 (OE)c ANT XXVI/2 

PS75/073-2 57°12.26’S 151°36.65’W 3234 KC POOZ 368 2.5–362 ANT XXVI/2 

PS75/076-2 55°31.71’S 156°08.39’W 3742 PC PFZ 2095 1–55 ANT XXVI/2 

PS75/082-1 59°02.48’S 158°51.82’W 4000 TC/PC POOZ 1088 TC 5–85, 5–200 ANT XXVI/2 

PS75/085-1 61°56.38’S 160°07.10’W 3734 PC SSIZ 1974 10–600 ANT XXVI/2 

PS75/091-3 63°41.66’S 169°04.47’W 2940 TC/PC SSIZ 1344 TC 5–25, 1–240 ANT XXVI/2 

PS75/093-1 60°52.33’S 169°32.89’W 3762 TC/PC POOZ 1284 TC 5–90, 5–140 ANT XXVI/2 

PS75/096-4 58°32.86’S 172°42.06’W 5057 TC/PC PFZ 2279 TC 1–65, 1–80 ANT XXVI/2 

PS75/097-4 59°42.02’S 171°21.44’W 4672 TC/PC PFZ 1746 TC 1–65, 1–95 ANT XXVI/2 
 

a  Coring devices: TC Trigger Corer; PC Piston Corer; GC Gravity Corer; KC Kasten Corer 
b Oceanographic zones: SAZ Subantarctic Zone; PFZ Polar Front Zone; POOZ Permanent Open Ocean Zone;  
  SSIZ Seasonal Sea Ice Zone 
c Diatom counting performed by Oliver Esper (OE)  
 

2.2 Methods 

2.2.1 Diatom slide preparation and microscopic evaluation 

All cores were generally sampled at 5 cm intervals throughout the studied sections. 

The exception is core PS75/085-1 that was mostly sampled in 10 cm intervals, except for the 

interval from 505-560 cm sampled in 5 cm steps.  

The cleaning of the sediment material and the preparation of permanent mounts for 

quantitative counting of diatoms for light microscopy was carried out according to the 

standard method established at the Alfred Wegener Institute Helmholtz Centre for Polar and 

Marine Research (AWI) (Gersonde and Zielinski, 2000). Freeze-dried subsamples of 0.5 g 

were boiled in a 400 ml beaker with ca. 15 ml of 35% hydrogen peroxide together with ca. 15 

ml concentrated hydrochloric acid to dissolve carbonate and organic matter as well as to 

enhance the reaction and evaporate the peroxide. Purified water was added up to 400 ml, 

when the reaction was completed. After a settling time of approximately 24 hours, the water 

was gently removed using a water jet pump. This washing process was repeated a least 10 

times to remove the acid and a portion of the clay fraction. The remaining acid-cleaned 
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sediment was transferred to 50 ml Nalgene bottles and diluted to exact 50 ml for storage and 

to guarantee quantitative preparation. For preservation 2 or 3 drops of formaldehyde were 

added. 

For permanent mounts three ethanol-cleaned and grease-free cover glasses (Ø 18 mm) 

were placed in a petri dish of 48 mm in diameter. Then the petri dish was filled with purified 

water, containing a specific concentration of gelatine (0.094 g/l) to provide a better adhesion 

of suspended frustules on the cover glasses during the mounting process. From the 

homogenized suspension of the cleaned sediment in the Nalgene bottles a certain amount was 

pipetted from the center of the bottle and distributed evenly in the petri dish. The amount 

taken from the suspended sediment was determined depending on the concentration of 

diatoms frustules. After a settling time of two hours, a strip of absorptive paper was added so 

remove the water from the petri dish. The dry cover glasses where checked for a sufficient 

and even distribution of diatom frustules. Then two cover glasses were heated to 120°C on a 

heating plate and two drops of Meltmount (n!!" =  1.662) were added. After two hours of 

evaporation time for the solvent toluene in the Meltmount, these cover glasses were fixed on 

a microscope slide. The third cover glass acted as backup for potential problems during the 

mounting process. 

The counting of diatom slides was accomplished at a x1000 magnification with a Zeiss 

Axioplan 2 microscope. To achieve quantitative results for absolute calculation of valves per 

gram sediment, full traverses across the center of the slide with at least 400 counted specimens 

were investigated. Counting of diatom valves followed the method of Schrader and Gersonde 

(1978), and Zielinski (1993) (Fig. 2.1). Valves were counted as one unit for:  

A. Centric diatoms with or without pseudonodulus (e.g. Thalassiosira, 

Actinocyclus), when more than half of the valve is present; 

B. Spores of Chaetoceros sp., when one complete or more than half of the valve 

was present; 

C. Centric diatoms with apical elevations (horns) (e.g. Eucampia), when more than 

half of the valve with apical elevation was present; 

D. Araphid pennate diatoms (e.g. Thalassionema, Thallasiothrix), in case of the 

presence of two apical ends; 

E. Pennate diatoms with canal raphe (e.g. Fragilariopsis), in cases when more than 

half of the valve was present, or central parts representing more than half of the 

valve; 
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F. Pennate mono- or biraphid diatoms (e g. Navicula), when more than half of the 

valve was present, or the central part with the central nodule; 

G. Rhizosolenia sp., in case the process was present. 

Figure 2.2: Schematic illustration of counting convention (after Zielinski, 1993) 

 

Identification of the diatom species or species groups followed the taxonomy of Hasle 

and Syvertsen (1996), Zielinski and Gersonde (1997), and Armand and Zielinski (2001). 

Following Zielinski and Gersonde (1997), and Zielinski et al. (1998) some diatom taxa were 

combined to groups due to similar ecological behavior and/or gradual transition of different 

varieties (for details see Chapter 3.3.3.) 

The preservation level of the diatom samples were noted during the counting process 

as it provides additional information for the robustness of the relative diatom counts, because 

selective dissolution may bias the diatom assemblage. Dissolution of preferentially weakly 

silicified diatom species (e.g. Fragilariopsis curta, Fragilariopsis cylindrus), that are 

important for the reconstruction of cold temperatures and sea-ice distribution, can lead to 

comparably too warm SSSTs and sea-ice concentrations. Three stages of preservation were 

distinguished following the definition proposed by Zielinski (1993) and Esper et al. (2010): 

 Good: diatom assemblage consists of an evenly mixture of heavily and weakly 

silicified species without enlargement of areolae or dissolution of the valve margin. 

 Moderate: heavy and weakly silicified diatom species are present, with areolae 

enlargement and valve margin dissolution as well as fragmentation of the weakly silicified 

species. 
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 Poor: predominantly heavy silicified species are present, with strong dissolution of 

valve margins and areolae enlargement, distinct valve fragmentation due to dissolution. 

 

2.2.2 Summer Sea Surface Temperature (SSST) reconstruction 

The reconstruction of sea surface temperature (SST) via transfer function (TF) has 

been widely applied using different microfossil groups (e.g. Barrows and Juggins, 2005; 

Gersonde et al., 2005, de Vernal et al., 2005, Cortese et al., 2007). In general, TFs are based 

on the assumption that environmental conditions in the surface water, such as SST, salinity or 

productivity, are recorded in phyto- and zooplankton assemblages preserved in the sediment 

record. The modern relationship between the environmental variables and the composition of 

those assemblages provides a reference data set that can be applied to down-core assemblages 

resulting in the estimation of physical variables for past surface water conditions (e.g. Birks, 

2003; Kucera et al., 2005b). 

Due to the close correlation of SSSTs with diatom assemblages in the water column 

(as described in Chapter 1.3) as well as with the diatom distribution patters in the sediment 

(e.g. Zielinski and Gersonde, 1997; Armand et al., 2005, Crosta et al., 2005, Romero et al., 

2005; Esper et al., 2010, Esper and Gersonde 2014b), the estimation of paleo-SST via a TF 

approach is most valuable for Southern Ocean sediments. However, there are limitations 

that need to be considered when interpreting the reconstructed temperature signal. One 

limitation is the bias of the diatom assemblage by selective dissolution of weakly silicified 

species that are predominantly indicators for cold temperatures. Consequently, samples from 

glacials influenced by sea ice and resulting enhanced dissolution of diatom species, display a 

dominance of robust species and thus reconstructions may be biased to warmer SSSTs than 

presumably present during cold time periods. Another limitation is the no-analog situation 

caused by exceeding abundance of single diatom taxa (e.g. Eucampia antarctica during 

glacials) in down-core samples compared to reference samples (Zielinski et al. 1998; Esper 

and Gersonde, 2014 a, b). 

Different TF methods are available for the reconstruction of SSST. They include the 

Imbrie and Kipp Method (IKM, Imbrie and Kipp, 1971), the Modern Analog Technique 

(MAT, Hutson, 1980), the Weighted Average (WA; Birks et al., 1990) and the Weighted 

Averaging Partial Least Squares (WAPLS; ter Braak and Juggins, 1993). These methods 

were successfully applied for diatom-based reconstructions (e.g. Crosta et al., 1998b; 2004; 

Zielinski et al., 1998; Birks and Koç, 2002; Gersonde et al., 2005). The recently new 
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designed temperature TF for the Southern Ocean by Esper and Gersonde (2014b) improves 

the calculation of SSSTs due to its wide spatial coverage embedding two third of the 

Southern Ocean (Fig. 2.3). Esper and Gersonde (2014b) tested the above-mentioned TF 

methods to establish the most applicable method for the reconstruction of SSST and WSI 

paleoestimations in the Pacific and Atlantic sectors of the Southern Ocean. The accomplished 

reference dataset for all four methods included 336 reference samples from the Atlantic, 

Pacific and Indian sector of the Southern Ocean, with corresponding modern SSSTs derived 

from the Hydrographic Atlas of the Southern Ocean (HASO; Olbers et al., 1992). The HASO 

contains in situ SSST measurements (January-March) from <1900-1990, probably least 

influenced by the recent warming compared to other oceanographic databases like the World 

Ocean Atlas 2009 (Locarnini et al., 2010). Moreover, as previous diatom-based temperature 

reconstructions from the Atlantic sector used the HASO as reference temperature, the 

compatibility between those studies and the new reconstructions can be improved.  

The accuracy of the TFs is displayed by the root mean square error of prediction 

(RMSEP) and the determination coefficient (R2), where lower RMSEP and higher R2 exhibit 

better accuracy. Moreover, the IKM method provides an additional quality criterion with the 

communality that displays the direct compatibility of a sample to the reference dataset.  

Lowest RMSEP of 0.782 °C was achieved by WAPLS, followed by the MAT TF with a 

RMSEP of 0.812°C and the WA method with lowest RMSEP of 0.974°C (Esper and 

Gersonde, 2014b). The IKM TF performed best with 29 diatom taxa and three factors 

resulting in a RMSEP of 0.833°C (Fig. 2.3). Furthermore, two subsets for the Pacific (107 

samples) and Atlantic (151 samples) Southern Ocean calculated with IKM reached 

comparably good RMSEP with 0.68°C and 0.71°C, respectively (Esper and Gersonde, 

2014b). Despite the generally better calibration of the IKM subsets, the supraregional TF 

IKM-D336/29/3q led to the best down-core performances due to the larger data set resulting 

in higher communalities and less to no no-analog conditions. The MAT method overall 

showed lower signal variability especially during glacial periods, thus express the least 

appropriate method to reconstruct SSST (Esper and Gersonde, 2014). Although the methods 

IKM, WA and WAPLS are similarly successful, the IKM TF is preferred in this study to 

ensure a better comparability to previous diatom-based SSST reconstructions in other 

Southern Ocean sectors (e.g. Gersonde et al., 2005). Hereby, the circum-Antarctic 

comparison of temperature evolution within several studies achieves a better quality. 
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Figure 2.3:  Comparison between measured summer sea surface temperature (SSST; from Olbers et al., 1992) 
and transfer function SSST estimates from the applied Imbrie and Kipp Method (IKM-D336-29-3q; after Esper 
and Gersonde, 2014b). 

 

 The TF IKM-D336/29/3q was applied to all cores in this study using logarithm-

transformed diatom relative abundances to down-weight the dominance of single taxa like 

Fragilariopsis kerguelensis. The following equation was used: 

 

   L = LG (relative abundance x 1000+1)     (1) 

 

The calculations were achieved with the software packages PaleoToolBox and WinTransfer 

(http://www.pangaea.de/Software/PaleoToolBox) (Sieger et al., 1999). 

  

2.2.3 Sea-ice reconstruction  

For the estimation of the sea-ice extent in the Southern Ocean, the most common 

reconstruction method is based on the relative abundance of cold water and sea-ice indicating 

diatom species like F. curta and F. cylindrus for winter sea ice (WSI) and F. obliquecostata 

for and summer sea ice (SSI), respectively (Gersonde and Zielinski, 2000). Additionally to 

the strong relation of specific diatom species to winter sea-ice concentration (Fig. 2.4), 

distinct drops in the sedimentation rates and the biogenic opal accumulation are indicators for 

the presence of extensive sea-ice cover (Gersonde and Zielinski, 2000; Esper and Gersonde, 

2014a). Crosta et al. (1998a, b) reconstructed antarctic sea-ice extent via the annual length of 

sea-ice cover expressed as the number of month applying MAT to diatom assemblages. 

However, as the diatom sea-ice signal rather shows the presence/absence of sea ice than 

duration of sea-ice cover at a specific core site (Gersonde and Zielinski, 2000) such 
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reconstructions have to be treated with caution. As for temperature reconstructions, the sea-

ice estimation is as well hampered by the dissolution of less silicified diatom taxa. Thus, 

especially the glacial sea-ice extent may be underestimated in regions where extensive sea-

ice cover precluded diatom productivity, less opal burial and additionally enhanced 

dissolution 

 
Figure 2.4: Relative abundance of selected diatom taxa/taxa groups in relation to winter sea-ice (September) 
concentration and probability (WSI; after Reynolds et al., 2002, 2007); Aacti: Actinocyclus actinochilus, Fcugr: 
Fragliariopsis curta group, Fobli: F. obliquecostata, Frhom: F. rhombica, Frits: F. ritscheri, Fsubl: F. 
sublinearis, Ppseu: Porosira pseudodenticulata, Pturg: Pseudonitzschia turgiduloides, Smicr: Stellarima 
microtrias, Tanta: Thalassiosira antarctica (after Esper and Gersonde, 2014b). 

 

The new reference data set for diatom-based TF recently established by Esper and 

Gersonde (2014a) for the estimation of sea-ice concentration and probability in the Southern 

Ocean greatly enhances the ability to reconstruct antarctic sea ice. The environmental 

reference dataset is represented by high-resolution satellite data and in situ measurements 

from the NOAA Optimum Interpolation Sea Surface Temperature V2 collected between 1981 

and 2010 (Reynolds, et al., 2002, 2007). For the maximum summer (February) and winter 

(September) extent, the monthly mean sea-ice concentration and probability was averaged 

over the entire available time span of >30 yr (Esper and Gersonde, 2014a). Out of the four 
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tested TF methods (IKM, MAT, WAPLS and WA) the TF estimates using MAT with a 274-

sample/28 taxa reference set with 4 analogs (MAT-D274/28/4an) resulted in the lowest 

RMSEP of 5.52% for WSI and 8.93% for SSI concentration (Fig. 2.5). The 28 diatom species 

used for the sea-ice estimations are described in Chapter 3.3.3, Table 3.2. The WA and 

WAPLS method as well as the IKM technique, applied on a subset with 172 samples, 

performed less well with a RMSEP ranging from 7-11% for WSI concentration. The down-

core application of the IKM and MAT techniques display lower signal variability for IKM for 

both seasons, especially pronounced during glacials (Esper and Gersonde, 2014a). An 

advantage of MAT is the use of a larger data set covering broader environmental condition. 

Furthermore, the unimodal distribution of sea ice in contrast to the linear behavior of 

temperature is better reflected by the search for best analogs rather than a 

palaeoenvironmental equation as it is produced by IKM. 

The new designed TF MAT-D274/28/4an was applied to logarithm-transformed 

diatom counting (see Chapter 2.2.2, equation 1) of each individual core in this study using 

the software R (R Core team, 2012) with the additional packages Vegan (Oksanen et al., 

2012) and Analogue (Simpson and Oksanen, 2012). 

Figure 2.5: Comparison between measured mean winter sea-ice (WSI) concentration (from Reynolds et al., 
2002, 2007) and transfer function WSI estimates from the applied Modern Analog Technique (MAT-D274-28-
4an; after Esper and Gersonde, 2014a). 
 

2.2.4 Oxygen isotope (δ18O) measurements 

Specimens of the planktic foraminifera Neogloboquadrina pachyderma sinistral were 

picked from the 125-250 µm fraction of freeze-dried and sieved sediment samples taken from 

cores PS75/072-4, PS75/73-2 and PS75/085-1. In general, approximately 100 µg (ca. 20-40 

specimens) of foraminiferal carbonate was retrieved to achieve reliable results. Isotope 
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measurements were performed at the AWI (Bremerhaven) using a Thermo Finnigan MAT 

253 directly coupled to an automated carbonate preparation device (Kiel 4) and calibrated via 

NIST-19 to the PDB scale. The precision of oxygen isotope measurements based on long 

term analyses of an internal standard (Solnhofen limestone) was better than 0.08‰. All 

values are reported in δ-notation vs. VPDB.  

 

2.2.5 X-ray fluorescence (XRF) core logging 

All cores were measured at a 1 cm resolution using an AVAATECH profiling X-ray 

Fluorescence (XRF) core scanner at the AWI (Bremerhaven) to determine the relative 

elemental composition of the sediment (counts per second). For this non-destructive 

measurement archive halves of split core segments were covered with a 4 µm thin 

SPEXSamplePrep Ultralene foil against contamination. In total, three measurement runs with 

different voltages (10kV, 30kV, 50kV) were performed at 1 mA and different counting times 

of 10, 15 and 30 seconds, respectively. The resulting data were corrected for section 

boundaries and core gaps to receive a continuously depth scaled record of each core. 

Presented elements in this study include iron (F), calcium (Ca), and the silicon /titanium ratio 

(Si/Ti) from the 10 kV measurements. These elements were used to establish precise age 

models for the presented cores via inter-core correlation and/or tuning to ice core records (see 

Chapter 2.3). As such the different elements serve for the detection of glacial (Fe) and 

interglacial (Ca) periods as well as information on relative changes of biogenic opal (Si/Ti) 

related to cold and warm climates. 

 

2.2.6 Magnetic susceptibility 

To generate first rough age models immediately after core retrieval, measurements of 

physical properties using a GEOTEK Multi-Sensor Core Logger (MSCL) were established 

onboard R/V Polarstern. Due to the relatively high water content in diatom rich sediment 

cores, the XRF results from some cores were less useful for the detection of 

glacial/interglacial intervals. To provide a sufficient correlation of such cores the MSCL 

measurements were used. With this method the logging of unsplit core sections results in the 

magnetic susceptibility of the sediment cores. The magnetic susceptibility was measured 

using a Bartington M.S.2 susceptibility meter with a loop sensor. The specific magnetic 

susceptibility of the sediment modifies the sensors oscillator frequency via passing the loop 

sensor. Afterwards the variations are converted into magnetic susceptibility values (SI). The 



Chapter 2 – Material and Methods 29 

core sections were measured at 1 cm steps with a count time of 10 seconds per step. The 

software Geotek MSCL 6.2 and Geotek Utilities 6.1 were used for measurements and 

dataprocessing (Gersonde, 2011). Furthermore, the physical properties were corrected for 

section boundaries. 

 

2.2.7 Radiocarbon measurements 

Radiocarbon measurements on foraminifera were used for the establishment of age 

models with highest possible accuracy. Therefore, 61 samples from selected core depths 

(Chapter 3.3.5, Table 3.3) were chosen for accelerated mass spectrometry 14C age  (AMS 14C 

age) measurements. For this purpose monospecific samples of the two planktic foraminifera 

species Globigerina bulloides and Neogloboquadrina pachyderma sinistral where picked 

from the 125-250 µm fraction in six cores. Approximately 1000-1500 specimens were 

selected for conventional radiocarbon measurements at the National Ocean Science AMS 

facility (NOSAMS, 2.5 AMS) of the Woods Hole Oceanographic Institute (WHOI), USA. 

Additionally, samples from two cores (PS75/072-4, PS75/073-2) were measured at the 

Laboratory for Ion Beam Physics at the Eidgenössische Technische Hochschule (ETH) in 

Zürich, Switzerland, with the Mini radioCarbon Dating System (MICADAS, 0.2 MV AMS). 

As sediments from polar regions often lack sufficient amounts of carbonate, the MICADAS 

is of special interest as samples with >1000 µg CaCO3 can be performed with comparatively 

precise results as conventional AMS 14C measurements. 

Raw 14C ages were finally converted into calibrated calendar ages using the 

MARINE13 calibration curve (Reimer et al., 2013) with the software Calib 7.0 (Stuiver and 

Reimer, 1993, Stuiver et al., 2005). For detailed information on the selected sample depths 

and the used reservoir age correction please refer to Chapter 3.3.5. 

 

2.3 Age constraints  

Within the frame of this thesis the chronologies for all studied cores described in 

Table 1 were generated including slight modifications of the previously published age models 

of cores PS75/056-1, PS75/059-2, PS75/076-2 and PS75/093-1 (Lamy et al., 2014) and 

PS58/271-1 (Jacot des Combes et al., 2008).  The age models are based on a multiproxy 

approach, combining AMS14C measurements together and oxygen isotope stratigraphy 

together with inter-core correlation as well as correlation to antarctic ice cores via XRF 
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element counts/ratios as well as diatom abundance stratigraphy (Chapter 3.3.5). The resulting 

age determination assigned to Marine Isotope Stages according to Lisiecki and Raymo (2005) 

is pictured in Figure 2.6.  

The establishment of age models in the Southern Ocean is rather challenging, as most 

sediment cores from the Antarctic Zone south of ca. 55°S contain only low or even absent 

biogenic carbonate content. Hence, age models based entirely on oxygen isotope (δ18O) 

stratigraphy and/or AMS14C measurements of foraminiferal carbonate are hardly possible to 

generate. The alternative of dating the humic acid fraction in bulk sediment samples bears as 

well problems concerning the alteration of the samples and resulting errors of the retrieved 

age. Furthermore, in the Pacific sector of the Southern Ocean a problem arises from the poor 

knowledge of paleo-14C reservoir ages for the open ocean. Most studies of reservoir ages in 

this part of the Southern Ocean derive from the surrounding continent margins (e.g. Sikes et 

al., 2000; Siani et al., 2013) and are subject to different oceanographic processes than the 

open ocean. However, it seems evident that during the deglacial and probably also the glacial 

upwelling of 14C-depleted water masses led to significantly higher surface water reservoir 

ages than during the Holocene (Burke and Robinson, 2012; Siani et al., 2013; Skinner et al., 

2010; 2015). As such, constant reservoir ages in the studied time slice of 30 kyr seem rather 

unlikely and higher reservoir ages have to be considered for the last (de)glacial. Holocene 

reservoir ages were applied according to Bard (1988). 

Besides radiocarbon datings and δ18O-measurements, the XRF elemental analysis 

serves as alternative to establish consistent age models. Assuming a direct dependency 

between the increased deposit of iron-rich dust during glacial periods in the ocean basins and 

antarctic ice cores (e.g. Lamy et al., 2014) the Fe counts of each XRF core analysis can be 

correlated to the Fe and dust records from the EPICA Dome C ice core (EDC, Lambert et al., 

2008; Martínez-Garcia et al., 2009). Similarly, the Ca counts as well as the Si/Ti ratio mirrors 

warmer periods with enhanced opal and carbonate burial, thus can be correlated together with 

the TF-derived SSST to the EDC temperature change (Jouzel et al., 2007) and the WAIS 

Divide ice core δ18O record (WDC, WAIS Divide Project members, 2013). 

To achieve highest possible accuracy for age models of all studied cores, the 

establishment of radiocarbon- and/or δ18O-dated records was primarily carried out. For 

further information on the selected sample depths for radiocarbon dating, reservoir ages and 

calibrated calendar ages please refer to Chapter 3.3.5 (Table 3.3). 
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Subsequently, core sections with insufficient carbonate content and beyond the limits 

of radiocarbon dating were tuned to the EDC ice core. After such establishment of several 

reference cores the age models of the remaining cores without any carbonate based dating 

method, were generated via inter-core-correlation. Again the mentioned XRF counts and 

ratios (Fe, Ca, Si/Ti) were used together with the relative abundances of the diatom species F. 

kerguelensis, E. antarctica and Chaetoceros spp. to correlate cores from similar 

environmental areas and/or with a similar time resolution. Detailed information of correlation 

pointers used and the used parameter are described in the Supplementary Information of 

Chapter 3 (Table S3.1). 

 
Figure 2.6: Classification of sediment intervals in different Marine Isotope Stages (MIS) according to Lisiecki 
and Raymo (2005). The y-axes displays the XRF iron counts (per second), except for PS75/064-1, where the 
magnetic susceptibility (SI) is pictured. 
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Abstract  

Sea surface temperatures and sea-ice extent are the most critical variables to evaluate 

the Southern Ocean paleoceanographic evolution in relation to the development of the global 

carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to 

the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been 

insufficiently investigated so far. To cover this gap of information we present diatom-based 

estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) 

from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the 

EPILOG time slice (19,000 – 23,000 cal. years BP). Applied statistical methods are the 

Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate 

temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-

west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a 

winter sea-ice edge located consistently north of the Pacific-Antarctic Ridge in the Ross sea 

sector. In the eastern sector of our study area, which is governed by the Amundsen Abyssal 

Plain, the estimates yield weaker latitudinal SSST gradients together with a variable extended 

winter sea-ice field. In this sector, sea-ice extent may have reached sporadically the area of 

the present Subantarctic Front at its maximum LGM expansion. This pattern points to 

topographic forcing as major controller of the frontal system location and sea-ice extent in 

the western Pacific sector whereas atmospheric conditions like the Southern Annular Mode 

and the ENSO affected the oceanographic conditions in the eastern Pacific sector. Although it 

is difficult to depict the location and the physical nature of frontal systems separating the 



 Chapter 3 – Manuscript 1 

 
 

34 

glacial Southern Ocean water masses into different zones, we found a distinct temperature 

gradient in latitudes straddled by the modern Southern Subtropical Front. Considering that 

the glacial temperatures north of this zone are similar to the modern, we suggest that this 

represents the Glacial Southern Subtropical Front (GSSTF), which delimits the zone of 

strongest glacial SSST cooling (>4 K) to its North. The southern boundary of the zone of 

maximum cooling is close to the glacial 4°C isotherm. This isotherm, which is in the range of 

SSST at the modern Antarctic Polar Front (APF), represents a circum-Antarctic feature and 

marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). We also 

assume that a glacial front was established at the northern average winter sea-ice edge, 

comparable with the modern Southern Antarctic Circumpolar Current Front (SACCF). 

During the glacial, this front would be located in the area of the modern APF. The northward 

deflection of colder than modern surface waters along the South American continent leads to 

a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affects 

the temperature regimes as far north as into tropical latitudes. The glacial reduction of ACC 

temperatures may also result in the significant cooling in the Atlantic and Indian Southern 

Ocean, thus may enhance thermal differentiation of the Southern Ocean and Antarctic 

continental cooling. Comparison with temperature and sea-ice simulations for the last glacial 

based on numerical simulations show that the majority of modern models overestimate 

summer and winter sea-ice cover and that there exists few models that reproduce our 

temperature data rather well. 

 

3.1 Introduction 

 Physical and biological processes in the Southern Ocean play key roles in driving and 

amplifying global climate development. The Southern Ocean connects the Atlantic, Indian 

and Pacific Ocean basins, representing a critical “junction box” for global water mass 

exchange and redistribution. Atmosphere-ice-ocean interactions control the ventilation of 

deep- and bottom-waters as well as the export of intermediate water masses to mid and low 

latitudes (Ferrari et al., 2014). The interplay of stratification of water masses, formation and 

extent of sea ice, wind-driven upwelling and “biological pumping” impact atmosphere-ocean 

CO2 exchange rates. The Southern Ocean represents a “High Nutrient-Low Chlorophyll” 

(HNLC) area where biological productivity and related carbon sequestration can be enhanced 

during climate conditions characterized by increased deposition of micro-nutrients (e.g. Fe) 

transported by wind or ice leading to atmospheric CO2 drawdown and global cooling 
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(Sigman et al., 2010).  Such conditions can best be studied in the Last Glacial Maximum 

(LGM), which represents a well accessible and datable Quaternary cold climate end-member, 

characterized by strongly expanded continental ice sheets (Clark et al., 2009), a maximum 

sea-level lowstand (-135 m, Yokoyama et al., 2000; Lambeck et al., 2014), and strongest 

annual mean sea surface cooling, reaching up to -10°C in the mid-latitude North Atlantic 

(MARGO Project Members, 2009). It depicts a global climate state fundamentally different 

from today and allows improving our understanding and prediction of physical and biological 

processes that steer water mass structure and formation as well as primary production and air-

sea-gas exchange (Abelmann et al., 2015).  

 Sea surface temperatures (SST) and sea-ice cover are most important variables to 

reconstruct regional climate during the LGM. Sea surface temperatures present a parameter 

for the assignment of oceanic fronts and related temperature gradients (Orsi et al., 1995) as 

well as for the configuration and distribution of ocean current systems connected to the 

oceans surface. Closely linked to SSTs is the freezing and melting of sea ice, processes that 

are crucial for the formation of deep and bottom water masses via brine rejection (e.g. 

Antarctic Bottom Water) and the physical structure of the water column (Brandon et al., 

2010). Furthermore, sea ice impacts the polar energy budge by ice-albedo feedback 

mechanisms and restrains the air-sea-gas exchange (Stephens and Keeling, 2000). Sea ice 

also affects primary productivity (Arrigo et al., 2008). During glacials, sea ice governs 

seasonal variability in surface-water structure and related ocean-atmosphere exchange rates, 

nutrient advection into surface waters and acts as storage platform for dust-born iron, turning 

the glacial Sea Ice Zone into a carbon sink (Abelmann et al., 2006, 2015).  

 Temperature and sea-ice estimates for the Southern Ocean LGM were presented for 

the first time by Hays et al. (1976) from a series of core sites located in the Atlantic and the 

western Indian sectors. Summer and winter SST estimates were calculated with a radiolarian-

based transfer function (standard error 1.5°C for summer, 1.4°C for winter SST) using the 

Imbrie and Kipp Method (IKM) (Imbrie and Kipp, 1971). The extent of the LGM sea-ice 

field was estimated by mapping the lithological boundary between diatom-rich and diatom-

poor sediments. In the broad absence of records allowing for the establishment of oxygen 

isotope stratigraphy, the LGM level, set at 18,000 years, was based on the abundance pattern 

of the radiolarian Cycladophora davisiana. As part of the first attempt to construct a global 

picture of the climate conditions during the LGM, project members of CLIMAP (1976, 1981) 

extended this to a circum-Antarctic view, including additional cores from the Pacific and 

Indian sectors. After various attempts to reconstruct last glacial sea ice considering 
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lithological boundaries (Cooke and Hays, 1982; Burckle et al., 1982; Burckle, 1983), Crosta 

et al. (1998a, b) were the first to present a circum-Antarctic sea-ice reconstruction using a 

transfer function (TF), the Modern Analog Technique (MAT) developed by Hutson (1980). 

The majority of the obtained sea-ice occurrence estimates (month/year) were derived from 

diatom assemblages in the CLIMAP (1976, 1981) Southern Ocean sample set, considering 

the original CLIMAP stratigraphic determination of the LGM. Gersonde et al. (2003a) 

reconstructed the LGM summer sea surface temperature (SSST) pattern in the Atlantic and 

eastern Indian sectors between the southern Subtropical and the seasonally sea-ice covered 

Antarctic Zone combining IKM and MAT estimates derived from three microfossil groups. 

Diatom sea-ice indicator species were used to estimate the extent of winter and summer sea 

ice, following the approach of Gersonde and Zielinski (2000). Gersonde et al. (2003a) 

developed well-constraint age models for the studied cores to relate the SSST and sea-ice 

results to a LGM time slice set between 23,000 – 19,000 calendar years before present (cal. 

yr BP) as proposed by the EPILOG working group (Mix et al. 2001). These data, combined 

with reevaluated LGM-data from Crosta et al. (1998a, b) and from additional core sites were 

used to map SSST and sea ice on a circum-Antarctic scale and at the EPILOG time slice 

(Gersonde et al. 2005) as part of the MARGO initiative for the reconstruction of the glacial 

surface ocean. For the first time, the paleoceanographic and stratigraphic data were quality 

controlled and ranked according to their accuracy level. Quality control resulted in highest 

levels for the Atlantic and western Indian sectors, while results from the Pacific sector 

displayed low quality levels and relatively low spatial cover (Gersonde et al., 2005; Bostock 

et al., 2013). As such, with the exception of near-continent areas (e.g. Sikes et al., 2002; Neil 

et al., 2004; Pahnke and Sachs, 2006; Lüer et al., 2009; Caniupán et al., 2011; Ho et al., 

2012), the largest sector of the Southern Ocean remained little explored. 

 To cover this gap in information we studied LGM sections from 17 sediment cores 

recovered between 100°W and 180°E in the Pacific Southern Ocean (Gersonde, 2011). Using 

diatom-based transfer-function techniques (Esper and Gersonde, 2014a, b) and improved 

dating, we document SST and sea-ice conditions at the EPILOG LGM (E-LGM) time slice 

(23,000-19,000 cal. yr BP) at highest possible quality level. Our time slice includes the LGM 

sea level lowstand of ~134 m at 21,000 cal. yr BP (Lambeck et al., 2014). Our study presents 

a further step towards a high-quality circum-Antarctic documentation of the Southern Ocean 

surface conditions during the latest cold-climate end member, the LGM. We examine in 

detail the pattern of SST and sea-ice distribution in comparison with other Southern Ocean 

sectors to evaluate potential basin-basin differentiations and thus test the suggestion of 
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Gersonde et al. (2005) that LGM-cooling displays a non-uniform distribution in the Southern 

Ocean. We also analyze the impact of bottom topography and atmospheric circulation on 

LGM sea-ice distribution and SST pattern. This will help to better understand the 

configuration of the Antarctic Circumpolar Current (ACC) and related frontal systems in the 

last glacial Pacific sector and the adjacent sectors of the Southern Ocean. Our data are critical 

for the evaluation of the so-called “cold-water route” (Rintoul, 1991) that regulated Pacific-

Atlantic heat and nutrient exchange and of the impact of Southern Ocean waters on heat, salt, 

moisture and nutrient conditions in eastern Pacific mid- and low latitudes during colder-than 

present conditions (e.g. Feldberg and Mix, 2002; Kucera et al., 2005b; Morey et al., 2005). 

As such, our new data provide critical data required to further validate and improve LGM 

climate scenarios and models (e.g. CLIMAP, 1976, 1981; Rojas et al., 2009; Ballarotta et al., 

2013; Zhang et al, 2013), and their reliability. 

 

3.2 Regional Setting 

 Our study area is located in the Pacific sector of the Southern Ocean between 180°E 

and 100°W (Fig. 3.1a). The studied cores document the glacial conditions between ca. 50°S 

and 65°S, thus between the modern southern Subantarctic Zone (SAZ) and the northern 

seasonal Sea Ice Zone (SIZ) in vicinity to the Southern Antarctic Circumpolar Front 

(SACCF) (Orsi et al., 1995; Reynolds et al., 2002; 2007). This zone is in the core of the 

Pacific section of the Antarctic Circumpolar Current (ACC), bounded to its north by the 

Subantarctic Front (SAF) (Orsi et al., 1995). In this area, modern summer and winter surface 

water temperatures range between ca. 0 to 8°C and -1.5 to 6°C, respectively (Olbers et al., 

1992; Locarnini et al., 2010) (Fig. 3.1b, c). Surface sediment composition varies from 

primarily calcareous nannofossil ooze with varying diatom and foraminifera amounts in the 

SAZ to nannofossil-diatom oozes with only minor foraminifera content in the vicinity of the 

SAF (Gersonde 2011). Diatom ooze with opal content of 50-80% (Lisitzin, 1985; Geibert et 

al., 2005; Bradtmiller et al., 2009) is deposited in the Polar Front Zone (PFZ) and the 

Permanent Open Ocean Zone (POOZ), a zone between the Antarctic Polar Front (APF) and 

the average winter sea-ice edge (defined herein as ca. 40% sea-ice concentration), the latter 

being closely linked to the SACCF (Fig. 3.1a). The zone of enhanced biogenic opal 

deposition, the so-called Antarctic opal belt (Nelson et al., 2002; Geibert et al., 2005), is 

characterized by intensive Ekman upwelling of nutrient-repleted deep waters south of the 

maximum westerly winds (Speer et al., 2000; Orsi and Whitworth, 2005). The westerlies-
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driven Ekman pumping also results in enhanced CO2-outgassing in this zone (Lovenduski et 

al., 2007). Further south of the opal belt, in the area seasonally covered by sea ice the 

biogenic opal content in surface sediments drops to values <20% (Lisitzin, 1985; Geibert et 

al., 2005).  
 

Figure 3.1: (a) Locations of cores analyzed in this study (red circles) and other cores discussed in the paper 
(yellow circles, for references see Tab. 3.1). WSI 15%/SSI 15%: modern winter/summer sea-ice edge with 15% 
sea-ice concentration, WSI 40%/SSI 40%: modern winter/summer sea-ice edge with 40% sea-ice concentration 
(Reynolds et al., 2002, 2007); E-T-F: Eltanin Tharp Fracture Zone, U-F: Udintsev Fracture Zone (Udintsev 
(Ed.), 2003); oceanic fronts according to Orsi et al. (1995); STF: Subtropical Front, SAF: Subantarctic Front, 
APF: Antarctic Polar Front, SAZ: Subantarctic Zone, PFZ: Polar Front Zone, POOZ: Permanent Open Ocean 
Zone, SACCF: Southern Antarctic Circumpolar Current Front, sSIZ: seasonal Sea Ice Zone, SIZ: Sea Ice Zone. 
(b) Modern summer SSTs from the Hydrographic Atlas of the Southern Ocean (HASO; Olbers et al., 1992); 
core locations and oceanographic fronts as in (a); 4°C and -1.3°C isotherm representing the APF and sea-ice 
edge respectively. (c) Modern winter SSTs from the World Ocean Atlas 2009 (WOA09, July-September; 
Locarnini et al., 2010); core locations and oceanographic fronts as in (a); 2°C and -1°C isotherm representing 
the APF and sea-ice edge respectively. 
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Related to topographic forcing, frontal positions in the ACC close to large 

bathymetric features (e.g. Pacific-Antarctic Ride, Udintsev Fracture Zone) remain relatively 

stable at seasonal and interannual time scale, whereas over abyssal plains (e.g. Amundsen-

Bellingshausen Abyssal Plaines) their location appears to be fairly unstable because of 

mesoscale activity and atmospheric forcing (Sallée et al., 2008; Sokolov and Rintoul, 2009) 

(Fig. 3.1a). A prominent oceanographic feature in our study area is the cyclonic Ross Gyre. 

This gyre transports cold Antarctic Surface Water from the southern Ross Sea far north into 

the region of the Pacific-Antarctic Ridge. This results in relatively colder surface waters, a 

distinctly expanded winter sea-ice field and enhanced sea-ice seasonality in the western 

Pacific sector of the Southern Ocean (Fig. 3.1). The west-east differences in sea surface 

conditions in the Pacific Southern Ocean sector are also related to specific atmospheric 

conditions. While comparatively warm winds from the north along the Antarctic Peninsula 

lead to reduced sea-ice occurrence in the eastern sector, cold-air outbursts from the Antarctic 

ice sheet favor increased sea-ice production and northward expansion in the Ross Sea sector 

(Harangozo, 2004). Moreover, changes of the Southern Annular Mode (SAM) and the 

Amundsen Sea Low, but also tropical variability and the El Niño-Southern Oscillation 

(ENSO), influence the oceanographic conditions in the western and eastern Pacific Southern 

Ocean (Yuan, 2004; Sallée et al., 2008; Turner et al., 2009; Thompson et al., 2011). 

Therefore, interannual and decadal SST and sea-ice changes are amplified in the Pacific 

sector including for example a distinct increase in sea ice north of the Ross Sea embayment 

and a strong sea-ice decrease in the Bellingshausen-Amundsen Sea as documented by 

observational time-series (1979-2011) (Maksym et al., 2012; Stammerjohn et al., 2012). As 

the Pacific Sector collects the majority of the West Antarctic Ice Sheet (WAIS) drainage (Ó 

Cofaigh et al., 2005; Mosola and Anderson, 2006; Smith et al., 2011), it is the key region for 

understanding the impact of fresh water input induced by melting of the WAIS, which reacts 

sensitive to atmospheric and oceanographic conditions (Joughin and Alley, 2011). 

 

3.3 Material and Methods   

3.3.1 Core material   

 Temperature and sea-ice estimates were accomplished at a total of 17 sites sampled 

during R/V Polarstern cruises ANT-XIII/5a and ANT-XXVI/2 (Fig. 3.1, Table 3.1). The 

majority of cores were retrieved by piston coring (PC) with corresponding trigger cores (TC) 
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(Gersonde, 2011). Exceptions are cores PS75/056-1 and PS75/072-4 recovered with a gravity 

corer (GC) and core PS75/073-2 taken with a kasten corer (KC). The sites are located on 

different latitudinal transects (120°W, 150-160°W and ~170°W) in the eastern and western 

Pacific sector covering the Southern Ocean between the northern Antarctic Zone (AZ) and 

the southern SAZ (Fig. 3.1, Table 3.1).  

 
Table 3.1 Locations of sediment cores presented and discussed in this study. 

Core Latitude Longitude 
Water 

depth (m) 
Coring 
devicea Zoneb Data source 

CHAT-1K 41°34.80'S 171°30.00'W 3556 KC STZ Barrows and Juggins, 2005;  
Kucera et al., 2005b 

DSDP594 45°34.41'S 174°56.88'E 1204 CC SAZ Barrows and Juggins, 2005 
DWBG 70 48°29.00'S 113°17.0'W  GC SAZ Luz , 1977; Moore et al., 1980 

ELT11-1 54°54.42'S 114°42.18'W 3475 PC SAZ Luz , 1977;  Moore et al., 1980;  
Gersonde  et al., 2005 

ELT11-2 56°03.60'S 115°03.60'W 3109 PC SAZ Luz , 1977;  Moore et al., 1980; Mashiotta 
et al., 1999; Gersonde  et al., 2005 

ELT11-3 56°54.18'S 115°14.58'W 4023 PC SAZ Luz , 1977;  Moore et al., 1980;  
Gersonde  et al., 2005 

ELT11-4 57°49.80'S 115°12.60'W 4773 PC SAZ Gersonde  et al., 2005 
ELT14-6 57°01.20'S 160°05.40'W 4520 PC PFZ Gersonde  et al., 2005 
ELT15-4 59°01.20'S 99°45.60'W 4910 PC PFZ Gersonde  et al., 2005 
ELT15-6 59°58.20'S 101°19.20'W 4517 PC PFZ Gersonde  et al., 2005 
ELT15-12 58°40.80'S 108°48.00'W 4575 PC PFZ Gersonde  et al., 2005 
ELT17-9 63°04.80'S 135°07.20'W 4848 PC sSIZ Gersonde  et al., 2005 
ELT19-7 62°09.60'S 109°05.40'W 5051 PC POOZ Gersonde  et al., 2005 
ELT20-10 60°13.20'S 127°01.08'W 4471 PC POOZ Gersonde  et al., 2005 
ELT20-18 44°33.00'S 111°19.80'W 2868 PC SAZ Luz , 1977;  Moore et al., 1980 
ELT21-15 52°01.02'S 120°01.20'W 2999 PC SAZ Luz , 1977;  Moore et al., 1980 
ELT25-10 50°06.00'S 114°46.98'W 2890 PC SAZ Luz , 1977;  Moore et al., 1980 
ELT36-36 60°23.40'S 157°37.80'E 2816 PC POOZ Gersonde  et al., 2005 
GeoB3327-5 43°14.40'S 79°59.00'W 3531 GC SAZ Ho et al., 2012 
GeoB3302-1 33°13.01'S 72°06.00'W 1498 GC SAZ Kim et al., 2002 
GeoB3359-3 35°13.00'S 72°48.50'W 678 GC SAZ Romero et al., 2006 
GeoB7139-2 30°12.00'S 71°58.99'W 3267 GC STZ Kaiser et al., 2008 
MD07-3128 52°39.57'S 75°33.97'W 1032 GPC SAZ Caniupán et al., 2011 
MD88-784 54°11.40'S 144°47.40'E 2800 GPC PFZ Gersonde  et al., 2005 
MD88-787 56°22.80'S 145°18.00'E 3020 GPC PFZ Gersonde  et al., 2005 

MD97-2120 45°32.06'S 174°55.85'E 1210 GPC SAZ Pahnke et al., 2003;  
Pahnke and Sachs, 2006 

MD97-2121 40°22.80'S 177°59.40'E 3014 GPC STZ Pahnke and Sachs, 2006 
ODP1233 41°00.00'S 74°27.00'W 838 CC SAZ Kaiser and Lamy, 2010 
P69 40°24.00'S 178°00.00'E 2195 GC STZ Barrows and Juggins, 2005 
PS58/270-5 62°01.68'S 116°07.38'W 4981 PC POOZ this study 

PS58/271-1 61°14.58'S 116°02.82'W 5214 PC PFZ this study; Gersonde et al., 2005;                    
Esper and Gersonde, 2014a/b 

PS58/274-1 59°12.42'S 114°53.28'W 5136 PC PFZ this study 
PS75/034-2 54°22.12'S 80°05.40'W 4425 PC SAZ Ho et al., 2012 
PS75/051-1 52°48.73'S 107°48.33'W 3949 PC SAZ this study 
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Table 3.1 continued 

Core Latitude Longitude 
Water 

depth (m) 
Coring 
devicea Zoneb Data source 

PS75/054-1 56°09.11'S 115°07.98'W 4113 PC SAZ this study 
PS75/056-1 55°09.74'S 114°47.31'W 3581 GC SAZ this study 
PS75/059-2 54°12.90'S 125°25.53'W 3613 PC SAZ this study 
PS75/064-1 61°00.74’S 139°27.85'W 4600 PC sSIZ this study 
PS75/072-4 57°33.51'S 151°13.17'W 3099 GC POOZ this study 
PS75/073-2 57°12.26'S 151°36.65'W 3234 KC POOZ this study 
PS75/076-2 55°31.71'S 156°08.39'W 3742 PC PFZ this study 
PS75/082-1 59°02.48'S 158°51.82'W 4000 PC POOZ this study 
PS75/085-1 61°56.38'S 160°07.10'W 3734 PC sSIZ this study 
PS75/091-3 63°41.66'S 169°04.47'W 2940 PC sSIZ this study 
PS75/093-1 60°52.33'S 169°32.89'W 3762 PC POOZ this study 
PS75/096-4 58°32.86'S 172°42.06'W 5057 PC PFZ this study 
PS75/097-4 59°42.02'S 171°21.44'W 4672 PC PFZ this study 
Q200 46°00.00'S 172°01.80'E 1370 GC SAZ Barrows and Juggins, 2005 
Q585 49°42.00'S 177°55.20'W 4354 GC SAZ Barrows and Juggins, 2005 

R657 42°31.80'S 178°29.40'W 1408 GC STZ Sikes et al., 2002;  
Barrows and Juggins, 2005 

RC08-78 44°46.80'S 175°46.20'W 1756 PC STZ Barrows and Juggins, 2005 
RC09-110 42°52.20'S 172°01.20'W 1917 PC STZ Barrows and Juggins, 2005 
RC12-225 53°40.20'S 123°06.00'W 2964 PC SAZ Luz , 1977;  Moore et al., 1980 

SO136-111 56°40.20'S 160°13.80'E 3912 GC PFZ Crosta et al., 2004; 
Gersonde  et al., 2005 

SO213-59-2 45°49.00'S 116°52.00'W 6161 GC SAZ Tapia et al., 2015 

U938 45°04.80'S 179°30.00'E 2700 GC SAZ Sikes et al., 2002;  
Barrows and Juggins, 2005 

U939 44°30.00'S 179.30.00'E 1300 PC SAZ Sikes et al., 2002;  
Barrows and Juggins, 2005 

W268 42°51.00'S 178°58.20'E 980 PC STZ Sikes et al., 2002;  
Barrows and Juggins, 2005 

Y8 46°58.25'S 178°39.40'W 1335 KC SAZ Lüer et al., 2009 
 
a Coring devices: PC Piston Corer; GC Gravity Corer; KC Kasten Corer; GPC Giant Piston Corer; CC 
Composite Core; b Oceanographic zones: STZ Subtropical Zone; SAZ Subantarctic Zone; PFZ Polar Front 
Zone; POOZ Permanent Open Ocean Zone; sSIZ seasonal Sea Ice Zone 

 

3.3.2 Sample preparation and counting of diatom slides 

 The preparation of sediment material and the permanent mounting of diatoms for light 

microscopy followed the standard methods presented by Gersonde and Zielinski (2000). 

Cores were sampled and analyzed at a spacing of 5 cm and the respective diatom counting 

was carried out according to Schrader and Gersonde (1978). On average, 400–600 diatom 

valves were counted in each slide using a Zeiss Axioplan 2 at x1000 magnification.  
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3.3.3 Diatom assemblage composition    

 Diatoms were identified to species or species group level and if possible to forma or 

variety level. The taxonomy follows primarily Hasle and Syvertsen (1996), Zielinski and 

Gersonde (1997), and Armand and Zielinski (2001). For temperature and sea-ice 

reconstructions 29, respectively 28, species and species groups were considered (Table 3.2). 

These species show close relationships to both environmental variables and different 

oceanographic zones (Zielinski and Gersonde, 1997; Armand et al., 2005; Crosta et al., 2005; 

Romero et al., 2005; Esper et al., 2010; Esper and Gersonde, 2014a, b). Following Zielinski 

and Gersonde (1997) and Zielinski et al. (1998) we combined some taxa to groups: 

 The Thalassionema nitzschioides group combines T. nitzschioides var. lanceolata and 

T. nitzschioides var. capitulata, two varieties with gradual transition of features between them 

and no significantly different ecological behavior. The species Fragilariopsis curta and 

Fragilariopsis cylindrus were combined as F. curta group taking into account their similar 

relation to sea ice and temperature (Zielinski and Gersonde, 1997; Armand et al., 2005). 

Furthermore, the Thalassiosira gracilis group comprises T. gracilis var. gracilis and T. 

gracilis var. expecta considering that characteristic pattern in the varieties are often 

transitional, which hampers distinct identification.  

 Although the two varieties Eucampia antarctica var. recta and E. antarctica var. 

antarctica display different biogeographical distribution (Fryxell and Prasad, 1990), they 

were combined to the Eucampia antarctica group. This group was not included in the TF as it 

shows no relationship to either sea ice or temperature variation (Esper and Gersonde, 2014a, 

b) and may cause no-analog situations due to higher glacial than modern abundances 

(Zielinski et al., 1998). However, the abundance pattern of the E. antarctica group can be 

used as a stratigraphic tool because it displays a pattern allowing for the detection of glacial 

intervals (Burckle and Cooke, 1983; Burckle, 1984a, b). 

Besides the E. antarctica group we also discarded diatoms assembled as Chaetoceros 

spp. group from the TF-based reconstructions, following Zielinski et al. (1998) and Esper and 

Gersonde (2014a). This group combines mainly resting spores of a diatom genus with 

cosmopolitic distribution pattern that cannot be identified to species level due to the lack of 

morphological features. Therefore, different ecological demands of single taxa cannot be 

distinguished. But the Chaetoceros spp. group can be used as an additional stratigraphic 

indicator by inter-core correlation of specific abundance fluctuations in glacial and deglacial 

intervals. 
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Table 3.2  Twenty-nine diatom taxa/taxa groups of the IKM-D336/29/3q and MAT-D274/28/4an data set. 
 

Name 
Actinocyclus actinochilus (Ehrenberg) Simonsen,1982 
aAlveus marinus  (Grunow) Kaczmarska and Fryxell, 1996 
Azpeitia tabularis (Grunow) Fryxell and Sims in Fryxell et al., 1986 
Fragilariopsis curta group 
bChaetoceros spp. – not differentiated to taxon level – 
bEucampia antarcita (Castracane) Mangin 1945 
Fragilariopsis doliolus (Wallich) Medlin and Sims, 1993 
Fragilariopsis kerguelensis (O´Meara) Hustedt 1952 
Fragilariopsis obliquecostata (Van Heurck) Heiden in Heiden and Kolbe, 1928 
Fragilariopsis rhombica (O´Meara) Hustedt, 1952 
Fragilariopsis ritscheri Hustedt, 1958 
Fragilariopsis separanda Hustedt, 1958 
Fragilariopsis sublinearis (Van Heurck) Heiden in Heiden and Kolbe, 1928 
Hemidiscus cuneiformis Wallich, 1860 
Nitzschia bicapitata Cleve, 1901 
Porosira pseudodenticulata (Grunow) Jørgensen,1905 
Pseudo-nitzschia turgiduloides (Hasle) Hasle, 1993 
Rhizosolenia antennata forma semispina Sundström, 1986 
Rhizosolenia bergonii H. Peragallo, 1892 
Rhizosolenia species A Armand and Zielinski, 2001 
Roperia tesselata (Roper) Grunow ex Pelletan, 1889 
Stellarima microtrias (Ehrenberg) Hasle and Sims, 1986 
Thalassionema nitzschioides forma 1 Zielinski and Gersonde, 1997 
Thalassionema nitzschioides group 
Thalassionema nitzschioides var. parva (Heiden) Moreno-Ruiz and Licea, 1995 
Thalassiosira antarctica Comber, 1896 
Thalassiosira gracilis (Karsten) Hustedt, 1958 
Thalassiosira lentiginosa (Janisch) Fryxell, 1977 
Thalassiosira oestrupii (Ostenfeld) Hasle, 1972 
Thalassiosira oliverana (O´Meara) Makarova and Nikolajev, 1983 
Thalassiothrix antarctica Schimper ex Karsten, 1905 

 

aonly in IKM-D336/29/3q 
bTaxa excluded from datasets IKM-D336/29/3q and MAT-D274/28/4an 

 

3.3.4 Reconstruction techniques 

 Our reconstructions include estimates of summer sea surface temperatures (SSST) and 

winter sea-ice (WSI) concentrations obtained with TFs developed by Esper and Gersonde 

(2014a, b). For SSST estimates we applied the Imbrie and Kipp Method (IKM; Imbrie and 

Kipp, 1971) and for WSI the Modern Analog Technique (MAT; Hutson, 1980). Statistical 

details and background of the methods and their performance at different application levels 
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and in comparison with other estimation methods are presented in Esper and Gersonde 

(2014a, b).  

 Estimates of SSSTs were accomplished using TF IKM-D336/29/3q, comprising 336 

reference samples from surface sediments in the western Indian, the Atlantic and the Pacific 

sectors of the Southern Ocean, with 29 diatom taxa and taxa groups, and a 3 factor model 

calculated with quadratic regression. The SSST estimates refer to summer (January-March) 

temperatures at 10 m water depth averaged over a time period from <1900-1991 

(Hydrographic Atlas of the Southern Ocean, HASO; Olbers, et al., 1992). The HASO was 

used because it represents an oceanographic reference dataset least influenced by the recent 

warming in the Southern Ocean (Esper and Gersonde, 2014b). 

 Our supra-regional TF revealed the optimum results in the comparison of different TF 

approaches for temperature reconstructions, achieving lower errors, better communalities, 

and less no-analog situations than regional TFs (Esper and Gersonde, 2014b). The root mean 

square error of prediction (RMSEP) for the reference data set, resulting from the standard 

deviation between measured and estimated temperatures, is 0.83°C (Esper and Gersonde, 

2014b). IKM calculations were carried out with the software packages PaleoToolBox and 

WinTransfer (http://www.pangaea.de/Software/PaleoToolBox; Sieger et al., 1999). 

 For estimating WSI concentration we applied the TF MAT-D274/28/4an, comprising 

274 reference samples from surface sediments in the western Indian, the Atlantic and the 

Pacific sectors of he Southern Ocean, with 28 diatom taxa and taxa groups, and an average of 

4 analogs (Esper and Gersonde, 2014a). This reference data set was specifically designed for 

the reconstruction of sea ice. The WSI estimates refer to September sea-ice concentrations 

averaged over a time period from 1981-2010 at each surface sediment site (National Oceanic 

and Atmospheric Administration, NOAA; Reynolds et al, 2002; 2007). The reference data set 

is suitable for our approach as it uses a 1° by 1° grid, representing a higher resolution than 

previously used and results in a RMSEP of 5.52% (Esper and Gersonde, 2014a). We defined 

15% concentration as threshold for maximum sea-ice expansion following the approach of 

Zwally et al. (2002) for the presence or absence of sea ice, and 40% concentration 

representing the average sea-ice edge (Gloersen et al., 1992; Gersonde et al., 2005). MAT 

calculations were carried out with the statistical computing program R (R core team, 2012).  

Further enhancement of the sea-ice reconstruction was obtained by consideration of the 

abundance pattern of the diatom sea-ice indicators allowing for qualitative estimate of sea-ice 

occurrence, as proposed by Gersonde and Zielinski (2000). 
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 In contrast to CLIMAP (1976, 1981), we refrained from the estimation of winter sea 

surface temperatures and summer sea-ice (SSI) concentration based on TF-derived 

calculations. Considering that in the open modern Southern Ocean the diatom signal is 

primarily exported during austral summer (Abelmann and Gersonde, 1991; Fischer et al., 

2002), it must be assumed that the diatom assemblages preserved in the sediment record are 

related to summer surface water temperatures. Statistical tests support the close relation 

between estimated and measured SSSTs at the reference sites (Esper and Gersonde, 2014b). 

In areas affected seasonally by sea ice, the summer diatom signal includes specific sea-ice 

diatoms that seed the spring-summer bloom after release from melting ice (Smith and Nelson, 

1986; Gersonde and Zielinski, 2000; Fischer et al., 2002). The close relationship between this 

signal preserved in the sediment record and the occurrence of WSI represents the backbone 

for the sea-ice reconstruction based on statistical methods (Esper and Gersonde, 2014a). In 

open-ocean areas affected by perennial sea ice (e.g. in the Weddell Sea) the export of diatom 

indicator is too low to produce a sedimentary signal allowing for TF-based SSI 

reconstructions (Fischer et al., 1988; Esper and Gersonde, 2014a). Hence, we followed the 

approach by Gersonde and Zielinski (2000) to combine the occurrence and abundance 

patterns of SSI related diatom species Fragilariopsis obliquecostata and Fragilariopsis 

sublinearis together with strongly decreased biogenic sedimentation rates for a rough 

estimate of SSI distribution. For an approximation of winter SSTs we applied the modern 

relationship between sea ice and under sea-ice temperature, which on average is ca. -1 to -

1.8°C at a >50% sea-ice cover (Locarnini et al., 2010, Fig. 3.1c). 

 Reconstructed variables include averaged temperature and sea-ice values for the E-

LGM time slice as well as minimum (SSST) and maximum (WSI) estimates in the E-LGM 

time slice. Anomalies between modern and E-LGM estimates are presented for both, the 

averaged and minimum SSST. We chose minimum SSST and maximum WSI concentration 

for the presentation of glacial conditions in figures, to emphasize the differences to modern 

conditions. Reconstructed variables are available in the PANGAEA database 

(www.pangaea.de, http://doi.pangaea.de/10.1594/PANGAEA.849115). Maps, temperature 

and sea-ice plots have been produced with ODV (Ocean Data View; Schlitzer, 2014). 

 

3.3.5 Dating  

 For the determination of the time interval equivalent to the EPILOG time LGM slice 

(E-LGM; 19,000–23,000 cal. yr BP) we established age models at highest possibly accuracy. 
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It is commonly known that the establishment of precise and high-resolution age models in the 

Southern Ocean is problematic due to discontinuous or lacking carbonate content which 

impedes the generation of continuous foraminifer-based oxygen isotope stratigraphies and 

AMS14C dating, and/or strongly fluctuating sedimentation rates. Thus, the accuracy of our 

age models may not be comparable with tropical records. To allow for dating at highest 

possible accuracy we applied the following approach. It is based on the generation of well-

constraint age models for selected stratigraphic reference cores from different sectors of the 

study area and a subsequent inter-core correlation using multiple sediment parameters for the 

dating of cores not allowing for isotope stratigraphic or AMS14C-based age determination. 

The inter-core correlation considers element concentration and magnetic susceptibility 

records measured with an AVAATECH profiling X-ray Fluorescence (XRF) core-scanner at 

the Alfred-Wegener-Institute and with a GEOTEK Multi-Sensor Core Logger onboard R/V 

Polarstern (Gersonde, 2011), respectively. We particularly used the Fe and Ca counts and 

Si/Ti ratio records in combination with diatom abundance and TF-derived SSST records. 

Additional testing and refinement was achieved by the correlation to dust, iron (Fe) and 

temperature records from the EPICA Dome C (EDC) ice-core (Jouzel et al., 2007; Lambert et 

al., 2008; Martínez-Garcia et al., 2009), adjusted to the EDC3 age scale (Fe flux, Parrenin et 

al., 2007) or the AAIC12 age scale (dust and temperature; Bazin et al., 2013; Veres et al., 

2013), as well as to the δ18O record of the WAIS Divide ice core (WDC) (WAIS Divide 

Project Members, 2013) (Figs. 3.2, S3.1).  

 A total of 65 AMS14C datings were used to establish the age models for eight 

reference cores (PS58/271-1, PS58/274-1, PS75/059-2, PS75/064-1, P75/072-4, PS75/073-2, 

PS75/085-1, PS75/093-1, Table 3.3, Fig. 3.2). Out of these, 45 datings were derived from 

monospecific samples of the planktic foraminifers Neogloboquadrina pachyderma sinistral 

and Globigerina bulloides, accomplished at the National Ocean Science Accelerator Mass 

Spectrometry Facility (NOSAMS) at Woods Hole Oceanographic Institution (WHOI) and the 

Eidgenössische Technische Hochschule (ETH, Zürich). While the minimum sample size 

required for the datings at NOSAMS is >1 mg carbonate, measurements carried out with 

the recently developed 200kV Mini radioCarbon Dating System (MICADAS) at ETH 
 
Figure 3.2: Iron content fluctuation (red), benthic and planktic foraminifera oxygen isotope records (black), 
radiocarbon ages (blue triangles: foraminifera, yellow diamonds: humic acids) and sedimentation rates (grey) of 
reference cores compared to the LR04 stack and associated Marine Isotope Stages (MIS) 1-5 (Lisiecki and 
Raymo, 2005), dust and iron fluxes from the EPICA Dome C (EDC) ice core (dust: Lambert et al., 2008; iron: 
Martínez-Garcia et al., 2009; AICC 12 age scale: Bazin et al., 2013; Veres et al., 2013; EDC3 age scale: 
Parrenin et al., 2007); E-LGM: EPILOG Last Glacial Maximum time slice. Scale extended to 100 cal. kyr BP to 
show glacial-interglacial variability. 
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(http://www.ams.ethz.ch/instruments/micadas) only require <1 mg carbonate, thus allow 

extension of the AMS14C dating to sediments with low content in foraminifers. The 

comparison of the MICADAS dating results with those of conventional AMS measurements 

obtained from two neighboring cores (PS75/072-4 and PS75/073-2) allows for testing the 

accuracy of the dating based on small sample sizes of foraminifera carbonate (Fig. S3.2). In 

general, the deglacial-Holocene dating results obtained from both approaches yield consistent 

results. Discrepancies occur in sections with low carbonate content as well as low time 

resolution and sedimentation rates during the last glacial. The dating of foraminifers selected 

from such sections in PS75/072-4 (111-112 cm, 171-172 cm, 176-177 cm) yields ages that 

are distinctly too young (Fig. S3.2) or display reversed values (PS75/073-2, 122.5-123.5 cm, 

127.5-128.5 cm) (Table 3.3). This pattern may be indicative of bioturbation, which results in 

the displacement of single foraminiferal tests that disturb the dating of the small volume 

samples. As such, it can be suggested that small sample dating (<1mg carbonate) should at 

least be based on series of multiple down-core AMS14C measurements to allow for the 

detection of reworking or bioturbation effects.  

 Twenty bulk sediment samples were processed at NOSAMS or at Leibniz-Laboratory 

for Radiometric Dating and Stable Isotope Research (Kiel University) for dating organic 

carbon from humic acid fraction at core sections with no or insufficient foraminiferal 

carbonate content (Table 3.3). This includes four measurements of core PS58/271-1 

presented by Jacot des Combes et al. (2008). The humic acid derived dating allows for 

establishment of consistent age models in our reference cores (Fig. 3.2) and tests of the 

accuracy of this dating method supports its utility (Walker et al., 2001). However, it must be 

considered that such dating may be biased due to the mobility of humic acids but also by 

eolian input of organic carbon matter, especially during glacial periods. Here we checked the 

accuracy of the humic acid dating via core-core correlation using the fluctuations of sediment 

composition properties. 

 Radiocarbon ages were converted to calendar years before present (cal. yr BP; 1000yr 

= 1kyr) using the calibration software CALIB 7.0.2 (Stuiver and Reimer, 1993; Stuiver et al., 

2005) with the MARINE13 calibration curve (Reimer et al., 2013). For the time span of the 

Holocene and the deglacial until 14 14C kyr BP, we applied reservoir ages between 520 and 

750 yrs dependent on the latitudinal position of the cores according to Bard (1988) (Table 

3.3). This approach is commonly used to approximate Southern Ocean reservoir ages (e. g. 

Shemesh et al., 2002; Chase et al., 2003; Bianchi and Gersonde, 2004; Tapia et al., 2015).  
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Table 3.3 AMS 14C ages obtained of studied cores. C sources for dating are: H – humic acid fraction; Fnps –
foraminifera N. pachyderma sin.; Fbull – foraminifera G. bulloides. 
KIA: Kiel Accelerator ;OS: National Ocean Science AMS Woods Hole; ETH: Eidgenössische Technische 
Hochschule Zürich. 
 

Core Depth (cm) Lab ID 
C 

source 
14C age 
(yrs BP) 

Error 
(yrs) 

Reservoir 
age 

2σ   
min 

2σ   
max 

Calib. Age      
(cal yr BP) 

PS58/271-1 14-17 KIA 16755 H 6150b 70 750 6025 6370 6218 

 113-117 KIA 16756 H 9570b 100 750 9679 10232 10002 

 141-144.5 KIA 23791 H 10345 60 750 10771 11146 10981 

 172-176 KIA 23792 H 11370 80 750 12321 12716 12562 

 212-217a KIA 16757a H 14480b 182 1200 15343 16454 15946 

 271-275 KIA 23793 H 19690b 165 1200 21906 22695 22340 

PS58/274-1 6-11 KIA 29594 H 3775 40 690 3246 3465 3368 

 170-175 KIA 29595 H 11980 80 690 12968 13343 13177 

 276-281 KIA 29596 H 16980 110 1200 18787 19337 19036 

 419-424 KIA 29597 H 19350 140 1200 21627 22358 22002 

PS75/059-2 2-3 OS-101191 Fbull 3900 30 520 3622 3822 3722 

 17-18 OS-101192 Fbull 6680 45 520 6948 7197 7078 

 37-38 OS-101247 Fbull 10650 55 520 11407 12001 11759 

 47-48 OS-101250 Fbull 11950 45 520 13189 13415 13302 

 52-53c OS-101251 Fbull 13550 45 520 15343 15792 15599 

 57-58c OS-101303 Fbull 14500 50 1200 15311 15758 15545 

 52-58d  Fbull      15572 

 67-68 OS-101304 Fbull 25900 110 1200 28450 28989 28727 

 72-73c OS-101306 Fbull 29200 130 1200 31351 32256 31703 

 77-78c OS-101308 Fbull 29500 130 1200 31634 32702 32159 

 87-88c OS-101311    Fbull 29900 130 1200 32276 33334 32822 

 72-88d  Fbull 29533 130 1200 31671 32747 32207 

 97-98 OS-101313 Fbull 35400 200 1200 38286 29163 38686 

PS75/064-1 6-9 OS-106097   H 2950 15 750 2198 2337 2295 

 20-2 OS-106098   H 3880 25 750 3341 3491 3413 

 55.5-59 OS-106099   H 7270 40 750 7333 7512 7432 

 80.5-84 OS-106100   H 10650 40 750 11166 11486 11285 

PS75072-4 1-2 ETH 48932.1.1 Fnps 1369 60 590 635 873 729 

 21-22 ETH 48933.1.1 Fnps 2311 63 590 1548 1856 1705 

 36-37 ETH 48934.1.1 Fnps 3332 65 590 2761 3108 2929 

 51-52 ETH 48935.1.1 Fnps 4392 68 590 4088 4476 4291 

 76-77 ETH 48936.1.1 Fnps 7188 96 590 7315 7658 7494 

 91-92 ETH 48937.1.1 Fnps 9119 78 590 9441 9838 9600 

 101-102 ETH 48938.1.1 Fnps 10194 79 590 10748 11170 10984 

 111-112e ETH 48939.1.1 Fnps 10600 86 590 11219 11871 11524 

 131-132 ETH 48940.1.1 Fnps 12509 95 590 13529 14021 13786 

 151-152 ETH 48941.1.1 Fnps 17279 158 1200 18968 19799 19387 

 156-157 ETH 48942.1.1 Fnps 20001 171 1200 22342 23078 22676 

 166-167 ETH 48943.1.1 Fnps 25596 332 1200 27769 29079 28418 

 171-172e ETH 48944.1.1 Fnps 20208 186 1200 22472 23383 22887 

176-177e ETH 48945.1.1 Fnps 21533 225 1200 23919 25132 24464 
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 Table 3.3 continued 

a 14C age obtained by averaging values from two analysis 
b Jacot des Combes et al., 2008 
c samples where 14C ages combined to average value 
d 14C ages obtained by averaging values from several measuements  
e rejected due to unlikely sedimentation rates or implausibly ages 

 

To account for higher glacial and deglacial reservoir ages, we apply an average reservoir age 

of 1200 yr for radiocarbon ages older than 14 14C kyr BP. This is in the range of surface 

water reservoir ages reported from glacial sediments in the Pacific sector (Skinner et al., 

2015). We are aware that higher surface-water reservoir ages may also be applicable during 

the deglacial and the glacial. As summarized by Skinner at al. (2015) such ages may increase 

to 1300 yrs at the Chilean Margin (Siani et al. 2013), ca. 1400 yrs in the Drake Passage 

(Burke and Robinson, 2012), and  >2500 years in the Subantarctic Atlantic (Skinner et al. 

2010). The placement of the shift from glacial to post-glacial reservoir ages at 14 14C kyr BP 

Core Depth (cm) Lab ID 
C 

source 
14C age 
(yrs BP) 

Error 
(yrs) 

Reservoir 
age 

2σ   
min 

2σ   
max 

Calib. Age      
(cal yr BP) 

PS75/073-2 17.5-18.5 OS-96102 Fnps 4060 25 590 3722 3924 3838 

 25.5-26.5 OS-96101 Fnps 4770 25 590 4705 4853 4807 

 37.5-38.5 OS-96100 Fnps 5870 30 590 5985 6180 6089 

 52.5-53.5 OS-96109 Fnps 7730 35 590 7922 8102 7993 

 62.5-63.5 OS-96099 Fnps 9260 50 590 9571 9963 9779 

 73.5-74.5 OS-96098 Fnps 10300 50 590 10965 11227 11118 

 82-83 OS-96097 Fnps 11100 50 590 12229 12605 12466 

 103-104 OS-98711 Fnps 13400 50 590 15092 15480 15255 

 113-114 ETH 48946.1.1 Fnps 14979 106 1200 16303 17005 16654 

 122.5-123.5e ETH 48947.1.1 Fnps 17805 154 1200 19620 20425 20028 

 127.5-128.5e ETH 48948.1.1 Fnps 17644 150 1200 19476 20219 19834 

 146.5-147.5 OS-96096 Fnps 46700 4000 1200 42281 50000 47007 

PS75/085-1 5.5-9 OS-106101 H 2420 40 750 1534 1759 1642 

 45-49 OS-106102 H 3830 25 750 3291 3441 3364 

 131.5-135.5 OS-106103 H 5350 30 750 5282 5439 5358 

 185-189 OS-106281   H 6520 35 750 6496 6707 6607 

 245.5-249.5 OS-106282   H 7700 40 750 7709 7917 7815 

 301-305 OS-106283   H 8920 40 750 9077 9362 9214 

 342.5-343.5 OS-98706 Fnps 9900 35 750 10274 10529 10417 

 357.5-358.5c OS-98721 Fnps 10350 35 750 10823 11130 10999 

 358.5-359.5c OS-98720 Fnps 10400 35 750 10906 11171 10062 

 357.5-359.5d  Fnps 10375 35 750 10865 11153 11032 

 552.5-553.5 OS-98719 Fnps 21300 130 1200 23841 24485 24162 

 557.5-558.5c OS-98718 Fnps 22900 140 1200 25693 26200 25947 

 558.5-559.5c OS-98708 Fnps 23100 150 1200 25845 26478 26117 

 557.5-559.5d  Fnps 23000 145 1200 25772 26354 26026 

PS75/093-1 26.5-27.5 OS-106674 Fnps 8100 35 710 8171 8340 8259 

 41.5-42.5 OS-106675 Fnps 10100 45 710 10567 10877 10701 
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considers findings of Skinner et al. (2010, 2015), which show a major shift in Southern 

Ocean reservoir ages around this time period. The shift in reservoir ages at 14 14C kyr BP 

leads to uneven age assignments around this age in cores with dense sample spacing for 

radiocarbon dating. This is true for core PS75/059-2 where the application of different 

reservoir ages results in similar calibrated calendar ages at different core depth (Table 3.3). 

To harmonize the datings from this interval we use a calibrated age averaged from both 

results. In PS75/059-2 we mark 3 age determinations between 72 and 88 cm, only slightly 

increasing with depth. This may be related to bioturbation effects in a glacial core section 

with low carbonate content. To better approximate the age of this sediment interval we have 

averaged the dating results. Averaging was also applied for datings received from nearby 

samples in PS75/085-1 (intervals 357.5-359.5 cm and 557.5-559.5 cm), resulting in dating 

offsets of ≤200 14C years (Table 3.3). Considering the relatively low sample resolution a 

plateau tuning of 14C ages to determine individual reservoir ages for certain time slices 

(Sarnthein et al., 2015) was not feasible.  

 The sediment composition of five cores (PS75/056-1, PS75/059-2, PS75/072-4, 

PS75/073-2 and PS75/085-1) allowed for the establishment of oxygen isotopic records from 

benthic (Cibicidoices wuellerstorfii) or planktic (N. pachydermasin.) foraminifers (Fig. 3.2). 

This includes the benthic isotope records from PS75/056-1 and PS75/059-2 presented by 

Lamy et al. (2014). The isotope measurements were obtained at a Thermo Finnigan MAT 

253 (Kiel 4) and were aligned to the LR04 stack of Lisiecki and Raymo (2005) (Fig. 3.2). 

The combination of the isotope-based stratigraphy with radiocarbon ages allowed a 

refinement of the PS75/059-2 age model of Lamy et al. (2014) and also served as template to 

improve the age model of PS75/056-1. Further constraints for coherence and refinement of 

reference cores were obtained by inter-core correlation as well as alignment of XRF 

measurements and reconstructed SSST records to the equivalent EDC ice core records ( 

Jouzel et al., 2007; Lambert et al., 2008; Martínez-Garcia et al., 2009). The cross-correlation 

of 14C dated cores leads to slightly modifications of the PS75/093-1 age model presented by 

Lamy et al. (2014). 

 The transfer of the stratigraphic information obtained for the reference cores to other 

cores not allowing for AMS and oxygen isotope-based dating techniques was achieved by 

correlation of the physical/chemical parameters and augmented by correlation of abundance 

fluctuations of the diatoms species Fragilariopsis kerguelensis, Eucampia antarctica group 

and Chaetoceros spp. This was especially helpful for the correlation of core sections with 

strongly changing and/or low sedimentation rates. Due to the detailed correlation to the 
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reference cores, we were able to slightly refine the age model of core PS75/076-2 proposed in 

Lamy et al. (2014). 

  The correlation of cores and the calculation of resulting sedimentation rates was 

carried out using the AnalySeries 2.0 software (Paillard et al., 1996) with linear interpolation 

between pointers. Detailed information for pointers used in age models including correlation 

source are presented in the Supporting Information (Table S3.1). 

 

3.3.6 Quality ranking of statistically derived estimates and age assignment 

 Following the approach presented by Gersonde et al. (2005), TF estimates and 

chronostratigraphic age assignments of the E-LGM level were quality ranked and an average 

quality level for each estimate was proposed (Fig. 3.3; Table 3.4). The quality ranking should 

serve as a guideline for the selection of estimates used for data compilations or advanced 

studies (e.g. data-model comparison). 

Figure 3.3: Spatial distribution of quality levels assigned to the E-LGM reconstructions. (a) Distribution of 
Chronostratigraphic Quality Levels (CQL). (b) Distribution of Estimated Quality Levels (EQL) for SSST. (c) 
Distribution of Estimated Quality Levels for WSI. (d) Distribution of SSST Average Quality Levels (IKM 
AQL). (e) Distribution of WSI Average Quality Level (MAT AQL). 
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Three estimate quality levels (EQL 1-3) are proposed for quality control of the SSSTs. 

The EQLs for SSST are based on the communality derived from the IKM transfer function 

for down-core samples. The communality expresses the total variance of all factors in a 

variable.  

Estimate quality level 1: communality >0.8 

Estimate quality level 2: communality 0.7-0.8 

Estimate quality level 3: communality <0.7 

Table 3.4  Preservation of diatoms in the E-LGM time slice and quality levels for SSST and WSI estimates. 

 Core 

E-LGM 
Preser- 
vation 

qualitya 
E-LGM  

CQL 

EQL 
IKM SSST 
mean/min 

 
EQL  

MAT WSI 
mean/max 

AQL IKM min/ 
MAT max 

1 PS58/270-5 4 2 3/3 3/3 2/2 

2 PS58/271-1 3 1 2/2 3/2 1/1 

3 PS58/274-1 3 1 2/2 2/2 1/1 

4 PS75/051-1 2 2 1/1 2/2 1/1 

5 PS75/054-1 3 3 2/2 3/3 2/2 

6 PS75/056-1 2 2 1/1 1/1 1/1 

7 PS75/059-2 2 1 1/1 2/2 1/1 

8 PS75/064-1 2 2 1/1 2/1 1/1 

9 PS75/072-4 3 1 2/2 2/2 1/1 

10 PS75/073-2 3 2 2/2 3/3 1/2 

11 PS75/076-2 2 2 1/1 1/1 1/1 

12 PS75/082-1 3 4 2/2 2/2 2/2 

13 PS75/085-1 4 2 3/3 3/3 2/2 

14 PS75/091-3 4 3 3/3 3/3 2/2 

15 PS75/093-1 3 3 2/2 2/2 2/2 

16 PS75/096-4 2 2 1/1 1/1 1/1 

17 PS75/097-4 2 2 1/1 1/1 1/1 
 

aPreservation index: 1: good, 2: good-moderate, 3: moderate, 4: moderate-poor, 5: poor (classification according 
to Zielinski, 1993) 
 

For MAT derived sea-ice concentrations the EQLs where defined by means of the 

dissimilarity index. This index is based on distances (squared chord distance), which defines 

the dissimilarity of the analogs found for the reference samples. The distance average 

increases with an increase in the degree of dissimilarity of the analogs. The threshold of the 

dissimilarity index for logarithm-transformed samples is 4.58 and good average distances are 

smaller than half of this threshold value (Esper and Gersonde, 2014a). Based on this 

threshold, three quality levels for WSI reconstructions were established. 

Estimate quality level 1: threshold <2.29 

Estimate quality level 2: threshold 2.29 – 4.58 
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Estimate quality level 3: threshold >4.58 

As communality (IKM) and dissimilarity (MAT) only reflect the quality of the 

comparison between reference and down-core samples, effects related to changes in 

assemblage preservation that may divert the estimates towards implausible values remain 

unconsidered. Therefore the EQLs for MAT and IKM where combined with the preservation 

index according to the classification of Zielinski (1993) (1: good, 2: good-moderate, 3: 

moderate, 4: moderate-poor, 5: poor) (Table 3.4). The determining factor for the 

preservation quality level was the lowest preservation value in the E-LGM time slice of 

every core. Each original MAT and IKM EQL with preservation level moderate (3) was 

downgraded by one level; cores with a preservation level moderate-poor (4) were assigned to 

the lowest level EQL 3. 

The assignment of chronostratigraphic quality levels (CQL) follows the suggestion of 

Mix et al. (2001) and Kucera et al. (2005a), originally proposed for the multiproxy 

reconstruction of the last glacial ocean surface (MARGO). Considering specific limitations 

concerning the dating of Southern Ocean sediment records (e.g. concerning the generation of 

radiometric dates and establishment of continuous δ18O records), we propose the following 

quality levels modified from the original definition:  

E- LGM Chronozone Level 1: Chronologic control based either on at least one radiometric 

date within the interval 19-23 cal. kyr BP, such as reservoir-corrected 14C-yr dates or two 

bracketing radiometric dates of any kind within the interval 11 and 30 cal. kyr BP 

accompanied by benthic δ18O records allowing for alignment to the LR04 stack. 

E-LGM Chronozone Level 2: Chronologic control based on two bracketing radiometric dates 

of any kind within the interval 11 and 30 cal. kyr BP or by correlation of non-radiometric 

data (δ18O stratigraphy, diatom abundance pattern, elemental parameter) to similar regional 

records that have been dated to match the level 1 protocol. 

E-LGM Chronozone Level 3: Chronologic control based on other stratigraphic constraints 

(diatom abundance patterns, elemental parameter) that are correlated to similar records dated 

elsewhere to match the level 2 protocol. 

E-LGM Chronozone Level 4: Chronologic control complicated by low sedimentation rates 

and less distinctive parameters for detailed correlation with records that match the level 1-3 

protocols. 

 For general quality information of each E-LGM value, the chronostratigraphic and 

estimate quality level were combined following the approach of Gersonde et al. (2005) who 
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defined two average quality levels (AQL) (Table 3.4). AQL1 includes values with CQL and 

EQLs 1 or 2, whereas all other combinations are stated as AQL2. As we are using two 

different transfer functions, AQL levels were defined independently for both reconstructed 

variables. These levels concern the minimum SSST and maximum WSI concentrations as 

these values are as well used for the better visualization of differences concerning 

temperature and sea-ice reconstructions. 

 

3.4 Results 

3.4.1 Age models and sedimentation rates  

 The majority of the age models reach CQLs of 1 and 2, thus exhibiting a high 

accuracy and a very reliable assignment of the E-LGM time slice (Fig. 3.3a, Table 3.4). 

Overall, our age models show distinctly lower sedimentation rates during the last glacial 

compared to the Holocene (Fig. 3.2). Exceptions are records from the eastern Pacific sector 

(e.g. PS75/271-1 and PS75/274-1) with similar Holocene and last glacial sedimentation rates. 

The mapping of average sedimentation rates obtained for the E-LGM time slice displays a 

W-E gradient, with highest sedimentation rates in the eastern Pacific sector. Although local 

differences in sedimentation rates will depend on the specific topographic settings of the core 

sites, the general trend indicates increased sedimentation rates in a zone north of the E-LGM 

winter sea-ice edge (40% concentration) which corresponds to the modern northern POOZ 

and adjacent PFZ (Fig. 3.4).  

Figure 3.4: Average sedimentation rates at studied core locations during the E-LGM time slice (cm/kyr). Fronts 
and sea-ice edges as in Fig. 3.1. 
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3.4.2 EPILOG LGM summer surface conditions  

 The majority of SSST-estimates derived from TF IKM-D336/29/3q reach quality 

levels 1 and 2 (communality >0.7) (Fig. 3.3b), thus can be rated as reliable results. At 3 core 

sites located in the vicinity of the E-LGM WSI edge, estimates reach less reliable EQLs of 3 

(Table 3.4). Estimates averaged over the E-LGM interval and obtained minimum values are 

presented in Table 3.5. Here we focus our SSST presentation on the minimum value 

estimated in the E-LGM time slice to document the maximum deviation from modern 

conditions. The estimates display a S-N increase in E-LGM temperatures, with lowest values 

estimated at the southernmost sites, located in the modern POOZ and highest SSSTs, 

reaching up to 5.1°C, in the modern southern SAZ (Fig. 3.5a.). However, the SSSTs obtained 

from the southern sites may be biased towards warmer values, as an effect of selective 

dissolution of diatom species resulting in a relative increase in strongly silicified taxa such as 

Fragilariopsis kerguelensis and/or Thalassiosira lentiginosa (Shemesh, et al., 1989). These 

species are prominently deposited in areas with warmer Southern Ocean surface waters 

(Crosta et al., 2005; Esper et al., 2010). Affected sites include PS58/270-5, PS75/085-1 and 

PS75/091-3 that are located south of the E-LGM winter sea-ice edge (40% concentration), 

according to our reconstruction (Fig. 3.6). Based on the modern relationship between summer 

temperature and WSI concentration (Fig. 3.1b, c), the E-LGM SSSTs at these sites probably 

reached ~0-1°C. Thus, the estimated temperatures at the southern sites are in the range of the 

TF error. Assuming colder SSSTs in the range of the modern temperatures, the anomalies are 

relatively stronger, yet fitting into the regional range (Table 3.5). Further north, in the modern 

POOZ and adjacent PFZ, the E-LGM SSST estimates range between 1 and 1.5°C, which is 

representative for a northward displacement of the glacial POOZ. Our new E-LGM estimates 

allow for an allocation of E-LGM isotherms in the Pacific sector, which can be augmented by 

SSST estimates from previous work (Fig. 3.5, for site numbers and reference see Tab. 3.1). 

This accounts especially for the area of the modern SAZ, which is not well documentable by 

diatom-based proxies. The enhanced data set permits for the localization of E-LGM 

isotherms ranging from 0°C to 4°C (Fig. 3.5a). The 4°C value corresponds to the average 

surface temperature at the modern Polar Front in austral summer (Fig. 3.1b). Thus, E-LGM 

cooling in the modern PFZ reached 2 to 3 K compared to present (Figs. 3.5b, 3.7). Strongest 

cooling occurred in the area of the modern SAZ reaching values close to 5 K. (Figs. 3.5b, 3.7; 

Table 3.5). 
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Figure 3.5: (a) Estimated E-LGM SSST and SSI compared to modern HASO SSST (Olbers et al., 1992) and 
modern SSI (Reynolds et al., 2002, 2007) with averaged reconstructed SSST isotherms (in °C). Numbers 
indicate minimum temperatures within the E-LGM time slice for cores in this study (bold) and from literature 
(italic, see Table 3.1, Table S3.2). GSSTF: Glacial Southern Subtropical Front. Color scale of core symbols 
represents the color code of the HASO SSST. (b) Averaged SSST anomaly (E-LGM/modern) isotherms (K) 
with single values for cores in this study (bold) and from literature (italic, see Table 3.1, Table S3.2). Values in 
parentheses represent probably underestimated temperatures and anomalies, respectively. 
 

The estimation of the SSI extent is hampered by the fact that no cores allowing for 

suitable E-LGM reconstruction are available from offshore sites south of the studied area. 

This is due to very low Late Quaternary sedimentation rates not allowing for adequate 
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stratigraphic discrimination of the E-LGM together with the absence of microfossil records 

allowing for paleoceanographic reconstruction (Gersonde, 2011). Summer sea-ice indicators, 

such as Fragilariopsis obliquecostata and Fragilariopsis sublinearis (Gersonde and Zielinski 

2000), show low abundances (<1.5%) during the E-LGM time slice in all studied cores. 

Hence, the relative abundance of both species in the studied southernmost cores is not 

indicative enough for the presence of SSI. 
 

Table 3.5  Summary of EPILOG LGM summer SST (SSST) and sea-ice (WSI) concentration estimates derived 

from diatom assemblage information. 

 
Values in parentheses represent suggested SSSTs interpolated from the modern temperature to sea ice 
concentration and corresponding anomalies. 
aModern SSST after Olbers et al. (1992) 
bPreservation index: 1: good, 2: good-moderate, 3: moderate, 4: moderate-poor, 5: poor (classification according 
to Zielinski, 1993) 

 

3.4.3 EPILOG LGM winter surface conditions 

The most important parameter for E-LGM winter conditions is the reconstruction of 

the winter sea-ice extent based on TF-derived WSI concentrations. Such reconstruction of 

WSI concentrations with TF MAT-D274/28/4 reaches estimation quality levels 1 or 2 (MAT 

dissimilarity index <4.58) at the majority of the studied sites (Fig. 3.3c). At 5 locations the 

dissimilarities were higher and thus resulting in less reliable estimates. This includes sites in 

Core 

E-LGM 
depth 
interval 
[cm] 

E-LGM 
average 

sed. 
rate[cm] 

E-LGM 
Sample 
number 

 

Modern 
SSST    
(°C)a 

E-LGM 
SSST 
mean 
(°C) 

E-LGM 
SSST 
min 
(°C) 

ΔLGM 
mean 

/mod. 
SSST 
(K) 

ΔLGM 
min /mod. 

SSST 
(K) 

E-LGM 
Sept. 
mean 

SI conc. 
(%) 

E-LGM 
Sept. max 
SI conc. 

(%) 

E-LGM 
Preser- 
vation 

qualityb 

PS58/270-5 143-173 8.7 3 2.6 1.5 1.2 (1) -1.1 -1.4 (-1.6) 15.9 24.1 4 

PS58/271-1 243-285 14 4 3.0 1.9 1.4 -1.1 -1.6 23.9 46.4 3 

PS58/274-1 278-439 28 16 3.9 1.9 1.3 -2.0 -2.6 19.0 28.3 3 

PS75/051-1 18-21 0.9 1 7.7 4.3 4.3 -3.4 -3.4 1.2 1.2 2 

PS75/054-1 64-87 5.8 2 6.3 2.6 2.3 -3.7 -4.0 12.1 18.5 3 

PS75/056-1 61-75 3.8 3 6.8 2.8 2.0 -4.0 -4.8 5.6 8.7 2 

PS75/059-2 59-62 1.0 1 7.5 5.1 5.1 -2.4 -2.4 1.4 1.4 2 

PS75/064-1 156-173 4.4 3 0.7 0.5 0.3 -0.2 -0.4 33.9 78.7 2 

PS75/072-4 151-157 1.7 2 2.1 1.0 0.9 -1.1 -1.2 51.9 72.4 3 

PS75/073-2 117-122 1.0 2 2.5 1.0 0.9 -1.5 -1.6 15.5 24.6 3 

PS75/076-2 14-17 1.1 1 5.7 3.0 3.0 -2.7 -2.7 9.9 9.9 2 

PS75/082-1 83-105 5.6 5 2.5 1.7 1.3 -0.8 -1.2 12.8 27.1 3 

PS75/085-1 545-551 1.6 2 0.3 0.7 0.5 (0)  0.4  0.2 (-0.3) 26.2 21.3 4 

PS75/091-3 187-196 1.9 2 1.4 1.0 0.5 (0) -0.4 -0.9 (-1.4) 47.4 70.8 4 

PS75/093-1 92-102 3.5 2 3.7 1.3 1.3 -2.4 -2.4 6.1 6.4 3 

PS75/096-4 18-21 1.0 1 5.1 2.2 2.2 -2.9 -2.9 2.6 2.6 2 

PS75/097-4 17-27 2.8 2 4.0 1.6 1.4 -2.4 -2.6 6.8 6.8 2 
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areas at or south of the E-LGM WSI edge (40% concentration) (PS75/270-5, PS75/085-1), 

where biogenic opal dissolution leads to relative enrichment of strongly silicified diatom 

species not indicative of sea ice (e.g. Fragilariopsis kerguelensis) and bias the TF-estimates 

towards smaller concentration values (Fig. 3.6a, Tables 3.4, 3.5). At these sites E-LGM 

sedimentation rates are strongly reduced (Figs. 3.2, 3.4), thus showing a relation between sea-

ice occurrence and open ocean biogenic sedimentation similar to modern conditions. Esper 

and Gersonde (2014a) show that the deposition of biogenic opal, which represents the major 

component of modern open ocean sediments in the Southern Ocean (Lisitzin, 1985), drops to 

0-40% in areas with >75% WSI concentration. 

The WSI concentration pattern displays differences between the eastern and western 

sector of the Pacific Southern Ocean (Figs. 3.6, 3.7; Table 3.5). In the area north of the 

modern Ross Gyre the WSI estimates suggest a narrow zone with decreasing concentrations 

from >40% (average sea-ice edge) to <15% (maximum sea-ice extent). A rather sharp drop in 

sea-ice concentrations marking the E-LGM sea-ice extent would be consistent with the 

pattern of sea-ice concentration decline at the modern Antarctic sea-ice edge (Worby and 

Comiso, 2004). This zone is tightly related to increased S-N gradients of the E-LGM SSSTs 

following the extent of a distinct underwater topographic feature, the Pacific-Antarctic Ridge 

(Figs. 3.1a, 3.5-3.7). 

In contrast, our estimates from the eastern sector suggest no steep S-N decline in WSI 

concentration. North of sites indicating the average sea-ice edge (40% concentration), we 

observe a broader zone with concentration >15%, extending into the area of the southern East 

Pacific Rise (Figs. 3.1a, 3.6, 3.7). This is not interpreted to represent a broader extent of the 

marginal sea-ice zone, but to be indicative of increased variability in northward WSI extent 

during the E-LGM in this area. The zone of variable WSI extent in this area in the northern 

Amundsen-Bellingshausen Sea may exceed ca. 5° in latitude, thus more than 500 km (Figs. 

3.6, 3.7). As such, the northward expansion of the WSI shows an E-W differentiation, with a 

WSI northward expansion by ca. 5° in latitude in the western Pacific sector (mirroring the 

extent of the Pacific-Antarctic Ridge) and a northward shift of the average WSI by ca. 5° in 

latitude together with an up to 10° latitudinal displacement of sporadic WSI extent in the 

eastern sector. The zone of sporadic extent is bounded to the north by the topographic feature 

of the southern East Pacific Rise (Figs. 3.1, 3.6, 3.7).  

Because we refrained from the estimation of winter sea surface temperature (WSST) 

using the transfer function technique, we approximated the WSST in our study area assuming a 
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Figure 3.6: (a) Estimated E-LGM WSI distribution compared to modern WSI distribution and WOA09 winter 
SSTs. Numbers indicate maximum estimated sea-ice concentration during the E-LGM time slice from this study 
(bold) and the literature (italic, see Tab. 3.1, S3.2); values in parentheses represent underestimated values. (b) 
Estimated E-LGM winter SSTs from this study (bold, implied from modern day relationship between WSI and 
underlying temperature from this study) and literature values (italic, see Tab. 3.1, S3.2); GSSTF: Glacial 
Southern Subtropical Front. Color scale of core symbols represents the same color code as the WOA09 WSST. 
E-LGM WSI estimates include the maximum winter sea-ice extent (>15% September concentration) and the 
average sea-ice concentration (40% concentration). Modern winter sea-ice edges after Reynolds et al. (2002, 
2007).  

 

similar relationship between the concentrations of WSI and underlying sea surface 

temperature during the E-LGM than at present. The modern relationship between WSST and 
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WSI at a concentration of 40% (average WSI edge) ranges from -1.5° to 0.5°C and at 15% 

WSI concentration between 0° and 1°C (Locarnini et al., 2010) (Fig. 3.1c). In areas affected 

by WSI at higher concentration the WSSTs drop to -1.8°C. Thus, we approximated average 

WSSTs during the E-LGM around -1°C at core sites located at the average WSI edge and 

~0.5°C in the zone of the maximum sea-ice extent (Figs. 3.6, 3.7). This set of 

approximations for the Antarctic cold-water realm can be combined with winter temperatures 

derived from foraminiferal and diatom assemblages (Moore et al., 1980; Sikes et al., 2002; 

Crosta et al., 2004; Kucera et al., 2005b; Barrows and Juggins, 2005) to construct a broader 

view of the WSST regime during the E-LGM in the South Pacific sector (Fig. 3.6).  

 

3.5 Discussion 

3.5.1 Last glacial surface water temperatures in the Pacific Southern Ocean sector 

A comparison of our diatom-TF derived data with results from the few previous 

studies in our study area shows that most of the previous results yield generally slightly 

warmer temperatures compared with our results. This accounts for reconstructions based on a 

foraminiferal TF (Moore et al., 1980) at the Eltanin core sites ELT11-1, ELT11-2 and 

ELT11-3 and for diatom-based TF results presented by Gersonde et al. (2005) from the same 

sites and other Eltanin cores (Fig. 3.5, Tables 3.5, S3.2). Part of the mismatch, which may 

challenge the utility of these data, may be related to the poor stratigraphic delineation of the 

LGM available for the Eltanin cores. However, we find strong coherence between our results 

and LGM SSTs from core ELT11-2 (1.7°C) derived by Mg/Ca paleothermometry from 

planktic foraminifers (Mashiotta et al., 1999) (Fig. 3.5, Table S3.2).  

 Despite potential deficiencies concerning the comparability between different 

reconstruction methods (e.g. alkenones, Mg/Ca, foraminifer and radiolarian transfer 

functions) and stratigraphic LGM determinations the combination of our new diatom-based 

results of E-LGM SSSTs with data from previous studies (Mashiotta et al, 1999; Sikes et al., 

2002; Pahnke et al., 2003; Barrows and Juggins, 2005; Gersonde et al., 2005; Kim et al., 

2002; Kucera et al., 2005b; Pahnke and Sachs, 2006; Romero et al., 2006; Kaiser et al., 2008; 

Kaiser and Lamy, 2010; Caniupán et al., 2011; Ho et al., 2012; Lüer et al., 2009) allows for 

the generation of a consistent pattern of the latitudinal zonation of surface temperatures in the 

Pacific sector of the Southern Ocean during the LGM (Figs. 3.5, 3.7; Table S3.2). North of 

the Pacific-Antarctic Ridge (around the modern APF) the 1° and 2°C-isotherms display a 
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narrow pattern, closely aligned to the bottom topography. Further north, in the area of the 

SW-Pacific Basin (representing part of the modern PFZ and SAZ), the latitudinal SSST 

gradients are weaker and the reconstructed surface temperatures suggest a displacement of 

the 4°C-isotherm as far north as the northern Campbell Plateau-Bounty Through (ca. 46°S) 

(Sikes et al., 2002; Pahnke et al., 2003; Barrows and Juggins, 2005; Pahnke and Sachs, 2006; 

Lüer et al., 2009). Such displacement would stretch the sea-ice free cold-water zone of the 

modern Southern Ocean from ca. 3-4° in latitude (ca. 300-450 km) (Fig. 3.1b) to more than 

10° in latitude (>1000 km) in the glacial ocean in the area north of the outflow area of the 

Ross Gyre (Figs. 3.5a, 3.6, 3.7). Additional support for strong northward extension of the 

cold-water realm comes from the presence of ice rafted debris events recorded in glacial 

sediments from Campbell Plateau (Carter et al., 2002). Furthermore, the SST cooling in the 

present STZ and northern SAZ may be supported by less warm water transport to the eastern 

NZ coast due to a weakening of the East Australian Current (EAC), indicated by steeper 

temperature gradients during the LGM in the tropical south western Pacific Ocean (Felis et 

al., 2014). A relative cooling (by >4 K) restricted to the area north of the Ross Sea and 

extending to ca. 45°S was also suggested by CLIMAP (1981). However, this was based on 

reconstructions from a very limited number of sites and does not reach values ranging around 

7-8.5 K as reported from the Campbell Plateau (Figs. 3.5, 3.7; Table S3.2). 

  In contrast, in the eastern sector of the Pacific Southern Ocean the displacement of 

the SSST-isotherms displays a more uniform pattern with a general northward shift of the 

1°C-isotherm by ca. 2° in latitude, and a shift of the 2° and 4°C-isotherms by ca. 5° in 

latitude. The data available between 100° and 130°W indicate that the 4°C-isotherm was 

located around 54°S in this sector. Thus the location of the 4°-isotherm, which corresponds 

to the SSST at the modern APF (Dong et al., 2006, Fig. 3.1b), was closely related to the 

topographic feature of the Eltanin-Tharp Fracture Zone, which bounds the East Pacific Rise 

to its South (Figs. 3.5b, 3.7). Only little information is available on LGM temperatures in 

the open South Pacific corresponding to the warmer modern SAZ. This curtails extensive 

LGM reconstructions from that zone. However, SST estimates generated by Luz (1977), 

Moore et al. (1980) and Tapia et al. (2015) suggests a distinct S-N LGM-temperature 

increase around ca. 47° in latitude at the East Pacific Rise (Figs. 3.5a, 3.7; Table S3.2). North 

of this zone with enhanced SST gradients, LGM-estimates indicate only minor SST cooling 

or even slight SST warming compared with modern conditions (Figs. 3.5, 3.7, Table S3.2). 

Similarly, a temperature increase by >4 K is reported from a narrow zone off the South Island 

of New Zealand (NZ) located around 44°-43°S (Figs. 3.5a, 3.7), as presented by Sikes et al. 
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Figure 3.7: Schematic representation of modern SSST and WSI variations (Olbers et al., 1992, Reynolds et al., 
2002, 2007) and E-LGM SSST and WSI variations on two meridional transects at 120°W and from 160°W to 
170°E. Indicated are the locations of the oceanic fronts and ACC zones at modern conditions (according to Orsi 
et al., 1995) and estimated for the E-LGM together with the maximum and average winter sea-ice extent. The 
glacial fronts and zones represent conditions associated with the corresponding modern equivalents. Prefix M 
indicates modern front or zone, prefix G indicates glacial front or zone: APF, Antarctic Polar Front (~4°C); 
SAF, Subantarctic Front, STF, Subtropical Front; PFZ, Polar Front Zone; SAZ, Subantarctic Zone; POOZ 
Permanent Open Ocean Zone; SACCF, Southern Antarctic Circumpolar Current Front; GSSTF, Glacial 
Southern Subtropical Front; PAR, Pacific-Antarctic Ridge; CP, Campbell Plateau; CR, Chatham Rise; EPR, 
East Pacific Rise. 
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(2002), Barrows and Juggins (2005), Kucera et al. (2005b), and Pahnke and Sachs (2006) 

(Table S3.2). Such enhanced SST gradients have been described from the modern oceanic 

fronts, e.g. the STF and SAF in different sectors of the Southern Ocean (Graham and De 

Boer, 2013), a pattern that is however not clearly discernible in SST compilations integrating 

data primarily collected during 40-50 years of observation (Olbers et al., 1992; Locarnini et 

al., 2010) (Fig. 3.1b, c) due to the inter-annual variability of the location of fronts that may 

vary over 5° in latitude (e.g. Moore et al. 1999; Graham and De Boer, 2013). The >4 K SST 

cooling reconstructed for the area off the NZ South Island (Fig. 3.5b, Table S3.2) is in the 

range of the LGM temperature depression of 6-6.5 K required to match high-resolution 

simulations of the NZ Southern Alps LGM ice field with geological field data (Golledge et 

al. 2012). As such the glaciation of the NZ South Island during the LGM is related to the 

stretching of the cold-water zone north of the outflow area of the Ross Gyre, which reduced 

air temperatures over the South Island, and potentially led to modest reduction in atmospheric 

moisture (Golledge et al., 2012). The effect of potential feedbacks between the NZ ice field 

and the surface ocean temperatures around NZ await further numerical simulations. In 

contrast to the data and model-based evidence for distinct cooling during the last glacial on 

and around the NZ South Island, Neil et al. (2004) suggested the presence of a stable warm 

water pool located in the center of the Campbell Plateau, although they admit that waters 

around this pool were distinctly colder. Surface water temperatures were derived from the 

δ18O record at two sites with very low sedimentation rates located on the plateau interior. In 

the light of later studies from the area off NZ (Barrow and Juggins, 2005; Pahnke and Sachs, 

2006; Lüer et al., 2009) the presence of such an isolated warm surface water pool with 

temperatures exceeding Holocene SSTs seems rather unlikely. 

 Prominent LGM-cooling was also reported from sediment cores recovered in the area 

straddled by the Humboldt Current, which flows north along the west coast of South America 

(Fig. 3.5). The Humboldt Current links antarctic waters with the subtropical-tropical realm 

and exerts strong control on the climate in western South America. The cooling with 

temperature reductions by up to 7°C (ODP1233, Kaiser and Lamy, 2010) is most likely the 

result of enhanced northward deflection of water masses imprinted with up to 4°C cooler 

SSSTs than today, as presented here for the first time based on a more extensive set of LGM-

data from the area of the modern ACC in the Pacific sector. It represents a strong extension 

of the polar Pacific cold-water realm along western South America during the E-LGM. The 

impact of the enhanced northward advection of polar cold water is most noticeable in the 
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Eastern Equatorial Pacific cold tongue, where it contributed to significant cooling during the 

E-LGM (Feldberg and Mix, 2002; Kucera et al., 2005b; Morey et al., 2005; Dubois et al., 

2009). Interestingly, colder LGM temperatures off the South American coast were already 

reconstructed by CLIMAP (1981), yet the overestimation of SSSTs in the eastern Pacific 

sector prohibited the link between the high- and low-latitude cooling. Similar to the 

glaciation off the NZ South Island, the pronounced cooling off the Chilean coast can be 

associated with growth of the Patagonian ice sheet during the LGM (Kaiser and Lamy et al., 

2010).  

 While estimates of LGM-WSST from our study represent an approximation assuming 

a similar relationship between the reconstructed concentration of WSI and underlying sea 

surface temperature during the E-LGM and at present (thus can only be generated for areas 

affected by sea ice), TF-based LGM-WSSTs are available from the modern Subantarctic 

area, all generated from planktic foraminifer records (Luz, 1977; Sikes et al., 2002; Barrows 

and Juggins, 2005, Kucera et al; 2005b) (Fig. 3.6b, Table S3.2). Although representing only 

small data sets, the combination of both yields a consistent pattern of LGM-WSST 

suggesting a distinct northward expansion of the Antarctic cold-water realm in both, the 

western and eastern Pacific sectors of the Southern Ocean. The TF-based LGM-WSSTs 

imply that the location of the zone of enhanced SST gradients recorded in close relation to 

the northern Campbell Plateau-Bounty Trough area and around 45°S at the East Pacific Rise 

remained stable during LGM summer and winter. Considering the apparent seasonal stability 

of its location and the related distinct SST shift from ca. 4-5°C to ca. 12-16°C in LGM 

summer and from ca. 2-3°C to ca. 8-12°C in LGM winter we propose to name the zone the 

Glacial Southern Subtropical Front (GSSTF). Although the modern STF, characterized by a 

SST shift from ca. 11° to 18°C (Belkin and Gordon, 1996; also see Fig 3.1b, c for SST-STF 

relationship) is placed north of our GSSTF, according to Orsi et al. (1995) (Fig. 3.1), we 

think that the distinct increase from values characteristic of temperatures around the modern 

APF to SSTs >11°C warrants such designation. South of the GSSTF, in the glacial POOZ, 

the SST-seasonality is assumed to range between 2 and 3°C, which is similar to the SST 

seasonality in the modern POOZ (Fig. 3.1b, c). Around the glacial WSI edge the SST-

seasonality displays lower values, that do not exceed 2°C, resembling the seasonality in the 

modern seasonal Sea Ice Zone.  

 

 

 



 Chapter 3 – Manuscript 1 

 
 

66 

3.5.2 Last glacial sea ice in the Pacific Southern Ocean sector 

 Our reconstruction of E-LGM-WSI concentration substantiates former reconstructions 

of the WSI extent during the LGM, which were based on a smaller and less representative set 

of sample sites and less established dating (CLIMAP, 1981; Cooke and Hays, 1982; Crosta et 

al., 1998a, b; Gersonde et al., 2005). In general, our findings are close to the former 

reconstructions placing the maximum extent of the LGM winter sea-ice field to a latitude 

north of 60°S in the western Pacific sector and to ca. 60°S in the eastern sector (Gersonde et 

al., 2005) (Figs. 3.6a, 3.7). However, our reconstructions document more precisely the 

distribution of the average sea-ice edge during the last glacial winter locating this edge 

around 60°S, and suggest a close relationship with bottom topography in the area of the 

Pacific-Antarctic Ridge. Our interpretation of a rather variable extent of the WSI in the 

northern Amundsen-Bellingshausen Sea is supported by former data presented by Crosta et 

al. (1998a, b) and summarized in Gersonde et al. (2005). The finding of a northward 

expansion of the LGM-WSI field by ca. 5° in latitude, relative to modern conditions (Fig. 

3.6), is corroborated by bromine depletion measurements from the Talos Dome ice core 

(TALDICE) recovered in the Ross Sea sector of East Antarctica (72°49´S, 159°11´E) 

interpreted to indicate a ~500 km farther north located sea-ice edge (Spolaor et al., 2013).   

 Our study does not provide new data concerning the extent of the LGM-SSI which 

hampers estimations of LGM sea-ice seasonality in the Pacific Southern Ocean sector as this 

has been proposed for the Atlantic and Indian sectors (Gersonde et al., 2005). The yet only 

estimation of LGM-SSI extent in the Pacific sector was presented by CLIMAP (1981) 

suggesting that perennial sea-ice field covered the Pacific Southern Ocean during the LGM as 

far north as 60°S. CLIMAP (1981) reconstructed the SSI extent using the boundary between 

silty diatomaceous clay and diatom ooze, assumed to mirror the 0°C isotherm (Hays et al., 

1976). However, such relationship is not supported by findings of Burckle et al. (1982) who 

related the shift in sedimentary facies with the late spring sea-ice extent, a pattern supported 

by the comparison of sea-ice extent data and biogenic opal deposition in surface sediments 

showing a close relationship to the extent of the winter-spring sea-ice field (Geibert et al., 

2005). The CLIMAP (1981) scenario would imply that seasonal variability in sea-ice extent 

was strongly decreased or nearly absent during the LGM, thus in strong contrast to modern 

conditions. Decreased or absent sea-ice variability would not be in favor of the generation of 

deep and bottom water in the SO, assumed to be mainly generated by sea-ice related salt 

injection during the glacial (Schmittner, 2003; Shin et al., 2003). Although we have no clear 
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data on the LGM-SSI extent in the Pacific sector, the scenario proposed by CLIMAP (1981) 

appears unlikely and it would be in contrary to findings from the Atlantic and Indian sectors, 

which point to distinctly increased seasonal variability in the LGM sea-ice extent (Gersonde 

et al., 2005).  

 Interestingly, we observe in last glacial sediments, recovered at the Pacific-Antarctic 

Ridge from water depths between ~2900-3800 m (PS75/072-4, PS75/073-2, PS75/085-1) 

(Fig. 3.1), the presence of well-preserved planktic foraminifers (N. pachydermasin). This 

occurrence is reflected by increased calcite counts in the XRF-records (Fig. S3.3). The sites 

were affected by seasonal sea ice during the LGM and glacial sedimentation rates are 

strongly decreased (Figs. 3.2, 3.6). Since the foraminifers from the glacial sections allowed 

the establishment of decent oxygen isotope records and AMS14C measurements (Fig. 3.2, 

Table 3.3), it appears unlikely that they have been reworked from older sediments. 

Neogloboquadrina pachydermasin is the only known foraminifer adapted to dwell in or close 

to sea ice (e.g. Spindler and Dieckmann, 1986), thus potentially presents an additional 

indicator of past sea-ice occurrence. Specimens recorded from antarctic sea ice comprise 

specific morphotypes. They mainly represent juvenile and subadult N. pachydermasin stages, 

lacking typical adult morphological features such as compact, thick walled tests with more or 

less quadrate shape (Spindler and Dieckmann, 1986; Berberich, 1996). Microscopic 

inspection reveals that the specimens preserved in our records are typical adult stages, thus 

lack the morphological features, indicative for specimen retrieved from sea ice. As such, the 

preserved N. pachydermasin cannot be used as indicator of sea-ice occurrence, however it 

cannot be excluded that the specimen were part of the sea-ice community at an earlier stage 

of their life cycle.  

 

3.5.3 The Pacific sector as part of the glacial Southern Ocean and beyond  

 Our new set of data from the Pacific sector fills a critical gap in the documentation of 

Southern Ocean surface parameters (temperature and sea ice) during the LGM, as requested 

e.g. by Gersonde et al. (2005). This allows for a more detailed evaluation of Southern Ocean 

basin-basin differentiations and exchange pattern, mechanisms controlling surface ocean 

parameters and their distribution, as well as the discussion of the impacts on southern-low 

latitude exchange processes and atmosphere-ice related impacts or feedbacks. The new data 

are also useful to further validate LGM scenarios derived by numerical modeling.  
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 The combination of our Pacific SST data compilation with the data presented by 

Gersonde et al. (2005) from the Atlantic and Indian sectors of the Southern Ocean reveals a 

distinct cooling in all Southern Ocean sectors during the last glacial. This is in contrast to 

Gersonde et al. (2005), who assumed that the LGM cooling was less developed in the Pacific 

sector, a view that was however based on a limited number of data. Circum-Antarctic cooling 

was strongest (>4 K) in the area of the modern SAZ, except for the Indian sector where 

strongest cooling extends into the area of the modern Subtropical Zone (Fig. 3.8). The 4°C 

isotherm, which represents the SSST at the modern APF, was shifted northward by >10° in 

latitude north of the Ross Sea, reaching a latitude close to 45°S in the area of Campbell 

Plateau, straddled at present by the STF (Fig. 3.1). This locates the 4°C isotherm at a latitude 

similar to the Atlantic and Indian sectors, but in both sectors this area is in the vicinity of the 

modern SAF or the southern SAZ (Gersonde et al., 2005). Such pattern suggests that the 

strongest northward stretching of the Antarctic cold-water realm (SSST <4°C) during the 

LGM occurred in the sector north of the Ross Sea. In the eastern Pacific sector of the 

Southern Ocean the 4°C isotherm is located further to the south, around 55°S (Fig. 3.5a). 

Such asymmetric pattern of the LGM-ACC in the Pacific sector is comparable to modern 

conditions in the SE Atlantic sector, where the northward extension of the Malvinas-Falkland 

Current yields a distinct protrusion of antarctic colder waters belonging to the Subantarctic 

Zone temperature regime (Orsi et al., 1995; Sokolov and Rintoul, 2009).  

In the Pacific sector the northward enlargement of the winter sea-ice field 

(concentration >40%) by ca. 4 – 5° in latitude was less developed compared to the 

displacement of the average winter sea-ice edge in the Atlantic and Indian sectors, where the 

data presented by Gersonde et al. (2005) suggest a shift by up to 10° in latitude (e.g. in the 

Indian sector) during the LGM. Also CLIMAP (1981) presented stronger winter sea-ice 

expansion in the Atlantic and Indian sectors. Considering that the CLIMAP (1981) estimate 

of the last glacial extent summer sea-ice field is rather unlikely, the seasonal SIZ was 

strongly expanded during the LGM, as documented by Gersonde et al. (2005), Allen et al. 

(2011) and Collins et al. (2012).  

The Southern Ocean areas governed by large clockwise circulating cold-water gyres, 

the Ross Gyre in the Pacific sector and the Weddell Gyre in the Atlantic sector, display a 

similar cooling pattern (Fig. 3.7). For the Atlantic sector, Gersonde et al. (2005) postulated a 

(sporadical) extended summer sea-ice field related to an extended LGM Weddell Gyre. 

Potentially, but not proved by data, a similar pattern was also established in the Ross Sea 

sector. 
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Because of the lack of appropriate sediment records our study cannot include data on 

sea surface temperature and sea-ice extent in the Drake Passage. Such data are critical 

because the Drake Passage represents the connection pathway between the Pacific and the 

Atlantic sector and constitutes, besides the deep Tasmanian pathway, the second bottleneck 

of antarctic circumpolar circulation shaping the structure of the ACC, which plays a crucial 

role in global overturning circulation. However, our data from the east Pacific together with 

findings from the Scotia Sea (Collins et al., 2012) allow for a rough assessment of the SST 

and sea-ice regime established during the last glacial in this region, thus the ACC structure 

during the last glacial. Considering that maximum temperatures of surface water entering the 

Drake Passage do not exceed 4°C it can be suggested that the ACC did not include surface 

waters with temperatures exceeding those established during austral summer at the modern 

APF. This is in contrast to modern conditions with ACC surface temperatures including the 

PFZ temperature regime and beyond. Considering the presence of cold surface temperatures 

(<4°C) and the extended winter and summer sea-ice fields in the Scotia Sea (Collins et al., 

2012), it can be speculated that the LGM winter sea-ice field covered a large portion, but not 

the entire Drake Passage. The winter sea-ice edge may have been related to the extent of a 

zone (reaching up to 58°S) with LGM flow speeds lower than present, while north of this 

zone LGM flow speeds were similar or slightly faster compared with modern conditions 

(McCave et al., 2014). A larger expansion with possibly total coverage of the Drake Passage 

during winter can be deduced from the sea-ice reconstructions in the Scotia Sea (Collins et 

al., 2012) for a period pre-dating the LGM (31 – 23.5 cal. kyr BP), which falls into the period 

of strongest last glacial southern high-latitude cooling according to ice core (EPICA 

Community Members, 2004; WAIS Divide Project Members, 2013) and marine (Gersonde et 

al. 2003a, b; Crosta et. al., 2004) records. 

The northward deflection of waters >4°C into the coastal current (Humboldt Current) 

off western South America led to distinct colder ACC temperatures compared with the 

temperature regime governing the modern ACC. It can be speculated that the enhanced 

cooling observed in the Atlantic and Indian sectors is closely related to the injection of colder 

waters via the Drake Passage, which intensified the thermal isolation and cooling of the 

Southern Ocean and Antarctic continent during the last glacial.  

Sea surface temperature reconstructions have been used to delineate past locations and 

displacements of specific oceanic fronts, such as the APF and the SAF, assuming that the 

temperature settings of past frontal systems is similar to modern settings (e.g. Govin et al., 

2009; Bostock et al., 2013; Ho et al., 2012). Such reconstruction may lead to questionable 
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results because (1) the proper definition of modern fronts is not only related to water 

temperature or temperature gradients at the oceans surface (e.g. Orsi et al., 1995; Belkin and 

Gordon, 1996; Sokolov and Rintoul, 2009), (2) the relatively low sample spacing makes it 

difficult to depict accurately SST gradients in the paleorecord, especially in regions were the 

location of frontal systems is subject to strong seasonal or interannual variability, and (3) past 

oceanic fronts may be characterized by parameters different from modern conditions. 

However, these restrictions do not preclude estimations of the occurrence and location of past 

Figure 3.8: Compilation of available reconstructed SSST anomalies (E-LGM/modern) in the Southern Ocean 
and adjacent lower latitude areas (red: new data presented in this study; dark blue: see Tab. 3.1, S3.2; yellow: 
Barrows and Juggins, 2005; light blue; Kucera et al., 2005b; white: Gersonde et al., 2005). Isotherms in °C; 
areas with anomalies >4 K shaded in blue. 
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oceanic fronts, e.g. when zones of enhanced SST-gradients can be pinpointed, when 

isotherms are closely related to bottom topography or when sedimentological records allow 

for the identification of zones with different flow speeds. Hypothetically we suggest the 

presence of an oceanic front close to the winter sea-ice edge where SSST range around 1°C, 

and a front at the northern boundary of the glacial ACC, where SSST are on average 4°C 

(Figs. 3.5, 3.6, 3.7). The front close to the glacial sea-ice edge would be comparable to the 

modern SACCF, which bounds the Antarctic sea-ice field to its north. Similar to the modern 

APF, which is in the area of the glacial SACCF, its location in the western Pacific Southern 

Ocean sector would be relatively stable as a result of topographic forcing (Pacific-Antarctic 

Ridge). In the eastern sector the front would cross the abyssal plain of the Amundsen and 

Bellingshausen seas and the lack of topographic forcing could infer stronger dependency on 

atmospheric forcing, making its location less stable. Such pattern is documented by our data, 

suggesting a rather stable location of the WSI edge in the area affected by topographic 

forcing and a more instable edge in the eastern sector (Fig. 3.6). In the Drake Passage and the 

southern Scotia Sea the glacial SACCF could be related to the zone of changing ACC flow 

speed reported by McCave et al. (2014). In the Atlantic sector of the Southern Ocean and to 

less extent also in the Indian sector a glacial front comparable to the modern SACCF would 

be located at a more northern latitude considering the pattern of the glacial winter sea-ice 

edge as reported by Gersonde et al. (2005). The northern boundary of the glacial ACC should 

also be represented by an oceanographic front, as it is true for the modern ACC bounded to 

its north by the SAF (Orsi et al. 1995; Sokolov and Rintoul, 2009). The surface water 

temperature regime at such front can be placed around 4°C, which is equivalent to the SSST 

at the modern APF. While in the Pacific sector the 4°C summer isotherm is well separated 

spatially from the northern sea-ice edge (Figs. 3.5, 3.6), reconstructions from the Atlantic and 

Indian sectors (Gersonde et al., 2005) suggest a closer occurrence of both surface ocean 

parameters. This may infer stronger meridional and seasonal temperature gradients in the 

Atlantic and Indian zone adjacent to the Antarctic winter sea-ice field compared to the Pacific 

sector in the last glacial. The occurrence of a front characterized by SSSTs similar to that of 

the modern APF may be interpreted as indication of a northward displacement of the APF 

during the glacial. Such displacement has been corroborated by an experiment with a fully 

coupled global atmosphere-ocean general circulation model (AOGCM) resulting in a 

latitudinal shift of 5-7° in latitude in the glacial Atlantic sector (Abelmann et al., 2015). The 

experiment defined the front as 2°C isotherm of the averaged temperature between 100-300 

m of water, which represents a commonly used oceanographic definition of the modern APF 
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(Belkin and Gordon, 1996). Our data suggest a similar displacement in the eastern Pacific 

sector (Figs. 3.5, 3.7). In the western sector a stronger displacement would place the 4°C 

front as far north as into the area of Campbell Plateau. Reaching its northernmost location in 

the glacial Southern Ocean the 4°C front would abut on the GSSTF which marks the 

boundary to warmer subtropical surface waters in the glacial ocean. A similar cold-water 

protrusion with cold and warmer water frontal systems narrowing each other can be observed 

in the modern Southern Ocean in the area of the Falkland Plateau (Orsi et al., 1995; Sokolov 

and Rintoul, 2009). The glacial expansion of the Antarctic cold-water sphere resulted in 

enhanced temperature gradients in the zone, which adjoins the warm Southern Hemisphere 

subtropical gyres. Although these gyres were slightly contracted during the glacial, their 

position remained relatively stable and they experienced only minor cooling by <2 K (e.g. in 

the South Atlantic) or became even warmer than present (by 1-2 K) in the South Pacific as 

suggested by the few available data points (MARGO Project Members, 2009). While in the 

Pacific sector we could delineate the presence of a glacial front, the GSSTF, characterized by 

SST gradient of ca. 5-10°C during summer (Fig. 3.5), in the Atlantic and Indian sectors such 

front was not discerned based on the available data (Gersonde et al. 2005). However, also in 

these SO sectors the SST gradients in the zone south of the gyres driven by subtropical highs 

were distinctly increased during the last glacial (Gersonde et al., 2005). Such steepening in 

gradients may enhance atmospheric flow and thus ocean current velocities in this zone. 

Modeling of the last glacial Southern Hemisphere wind fields (four PMIP2 simulations) 

provides mixed results for surface wind speeds compared with modern (pre-industrial) 

conditions (Rojas et al., 2009). Two simulations suggest an overall decrease in summer and 

winter surface wind speeds (HadCM3, IPSL), one shows no change or a slight increase 

(MIROC3.2.2) and one (CCSM3) results in an increase, especially during austral winter (up 

to 5 m/s). Interestingly, the CCSM3 simulation is the only one that considers a pattern of 

glacial SSST anomalies (up to 5°C cooling in the modern subantarctic realm) similar to the 

anomalies reconstructed with proxies (Fig. 3.8). However the CCSM3-based WSI 

concentration presents a slightly overestimated sea-ice extent in comparison with our proxy 

data. 

As outline above, in areas with absent bottom topographic forcing, e.g. over abyssal 

plains in the eastern Pacific Southern Ocean sector, mesoscale activity (e.g. eddies, filaments) 

and atmospheric forcing may impact the location and variability of frontal systems (Sallée et 

al., 2008; Sokolov and Rintoul, 2009) and the extent of the sea-ice field. Wind fields, oceanic 

frontal systems, circulation, upwelling and sea-ice variability in the modern Southern Ocean 



Chapter 3 – Manuscript 1 

 
 

73 

are closely linked to the SAM and ENSO, presenting most important modes of atmospheric 

forcing over the Southern Hemisphere (e.g. Thompson and Wallace, 2000; Yuan, 2004; 

Lefebvre et al., 2004; Sallée et al., 2008; Turner et al., 2009; Thompson et al., 2011). While 

SAM explains up to 30% of atmospheric pressure variability in the Southern Hemisphere 

(Thompson and Wallace, 2000) the tropical Pacific phenomenon ENSO exerts its impact via 

teleconnections (Trenberth et al., 1998). Although numerical simulations suggest an overall 

weaker SAM amplitude during the LGM, which would entrain a weaker Southern 

Hemisphere vortex and Southern Westerly Winds (Kim et al., 2014), we suggest that the 

variability in winter sea-ice extent observed in the eastern Pacific sector (Fig. 3.6) may be 

related to fluctuating atmospheric forcing mechanisms, such as the SAM. Indeed, the model-

derived assumptions of weaker SAM variability and related weaker ACC velocity during the 

LGM are contrasted by proxy data on the ACC flow speed indicating similar or faster ACC 

flow north of the glacial winter sea-ice field (McCave et al., 2014). However, most recent 

data indicate a strong decrease of the northernmost (subantarctic) ACC pathway entering the 

Drake Passage during the glacial (Lamy et al., 2015). 

Another mechanism having potential to stimulate an enlargement of the sea-ice field 

in the eastern Pacific Southern Ocean is linked to effects by cold ENSO (La Niña) events 

(Yuan, 2004). However, estimates of ENSO variability in the LGM yield contrasting results. 

For instance, model and proxy-based reconstructions show either increased (e.g. Otto-

Bliesner et al., 2003) or decreased ENSO variability (e.g. Leduc et al., 2009; Ford et al., 

2015), as well as indications for more El Niño-like (e.g. Koutavas et al., 2002) or La Niña-

like conditions (e.g. Rincón-Martínez et al., 2010; Staines-Urías et al., 2015). Our 

reconstruction of advection of cold waters from the ACC via the Humboldt Current to the 

eastern equatorial Pacific represents a feasible mechanism for a more La Niña-like state in 

LGM.  

In the glacial Atlantic sector the zone of maximum opal deposition (“opal belt”) is 

shifted northward and deposition rates remain to modern deposition (Frank et al. 2000). This 

pattern suggests a northward displacement of the Ekman upwelling zone and thus of the 

glacial Southern westerlies. A similar northward shift of the westerlies in the South Pacific 

realm is in line with proxy-based studies e.g. by Stuut and Lamy (2004), Heusser et al. (2006) 

and summarized by Kohfeld et al. (2013), who suggest either the strengthening or an 

equatorward shift of the Southern Westerlies as the most likely glacial scenarios. Our data do 

not allow to trace the pattern of biogenic opal deposition in the glacial Pacific sector in detail, 

but previous work based on 230Th-normalized biogenic opal flux rates documents a decrease 
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in glacial opal flux in the zone south of the modern APF (Chase et al., 2003; Bradtmiller et 

al., 2009), thus in the zone affected by glacial winter sea ice (Fig. 3.6). Enhanced glacial opal 

burial is reported from the area north of the modern APF (Chase et al., 2003; Bradtmiller et 

al., 2009, Lamy et al., 2014). The sedimentation rates in our cores (Figs. 3.2, 3.4) indicate a 

distinct glacial increase in the area north of the average winter sea-ice edge in the eastern 

Pacific sector (Figs. 3.2, 3.4) which is in concert with increased opal flux data presented by 

Bradtmiller et al. (2009) from the same area. In contrast, cores located in the modern POOZ 

generally display reduced or strongly decreased sedimentation rates (Figs. 3.2, 3.4). This 

provides indication of a northward shifted opal belt during the glacial, but in contrast to the 

Atlantic sector, the available flux data point to a relative decrease in glacial opal burial in the 

Pacific sector (Chase et al., 2003; Bradtmiller et al., 2009). This finding has been related to 

decreased glacial iron fertilization in the Pacific sector as well as to ice cover and the related 

length of the growing season (Chase et al., 2003). Bradtmiller et al. (2009) speculate that the 

relatively low opal burial is indicative of a mechanism called “Silicic Acid Leakage 

Hypothesis” (SALH), which predicts that during glacial excess silicic acid was exported from 

the Southern Ocean to lower latitudes. In the absence of satisfactory evidence that silica 

originating in the Southern Ocean has been buried in equatorial sediments, Bradtmiller et al 

(2009) suspect that the silica export is possibly mirrored in continental margin deposits. 

Indeed, the study of sediment cores from sites off Chile (southern Humboldt current) points 

to increased glacial deposition of biogenic silica, interpreted to reflect enhanced availability 

of silicic acid (e.g. Hebbeln et al., 2002; Romero et al., 2006; Chase et al., 2014). However, a 

stable isotope-based evaluation of the nature of opal deposition off Peru is not supportive of a 

glacial advection of silicic acid from the Southern Ocean as far north as the Pacific equatorial 

latitudes (Ehlert et al., 2013).  

 Numerical simulations of last glacial SST and sea-ice conditions in the Pacific sector 

of the Southern Ocean result in a large range of scenarios. While some simulation match 

relatively well our proxy-based results, others display pictures that are less realistic, when 

compared with our data. Out of four PMIP2 simulations presented by Rojas et al. (2009), 

three show generally too warm temperatures in the Pacific sector of the Southern Ocean 

resulting in lower LMG/modern anomalies than the proxy records. The simulation with 

CCSM3 reproduces well the strongest summer cooling (>4 K) in the modern SAZ, which is 

close to the cooling inferred from proxy data (Fig. 3.8). However, the CCSM3 glacial winter 

SSTs display in part unrealistic data. A cooling up to 5 K in the glacial SIZ thus in an area 

with modern winter SSTs between -1° to -1.8°C (Fig. 3.1b, c) is not feasible. Another model-
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data synthesis reveals a similar distribution of strongest cooling areas as CCSM3 (Annan and 

Hargreaves, 2009). However, the simulation with a fully coupled global atmosphere-ocean 

general circulation model (AOGCM) by Zhang et al. (2013) represent the most reliable 

reconstruction compared to our results, displaying a well established zonal cooling in the 

modern SAZ and the cold-water deflection along the South American continent. The 

simulated sea-ice concentrations by Paul and Schäfer-Neth (2005) reveal a qualitatively 

similar pattern as our diatom-based reconstructions with a more northward extent of WSI in 

the eastern Pacific sector and a sea-ice edge following the topography in the western sector. 

Nevertheless, the expansion of the average WSI edge (40% concentration) is overestimated 

by ~5° in latitude. The estimated SSI extent may be in line with the latitudinal 5° shift of the 

cold-water realm during the LGM summer. Coupled climate model studies of sea-ice extent 

in both seasons reveal strongly variable results among the applied models. In general, the 

different studies based on the same model configurations show relatively similar results 

(Rojas et al., 2009; Roche et al., 2012; Goosse et al., 2013). However, the estimations 

obtained with different simulation techniques range from massive overestimation of WSI and 

SSI (e.g. FGOALS, LCM12, CCSM) to sea-ice field simulations that are close to the proxy 

results (IPSL, HADCM). Yet, small deviations are obvious in the Pacific sector. While the 

WSI reconstructions of Goosse et al. (2013) mirror well the influence of topography in the 

western Pacific sector, the simulations presented by Roche et al (2012) strongly overestimate 

the sea-ice extent in the eastern sector. The most recent sea-ice simulations presented by 

Zhang et al. (2013, AOGCM) and Ballarotta et al. (2013, OGCM NEMO) show a similar 

overestimation of the WSI edge, especially in the eastern Pacific sector and the Drake 

Passage. For example, the reconstructed 90% WSI edge from Zhang et al. (2013) is coherent 

with our proxy based 40% WSI edge. The simulation in Ballarotta et al. (2013) shows an 

almost identical SSI and WSI extent, similar to the outcome of four models (FGOALS, 

CCSM, LCM12, ECBILT) presented by Roche et al. (2012). Our SSST estimates for the area 

with SSI coverage according to the model results show discrepancies e.g. SSI at SSST >0°C 

which make the model-based reconstruction rather unrealistic. The overestimation of sea ice 

in models might be related to problems in reproducing the stability and stratification of the 

water column necessary for sea-ice formation (Goosse et al., 2013). Also crucial for modeled 

sea-ice results is the resolution to precisely represent the dynamical interactions between 

ocean and atmosphere as well as the model simulation of winds that drive sea-ice distribution 

(Roche et al., 2012).   

 



 Chapter 3 – Manuscript 1 

 
 

76 

3.6 Conclusions   

Our study of diatom-derived summer sea surface temperature and winter sea-ice 

concentrations from the Pacific sector of the Southern Ocean contributes to a coherent 

circum-Antarctic picture of temperature and sea-ice distribution during the LGM. Combined 

with previous studies from the Pacific Southern Ocean, our reconstructions show a consistent 

pattern of latitudinal zonation that mirrors similar findings from the Atlantic and Indian 

sectors. The northward shift of the cold-water realm and the associated deflection of water 

masses >4°C into the Humboldt Current eventually led to distinct cooling in the modern 

Antarctic Zone. The transport of such cold-water masses (<4°C) through the Drake Passage 

resulted in significant cooling of the Atlantic and Indian Southern Ocean sectors. This finding 

shows that the glacial cooling in the Southern Ocean was particularly influenced by the water 

masses of the ACC and the signal propagation via the exchange routes between the different 

Southern Ocean sectors.  

Our results indicate that the influence of topographic forcing documented by the 

isotherm and sea-ice trends during the LGM inhibits the determination of frontal movement 

solely based on colder SSTs. As such, the frontal system in the ACC was most likely 

characterized by different physical parameters compared to its modern equivalent. Definite 

frontal assignments in the LGM may thus only be possible in zones with distinct latitudinal 

temperature gradients or in areas with significant boundary conditions like the sea-ice edge. 

In the latter case, the Glacial Southern Antarctic Circumpolar Current Front (GSACCF) 

represents further the southern limit of the glacial opal belt, indicating enhanced glacial opal 

deposition in the Pacific sector at a more northern position, similar to the Atlantic sector. This 

displacement is probably induced by equatorward shifted Westerlies and corresponding 

Ekman upwelling.  

Though closing a prominent gap in Southern Ocean LGM reconstructions, more 

information has to be gained from the Indian sector, the Drake Passage and the Pacific 

Subantarctic Zone. Furthermore, despite the availability of a transfer function for summer 

sea-ice concentration (Esper and Gersonde, 2014a), the reconstruction is still hampered by 

dissolution and low sedimentation rates. Better knowledge of LGM sea-ice seasonality would 

enhance our understanding of deep and bottom water formation and its impact on CO2 

sequestration in the glacial Southern Ocean. Besides some relatively congruent modeled 

LGM reconstructions compared to the proxy estimates, most available coupled climate 

models show distinct discrepancies. The new data and reconstructions provide an improved 



Chapter 3 – Manuscript 1 

 
 

77 

database to test the reliability of future coupled climate models focusing on E-LGM 

temperature and sea-ice concentration. Our estimates may also be helpful for improved 

modeling of the Southern Westerly Wind belt and the associated changes in ACC flow speed. 

As such, velocity data from the ACC in the Southern Ocean are urgently needed to decipher 

ocean-atmosphere feedbacks.  
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Supplementary data to – Last Glacial Maximum sea surface temperature and sea-ice 

extent in the Pacific sector of the Southern Ocean 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.1: Unaligned 
iron content fluctuations 
(red), benthic and planktic 
oxygen isotope records 
(black) and depths of 
radiocarbon measure-
ments (yellow circles: 
humic acids, blue circles: 
foraminifera) of reference 
cores compared to the 
LR04 stack and associated 
Marine Isotope Stages 
(MIS) 1-5 (Lisiecki and 
Raymo, 2005), dust and 
iron fluxes from the 
EPICA Dome C (EDC) 
ice core (dust: Lambert et 
al., 2008; iron: Martínez-
Garcia et al., 2009; 
AICC12 age scale: Bazin 
et al., 2013; Veres et al., 
2013; EDC3 age scale: 
Parrenin et al., 2007); E-
LGM: EPILOG Last 
Glacial Maximum time 
slice. Scale extended to 
100 cal. kyr BP to show 
glacial-interglacial vari-
ability. 
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Figure S3.2: Correlation of core PS75/072-4 (lower panels) to PS75/073-2 (upper panels) on depth scale with 
correlation lines based on XRF element analysis and diatom percentages with corresponding calibrated 14C ages 
obtained from conventional AMS14C datings (black triangles) and small sample datings (blue triangles). 
The age model of core PS75/072-4 based on small sample datings resembled the core-to-core correlation. Thus 
AMS14C datings with less than 100µg carbon from foraminiferal carbonate serve as alternative to conventional 
AMS14C datings in diatomaceous sediments with less carbonate concentration. Open triangles and italic 
numbers represent datings that where rejected due to unreliable ages based on the depth correlation as well as on 
unlikely high sedimentation rates (see Table 3.3). In core PS75/073-2 the oldest obtained age at 147 cm (47117 
cal. kyr BP) exhibits a large error (4000 yrs, see Table 3.3) yet is not completely deviant as Marine Isotope 
Stage (MIS) 2 is highly condensed. This is particularly visible in the Si/Ti ratio that is indicative for less opal 
productivity and/or burial. The increasing Si/Ti rate in core PS75/073-2 at ~160 cm and in core PS75/072-4 at 
~190 cm depth together with a distinct decrease in the iron counts is indicative for MIS 5.1. 
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Figure S3.3: XRF Ca counts from 4 cores located at the Pacific Antarctic Ridge exhibiting higher carbonate 
content in Marine Isotope Stage (MIS) 2.  
 



Chapter 3 – Manuscript 1 

 
 

81 

Table S3.1 Startigraphic age control points; Fe, Ca, Si/Ti: Fe-Area, Ca-Area, Si/Ti ratio of XRF element 
analysis; Fkerg: F. kerguelensis; Eanta: E. antarctica; Chaet: Chaetoceros resting spores; SSST: summer sea 
surface temperature; LR04: Lisiecki & Raymo (2005); Mag.sus: Magnetic suceptibility; LOD: last occurence 
date; FOD: first occurence date. Biostratigraphy according to Zielinski and Gersonde (2002); EDC: EPICA 
Dome C ice core. 

 

PS58/270-5   

Core depth (cm) Age (kyr) Correlation 
4 5.857 Fe with Fe PS58/271-1 

67 7.264 Fe with Fe PS58/271-1 
112 12.461 SSST with SSST PS58/271-1 
142 18.923 Eanta/Fkerg with Eanta/Fkerg PS58/271-1 
172 22.818 Eanta with Eanta PS58/271-1 
248 30.626 Fe with Fe PS58/271-1 
363 61.520 Fe with Fe PS58/271-1 
391 66.985 Fe with Fe PS58/271-1 
523 96.092 Fe with Fe PS58/271-1 
602 113.140 Fe with Fe PS58/271-1 
652 117.564 Fe with Fe PS58/271-1 
692 124.928 Fe with Fe PS58/271-1 
712 128.931 SSST with SSST PS58/271-1 
742 132.212 LOD Rouxia leventerae 
932 189.558 LOD Hemidiscus karstenii 

1302 245.059 SSST with EDC  δT 
1412 280.805 LOD Rouxia constricta 
1702 326.617 SSST with EDC δT 
1832 342.103 SSST with EDC δT 
1942 381.849 LOD Actinocyclus ingens 
2012 404.900 SSST with EDC δT 
2142 428.065 SSST with EDC δT 
2282 470.337 SSST with EDC δT 

   
PS58/271-1   

Core depth (cm) Age (kyr) Correlation 

15.5 6.218 14C humic acids 
115 10.002 14C humic acids 

142.75 10.981 14C humic acids 
174 12.562 14C humic acids 
215 15.946 14C humic acids 
273 22.340 14C humic acids 
391 28.613 Fe with EDC dust 
690 39.558 Fe with EDC dust 
902 45.750 Fe with EDC dust 

1252 63.384 Fe with EDC dust 
1369 70.908 Fe with EDC dust 
1613 87.005 Fe with EDC dust 
1962 113.215 SSST with EDC δT 
2290 129.425 SSST with EDC δT 
2370 139.093 SSST with EDC δT 
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Table S3.1 continued 

 

PS58/274-1   

Core depth (cm) Age (kyr) Correlation 
8.5 3.368 14C humic acids 

172.5 13.177 14C humic acids 
278.5 19.036 14C humic acids 
421.5 22.002 14C humic acids 
566 30.329 Fe with EDC dust  
677 35.070 Fe with EDC dust 

1331 61.450 Fe with EDC dust 
1585.8 71.714 Fe with EDC dust 
2013 82.000 Fe with EDC dust 
2065 84.575 Fe with EDC dust 

   
PS75/051-1   

Core depth (cm) Age (kyr) Correlation 

5 7.780 Fkerg with Fkerg PS75/059-2 
20 20.834 SSST/Fe with SSST/Fe PS75/059-2 
35 42.231 Fe with Fe PS75/059-2 
49 66.725 Fe/Ca with Fe/Ca PS75/059-2 
73 77.418 Fe/Ca with Fe/Ca PS75/059-2 
93 93.752 Fe with Fe PS75/059-2 

163 137.868 Fe with Fe PS75/059-2 
219 174.656 Fe with Fe PS75/059-2 
259 192.839 Fe with Fe PS75/059-2 
319 253.862 Fe with Fe PS75/059-2 
373 277.335 Fe with Fe PS75/059-2 
401 302.135 Fe with Fe PS75/059-2 
443 349.441 Fe with Fe PS75/059-2 
464 361.023 Fe with Fe PS75/059-2 
575 408.117 Fe with Fe PS75/059-2 
614 425.026 Fe with Fe PS75/059-2 
629 430.717 Fe/Ca with Fe/Ca PS75/059-2 
691 471.059 Fe with EDC dust 
774 534.180 Fe with EDC dust 

1391 628.550 Fe with EDC dust 
1703 740.025 Fe with EDC dust 
1788 795.225 Fe with EDC dust 

   
PS75/054-1   

Core depth (cm) Age (kyr) Correlation 

1 9.314 Fe with Fe PS75/056-1 
8 11.232 Fe with Fe PS75/056-1 

25 12.514 Fe with Fe PS75/056-1 
36 13.053 Fe with Fe PS75/056-1 
52 17.070 Eanta/Chaet with Eanta/Chaet PS75/056-1 
92 23.759 Eanta/Chaet with Eanta/Chaet PS75/056-1 

232 34.068 Eanta with Eanta PS75/056-1 
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Table S3.1 continued 

PS75/054-1   

Core depth (cm) Age (kyr) Correlation 
302 36.637 Fe with Fe PS75/056-1 
611 40.747 Fe with Fe PS75/056-1 
636 41.517 Fe with Fe PS75/056-1 
744 45.755 Fe with Fe PS75/056-1 
963 58.432 Fe with Fe PS75/056-1 

1114 64.938 Fe with Fe PS75/056-1 
1369 74.891 Fe with Fe PS75/056-1 
1466 79.955 Fe with Fe PS75/056-1 
1619 86.160 Fe with Fe PS75/056-1 
1748 95.130 Fe with Fe PS75/056-1 
1857 99.525 Fe with Fe PS75/056-1 
2029 110.193 Fe with Fe PS75/056-1 
2105 113.834 Fe with Fe PS75/056-1 
2121 121.993 Fe with Fe PS75/056-1 
2130 127.771 Fe with Fe PS75/056-1 
2146 134.065 Fe with Fe PS75/056-1 
2161 138.194 Fe with Fe PS75/056-1 
2182 146.450 Fe with Fe PS75/056-1 
2205 154.036 Fe with Fe PS75/056-1 
2228 160.100 Fe with Fe PS75/056-1 

   
PS75/056-1   

Core depth (cm) Age (kyr) Correlation 

3.75 5.512 SSST with SSST PS75/059-2 
13.75 10.121 Fe/SSST/Chaet/CaCO3 with PS75/059-2 

26 12.299 Fe/Chaet/Fkerg/CaCO3 with PS75/059-2 
43.75 14.210 Eanta/Chaet/Fkerg with PS75/059-2 
68.75 21.360 SSST/Eanta/Chaet with PS75/059-2 

108.75 30.954 Eanta/Chaet with PS75/059-2 
226 46.012 δ18O with δ18O PS75/059-2 
359 72.232 δ18O with δ18O PS75/059-2 
491 88.945 δ18O with δ18O PS75/059-2 
581 103.594 δ18O with δ18O PS75/059-2 
628 114.289 δ18O with δ18O PS75/059-2 

690.5 131.485 δ18O with δ18O PS75/059-2 
755.5 153.847 δ18O with δ18O PS75/059-2 

836 184.354 δ18O with δ18O PS75/059-2 

904 221.124 δ18O with δ18O PS75/059-2 

963 251.833 δ18O with δ18O PS75/059-2 

1001 256.759 δ18O with δ18O PS75/059-2 

   

PS75/059-2   

Core depth (cm) Age (kyr) Correlation 

0 0 δ18O with LR04  
2.5 3.722 14C Fbull 

17.5 7.078 14C Fbull
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Table S3.1 continued 

PS75/059-2   

Core depth (cm) Age (kyr) Correlation 

37.5 11.759 14C Fbull 
47.5 13.302 14C Fbull 
55 15.572 14C Fbull 

67.5 28.727 14C Fbull 
80 32.207 14C Fbull 

97.5 38.686 14C Fbull 
140 58.774 Fe with EDC dust (Lamy et al., 2014) 
163 70.203 Fe with EDC dust (Lamy et al., 2014) 
238 87.114 Fe with EDC dust (Lamy et al., 2014) 
316 104.967 Fe with EDC dust (Lamy et al., 2014) 
344 115.408 Fe with EDC dust (Lamy et al., 2014) 
395 130.385 Fe with EDC dust (Lamy et al., 2014) 
412 137.868 Fe with EDC dust (Lamy et al., 2014) 
442 149.604 Fe with EDC dust (Lamy et al., 2014) 
695 251.833 Fe with EDC dust (Lamy et al., 2014) 
796 281.102 Fe with EDC dust (Lamy et al., 2014) 
821 297.446 Fe with EDC dust (Lamy et al., 2014) 
866 309.857 Fe with EDC dust (Lamy et al., 2014) 
905 334.303 Fe with EDC dust (Lamy et al., 2014) 
962 355.875 Fe with EDC dust (Lamy et al., 2014) 

1048 379.175 Fe with EDC dust (Lamy et al., 2014) 
1092 391.584 Fe with EDC dust (Lamy et al., 2014) 
1225 411.043 Fe with EDC dust (Lamy et al., 2014) 
1283 424.394 Fe with EDC dust (Lamy et al., 2014) 
1307 431.981 Fe with EDC dust (Lamy et al., 2014) 
1342 452.646 Fe with EDC dust (Lamy et al., 2014) 
1387 472.435 Fe with EDC dust (Lamy et al., 2014) 

   
PS75/064-1   

Core depth (cm) Age (kyr) Correlation 

7.5 2.295 14C humic acids 
22 3.413 14C humic acids 

57.25 7.432 14C humic acids 
82.25 11.285 14C humic acids 
119 15.517 Mag.Sus/Fkerg with Fe/Fkerg PS75/072-4 
154 18.690 Fkerg with Fkerg PS75/072-4 
175 23.473 Fkerg with Fkerg PS75/072-4 
199 31.292 Fkerg with Fkerg PS75/072-4 
215 38.456 Mag.Sus with EDC dust 
225 41.900 Mag.Sus with EDC dust 
296 59.429 Mag.Sus with EDC dust 
413 70.679 Mag.Sus with EDC dust 
832 110.258 Mag.Sus with Fe PS75/072-4 

1120 130.579 Mag.Sus with EDC dust 
1418 187.402 Mag.Sus with EDC dust 
1530 194.838 Mag.Sus with EDC dust 
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Table S3.1 continued 

PS75/072-4   

Core depth (cm) Age (kyr) Correlation 

1.5 0.729 14C Fnps 
21.5 1.705 14C Fnps 
36.5 2.929 14C Fnps 
51.5 4.291 14C Fnps 
76.5 7.494 14C Fnps 
91.5 9.600 14C Fnps 

101.5 10.984 14C Fnps 
131.5 13.786 14C Fnps 
136.5 14.480 SSST with EDC δT 
146.5 16.666 SSST with EDC δT 
151.5 19.387 14C Fnps 
156.5 22.676 14C Fnps 
166.5 28.418 14C Fnps 
181.5 70.106 CRS with CRS PS75/072-3 
186.5 71.804 CRS with CRS PS75/072-3 
266.5 84.992 δ18O with LR04 
326.5 90.619 δ18O with LR04 
646.5 128.506 δ18O with LR04 
666.5 130.158 δ18O with LR04 
706.5 135.711 LOD Rouxia leventerae 
736.5 190.837 LOD Hemidiscus karstenii 
761.5 199.926 δ18O with LR04 
855 217.380 Fe with EDC dust 
877 224.337 Fe with EDC dust 

911.5 244.057 LOD Rouxia constricta 
941.5 291.058 Rouxia constricta and Hemidiscus karstenii 
958 305.000 Fe with EDC dust 

   
PS75/073-2   

Core depth (cm) Age (kyr) Correlation 

18 3.838 14C Fnps 
26 4.807 14C Fnps 
38 6.089 14C Fnps 
53 7.993 14C Fnps 
63 9.779 14C Fnps 
74 11.118 14C Fnps 

82.5 12.466 14C Fnps 
103.5 15.255 14C Fnps 
113.5 16.654 14C Fnps 
122 22.603 Ca with Ca PS75/072-4 
128 33.213 Ca with Ca PS75/072-4 
147 47.007 14C Fnps 
160 68.943 Si/Ti vs EDC δT 
162 70.500 Fe with EDC dust 
251 84.411 δ18O with LR04, Fe with EDC dust 
325 88.984 δ18O with LR04,  Fe with EDC dust 
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Table S3.1 continued 

PS75/076-2   

Core depth (cm) Age (kyr) Correlation 

1 13.319 Chaet with Chaet PS75/072-4 
8 14.411 Fe with Fe PS75/072-4 

28 32.587 Fe with Fe PS75/072-4 
63 63.292 Fe with EDC dust (Lamy et al., 2014) 
85 70.544 Fe with EDC dust (Lamy et al., 2014) 

110 75.019 Fe with Fe PS75/072-4 
147 87.571 Fe with Fe PS75/072-4 
214 104.175 Fe with Fe PS75/072-4 
248 110.805 Fe with Fe PS75/072-4 
271 131.755 Fe with Fe PS75/072-4 
301 148.074 Fe with EDC dust (Lamy et al., 2014) 
336 157.393 Fe with EDC dust (Lamy et al., 2014) 
432 187.372 Fe with EDC dust (Lamy et al., 2014) 
458 200.476 Fe with EDC dust (Lamy et al., 2014) 
553 235.687 Fe with EDC dust (Lamy et al., 2014) 
573 250.638 Fe with EDC dust (Lamy et al., 2014) 
601 259.743 Fe with EDC dust (Lamy et al., 2014) 
650 269.764 Fe with EDC dust (Lamy et al., 2014) 
754 296.044 Fe with EDC dust (Lamy et al., 2014) 
828 326.874 Fe with EDC dust (Lamy et al., 2014) 
858 345.455 Fe with EDC dust (Lamy et al., 2014) 
889 358.636 Fe with EDC dust (Lamy et al., 2014) 

1048 389.362 Fe with EDC dust (Lamy et al., 2014) 
1167 431.806 Fe with EDC dust (Lamy et al., 2014) 
1202 451.633 Fe with EDC dust (Lamy et al., 2014) 
1265 470.823 Fe with EDC dust (Lamy et al., 2014) 
1335 533.996 Fe with EDC dust (Lamy et al., 2014) 
1373 557.817 Fe with EDC dust (Lamy et al., 2014) 
1467 627.597 Fe with EDC dust (Lamy et al., 2014) 
1587 687.732 Fe with EDC dust (Lamy et al., 2014) 
1619 718.543 Fe with EDC dust (Lamy et al., 2014) 
1649 737.138 Fe with EDC dust (Lamy et al., 2014) 
1686 747.302 Fe with EDC dust (Lamy et al., 2014) 
1758 796.453 Fe with EDC dust (Lamy et al., 2014) 
1782 818.970 Fe with ODP 1090 (Lamy et al., 2014) 
1842 873.931 Fe with ODP 1090 (Lamy et al., 2014) 
1886 901.709 Fe with ODP 1090 (Lamy et al., 2014) 
1904 908.185 Fe with ODP 1090 (Lamy et al., 2014) 
1936 923.276 Fe with ODP 1090 (Lamy et al., 2014) 
1988 966.207 Fe with ODP 1090 (Lamy et al., 2014) 
2033 981.297 Fe with ODP 1090 (Lamy et al., 2014) 

   
PS75/082-1   

Core depth (cm) Age (kyr) Correlation 

12 6.889 Fe/SSST with Fe/SSST PS75/093-1 
35 9.561 SSST with SSST PS75/093-1 
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Table S3.1 continued 

PS75/082-1   

Core depth (cm) Age (kyr) Correlation 

40 11.106 Chaet/SSST with Chaet/SSST PS75/093-1 
55 15.509 Chaet/Fkerg/Fe with Chaet/Fkerg/Fe PS75/093-1 
70 16.751 Chaet/Fkerg/Fe with Chaet/Fkerg/Fe PS75/093-1 

100 21.997 Chaet/Fkerg/Fe with  Chaet/Fkerg/Fe PS75/093-1 
125 26.540 Chaet/Eanta with   Chaet/Eanta PS75/093-1 
160 34.764 Fkerg/SSST with  Fkerg/SSST PS75/093-1 
175 36.605 Eanta with  Eanta PS75/093-1 
346 48.756 Fe with Fe PS75/093-1 
444 67.138 Fe with Fe PS75/093-1 
517 79.185 Fe with Fe PS75/093-1 
600 88.910 Fe with Fe PS75/093-1 
683 102.135 Fe with Fe PS75/093-1 
754 111.415 Fe with Fe PS75/093-1 
806 132.159 Fe with Fe PS75/093-1 
896 161.662 Fe with Fe PS75/093-1 
967 185.075 Fe with Fe PS75/093-1 

1007 193.599 Fe with Fe PS75/093-1 
1035 206.975 Fe with Fe PS75/093-1 
1055 217.720 Fe with Fe PS75/093-1 
1085 228.904 Fe with Fe PS75/093-1 

   
PS75/085-1   

Core depth (cm) Age (kyr) Correlation 

7.25 1.642 14C humic acids 
30 2.514 Chaet with Chaet PS75/072-4 
47 3.364 14C humic acids 
90 4.281 Chaet with Chaet PS75/072-4 

133.5 5.358 14C humic acids 
187 6.607 14C humic acids 

247.5 7.815 14C humic acids 
303 9.214 14C humic acids 
343 10.417 14C humic acids 

358.5 11.032 14C humic acids 
429.5 14.480 SSST with EDC δT   
541 16.557 Fe with Fe PS75/072-4 
553 24.162 14C humic acids 

558.5 26.026 14C humic acids 
650 47.422 Fe with Fe PS75/072-4 
668 55.269 Fe with Fe PS75/072-4 
682 59.213 Fe with Fe PS75/072-4 
684 68.936 Fe with Fe PS75/072-4 
967 84.198 Fe with Fe PS75/072-4 

1354 103.769 Ca with Ca PS75/072-4 
1413 109.318 Ca with Ca PS75/072-4 
1522 118.292 Ca with Ca PS75/072-4 
1590 128.686 Ca with Ca PS75/072-4 
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Table S3.1 continued 

PS75/085-1   

Core depth (cm) Age (kyr) Correlation 

1617 130.368 Ca with Ca PS75/072-4 
1642 132.327 Ca with Ca PS75/072-4 
1653 133.166 Ca with Ca PS75/072-4 
1661 147.474 Fe with Fe PS75/072-4 
1673 157.841 Fe with Fe PS75/072-4 
1679 164.752 Fe with Fe PS75/072-4 
1684 183.045 Fe with Fe PS75/072-4 
1686 194.576 Fe with Fe PS75/072-4 
1891 224.383 Fe with Fe PS75/072-4 
1966 243.250 Fe with Fe PS75/072-4 

   
PS75/091-3   

Core depth (cm) Age (kyr) Correlation 

5 3.014 Fkerg with Fkerg PS75/085-1 
25 4.068 SSST with SSST PS75/085-1 
50 5.510 Fkerg with Fkerg PS75/085-1 
75 6.210 Fkerg/SSST with Fkerg/SSST PS75/085-1 
95 7.266 Fkerg/Eanta/Chaet with Fkerg/Eanta/Chaet  PS75/085-1 

110 8.382 Fkerg with Fkerg PS75/085-1 
120 9.425 Chaet with Chaet PS75/085-1 
130 10.026 Fkerg/Eanta/Chaet with Fkerg/Eanta/Chaet   PS75/085-1 
135 11.105 Fkerg/SSST with Fkerg/SSST PS75/085-1 
145 14.480 Fkerg/Eanta/Chaet with Fkerg/Eanta/Chaet  PS75/085-1 
155 14.862 Fkerg/Eanta/Chaet with Fkerg/Eanta/Chaet   PS75/085-1 
170 15.793 Fkerg with Fkerg PS75/085-1 
180 16.352 Fkerg/Chaet/SSST with Fkerg/Chaet/SSST PS75/085-1 
195 22.261 SSST with SSST PS75/085-1 
241 58.649 Fe with Fe PS75/085-1 
320 85.210 Fe with Fe PS75/085-1 
341 90.419 Fe with Fe PS75/085-1 
503 106.214 Fe with Fe PS75/085-1 
542 111.459 Fe with Fe PS75/085-1 
737 129.932 Fe with Fe PS75/085-1 
778 132.861 Fe with Fe PS75/085-1 
806 152.657 Fe with Fe PS75/085-1 
941 220.398 Fe with Fe PS75/085-1 
962 228.838 Fe with Fe PS75/085-1 

1003 268.641 Fe with EDC Dust 
1034 280.118 Fe with EDC Dust 
1060 342.540 Fe with EDC Dust 
1085 385.200 Fe with EDC Dust 
1128 430.760 Fe with EDC Dust 
1166 471.668 Fe with EDC Dust 
1217 534.180 Fe with EDC Dust 
1248 555.412 Fe with EDC Dust 
1278 629.047 Fe with EDC Dust 
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Table S3.1 continued 

 

PS75/091-3   

Core depth (cm) Age (kyr) Correlation 
1297 667.833 Fe with EDC Dust 

   

PS75/093-1   

Core depth (cm) Age (kyr) Correlation 

10 4.932 Fkerg with Fkerg PS75/072-4 
27 8.259 14C Fnps 
42 10.701 14C Fnps 
70 14.480 SSST with SSST PS75/085-1 
80 16.538 Fe with Fe PS75/085-1 
95 19.726 Fe with Fe PS75/085-1 

120 31.082 Fe with Fe PS75/085-1 
196 59.066 Fe with EDC dust (Lamy et al., 2014) 
205 65.701 Fe with EDC dust (Lamy et al., 2014) 
238 77.553 Fe with EDC dust (Lamy et al., 2014) 
288 85.715 Fe with EDC dust (Lamy et al., 2014) 
361 93.238 Fe with EDC dust (Lamy et al., 2014) 
461 103.465 Fe with EDC dust (Lamy et al., 2014) 
488 108.044 Fe with EDC dust (Lamy et al., 2014) 
584 132.937 Fe with Fe PS75/072-4 
610 152.625 Fe with Fe PS75/072-4 
690 185.486 Fe with Fe PS75/072-4 
957 244.035 Fe with Fe PS75/072-4 
996 281.000 Fe with EDC dust 

1125 347.000 Fe with EDC dust 
1183 423.000 Fe with EDC dust 
1198 459.400 Fe with EDC dust 
1208 468.650 Fe with EDC dust 
1279 528.375 Fe with EDC dust 

   
PS75/096-4   

Core depth  (cm) Age (kyr) Correlation 

1 10.121 Fkerg with Fkerg PS75/059-2 
10 12.993 Eanta/Chaet with Eanta/Chaet PS75/059-2 
20 21.360 Eanta/Chaet with Eanta/Chaet PS75/059-2 
24 26.622 Eanta with Eanta PS75/059-2 
59 34.243 Eanta/Chaet with Eanta/Chaet PS75/059-2 

126 40.340 Fe with Fe PS75/059-2 
474 77.418 Fe/Si/Ti with Fe/Si/Ti PS75/059-2 
588 104.967 Fe/Si/Ti with Fe/Si/Ti PS75/059-2 
668 136.107 Fe/Si/Ti with Fe/Si/Ti PS75/059-2 
772 173.040 Fe with Fe PS75/059-2 
870 189.203 Fe with Fe PS75/059-2 

1079 231.630 Fe with Fe PS75/059-2 
1180 251.833 Fe with Fe PS75/059-2 
1294 277.335 Fe with Fe PS75/059-2 
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Table S3.1 continued 

 

  

PS75/096-4   

Core depth  (cm) Age (kyr) Correlation 

1367 291.562 Fe with Fe PS75/059-2 
1489 345.657 Fe with Fe PS75/059-2 
1760 393.632 Fe/Si/Ti with Fe/Si/Ti PS75/059-2 
1904 431.349 Fe/Si/Ti with Fe/Si/Ti PS75/059-2 

   
PS75/097-4   

Core depth (cm) Age (kyr) Correlation 

1 11.291 Fe with Fe PS75/059-2 
20 20.834 Chaet with Chaet PS75/059-2 
60 32.207 Chaet with Chaet PS75/059-2 

129 39.868 Fe with Fe PS75/059-2 
145 44.122 Fe with Fe PS75/059-2 
210 69.706 Fe with Fe PS75/059-2 
335 112.798 Fe with Fe PS75/059-2 
405 131.265 Fe with Fe PS75/059-2 
435 142.562 Fe with Fe PS75/059-2 
486 173.444 Fe with Fe PS75/059-2 
582 192.031 Fe with Fe PS75/059-2 
717 232.034 Fe with Fe PS75/059-2 
830 252.123 Fe with Fe PS75/059-2 
911 259.947 Fe with Fe PS75/059-2 

1097 275.886 Fe with Fe PS75/059-2 
1208 290.908 Fe with Fe PS75/059-2 
1358 345.278 Fe with Fe PS75/059-2 
1463 356.959 Fe with Fe PS75/059-2 
1682 379.175 Fe with Fe PS75/059-2 
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Table S3.2 E-LGM minimum SSTs, anomalies and sea-ice concentration from published foraminiferal (f), 
diatom (d) and alkenone (a) records. 

 
 
 

Core 

mod. 
SSST    
(°C)a 

E-LGM  
SST 
(°C) Seasonb 

ΔLGM/ 
mod. SSST 

(K) 

E-LGM  
Sept SI 
conc. 
(%) 

E-LGM 
WSST  
(°C)c 

Seasonal 
Ranged 

(°C) Reference 
CHAT-1K 16.7 15.7 f Ts -1.0  11.3 f 4.4 Barrows and Juggins, 2005 
CHAT-1K 16.7 16.3 f Ts -0.4  12.2 f 4.1 Kucera et al., 2005b 
DSDP594 12.0 3.7 f Ts -8.3  1.8 f 1.9 Barrows and Juggins, 2005 

DWBG 70 9.1 5.1 f  (M) Ts -4.0  2.3 f (M)/ 
2.6 f (L) 

2.8 (M)/ 
2.5 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT11-1 6.9 3.5 f  (M) Ts -3.4   1.0 f (M)/ 
0.7 f (L) 

2.5 (M)/ 
2.8 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT11-1 6.9 5.7 d Ts -1.2 2.8   Gersonde et al., 2005 

ELT11-2 6.4 3.4 f (M) Ts -3.0  0.8 f (M)/ 
0.6 f (L)/ 

2.6 (M)/ 
2.8 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT11-2 6.4 1.7 f Tann -4.7    Mashiotta et a., 1999 
ELT11-2 6.4 5.5 d Ts -0.9 2.6   Gersonde et al., 2005 

ELT11-3 5.8 3.4 f (M) Ts -2.4  0.8 f  (M)/ 
0.6 f (L) 

2.6 (M)/ 
2.8 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT11-3 5.8 3.4 d Ts -2.4 12.0   Gersonde et al., 2005 

ELT11-4 4.9 4.2 d Ts -0.7 20.0   Gersonde et al., 2005 
ELT14-6 4.4 3.4 d Ts -1.0 22.4   Gersonde et al., 2005 
ELT15-12 4.6 4.0 d Ts -0.6 2.6   Gersonde et al., 2005 
ELT15-4 6.0 4.7 d Ts -1.3 2.6   Gersonde et al., 2005 
ELT15-6 5.4 4.8 d Ts -0.6 9.2   Gersonde et al., 2005 
ELT17-9 0.0 0.9 d Ts 0.9 49.2   Gersonde et al., 2005 
ELT19-7 2.4 1.6 d Ts -0.8 34.0   Gersonde et al., 2005 
ELT20-10 3.0 2.7 d Ts -0.3 7.0   Gersonde et al., 2005 

ELT20-18 10.6 13.4 f  

(M) Ts 2.8  9.2 f (M)/ 
9.2 f (L) 

4.2 (M)/ 
4.2 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT21-15 7.8 4.1 f  (M) Ts -3.7  1.2 f  (M)/ 
1.1 f (L) 

2.9 (M)/ 
3.0 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT25-10 8.7 4.1 f  (M) Ts -4.6  1.5 f  (M)/ 
1.1 f (L) 

2.6 (M)/ 
3.0 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

ELT36-36 2.4 1.5 d Ts -0.9 40.0   Gersonde et al., 2005 
GeoB3327-5 14.9 12.1 a Tann -2.8    Ho et al., 2012 
GeoB3302-1 16.0 11.5 a Tann -4.5    Kim et al., 2002 
GeoB3359-3 14.3 11.6 a Tann -2.7    Romero et al., 2006 
GeoB7139-2 16.8 14.1 a Tann -2.7    Kaiser et al., 2008 
MD07-3128 9.2 4.7 a Tann -4.5    Caniupán et al., 2011 
MD88-784 5.3 3.5 d Ts -1.8 13.4   Gersonde et al., 2005 
MD88-787 3.3 2.3  d Ts -1.0 19.0   Gersonde et al., 2005 
MD97-2120 12.0 6.5 a Tann -5.5    Pahnke and Sachs, 2006 
MD97-2120 12.0 6.4 f Tann -5.6    Pahnke et al., 2003 
MD97-2121 17.7 11.7 a Tann -6.0    Pahnke and Sachs, 2006 
ODP1233 14.7 7.8 a  Tann -6.9    Kaiser and Lamy, 2010 
P69 17.7 14.3 f Ts -3.4  10.3 f 4.0 Barrows and Juggins, 2005 
PS75/034-2 7.8 1.5 a Tann -6.3    Ho et al., 2012 
Q200 12.2 3.7 f Ts -8.5  1.5 f 2.2 Barrows and Juggins, 2005  
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Table S3.2 continued 
 

 
a Modern SSST after Olbers (1992) 
bSeason = Sea surface temperature (SST) estimate representing summer SST (Ts, February or JFM) or mean 
annual SST (Tann) 
cWinter sea surface temperature (WSST) estimate representing JAS (Barrows and Juggins, 2005) or August 
(Crosta et al., 2004) 

d Seasonal Range = seasonality of SST 
Temperature values for visualization in Figures 5 and 6 were averaged at core sites with two estimates from the 
same fossil group. Where temperatures from different fossil group are reconstructed, the estimate of a more 
representative reference data set was preferred as well as a summer estimate was preferred to an annual estimate. 
 
 
 

 
 

Core 

mod. 
SSST    
(°C)a 

E-LGM  
SST 
(°C) Seasonb 

ΔLGM/ 
mod. SSST 

(K) 

E-LGM  
Sept SI 
conc. 
(%) 

E-LGM 
WSST  
(°C)c 

Seasonal 
Ranged 

(°C) Reference 
Q585 10.6 3.7 f Ts -6.9  1.5 f 2.2 Barrows and Juggins, 2005 
R657 17.0 14.6 f Ts -2.4  10.5 f 4.1 Barrows and Juggins, 2005 
R657 17.0 11.7 a Tann -5.3    Sikes et al., 2002 
R657 17.0 13.7 f Ts -3.3  9.0 f 4.7 Sikes et al., 2002 
RC08-78 14.4 13.3 f Ts -1.1  9.4 f 3.9 Barrows and Juggins, 2005 
RC09-110 16.4 13.9 f Ts -2.5  9.2 f 4.7 Barrows and Juggins, 2005 

RC12-225 7.8 4.1 f (M) Ts -3.7  1.5 f  (M)/ 
1.1 f (L) 

2.6 (M)/ 
3.0 (L) 

(M) Moore et al., 1980;  
(L)Luz, 1977 

SO136-111 4.6 2.2 d Ts -2.4 22.3   Gersonde et al., 2005 
SO136-111 4.6 2.8 d Ts -1.8  0.2 d 2.6 Crosta et al., 2004 
SO213-59-2 9.9 9.4 f Tann -0.5    Tapia et al., 2015 
U938 13.7 5.6 f Ts -8.1  2.8 f 2.8 Barrows and Juggins, 2005 
U938 13.7 6.5 a Tann -7.2    Sikes et al., 2002 
U938 13.7 6.8 f Ts -6.9  3.8 f 3.0 Sikes et al., 2002 
U939 14.3 9.8 f Ts -4.5  8.2 f 1.6 Barrows and Juggins, 2005 
U939 14.3 7.6 a Tann -6.7    Sikes et al., 2002 
W268 16.7 11.2 f Ts -5.6  8.5 f 2.7 Barrows and Juggins, 2005 
W268 16.7 12.3 a Tann -4.4    Sikes et al., 2002 
Y8 12.9 5.4 r Ts -7.5    Lüer et al., 2009 
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Abstract  

The last glacial to interglacial transition is marked by interhemispheric decoupling of 

climate events associated with the bipolar seesaw. Our reconstructions of diatom-derived sea 

surface temperatures and sea-ice concentration from the Pacific sector of the Southern Ocean, 

so far underrepresented regarding paleoceanographic studies, aims to decipher deglacial 

differences between Southern Ocean basins on millennial time scales. Most prominent is the 

spatial decoupling of the onset of deglacial warming, with early warming and sea-ice retreat 

starting at ca. 22,000 years before present (yr BP) in the eastern Pacific sector, which is 

closely aligned to warming at the West Antarctic Ice Sheet. Such an early onset of 

deglaciation was probably triggered via simultaneously rising insolation for about 1000 years 

in both hemispheres. However, the early warming was not propagated into the adjacent 

Atlantic sector, where an early response may have been overprinted by changes in the 

Atlantic Meridional Overturning Circulation. As such the atmospheric CO2 concentration is 

primarily governed by the deglacial changes in the Atlantic sector. The following deglacial 

development in the Pacific sector shows gradual warming towards a first warm optimum 

around 15,000 yr BP, the thermal reversal between 14,000 and 12,000 yr BP and a Holocene 

climatic optimum centered at 10,000-11,000 yr BP revealing typical “Antarctic timing”. 

Differences in the occurrence and magnitude of these events in the eastern and western 

Pacific sectors were influenced by the interplay of bottom topography and changes in the 

strength and intensity of westerly winds and the Southern Annular Mode. 
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4.1 Introduction 

The last deglaciation (Termination I, TI) represents the most promising interval to 

study processes driving and amplifying Earth´s climate development from a full glacial to a 

full interglacial state. Multiple records from all ocean basins and continents, including 

continental ice core records, allow for global-scale documentation of the processes shaping 

the last deglacial development. This provides a keystone for the understanding of past 

climate-related processes needed to test and improve numerical climate simulations and, 

subsequently, the development of realistic projections of future conditions. Exceptional 

records from Greenland and antarctic ice cores document Termination I at highest (up to 

seasonal) resolution and allow for precise synchronization of Northern and Southern 

hemisphere climate records at high precision. The synchronization relies on atmospheric CH4 

records, a terrestrial biosphere signal (Brook et al. 2000), that displays in-phase variability in 

Greenland and antarctic ice cores. Based on the synchronization is was possible to depict the 

sequence of warmings and coolings during TI characterized by abrupt changes on the 

Northern Hemisphere and more smooth variability on the Southern Hemisphere that occur 

out of phase (Blunier et al. 1998; EPICA Community Members 2006). The underlying 

mechanisms, highlighted as “bipolar seesaw” (Broecker 1998; Stocker and Johnson 2003), 

are recognized to be intimately related to changes in Atlantic Meridional Overturning 

Circulation (AMOC), potentially triggered by events in the North Atlantic (Broecker et al., 

1985; Jansen and Veum, 1990), but also in the Southern Ocean (Stocker 2003). Relying on 

simulations with a three-dimensional oceanic circulation model, Knorr and Lohmann (2003) 

suggested that the gradual warming in the Southern Ocean, which predates the strong 

deglacial warming in the northern Atlantic by several thousand of years during the last 

glacial, induced an abrupt consumption of the Thermohaline Circulation from a near shut-

down to a full interglacial mode. The resulting dramatic shift from glacial to interglacial 

conditions in the Northern Hemisphere, well documented by multiple proxy records (e.g. 

Thornalley et al., 2011) entrained a massive ice-sheet collapse resulting in a sea level rise of 

about 14-18 m in less than 500 years (Weaver et al., 2003; Deschamps et al., 2012). This 

event, originally recognized by Fairbanks et al. (1989) and named meltwater pulse 1A 

(MWP-1A), marks the abrupt onset of the Bølling warming on the Northern Hemisphere 

around 14,400 years ago. The analysis of Atlantic (Barbados) and Pacific (Tahiti) sea-level 

records (Deschamps et al., 2012) supports the suggestion of Weaver et al. (2003) that MWP-

1A was predominantly caused by a rapid reduction of antarctic ice volume. Primary 
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candidates for such decay are the marine based sectors of the Antarctic ice sheet, mainly 

comprising the West Antarctic Ice Sheet (WAIS) (Gomez et al., 2010). According to 

numerical simulations (Mikolajewicz, 1998; Weaver et al., 2003), massive meltwater 

shedding into the major drainage area of the WAIS, the Pacific sector of the Southern Ocean, 

would cause surface ocean cooling in this sector and in opposite lead to warming the North 

Atlantic via the “bipolar seesaw” effect. Such process would represent an alternate or 

additional Southern Hemisphere-sourced mechanism driving the fast warming at the onset of 

the Bølling in the Northern Hemisphere. A promising approach to rate the likelihood of 

model-based scenarios is the comparison of the numerical simulations with data gathered 

from marine proxy records. An impressive effort to map the variability of marine climate 

records from all ocean basins in combination with ice core records between the last glacial 

and the present interglacial has been presented by Shakun et al. (2012). They conclude from 

the analysis of 80 proxy records that the antiphased hemispheric temperature variability in 

response to “bipolar seesaw” mechanisms superimposed on globally in-phase warming 

driven by increasing atmospheric CO2 concentrations explains much of the temperature 

change during the last deglaciation. According to their data set deglacial warming started 

initially in the Northern Hemisphere between 21,500 and 19,000 years ago, thus predates the 

onset of warming and atmospheric CO2 increase in the Southern Hemisphere around 18,000 

years ago as documented in East Antarctic ice cores. Such time relationship would preclude a 

Southern Hemisphere trigger of the last deglacial warming as a response to changes in 

antarctic insolation, which increase the duration of Southern Hemisphere summer (Huybers 

and Denton, 2008). However, the latter mechanism is corroborated by more recent results 

obtained from a West Antarctic ice core, which display the onset of deglacial warming in 

West Antarctica between 22,000-20,000 years ago (WAIS Divide Project Members, 2013). 

The initial WAIS retreat in the Amundsen sector suggested to occur prior to between 22,400 

and 21,000 years ago (Smith et al., 2011; Klages et al., 2014), thus close to the early warming 

date documented in the WAIS ice core, to o. Such timing would decouple the onset of 

atmospheric CO2 increase found to occur synchronously in both, East and West Antarctic ice 

cores around 18,000 years ago (Marcott et al., 2014), from the temperature development in 

the Pacific Antarctic sector. Although modeling results, ice core records and the WAIS 

climate history point to specific processes that shape the last deglacial development in the 

Pacific Antarctic sector, only a limited number of climate records exists, which document the 

deglacial temperature development of the Southern Ocean in the Pacific sector. Open ocean 

records include three surface water temperature records from cores recovered in the southern 
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and the central Subantarctic Zone in the eastern sector (E11-2, Mashiotta et al., 1999; SO213-

59-2, Tapia et al., 2015), and from the Polar Front Zone south of Campbell Plateau (SO136-

111, Crosta et al., 2004). Additionally, sea-ice records are available from SO136-111 and 

E27-23, the latter retrieved from the northern Antarctic Zone southwest of SO136-111 (Ferry 

et al., 2015b) (Fig. 4.1). Other temperature records derive from near-shore sites off New 

Zealand located north and south of the Subtropical Front (MD97-2120, Pahnke et al., 2003; 

MD97-2121, Pahnke and Sachs, 2006; Marr et al. 2013) and from subantarctic sites off Chile 

(ODP 1233, Kaiser and Lamy, 2010). 

To significantly augment the knowledge of the paleoceanographic development in the 

Pacific sector, we here present 17 new Pacific paleoclimate records which document the 

transition from the last glacial to the modern interglacial (past 30 kyr, 1000 yr = 1kyr) at 

highest possible time resolution. The records represent diatom-transfer function-based sea 

surface temperature and sea-ice concentration estimates interpreted in combination with 

diatom indicator species, allowing to trace the extent of the winter and summer sea-ice field 

and specific diatom productivity regimes. The studied sites are located between 100°W and 

180°E and document past conditions in a broad zone extending from the Southern Antarctic 

Circumpolar Current Front (SACCF) and the modern winter sea-ice edge (40% 

concentration), respectively, in the South to the southern Subantarctic Zone (SAF) in the 

North (Fig. 4.1). This zone is in the core of the Antarctic Circumpolar Current (ACC) where 

Southern Westerlies driven Ekman upwelling generates increased nutrient advection, which 

enhances the deposition of biogenic opal (Geibert et al., 2005) and CO2 outgassing 

(Lovenduski et al., 2007). The position of the Southern Westerlies, the intensity of the 

Southern Annular Mode  (SAM) and the El Niño Southern Oscillation (ENSO) influence the 

extent of sea ice in the studied zone (Yuan, 2004; Thompson et al., 2011). Age control of the 

studied cores is outlined in detail in Benz et al. (a; under rev.), a paper that focuses on Last 

Glacial Maximum conditions in the Pacific sector. To further broaden the view based on our 

records we combine and compare them with other marine records available from the Pacific 

sector together with selected high-resolution records from the Atlantic sector as well as 

Greenland and antarctic ice core records. 

Major goals of our study are (1) to depict the timing of the onset of the last 

deglaciation as indicated by sea surface temperature increase and sea-ice retreat to investigate 

the nature of an offset of the deglacial initiation between the West and the East Antarctic 

realm and (2) to test whether and to what extent deglacial warming in the Pacific sector is 

decoupled from the global atmospheric CO2 increase to study underlying mechanisms for 
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such decoupling. (3) To study the physical and biological processes in the Pacific sector that 

impact ocean/atmosphere exchange during the last deglaciation. (4) To test the model-based 

hypothesis that the decay of the West Antarctic Ice Sheet represents a major contribution to 

MWP-1A, which should be accompanied by a distinct surface ocean cooling in the Pacific 

sector. (5) To reveal the impact of AMOC versus Pacific processes on the pattern and timing 

of the deglacial evolution in the Pacific sector. (6) To document the deglacial evolution of the 

ACC surface water temperature regime in the Pacific and discuss implications for the 

development of the “cold water route” across the Drake passage, which affects the 

heat/salinity transport in the Atlantic sector and thus development of thermohaline circulation 

(e.g. Knorr and Lohmann, 2003). 

 

4.2 Material and Methods 

4.2.1 Sediment material and oceanographic setting 

 The 17 studied cores for the reconstruction of Summer Sea Surface Temperature 

(SSST) and Winter Sea Ice (WSI) concentration were recovered during the R/V Polarstern 

expeditions ANT-XIII5a and ANT-XXVI/2 (Fig. 4.1, Table 4.1) 

(http://doi:10.1594/PANGAEA.60007; Gersonde, 2011). Deployed devices include piston, 

gravity and kasten corer.   

Our study area is located in the Pacific sector of the Southern Ocean between 180°E 

and 100°W (Fig. 4.1, Table 4.1). The studied cores document the changes of the 

environmental conditions of the Antarctic Circumpolar Current (ACC) covering the area 

between the modern southern Subantarctic Zone (SAZ) and the northern Antarctic Zone 

(AZ), between ca. 50°S and 65°S (Orsi et al., 1995). Here modern summer surface water 

temperatures range between ca. 0 and 8°C in summer (Olbers et al., 1992). Sediment facies 

deposition varies between calcareous nannofossil ooze containing varying diatom and 

foraminifera content and nannofossil-diatom ooze in the SAZ and in vicinity of the 

Subantarctic Front (SAF) (Gersonde, 2011). Sediments from the Polar Front Zone (PFZ) and 

the Permanent Open Ocean Zone (POOZ) south of the Antarctic Polar Front (APF) consist 

mainly of diatom ooze with highest opal content of 50-80%. From the seasonal Sea Ice Zone 

(SIZ) less opal deposition is reported (10-50%; Lisitzin, 1985). The burial area of pure 

diatom ooze is coincident with the expansion of the opal belt between the northern SAZ and 

the PFZ (Geibert et al., 2005; Bradtmiller et al., 2009). 
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 The frontal system in the ACC is strongly related to topographic forcing. Thus, fronts 

remain relatively stable at seasonal and interannual time scales close to large bathymetric 

features, whereas over abyssal plains their location appears to be fairly unstable (Sokolov and 

Rintoul, 2009). The cyclonic Ross Gyre transports cold Antarctic Surface Water from the 

southern Ross Sea far north into the region of the Pacific Antarctic Ridge. Thus, in the 

western Pacific sector of the Southern Ocean, relatively colder surface water, a distinctly 

expanded WSI field and enhanced sea-ice seasonality are prevailing (Fig. 4.1). 

Figure 4.1: (a) Locations of cores analysed in this study (red circles) and other cores discussed in the paper 
(yellow circles, for references see Table 4.1). WSI 15%/SSI 15%: modern winter/summer sea-ice edge with 
15% sea-ice concentration, WSI 40%/SSI 40%: modern winter/summer sea-ice edge with 40% sea-ice 
concentration (Reynolds et al., 2002, 2007); E-T-F: Eltanin Tharp Fracture Zone, U-F: Udintsev Fracture Zone 
(Udintsev (Ed.), 2003); oceanic fronts according to Orsi et al. (1995); STF: Subtropical Front, SAF: 
Subantarctic Front, APF: Antarctic Polar Front, SACCF: Southern Antarctic Circumpolar Current Front; SAZ: 
Subantarctic Zone, PFZ: Polar Front Zone, POOZ: Permanent Open Ocean Zone, (s)SIZ: (seasonal) Sea Ice 
Zone, (b) Modern summer SSTs from the Hydrographic Atlas of the Southern Ocean (HASO; Olbers et al., 
1992); core locations and oceanographic fronts as in (a); 4°C and -1.3°C isotherm representing the APF and sea-
ice edge respectively. (c) Modern winter SSTs from the World Ocean Atlas 2009 (WOA09, July-September; 
Locarnini et al., 2010); core locations and oceanographic fronts as in (a); 2°C and -1°C isotherm representing 
the APF and sea-ice edge respectively. 
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Table 4.1 Locations of sediment cores presented and discussed in this study. 

Core Latitude Longitude 
Water 

depth (m) 
Coring 
devicea Zoneb Data source 

ELT11-2 56°03.60'S 115°03.60'W 3109 PC SAZ Mashiotta et al., 1999 
ELT27-23 59°73.1'S 155°14.3'E 3182 PC POOZ Ferry et al., 2015b 
MD03-2611 36°44.00'S 136°33.00'E 2420 GC STZ Calvo et al., 2007 

MD97-2120 45°32.6'S 174°55.85'E 1210 GPC SAZ Pahnke et al., 2003;  
Pahnke and Sachs, 2006 

MD97-2121 40°22.80'S 177°59.40'E 3014 GPC STZ Pahnke and Sachs, 2006 
ODP1233 41°00.00'S 74°27.00'W 838 CC SAZ Kaiser and Lamy, 2010 
ODP 1094 53°10.8'S 5°07.8'W 2807 CC POOZ Bianchi and Gersonde, 2004 
PS58/270-5 62°01.68'S 116°07.38'W 4981 PC POOZ this study 

PS58/271-1 61°14.58'S 116°02.82'W 5214 PC PFZ this study; 
Esper and Gersonde, 2014a/b 

PS58/274-1 59°12.42'S 114°53.28'W 5136 PC PFZ this study 
PS75/051-1 52°48.73'S 107°48.33'W 3949 PC SAZ this study 
PS75/054-1 56°09.11'S 115°07.98'W 4113 PC SAZ this study 
PS75/056-1 55°09.74'S 114°47.31'W 3581 GC SAZ this study 
PS75/059-2 54°12.90'S 125°25.53'W 3613 PC SAZ this study 
PS75/064-1 61°00.74'S 139°27.85'W 4600 PC sSIZ this study 
PS75/072-4 57°33.51'S 151°13.17'W 3099 GC POOZ this study 
PS75/073-2 57°12.26'S 151°36.65'W 3234 KC POOZ this study 
PS75/076-2 55°31.71'S 156°08.39'W 3742 PC PFZ this study 
PS75/082-1 59°02.48'S 158°51.82'W 4000 PC POOZ this study 
PS75/085-1 61°56.38'S 160°07.10'W 3734 PC sSIZ this study 
PS75/091-3 63°41.66'S 169°04.47'W 2940 PC sSIZ this study 
PS75/093-1 60°52.33'S 169°32.89'W 3762 PC POOZ this study 
PS75/096-4 58°32.86'S 172°42.6'W 5057 PC PFZ this study 
PS75/097-4 59°42.2'S 171°21.44'W 4672 PC PFZ this study 

SO136-111 56°40.20'S 160°13.80'E 3912 GC PFZ Crosta et al., 2004;  
Ferry et al., 2015b 

SO213-59-2 45°49.00'S 116°52.00'W 6161 GC SAZ Tapia et al., 2015 
 
a Coring devices: PC Piston Corer; GC Gravity Corer; KC Kasten Corer; CC Composite Core; b Oceanographic 
zones: STZ Subtropical Zone; SAZ Subantarctic Zone; PFZ Polar Front Zone; POOZ Permanent Open Ocean 
Zone; sSIZ seasonal Sea Ice Zone 

 

Specific atmospheric conditions further influence the west-east differences in sea 

surface conditions in the Pacific sector. While cold-air outbursts from the Antarctic ice sheet 

favor increased sea-ice production and northward expansion in the Ross Sea sector, 

comparatively warm winds from the north along the Antarctic Peninsula lead to reduced sea-

ice occurrence in the eastern sector (Harangozo, 2004). In addition, changes of the SAM and 

the Amundsen Sea Low as well as tropical variability and the ENSO strongly influence the 

oceanographic conditions in the western and eastern Pacific sector (Yuan, 2004; Turner et al., 

2009; Thompson et al., 2011). Furthermore, the Pacific Sector is the key region to understand 

the impact of fresh water injection triggered by melting of the (WAIS), as it collects the 
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majority of the WAIS drainage (Ó Cofaigh et al., 2005; Mosola et al., 2006; Smith et al., 

2011). 

 

4.2.2 Age constraints   

 The age models of the sediment cores used in this studies result from a combined 

chronostratigraphic approach, including Accelerator Mass Spectrometry (AMS) 14C datings, 

foraminifer-based oxygen isotope stratigraphy and inter-core correlations using changes in 

physical sediment parameters and diatom abundance patterns (Table 4.2; Benz et al., a; under 

rev.). 

 The 14C radiocarbon ages were derived from monospecific samples of the planktic 

foraminifers Neogloboquadrina pachyderma sinistral and Globigerina bulloides as well as 

from bulk sediment samples for dating organic carbon from the humic acid fraction. The 

majority of samples were measured at the National Ocean Science Accelerator Mass 

Spectrometry Facility (NOSAMS) at Woods Hole Oceanographic Institution (WHOI). 

Specifically small foraminifera samples were additionally measured at the Eidgenössische 

Technische Hochschule (ETH, Zürich) (Benz et al., a; under rev.). Applied reservoir ages for 

Marine Isotope Stage (MIS) 1 vary between 520 – 750 yr dependent on the latitudinal core 

position according to Bard (1988). For MIS 2 a reservoir age of 1200 yr was chosen 

considering the existent higher reservoir ages in the glacial and early deglacial found in 

several areas of the Southern Ocean (Burke and Robinson, 2012; Siani et al., 2013, Skinner et 

al., 2010; 2015). The raw ages were converted to calibrated years before present (cal. kyr BP) 

using the calibration software CALIB 7.0.2 (Stuiver and Reimer, 1993; Stuiver et al., 2005) 

with the MARINE13 calibration curve (Reimer et al., 2013).  

Together with oxygen isotopic records from five cores, age models for eight reference 

cores were established (Benz et al., a; under rev.). These age models were further constrained 

and refined by inter-core correlation and additional alignment of X-ray fluorescence (XRF) 

measurements and reconstructed SSST records to the equivalent EDC ice core records 

(Jouzel et al., 2007; Lambert et al., 2008; Martínez-Garcia et al., 2009). The XRF-derived 

parameter together with abundance fluctuations of prominent diatom species were used to 

transfer the stratigraphic information of the reference cores to other cores lacking AMS and 

oxygen isotope-derived dating (Benz et al., a; under rev.).  

The correlation of cores and the resulting sedimentation rates were established using the 

AnalySeries 2.0 software (Paillard et al., 1996) with linear interpolation between tie points.  
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Table 4.2 Depth assignment (depth in cm) for discussed time slicesa 

Core  
(depth in cm) 

Time slice (cal. kyr BP)  

MIS1/2 (14) AHO (9-12) ACR (12.5-14.5) LGM (19-23) MIS2/3 (29) 

PS58/270-5 120 83–108 112–122 143–173 233 

PS58/271-1 192 89–163 174–198 243–285 402 

PS58/274-1 188 103–152 162–197 278–439 543 

PS75/051-1 12.5 7.5–10 10.5–13 18–21 26 

PS75/054-1 40 0-18 25–42 64–87 164 

PS75/056-1 42 11.5–24 28–45 61–75 101 

PS75/059-2 50 26–39 43–51 59–62 69 

PS75/064-1 106 68–88 93–111 156–173 192 

PS75/072-4 133 88–112 118–137 151–157 167 

PS75/073-2 94 59–80 83–98 117–122 126 

PS75/076-2 6 – 0–8 14–17 25 

PS75/082-1 50 31–43 45–52 83–105 136 

PS75/085-1 420 295–378 389–431 545–551 572 

PS75/091-3 144 116–137 139–146 187–196 204 

PS75/093-1 67 32–51 56–70 92–102 116 

PS75/096-4 11.5 0–6 9–12 18–21 35 

PS75/097-4 7 0–2 4–8 17–27 49 
 

a Stratigraphy derived from the sources referenced in the text. MIS: Marine Isotope Stage; AHO: Antarctic 
Holocene Optimum, ACR: Antarctic Cold Reversal; LGM: Last Glacial Maximum. 
 

4.2.3 Sample preparation and diatom analysis  

Cores were sampled and analyzed at a spacing of 5 or 10 cm dependent on the time 

resolution. Preparation of material and permanent mounts of diatoms for light microscopy 

followed the standard method developed by Gersonde and Zielinski  (2000). The diatom 

counting was carried out according to Schrader and Gersonde (1978). An average of 400 – 

600 diatom valves was counted in each slide using a Zeiss Axioplan 2 at x1000 

magnification. 

Diatoms were identified to species or species group level and if possible to forma or 

variety level. The taxonomy followed Hasle and Syvertsen (1996), Zielinski and Gersonde 

(1997), and Armand and Zielinski (2001). For temperature and sea-ice reconstructions 29, 

respectively 28, species and species groups were used (Esper and Gersonde 2014a, b). The 

selected species show direct dependency to both environmental variables and different 

oceanographic zones (Zielinski and Gersonde, 1997; Armand et al., 2005; Crosta et al., 2005; 

Romero et al., 2005; Esper et al., 2010; Esper and Gersonde, 2014a, b). Following Zielinski 

and Gersonde (1997) and Zielinski et al. (1998) some species were combined to groups 

(details see Benz et al., a; under rev.). 
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The most prominent diatom species for comparison of all cores are Fragilariopsis 

kerguelensis, Eucampia antarctica, Chaetoceros spp. resting spores and Thalassiosira 

lentiginosa. The relative abundance patterns of these diatom species serve as indicator of 

certain oceanographic conditions and helped constraining the age models. The species F. 

kerguelensis is the most abundant and strongly silicified diatom species in the entire dataset 

and sediments within the ACC, and its abundance fluctuation between glacials and 

interglacials mirrors biogenic opal export in the ACC (Esper et al., 2010). Another prominent 

contributor to the biogenic opal content in sediments is T. lentiginosa, representing another 

strongly silicified and thus robust specimen. Although it is a more temperate species (Esper et 

al., 2010) and generally its abundance increases towards interglacials, at core sites affected 

by selective dissolution a significant increase of T. lentiginosa occurs (Shemesh et al., 1989). 

The E. antarctica abundance is mainly important as stratigraphic tool supporting the 

assignment of glacial periods (Burckle and Cooke, 1983; Burckle, 1984a, b). Resting spores 

of Chaetoceros spp. show a direct dependency to meltwater induced freshwater lenses 

stratifying the upper water column as well as to the release of iron into the water column both 

favoring their growth (Crosta et al., 1997). Hence this genus is a good indicator for glacial 

intervals as they show high abundances in the seasonal SIZ directly at the sea-ice edge as 

well as in open ocean areas influenced by higher iron input due to increased dust transport 

during the glacial (Abelmann et al., 2006; Esper et al., 2010). On the other hand, Chaetoceros 

spp. peaks occurring in the early deglaciation may be indicative for prominent meltwater 

events with significant release of snow-settled dust and/or the reorganization of the deep-

water circulation and increased nutrient supply to surface waters (Spero and Lea, 2002; 

Abelmann et al., 2006). 

 

4.2.4 Reconstruction techniques    

The reconstruction of summer sea surface temperature and winter sea-ice 

concentration was obtained with the Imbrie and Kipp (IKM; Imbrie and Kipp, 1971) transfer 

function (TF) for SSST and the Modern Analog Technique (MAT) for WSI concentration. In 

particular, we applied the recently developed TFs by Esper and Gersonde (2014a, b). 

Considering the results of the comparison of different statistical methods and their 

performances, the TF IKM-D336/29/3q was used for SSST and the TF MAT-D274/28/4 for 

WSI, supported by the abundance pattern of diatom sea-ice indicators F. curta and F. 

cylindrus (Gersonde and Zielinksi, 2000). The root mean square error of prediction (RMSEP) 
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for SSST and WSI is 0.83°C and 5.52%, respectively (Esper and Gersonde, 2014a, b). For 

both TFs species relative abundances were used as logarithm transformed values to enhance 

the weight of less abundant taxa. IKM calculations were carried out with the software 

packages PaleoToolBox and WinTransfer (http://www.pangaea.de/Software/PaleoToolBox; 

Sieger et al., 1999); MAT values were calculated with the statistical computing software 

package R (R Core Team, 2012). The new SSST and WSI TFs were further used to 

recalculate the temperature estimates for core ODP1094 (Bianchi and Gersonde, 2004) and to 

estimate for the first time WSI concentration on the basis of the published diatom counts. 

Problems in the reconstruction of both parameters arise from selective dissolution of 

cold-water and sea-ice indicating diatom species that are relatively weakly silicified, leading 

to the enrichment of strongly silicified taxa like F. kerguelensis and T. lentiginosa (Shemesh, 

et al., 1989). Thus, SSST results during cold periods may be biased towards warmer values 

preferentially in the vicinity of the sea-ice edge, where dissolution is enhanced due to low 

sedimentation rates and less productivity. For WSI reconstruction the selective dissolution 

leads to biased TF-estimates towards lower concentration values. 

Additionally, we performed a Principal Component Analysis (PCA) of the SSST 

records. As the SSST estimates from the western cores were often biased by selective 

dissolution and showed too high temperatures during the glacial, the PCA was estimated for 

eastern cores only to exclude the noise over data ratio. For the eastern pacific sector the 

temperature estimates of 7 cores covering the time span from 30 to 13.5 cal. kyr BP were 

rescaled to interpolate data points for every 500 yr step using the software AnalySeries 2.0 

(Paillard et al., 1996). The PCA was performed with the statistical software package R (R 

Core Team, 2012) and hereby, it was possible to filter the noise of every single core and get a 

general temperature trend over the deglacial in the eastern Pacific sector of the Southern 

Ocean. Due to lacking Holocene temperature estimates in a number of cores, the PCA was 

only performed for the mentioned time slice. Further analyses with fewer cores but for longer 

time periods were excluded to maintain the highest possible dataset. For WSI concentrations 

no PCA was accomplished, as this parameter shows no linear trend suitable to calculate a 

general trend. For better visualization in maps and figures, the minimum (maximum) SSSTs 

(WSI concentration) were selected for the Antarctic Cold Reversal (ACR), whereas for the 

Antarctic Holocene Optimum (AHO) the maximum (minimum) SSSTs (WSI concentration) 

were chosen. Reconstructed variables and analyses are available in the PANGAEA database 

(www.pangaea.de). Maps, temperature and sea-ice plots were generated using the ODV 

software (Ocean Data View; Schlitzer, 2014). 
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4.3 Results 

4.3.1 Sedimentation rates  

 Estimated sedimentation rates of the studied cores situated in the different 

oceanographic zones show comparable patterns, yet with differences between western and 

eastern sector (Fig. 4.2). During the glacial the sedimentation rates of the majority of cores 

range between 1 and 5 cm/kyr (Fig. 4.2a-m). However, at core sites located in the PFZ of the 

Amundsen Abyssal Plain sedimentation rates during the glacial reached distinctly higher 

values of 10-30 cm/kyr in average (Fig. 4.2o-q).  

 
Figure 4.2: Sedimentation rates (y-axis) of studied cores in the Pacific sector of the Southern Ocean plotted 
against age. AHO: Antarctic Holocene Optimum, ACR: Antarctic Cold Reversal, LGM: Last Glacial Maximum. 



Chapter 4 – Manuscript 2 

 
 

105 

 From ~19 kyr on the sedimentation rate in all studied cores varies dependent on their 

location in the different oceanographic zones and the influence of WSI. Whereas cores 

situated in the PFZ (Fig. 4.2a-c, o-q) and the SAZ (Fig. 4.2k-n) show relatively stable 

sedimentation rates in the early deglacial (ca. 19-15 cal. kyr BP), the sedimentation rates in 

the POOZ (Fig. 4.2d-g) and the modern seasonal SIZ (Fig. 4.2h-j) display distinct increases. 

Most prominent is the change from relatively low glacial to high deglacial sedimentation 

rates in cores located on the Pacific-Antarctic Ridge at ca. 16.5 cal. kyr BP (Fig. 4. 2d, c, f, i, 

j). The southernmost cores, lying south of the modern maximum WSI edge (15% 

concentration), together with a high-resolution core from the APF (Fig. 4.2f, i, j) show a 

distinct drop of sedimentation after 1-2 kyr that is not pronounced in other cores from the 

POOZ and the seasonal SIZ. Cores that are located in deeper water depth do not display such 

a prominent pattern, yet show an early increase in sedimentation rates between 20-18 cal. kyr 

BP and a rather stable behavior over Termination I (Fig. 4.2g, h). 

 At ~15 cal. kyr BP sedimentation rates in the western PFZ and eastern SAZ start to 

rise simultaneously with the drop in the western POOZ and the seasonal SIZ. (Fig. 4.2a, l, 

m). Two cores from these zones show a first increase in deglacial sedimentation rates not 

before 13 cal. kyr BP (Fig. 4.2 c, n). Yet a newly drop is visible in the majority of cores from 

the SAZ around 12 to 10 cal. kyr BP. 

After 12 cal. kyr BP the majority of cores depict rather stable sedimentation rates with 

exceptions from the eastern PFZ showing rising sedimentation rates from 10 kyr BP on (Fig. 

4.2p, q). Generally, cores south of the SAF the eastern and south of the APF in the western 

Pacific sector show higher average sedimentation rates throughout the studied time period. 

 

4.3.2 Diatom assemblage 

 The diatom composition in all cores show a clear trend from the last glacial to the 

early Holocene (Figs. 4.3, 4.4). During the glacial the abundance of F. kerguelensis shows  a 

N-S gradient in cores from the eastern Pacific sector. Whereas cores in the PFZ depict 

abundances of ~60-70% (Fig. 4.3o-q), the abundance in the SAZ decreases gradually from 55 

to 30% northward (Fig. 4.3k-n). In the western sector such a distinct pattern is not that 

pronounced showing F. kerguelensis abundances around 55% in the majority of cores with a 

slight decrease in the northernmost cores from the PFZ (Fig. 4.3a-j). With the start of the 

deglacial, the abundance of F. kerguelensis increases in the majority of the studied cores 

reaching eventually highest values in the eastern PFZ of ca. 80% (Fig. 4.3o-q). Yet, distinct 
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drops in its abundance during cold events such as the ACR are visible especially in the 

eastern SAZ and northern PFZ (Fig. 4.3l-o) as well as the seasonal SIZ (Fig. 4.3h-i). 

Figure 4.3: Relative abundances of relevant diatom species plotted against depth. Left y-axis: F. kerguelensis; 
right y-axis: T. lentiginosa, Chaetoceros spp. resting spores, E. antarctica.  Grey bars represent the assignment 
to the time slices AHO, ACR and LGM. Black line indicates the end of Marine Isotope Stage (MIS) 2 at 29 kyr 
BP. AHO: Antarctic Holocene Optimum, ACR: Antarctic Cold Reversal, LGM: Last Glacial Maximum. 
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An opposite trend is visible in the abundance of Chaetoceros spp. resting spores. In 

the eastern sector the abundances increase northward from relatively low values of around 

5% in the PFZ to up to 20% in the SAZ (Fig. 4.3k-q) during the glacial. The pattern in the 

western sector is not only controlled by a N-S difference but also from the location of the 

cores in relation to the Pacific Antarctic Ridge and their proximity to the WSI edge. As such, 

cores from all oceanographic zones located at the Pacific Antarctic Ridge display abundances 

of up to 15% (Fig. 4.3a, d, e, h-j). The other cores from the POOZ and the PFZ show 

Chaetoceros spp. resting spores in average of ca. 7% (Fig. 4.3b, c, f, g). After the glacial the 

Chaetoceros abundances increase significantly in almost all cores from the Eastern sector and 

reach peak values of up to 15-55%. Similar to the glacial period, there is an increasing south 

to north gradient, where cores from the SAZ reach their peak values within the ACR time 

slices, slightly later than those from the PFZ (Fig. 4.3l-p). The Chaetoceros abundance peaks 

mirror the distinct drops of F. kerguelensis. After the peaks, the average values of 

Chaetoceros throughout the Holocene drops to under 10%.  

The strongly silicified diatom species E. antarctica that is a relatively good indicator 

for colder climate states shows abundances of maximum 10% in the western as well as in the 

eastern sector in all oceanographic zones (Fig. 4.3a-q). Generally the peak values are reached 

during the LGM time slice and the early deglacial. In all cores the E. antarctica abundances 

decrease before the ACR time slice and only minor values around 1% in the early Holocene. 

Another robust and strongly silicified diatom species in Southern Ocean sediments is 

Thalassiosira lentiginosa with a rather wide temperature range (Esper et al., 2010) that 

primarily indicates open ocean conditions (Esper and Gersonde, 2014b). However, in our 

cores it is a strong indicator for selective dissolution as its abundance reach high values of up 

to 20% in cores south of the modern and/or glacial average winter sea-ice edge (Fig. 4.3i, j, q). 

The specific cold-water and sea-ice diatom taxa Fragilariopsis curta and 

Fragilariopsis cylindrus (combined to the F. curta group) as well as F. obliquecostata show 

only minor abundances in the northernmost cores from the PFZ in the western and the SAZ 

in the eastern sector. In those cores the values of both sea-ice indicators do not reach 1% in 

average (Fig. 4.4a-c, k-n). Yet the pattern displays generally higher abundance of sea-ice taxa 

during the glacial period, followed by a strong decrease over Termination I. From cores 

located in the eastern PFZ slightly higher abundances are reported, showing a similar pattern 

with higher occurrence during the glacial and a decrease during the deglacial (Fig. 4.4o-q). 

However, in these cores, selective dissolution may take place, especially at the southernmost 

position (Fig. 4.4q). During the ACR two cores show a minor increase of the F. curta group 
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Figure 4.4: Relative abundance of sea-ice indicating diatom species F. curta group and F. obliquecostata (left 
y-axis), used as additional variable for the estimation of sea-ice extent plotted against age. AHO: Antarctic 
Holocene Optimum, ACR: Antarctic Cold Reversal, LGM: Last Glacial Maximum. 
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with a subsequent drop during the following AHO and presumably re-occurring cold 

conditions after 8 kyr (Fig. 4.4o-q). Highest abundances of the F. curta group up to 15% 

occur in the western POOZ and seasonal SIZ (Fig. 4.4d-j). Significant dissolution of this 

slightly silicified diatom taxa is visible in cores from the seasonal SIZ and also from the 

POOZ where highest abundances are exclusively found during deglacial and Holocene (Fig. 

4.4d, f, g, i, j). Similar to the eastern sector, in cores from the POOZ and the seasonal SIZ the 

F. curta group shows an increase during the ACR followed by a drop of abundances during 

the AHO and a newly rise around 8 kyr (Fig. 4.4d, e, g-i). 

In general, all studied cores show a distinct change in diatom composition from a cold 

glacial to a warmer climate with abundance patterns of specific cold-water and more 

temperate diatom species supporting the TF estimates of SSST and WSI. Although not used 

for the reconstruction of the latter parameters, the abundances of Chaetoceros resting spores 

and E. antarctica can favor the interpretation of oceanographic and atmospheric changes over 

Termination I. The anomalous occurrence of specific diatoms like T. lentiginosa during 

glacial periods points to selective dissolution of weakly silicified diatoms and thus helps with 

the interpretation of biased temperature results. 

 

4.3.3 SSST and WSI reconstruction 

Glacial SSST estimates show values of ~0.2° in the modern seasonal SIZ, 0.3 to 2°C 

in the modern POOZ, around 1-2.5°C in the PFZ and 2-5°C in the modern SAZ. Yet at some 

core sites (Fig. 4.5e, n-s) SSSTs estimated for the LGM time slice do not represent the 

coldest temperatures for the last glacial. Similarly, the WSI concentration at those sites 

showed slightly higher values before 23 cal. kyr BP (Fig. 4.5e, p-s) 

The initial rise of SSST after the LGM displays some differences between the eastern 

and western Pacific sector of the Southern Ocean. While cores at 120°W show a gradual rise 

of SSSTs starting around 20–22 cal. kyr BP (Fig. 4.5m-o, q, s), the initial rise towards 

warmer temperatures in the western cores started around 18-19 kyr BP (Fig. 4.5a-j). 

Concomitant with the rise of SSSTs the winter sea-ice field in both sectors declined. 

However, temperatures and sea-ice records reconstructed in cores from the seasonal SIZ that 

were covered by approximately 40% WSI during the glacial (Fig. 4.5d, e, i, j), are highly 

biased towards warmer SSST and less than expected WSI due to selective dissolution.  



 Chapter 4 – Manuscript 2 

 
 

110 

Figure 4.5: SSST and WSI estimates and PCA results from the Pacific sector of the Southern Ocean compared 
to the Antarctic ice cores EDC δ18O (Stenni et al., 2006; AICC12 time scale) and WAIS δ18O (WAIS Divide 
Project Members, 2013). Left y-axis: diatom-derived SSST; right y-axis: diatom-derived WSI concentration. 
AHO: Antarctic Holocene Optimum, ACR: Antarctic Cold Reversal, LGM: Last Glacial Maximum. 

 

The first warming step towards a temporary optimum from 16 to 14 cal. kyr BP was 

steeper in the eastern cores and thus those cores depict a greater temperature range towards 

the first warm optimum (Fig. 4.5m-s). In the western Pacific sector the SSSTs reached this 

first optimum after a shallower rise depicting temperatures of 1°C to 2°C at 16 cal. kyr BP, 

best documented in cores that were previously south of the averaged WSI edge (Fig. 4.5d, e, 
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h-k. Although an optimum is visible in both sectors, in the western sector this temperature 

plateau is more pronounced due to its previous and following cooling. At the northernmost 

core sites in both sectors the temperature remained rather stable with no significant warm 

optimum over Termination I (Fig. 4.5a-c, m-n). After the temporal warming, at almost all 

sites the temperature decreased between 12-14.5 cal. kyr BP coincident with a re-advance of 

WSI at sites south of 57°S (Fig. 4.5d-j, o-s). This cooling event was more pronounced in the 

western and southern cores by up to 1.6°C temperature difference. Cores at the APF and 

north of it only show minor decrease (ca. 0.6°C) (Fig. 4.5f, g, r). 

A second optimum is reached after a steep rise of SSSTs between 9 and 12 cal. kyr 

BP with maximum temperatures of up to 7.1°C in the modern SAZ and around 2.5-4°C in the 

present PFZ of both sectors. In the modern POOZ the temperatures of this optimum reach 

~2°C, whereas estimates from core locations in the modern seasonal SIZ range from 0.5-

1.5°C. The temporal warming expressed particularly at sites south of the SAF in the eastern 

sector and south of the APF in the western sector was accompanied by the retreat of winter 

sea ice (Fig. 4.5d-j, q-s). After ca. 1-2 cal. kyr BP, the temperature drops again significantly. 

The cold temperatures remain in the POOZ, but rise again or remain stable in the SAZ and 

PFZ. 

The general trend of temperature development in the eastern Pacific sector over 

Termination I is best expressed by a Principal Component Analysis (PCA) (Fig. 4.5t). During 

the glacial period from 30 to 22 cal. kyr BP only small-scale variations can be observed, 

diminishing the signals of coldest temperatures in the pre-LGM time period. Yet, the PCA 

corroborates the early start of warming from ca. 22 cal. kyr BP on and a constant rise of PCA 

values until ~14 cal. kyr BP. Later than 14 cal kyr BP the PCA seems to show apattern of 

decreasing temperatures that can not be further traced due to the low data coverage in the last 

13.5 kyr. 

 

4.4 Discussion 

4.4.1 Glacial conditions and start of Southern Ocean warming 

4.4.1.1 Glacial conditions 

The glacial period in the Pacific sector of the Southern Ocean was characterized by 

continuously colder than present SSSTs of up to -5K leading to a northward expansion of the 

cold-water realm by in average 5° in latitude accompanied by a similar northward advance of 
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sea ice by up to 5-10° latitude. Yet both parameters show an east-west gradient, including the 

extent of the maximum WSI ice edge (15% concentration) reaching to 56°S in the eastern and 

60 to 57°S in the western sector (Benz et al., a; under rev.). Although relatively distinct 

temperature variations occur in single cores (e.g. Fig. 4.5f, p, q), the general trend that is 

supported by the performed PCA (Fig. 4.5t) shows low SSST variability throughout the 

glacial. The northward extent of the WSI field, leading to distinctly less opal burial and 

stronger dissolution, is in line with extremely low sedimentation rates at core sites south of 

the glacial seasonal SIZ (Benz et al., a; under rev.). Furthermore the higher sedimentation 

rates found especially in the eastern modern PFZ and SAZ corroborate a shift of the opal 

burial zone by approximately 5° in latitude as proposed by different authors (Chase et al. 

2003, Bradtmiller et al., 2009).  

Interestingly, we find indications that the period of coldest Southern Ocean SSSTs 

occurred pre-LGM. Accompanied by colder SSSTs, also the WSI concentrations were 

slightly higher in this pre-LGM period especially in the eastern Pacific sector (Fig. 4.5p-s) 

that is additionally corroborated by the slightly higher abundances of sea-ice diatoms (Fig. 

4.4m-q). The dissolution-biased records from the western sector do not show this specific 

pattern. The maximum WSI edge probably extended pre-LGM around 1-2° in latitude further 

northward to 59°S in the western sector and multiple events of sea-ice advance in the eastern 

sector may have occurred. These results show a good agreement with previous temperature 

and sea-ice reconstructions from the central and westernmost Pacific sector of the Southern 

Ocean (Fig. 4.6d, i; Crosta et al., 2004; Tapia et al., 2015), off southern New Zealand (Fig. 

4.6c, 4.7h; Pahnke and Sachs, 2006), as well as from the Atlantic sector (Fig., 4.7j; e.g. 

Bianchi and Gersonde, 2004; Gersonde et al., 2005; Collins et al., 2012; Abelmann et al., 

2015). The SSSTs and sea-ice estimates reconstructed from the Atlantic sector (Bianchi and 

Gersonde, 2004; Gersonde et al., 2005; Collins et al., 2012) also display coldest temperature 

values and a farther sea-ice extent around 25 cal. kyr BP. Likewise the maximum extent of 

Patagonian glaciers is found prior to ~22 cal. kyr BP and they show only minor advances 

until 19 cal. kyr BP or even a slight retreat of ice extent (Kaplan et al., 2008; Kilian and 

Lamy, 2012). Although the variations in ice core temperatures during the last glacial are 

minor, the lowest temperatures were also recorded from ca. 29-26 cal. kyr BP from the East 

and West Antarctic ice sheet (WAIS Divide Project Members, 2013). 
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Figure 4.6: SSST and WSI records from the western and eastern Pacific sector of the Southern Ocean (for 
references see Table 4.1) compared to EDC δ18O and WDC δ18O (Stenni et al., 2006; AICC12 time scale; WAIS 
Divide Project Members, 2013). MIS1/2: Marine Isotope Stage 1 and 2; AHO: Antarctic Holocene Optimum; 
ACR: Antarctic Cold Reversal; LGM: Last Glacial Maximum. 
 

In general, the extent of sea ice together with the huge expansion of the cold-water 

realm during the glacial significantly influenced the ACC. The export of cold-water masses 

led to distinct cooling along the Humboldt Current system and subsequently in the eastern 

equatorial Pacific as well as in the Atlantic and Indian sectors due to the colder than present 

throughflow via the Drake Passage (Benz et al., a; under rev.). Furthermore, steep 

temperature gradients at the Glacial Southern Subtropical Front (GSSTF) point to a 

contraction of the Subtropical Gyre with minor to almost no cooling in its interior similar to 

the Atlantic sector (MARGO Project Members, 2009). Overall, during the last glacial, the 

behavior of the different Southern Ocean sectors is comparable in the magnitude of strongest 

cooling (>4K in the SAZ) and the average northward expansion of the winter sea-ice extent. 

Resulting from the severe cooling in the SAZ and the deflection of >4°C water masses the 
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Antarctic continent and its surrounding Southern Ocean seems strongly thermally isolated 

south of  ~55°S. 

Diatom-derived TF-estimates of glacial SSST are alone not solely indicative for 

frontal displacement in the Southern Ocean due to the strong topographic forcing that steers 

ocean currents in the ACC. Most likely the fronts where only characterized by colder SSSTs 

during the LGM (Benz et al., a; under rev.). The huge WSI expansion in the Pacific sector 

contributes to a circum-Antarctic WSI extent that is probably twice as large as modern 

(Gersonde et al., 2005) maintaining deep and bottom water formation due to brine release 

during sea-ice formation (Schmittner et al., 2003; Shin et al., 2003). This process might have 

led to a large drop in atmospheric CO2 due to salt transport into the deep ocean (Bouttes et 

al., 2010) that caused, together with the inhibited outgassing of CO2 by extensive sea-ice 

cover, the increase of old, less ventilated water masses in the Southern Ocean during the 

glacial (e.g. Burke and Robinson, 2012; Skinner et al., 2015). 

 

4.4.1.2 Start of deglacial warming 

The rise of temperature after the LGM displays a similar gradient between eastern and 

western Pacific sector as during the glacial (Benz et al., a; under rev.). While in the eastern 

sector an increase of SSSTs started as early as 22 cal. kyr BP (Fig. 4.5m-o, p, s) the western 

sector starts with a temperature rise from 18 cal. kyr BP on (Fig. 4.5d, h, j). Though, due to 

the biased temperatures in several cores from the western sector as well as a relatively low 

time resolution in cores from the western PFZ (Fig. 4.5a-c) a probable early deglacial 

warming in the western sector can not be excluded. As most of the cores with an early 

deglacial are beyond the glacial sea-ice edge, the WSI concentration gives only minor hints 

for a possible early retreat (Fig. 4.5m-q). However, especially cores from the SAZ show a 

simultaneous increase of the Chaetoceros spp. resting spores together with a decline of 

the cold-water diatom E. antarctica (Fig. 4.3l-n) indicating surface water stratification  
 
Figure 4.7: Selected SSST and WSI records from the Pacific sector of the Southern Ocean (for references see 
Table 4.1) compared to an Atlantic record, orbital parameter, midsummer insolation as well as arctic and 
antarctic ice core parameters for revealing interhemispheric relationship. Precession and obliquity (Laskar et al., 
2004); ice-volume equivalent sea level (esl, Lambeck et al., 2014); daily northern and southern midsummer 
insolation (Laskar et al., 2004), OT: Onset of Termination after Schulz and Zeebe (2006); NGRIP δ18O (NGRIP 
Members, 2004; GICC05 time scale); deep-water ventilation ages (benthic foraminifera to atmosphere) from 
core MD07-3076 (Skinner et al., 2010); PCA Pacific SSST (this study); EDC and WDC non-sea salt Na 
(Fischer et al., 2007; WAIS Divide Project Members, 2013); EDC and WDC CO2 (Lüthi et al., 2008, AICC12;  
Marcott et al., 2014); EDC δ18O and WDC δ18O (Stenni et al., 2006, AICC12; WAIS Divide Project Members, 
2013). AMOC: Atlantic Meridional Overturning Circulation; AHO: Antarctic Holocene Optimum; AIM 1: 
Antarctic Isotope Maximum; 1ACR: Antarctic Cold Reversal; B/A: Bølling/Allerød; H1: Heinrich stadial 1; 
LGM: Last Glacial Maximum; PCA: Principal Component Analysis; YD: Younger Dryas. 
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due to melting sea ice and favoring bioproductivity. At core sites from the Pacific 

Antarctic Ridge, the Chaetoceros spp. abundances that were continuously high throughout 

the glacial show peak abundances directly at the end of the LGM at 19 cal. kyr BP. This 

pattern implies significant discharges of meltwater at the end of the LGM exceeding the 

seasonal meltwater input throughout the LGM. The sedimentation rates at these time slices 

do however not show a clear pattern associated with an early or late warming (Fig. 4.2).  

The pattern of an early start of deglacial warming was not yet in the focus of other 

temperature reconstructions in the Pacific sector of the Southern Ocean. However, there are 

indications that the rise of temperature starting as early as 23-21 cal. kyr BP can be also 

observed in previous studies (Pahnke et al., 2003; Pahnke and Sachs, 2006; Romero et al., 

2006; Kaiser et al., 2008; Kaiser and Lamy, 2010; Tapia et al., 2015). Temperature records 

from core sites off the Chile margin show an early warming step at ~22.5 cal. kyr BP with a 

subsequent significant rise of SST from 18-19 cal. kyr BP on (Figs. 4.6h; 4.7f; Kim et al., 

2002; Kaiser and Lamy, 2010) or a steady warming over Termination I (Romero et al., 2006, 

Kaiser et al., 2008). Such pattern is also visible at core locations in the central Pacific sector 

(Fig. 4.6i; Tapia et al., 2015), and in the STZ off NZ (Fig. 4.6b; Pahnke and Sachs, 2006). 

However, temperature records off southern New Zealand and the Australian bight show the 

first distinct warming step between 17-19 cal. kyr BP (Fig. 4.6a, c; Pahnke et al., 2003; 

Pahnke and Sachs, 2006; Calvo et al., 2007). Previous studies from the SAZ around 120°W 

(Fig. 4.6k; Mashiotta et al., 1999) do also not corroborate the early temperature rise found in 

our cores at the same latitude, yet further north around 45°S, foraminiferal temperature 

reconstructions show an early warming from 20 cal. kyr BP (Fig. 4.6j; Tapia et al., 2015). 

Sea-ice retreat from the Scotia Sea and the westernmost Pacific sector as early as 21-20 cal. 

kyr BP (Crosta et al., 2004; Collins et al., 2012) is further in line with the early warming in 

the Pacific sector, and directly influenced areas through the exchange via the cold-water route 

though the Drake Passage. Additionally, δ15N records in the central and eastern Pacific 

sector, indicating nutrient supply and utilization in surface waters, show an early rise between 

21-22 kyr cal. BP (Verleye et al., 2013). This rise in δ15N corresponds to a decrease of 

dinoflagellate cysts that has been interpreted as a poleward shifting ACC (Verleye and 

Louweye, 2010). 

Available temperature records from the westernmost Pacific sector resemble the early 

warming around 21.5 cal. kyr BP (Fig. 4.6d; Crosta et al., 2004), whereas in the Atlantic 

sector the SSST estimates do not show any significant warming step prior to 19-18 cal. kyr 

BP (Fig. 4.7j; Bianchi and Gersonde, 2004;). Yet, a retreat of sea ice in the Atlantic sector 
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starting around 22-21 cal. kyr BP is observable from two cores in the eastern Atlantic, located 

in the PFZ and POOZ (Abelmann et al., 2015). In a recent study on the deglacial temperature 

rise and its starting point in the different world oceans, the South Pacific SST stack do not 

show any early warming (He et al., 2013). Instead it resembles the trend from the Atlantic 

sector, resulting in an SH Ocean stack, that shows the temperature rise from 19 cal. kyr BP 

on. Yet, a significant difference to our comparison of new data with earlier studies from the 

Pacific sector is that the different stacks starts from 21 cal. kyr BP on, not including the entire 

LGM time slice. Therefore, the early warming that can be seen in cores used by He et al. 

(2013) is not fully included in the stacks from the Southern Ocean. Furthermore, the six cores 

that generate the Pacific stack are all situated north of 45°S in the northern SAZ or STZ and 

at continental margins and/or plateaus. As such the SH stack may lack signals that are 

directly associated with the ACC from the open ocean and the proximity of the Antarctic 

continent. Such stack must be extended with reconstructions from the Antarctic zone of the 

Pacific sector and on a longer time scale. 

The observed differences in the temperature pattern of the Atlantic and Pacific sectors 

are highly comparable to antarctic ice core records from the different drilling sites in the SO 

catchment areas (Petit et al., 1999; Blunier and Brook, 2001; Brook et al., 2005; EPICA 

Community Members, 2006; Jouzel et al., 2007; Stenni et al., 2011; WAIS Divide Project 

Members, 2013). In several antarctic ice core records an early warming can be observed 

especially at core locations on the WAIS together with an early retreat of sea ice (Byrd ice 

core; Blunier and Brook, 2001; Siple Dome, Brook et al., 2005; WAIS Divide Project 

Members, 2013). The WAIS Divide Project Members (2013) stated in their study that by sea-

ice retreat in the Pacific SO, triggered by insolation changes, the WDC warms before 18 cal. 

kyr BP as the WAIS is directly influenced by the adjacent ocean. Such feedback mechanism 

between the ocean and the marine-based ice sheet is not recorded from ice sheets, of East 

Antarctica, where the influence of sea ice and ocean temperature plays an inferior role. This 

hypothesis is supported by a study of Schulz and Zeebe (2006), proposing a mechanism 

called the “insolation canon”, where a synchronous, prolonged (≥1000 yr) increase of 

Northern Hemisphere (NH) and Southern Hemisphere (SH) insolation triggers the 

termination. The onset of Termination I (OT) is dated to 23.1 cal. kyr BP, lying between the 

NH minimum and the SH maximum insolation (Fig. 4.7c). Therefore, the authors also 

suggest a lead of the SH warming around a termination. An alternative scenario also sees the 

high SH insolation as trigger of warming but the continuing rise of temperature as a result of 

reaching maximum obliquity which results in prolonged and higher total summer energy 
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(Fig. 4.7a; Drysdale et al., 2009). The early warming recorded from the WDC ice core is 

further corroborated by studies of glacier retreat in the Amundsen Sea Embayment where the 

deglaciation of the outer shelf occurred as early as ~22 cal. kyr BP (Smith et al., 2011; 

Klages et al., 2014) consistent with the retreat from the outer Ross Sea shelf (~25 cal. kyr BP, 

Mosola and Anderson, 2006) and the Bellingshausen Sea (25.5 cal. kyr BP, Hillenbrand et 

al., 2010). Significant ice sheet retreat is coincident with rising sea level after the minimum 

lowstand around 21 cal. kyr BP (Fig. 4.7b; Lambeck et al., 2014) that further influence the 

marine-based WAIS.  

As signals in the Southern Ocean are further propagated via the export routes, the lag 

of sea-ice retreat and temperature rise in the Atlantic sector with regard to the Pacific sector 

may have been the result of an overprinting bipolar seesaw in the Atlantic Ocean. As already 

indicated by the different signals in ice cores associated with the different ocean sectors (Fig. 

7l-n), the marine data as well show a decoupling regarding the initial start of the termination 

in the different SO basins. However, the CO2 records from the WDC and EDC ice cores 

show remarkable similarity with a simultaneous rise starting between 19-18 cal. kyr BP 

(Lüthi et al., 2008; Marcott et al., 2014). As such, the early warming in the eastern Pacific 

together with the sea-ice retreat may have no significant impact on the upwelling of CO2 

enriched deep water. However, latest reconstructions of ventilation ages and Δ14C-values of 

the last 30 kyr in the Pacific sector of the Southern Ocean show an early weakening of glacial 

stratification and a transfer of old carbon into the intermediate-water level (Ronge, 2014). 

The carbon release from the deeper ocean may have been coupled to the early warming in the 

West Antarctic region and the retreat of WSI in the eastern Pacific sector. Yet, as no 

significant changes in the sedimentation rates of cores located in the modern SAZ is visible in 

the late glacial (Fig. 4.5m-o), no distinct change in the rate of bioproductivity and subsequent 

opal burial might have occurred (Fig. 4.2k-n). As such, the carbon release from deep waters 

was probably buffered in intermediate waters until significant upwelling and sea-ice retreat 

took place also in the western Pacific as well as the Atlantic sector. As the CO2 rise in the 

EDC ice core record occurred synchronous with the temperature rise (Parrenin et al., 2013) 

the early warming and the sea-ice retreat reported from the eastern Pacific sector was not 

directly propagated to the Atlantic sector. A probable mechanism for the lag of the Atlantic 

sector is the shutdown of the Atlantic Meridional Overturning Circulation (AMOC) at ca. 18 

kyr (McManus et al., 2004) together with the southward shifting Intertropical Convergence 

Zone (ITCZ) and SH westerlies (De Decker et al., 2012). The already warmed SH coupled 

with the cooling in the NH eventually leads to significant warming in the Atlantic sector 
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initiating the sea-ice retreat in this sector and vigorous upwelling, thus outgassing of CO2. 

Such a late start of CO2 outgassing via the Atlantic sector is further corroborated by the 

decrease of ventilation ages in the Atlantic sector beginning at 19 cal. kyr BP (Fig. 4.7e; 

Skinner et al., 2010). Though the essential contribution to the beginning of the atmospheric 

CO rise is governed by the Atlantic sector in response to the NH, the Pacific sector points to 

an active role of the SH in triggering the last deglaciation. 

 

4.4.2 Termination I 

4.4.2.1 Early deglacial (Heinrich I) 

After the different onset of warming in the eastern and western Pacific sector, all 

cores show a relatively steady rise of temperature during the early deglacial (18-16 cal. kyr 

BP). In the eastern sector the abundances of sea-ice indicating diatoms diminished throughout 

this time period to <0.5% (Fig. 4.4k-q) indicating rapid sea-ice retreat that is further 

accompanied by WSI concentration values under 20% (Fig. 4.5 m-s). Hence, in this Pacific 

sector the maximum WSI edge may have reached to ~61°S, representing an expansion of ca. 

3° in latitude. Although sea ice is still present, it is distinctly less expanded than in the 

western sector, mirroring the modern sea-ice distribution in the Pacific sector. Despite a 

significant WSI retreat in the western sector especially obvious in cores covered by >40% sea 

ice (Fig. 4.5d, e, h-j), the maximum WSI edge probably still reached, similar to the glacial 

expansion, to ca. 57°S and follows the trend of the Pacific Antarctic Ridge, where values of 

up to 40% are present accompanied by sea-ice indicating diatom abundances of ~3% (Fig. 

4.4d-j). Additionally the SSST change in the early deglacial in these cores are only minor 

about ca. 0.5-1°C. As the total variance of cores from modern SSSTs in the range of 1-2°C is 

generally relatively low, a significant warming during the deglacial is predominantly visible 

in cores from the PFZ (Fig. 4.5a-c) and the northernmost POOZ (Fig. 4.5d-e).  

Differences between the eastern and western sector are further indicated through 

abundance changes of the other diatom taxa. In the eastern modern SAZ the Chaetoceros spp. 

resting spores show rather constant values during the early deglacial (Fig. 4.3l-n) whereas the 

abundances in the modern PFZ exert a steep increase towards the late deglacial (Fig. 4.3o-p). 

In the modern SAZ Chaetoceros spp. abundances were significantly high, whereas in the 

modern PFZ F. kerguelensis abundance showed a constant increase. However, the 

sedimentation rates in the eastern Pacific sector do not indicate changes in the biological 

pump efficiency usually reflected by high F. kerguelensis abundances (Smetacek et al., 2004) 
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Apart from small-scaled changes in cores from the modern PFZ, the sedimentation rates 

remained constant during the early deglacial (Fig. 4.2k-q). The only distinct rise in 

sedimentation rates occurred around 16 cal. kyr BP in core PS75/059-2 (Fig. 4.2l). In 

contrast, the western Pacific cores that are influenced by the retreating sea ice and thus 

meltwater intrusion, that fuels prominent diatom blooms (Arrigo and Thomas, 2004), show a 

first rise in sedimentation rates around 19 cal. kyr BP (Fig. 4.2g-h) and a second more 

significant step between 17-16 cal. kyr BP (Fig. 4.2d-f, i-j). The second increase in 

sedimentation rates occur together with an increase of F. kerguelensis abundances (Fig. 4.3d-

e, h-j).  

Nevertheless, the general trend of rising temperature and retreating sea ice at all core 

sites around 19-18 cal. kyr BP (Figs. 4.6, 4.7) resembles that of antarctic ice core temperature 

and sea salt Na (ssNa) concentration results (Fig. 4.7l, n; Fischer et al., 2007; WAIS Divide 

Project Members, 2013). The pattern is also consistent with SST reconstructions from the 

westernmost Pacific sector (Fig. 4.6d), off New Zealand (Fig. 4.6a, b), from the Chilean 

margin (Fig. 4.6h, 4.7f) and the Atlantic sector of the Southern Ocean (Fig. 4.7j). 

Additionally, the majority of deglaciation in New Zealand and Australia occurred from 17 

cal. kyr BP on (Schaefer et al., 2006) mirroring the glacier retreat in Patagonia (Kaplan et al., 

2008). Thus the marine circum-Antarctic evolution of the deglacial temperature rise towards 

the Holocene displays a comparable pattern. Generally, the distinct SST rise starting around 

19 cal. kyr BP is steeper at core sites covered previously by winter sea ice south at or south of 

the APF (e.g. SO136-111, PS75/064-1, Figs. 4.5h, 4.6d). Further north in the central Pacific 

or off NZ the temperature shows a more gradual increase. However, at the core site south off 

Australia, that is influenced by strong temperature gradients associated with frontal positions 

a steep SST increase is visible (Fig. 4.6a; MD03-2611, Calvo et al., 2007). Especially in the 

Humboldt Current System the warming of the SH leads to an abrupt SST rise as the 

deflection of cold water along the South American coast declines with increasing 

temperatures reaching almost modern values in the eastern Pacific sector.  

The distinct deglacial temperature rise, occurring in records from all Southern Ocean 

sectors is concomitant with the cold Heinrich I event in the NH (H1; 18-15 cal. kyr BP) when 

outbursts of meltwater and icebergs led to the shutdown/reduction of the AMOC after 18 cal. 

kyr BP (McManus et al., 2004). The slowdown of the AMOC favored the storage of heat in 

the SH (Knorr and Lohmann, 2003). Additionally, the ITCZ was pushed southward due to 

WSI advances in the NH, leading to poleward shifting southern westerlies (De Deckker et al., 

2012). The southerly position of the wind belt in turn favored eventually the circum-Antarctic 
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retreat of sea ice due to wind-driven upwelling of warmer Circumpolar Deep Water (CDW) 

(Denton et al., 2010). Ultimately, the outgassing of CO2, that started not before the AMOC 

shutdown and was probably induced by increased upwelling, accelerated the warming of the 

SH (Toggweiler et al., 2006; Anderson et al., 2009). Coupled climate models further produce 

changes in the sea level pressure in mid- and high-latitudes under increasing atmospheric 

CO2 (Cai et al., 2003) expressed by a trend of the SAM to a high index state where negative 

anomalies over Antarctica intensify the polar vortex and strengthen the westerlies (Thompson 

and Wallace, 2000). The SAM upward trend and changing wind stress curl in the mid-

latitudes strengthened the East Australian Current and subsequently the South Pacific 

subtropical gyre and led to a southward shift of an inter-basin super gyre (Cai et al., 2005). 

This poleward shift might have further increased the warming in the Pacific sector of the  

Southern Ocean. An increased inflow of Subtropical water associated with a strengthened 

South Pacific Gyre is corroborated by foraminiferal studies from the Chatham Rise and 

Campbell Plateau during the early deglacial (Marr et al., 2013). 

 

4.4.2.2 Antarctic Isotope Maximum I (AIM I) 

The deglacial rise of SSST induced by the bipolar seesaw reached a temporal 

optimum especially at core sites in the western sector between 16 and 14 cal. kyr BP, which 

was accompanied by a drop in sea-ice concentration (Fig. 4.5d-e, i-j). The winter sea-ice 

occurrence was significantly reduced placing the sea-ice edge approximately at its present 

position. Concomitant with a decrease of sea-ice diatom abundances (Fig. 4.4d-e, g-j) the 

Chaetoceros spp. abundances increased at core sites in the AZ (Fig. 4.3d-f, i-j). Despite the 

more distinct occurrence of the first temporal optimum in the western sector, the coincidence 

of the sea-ice diatom decrease and Chaetoceros spp. increase is also observable in the 

modern eastern PFZ. These high abundances of Chaetoceros spp. in cores from the western 

AZ and eastern PFZ indicates higher productivity probably induced by melt water due to sea-

ice retreat or iceberg discharge and thus stratification in the upper water column (Fig. 4.3d-f, 

i-j, o-q). The rise of Chaetoceros abundances and F. kerguelensis abundances at this time 

interval (Fig. 4.4d-f, i-j) is further in line with the significant increase of sedimentation rates 

in the western modern AZ especially in those cores covered by >40% WSI during the LGM 

(Fig. 4.4d-f, i-j). In the eastern sector the sedimentation rates do not show a significant 

change since the glacial except for core site PS75/059-2, that exhibit a slight increase around 

15.5 cal. kyr BP (Fig. 4.2l).  
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The timing of the warm optimum is in accordance with other Pacific Southern Ocean 

records (Fig. 4.6; Calvo et al., 2007; Kaiser and Lamy, 2010; Tapia et al., 2015) as well as 

with records from the Atlantic sector (Fig. 4.7j; Bianchi and Gersonde 2004). Despite 

uncertainties regarding the reservoir ages during the deglacial due to upwelling of old carbon-

rich deep waters (e.g. Siani et al., 2013), the timing of the temporal optimum is broadly 

consistent with the Antarctic Isotope Maximum 1 (AIM1) found in antarctic ice cores (Fig. 

4.7n; WAIS Divide Project Members, 2013).  

The steady warming during the early deglacial especially in the eastern Pacific sector 

indicates a shrinking extent of the cold-water realm compared to the huge northward 

expansion during the glacial. This leads to a reorganization of the ACC zonal system 

regarding the maximum opal productivity and burial zones as well as the associated SSSTs of 

the frontal system. Compared to the LGM, the maximum opal export and burial thus shifts 

southward, corroborating the maximum opal fluxes during the deglaciation found in the 

western Pacific sector (Chase, et al., 2003; Anderson et al., 2009; Bradtmiller et al., 2009). 

The higher productivity and opal burial south of the modern APF is further favored by the 

upwelling of nutrient-rich deep water (Anderson et al., 2009).  Due to the general southward 

shift of the wind system together with the shift of the cold-water realm and the retreat of sea 

ice, the strong export of probably nutrient rich antarctic surface water into the Humboldt 

Current was decreased in the early deglacial. Hence, along the South American coast, the 

productivity and opal burial that was high during the LGM is reduced (Hebbeln et al., 2002; 

Ehlert et al., 2013; Chase et al., 2014). The transition from full glacial to deglacial conditions 

may have been governed by once upwelling of silicid acid depleted Subantarctic Mode Water 

(SAMW) (Ehlert et al., 2013) or by a poleward shift of the SWW similar to LGM conditions 

subsequently leading to less precipitation and eventually less glacial erosion delivering 

additional silicon (Chase et al., 2014).  

The increasing SSSTs during the deglacial in the Pacific sector of the Southern Ocean 

influenced the exchange of water masses with the Atlantic sector through the Drake Passage. 

Together with the retreat of the WSI cover and the rising temperatures the water masses 

transported into the Atlantic sector were imprinted with SSSTs comparable to the modern 

PFZ water temperatures. Hence, the warmer water transported into the Scotia Sea may have 

influence on the retreat of WSI in this area from ~17 cal. kyr BP on (Collins et al., 2012). 

Additionally, the enhanced warm water transport supports eventually the deglacial warming 

in the Atlantic and Indian Ocean sectors, comparable to the cooling in the LGM (Benz et al., 

a; under rev.). Furthermore, as surface water with SSSTs warmer than 4°C are not entirely 
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deflected along the South American coast, the isolation of the Southern Ocean that is visible 

during the LGM strongly decreases. 

 

4.4.2.3 Antarctic Cold Reversal (Bølling-Allerød) 

The warming trend observed at the majority of studied core sites was interrupted by 

reoccurring colder conditions starting between 15 and 14 cal. kyr BP and lasting for 

approximately 2-3 kyr (Fig. 4.5d-j, n-s, 4.8a). The cold water realm was shifted northward 

with an average displacement of 3° in latitude of the 4°C isotherm. In contrast to the LGM 

reconstruction (Benz et al., a; under rev.), this isotherm, that approximates the SSST at the 

modern APF, did not reach to the Campbell Plateau but largely follows the Pacific Antarctic 

Ridge. All reconstructed isotherms resemble the bottom topography, which led to stronger 

temperature gradients in the western than in the eastern sector (Fig. 4.8a). Hence, in the 

eastern sector the 2°C isotherm resembles approximately its modern position around 62°S 

whereas in the western sector it is shifted northward by ca. 3° in latitude. The decrease of 

SSSTs is concomitant with a re-advance of the average sea-ice edge to the Pacific Antarctic 

Ridge at core sites from the western sector (Figs. 4.5i-j, 4.8b, Table 4.3). However, in both 

sectors the maximum WSI edge expands northward about 2-3° in latitude resembling the 

trend of the modern WSI edge, resulting from topographic forcing. Event-like advances in the 

eastern sector seem not to occur regarding the distinct NS gradient of the WSI concentration 

values (Fig. 4.8b). This gradient is further mirrored by absent or extremely low abundances 

of the F. curta group in the SAZ and northern PFZ (Figs. 4.4k-o, 5 m-q). The relative 

position of the WSI in the western sector is further concomitant with increasing abundances 

of sea-ice diatom species (Fig. 4.4d-e, g-j). At core sites from the western modern PFZ the 

low time resolution inhibits further implications on the exact behavior at this time period. 

Where a slight re-advance of sea ice is visible together with a drop in temperature (Fig. 4.5a) 

the sea-ice indicating diatom species are negligible (Fig. 4.4a), whereas at core sites with a 

newly increase of sea-ice diatoms (Fig. 4.4b) the SSST drop is displayed ca. 1.5 kyr later 

(Fig. 4.5b). Similar to core sites from the SAZ and northern PFZ in the eastern sector, at core 

sites from the SW-Pacific Basin may not experience a distinct cold reversal.  

Differences in the Chaetoceros pattern between eastern and western Pacific sector 

(Fig. 4.3) may probably result from sea-ice/iceberg transport by westerly winds into the 

eastern sector, as it is observed today (Assmann et al., 2005), inducing prominent 

Chaetoceros blooms during the cold reversal in the southern SAZ (Fig. 4.3l-n). The ice 
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transport into the eastern or central Pacific sector is further in accordance with increasing 

lithogenic fluxes from west to east (Bradtmiller et al., 2009) hence resulting in higher iron  

Figure 4.8: (a) Estimated ACR SSST compared to modern HASO SSST (Olbers et al., 1992) and modern SSI 
(Reynolds et al., 2002, 2007) with averaged SSST isotherms (in °C). Numbers indicate minimum temperatures 
within the ACR time slice for cores in this study (bold) and from literature (italic, see Tables 4.1, 4.3); Color 
scale of core symbols represent color code of the HASO SSST. (b) Estimated ACR WSI distribution compared 
to modern WSI distribution and WOA09 winter SSTs. Numbers indicate maximum estimated sea-ice 
concentration during the ACR time slice from this study (see Table 4.3). ACR WSI estimates include the 
maximum winter sea-ice extent (>15% September concentration). Modern winter sea-ice edges after Reynolds 
et al. (2002, 2007). 
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availability. In contrast, recurrence of sea ice in the western sector is also accompanied by an 

increase of Chaetoceros spp., yet not as significant as during the glacial period or in the 

eastern SAZ (Fig. 4.3h-i). In general, this is in line with decreasing iron contents in marine 

and antarctic ice cores during the deglaciation (Martínez-Garcia et al., 2009; Lamy et al., 

2014). As new peaks in Chaetoceros spp. abundances occur partly at the beginning of the 

second rise of temperature after the cold reversal in the western and eastern sector, this 

pattern points to meltwater-induced diatom blooms due to probably more stratified surface 

water conditions around 13-12 cal. kyr. BP (Fig. 4.3d-e, o-p). The Chaetoceros spp. peak 

abundances in the modern SAZ occurred together with decreased F. kerguelensis abundance 

but increasing sedimentation rates in the same cores (Fig. 4.2l-n). Similar to the deglacial less 

biogenic opal burial is found in the modern SAZ (Lamy et al., 2014), and the high 

sedimentation rates probably represent a shift from a diatom dominated to a carbonate facies 

(e.g. core description of PS75/059-2 in Gersonde, 2011). Significant sedimentation changes 

took further place in cores from the seasonal SIZ, where the sedimentation rate drops 

simultaneously with a renewed cooling and the recurrence of WSI (Figs. 4.2 and 4.5 i-j).  

Previous studies from the Pacific sector of the Southern Ocean do not show a 

pronounced cold reversal as observed in the southernmost open ocean cores (Fig. 4.6a-d, h, i, 

k). The majority of SST estimates show rather stable conditions during this time slice e.g. 

ODP1233, Fig. 4.6a, d, h) or a further steady rise of temperature (Fig. 4.6b, c, i, k). However, 

the still relatively cold SSTs at the Chilean coast compared to modern indicate a similar 

northward deflection of colder water masses as in the LGM. However, such huge northward 

expansion as seen in the western Pacific sector during the LGM time slice does not occur.  

In the westernmost Pacific sector, temperatures from the modern PFZ (Fig. 4.6d) 

resemble their modern value around 5°C, placing the 4°C-isotherm at its present position. 

This result is consistent with a lack of WSI at this core site after ca. 15 cal. kyr BP (Crosta et 

al., 2004). Yet, new sea-ice reconstructions from this core sites established with the 

Generalized Additive Model (GAM) and MAT indicate sea-ice presence during the ACR 

(Ferry et al., 2015a, b). However, as the established RMSEP ranges for both methods 

between 14 and 28%, the estimations remain relatively weak. Thus the assignment of the 

15% maximum winter sea-ice edge remains unclear. The occurrence of the ACR in Southern 

Ocean cores may generally be influenced by the proximity of the core location in relation to 

the influence of cold surface waters transported northward by the cold-water gyre or within 

the pathway of the ACC. This is corroborated by the significantly stronger development of 

the ACR in the western Pacific cores in the AZ, influenced by cold water from the Ross Gyre 
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and the vicinity to the modern WSI edge. In the Atlantic sector, available temperature 

estimations show similar results for the cold reversal between ca. 14 – 12 cal. kyr BP with a 

simultaneous recurrence of sea ice into the modern POOZ to approximately 53°S (Gersonde 

et al., 2003; Bianchi and Gersonde, 2004; Divine et al., 2010). The SSST values of ca. 1-3°C 

recorded from the modern Atlantic POOZ are in line with our estimates from the modern 

western POOZ and partly from the southern modern PFZ in the eastern sector. Furthermore, 

the maximum extent of sea ice and the cold-water realm is farther north considering latitude 

than in the Pacific sector, yet the relative latitudinal expansion of ca. 3° is highly comparable. 
 
Table 4.3 AHO maximum and ACR minimum SSTs, anomalies and AHO minimum and ACR maximum sea-
ice concentration from mapped foraminiferal (f), diatom (d) and alkenone (a) records. 

 
a Modern SSST after Olbers  et al. (1992); 
bValues representing sea-ice duration per month/per yer instead of concentrations. 

 

Core 
mod. SSST    

(°C)a 

AHO SST 
max. 
(°C) 

ΔAHO/mod. 
SSST 
(K) 

AHO Sept. 
min 

SI conc. 
(%) 

ACR SST 
min. 
(°C) 

ACR Sept. 
max 

SI conc 
(%) Referenz 

ELT11-2 6.4 5.5 f -0.9 -- 4.9 f -- Mashiotta et al., 1999 
MD03-2611 17.9 19.3 a 3.0 -- 15.5 a -- Calvo et al., 2007 
MD97-2120 12.0 15.2 f 3.2 -- 11.9 f -- Pahnke et al., 2003 
MD97-2120 12.0 14.6 a 2.6 -- 9.5 a -- Pahnke and Sachs, 2006 
MD97-2121 17.7 18.2 a 0.5  14.8 f  Pahnke and Sachs, 2006 
ODP1233 14.7 16.0 a 1.3 -- 12.8 a -- Kaiser and Lamy, 2010 
PS58/270-5 2.6 2.6 d 0.0 0.3 2.0 d 2.6 this study 

PS58/271-1 3.0 3.5 d 0.5 0.0 2.0 d 15.7 this study; 
Esper and Gersonde, 2014a/b 

PS58/274-1 3.9 3.8 d -0.1 0.0 2.7 d 0.3 this study 
PS75/051-1 7.7 7.2 d -0.5 0.0 6.0 d 0.0 this study 
PS75/054-1 6.3 5.0 d -1.3 0.0 4.5 d 0.3 this study 
PS75/056-1 6.8 5.1 d -1.7 0.0 3.2 d 6.3 this study 
PS75/059-2 7.5 7.1 d -0.4 0.0 6.6 d 0.0 this study 
PS75/064-1 0.7 1.5 d 0.8 9.7 0.6 d 20.7 this study 
PS75/072-4 2.1 1.5 d -0.6 11.1 1.3 d 24.2 this study 
PS75/073-2 2.5 1.7 d -0.8 1.6 1.2 d 27.0 this study 
PS75/076-2 5.7 -- -- -- 2.6 d 8.1 this study 
PS75/082-1 2.5 2.0 d -0.5 1.3 1.8 d 15.0 this study 
PS75/085-1 0.3 1.1 d 0.8 9.0 0.2 d 78.3 this study 
PS75/091-3 1.4 0.7 d -0.7 11.9 0.1 d 82.3 this study 
PS75/093-1 3.7 2.0 d -1.7 9.9 1.2 d 19.2 this study 
PS75/096-4 5.1 3.6 d -1.5 1.3 3.4 d 8.2 this study 
PS75/097-4 4.0 3.5 d -0.5 1.2 2.2 d 8.7 this study 
SO136-111 4.6 5.8 d 1.2 0.0b 5.0 d 0.0b Crosta et al., 2004 
SO213-59-2 9.9  12.6 f 2.7 -- 10.3 f -- Tapia et al., 2015 
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The timing of the marine cold reversal is broadly consistent with recurring colder 

conditions and glacier advances in South Patagonia (Sugden et al., 2005; Moreno et al., 2009) 

and the New Zealand Alpes (Putnam et al., 2010; Newnham et al., 2012). Despite the 

mentioned uncertainties of reservoir ages in the Southern Ocean, the timing of the marine 

cold reversal is within the range of the ACR reported from antarctic ice cores (EPICA 

Community Members, 2006; WAIS Divide Project Members, 2013). Concomitant with lower 

antarctic temperatures in the time slice from 14.5-12.5 cal. kyr BP, the sea-ice proxy ssNa 

also indicates a wider circum-Antarctic sea-ice expansion (Fig. 4.7l; Fischer et al., 2007; 

WAIS Divide Project Members, 2013) that is confirmed by studies from all Southern Ocean 

sectors (Gersonde et al., 2003; Bianchi and Gersonde, 2004; Divine et al., 2010; Ferry et al., 

2015b). 

The repeated of cold surface water during the ACR together with the new advance of 

winter sea ice especially in the western Pacific sector is similarly to the LGM influenced by 

topographic and atmospheric forcing. Whereas the distinct bottom topography in the western 

sector favors the development of relatively significant ACR representing downscaled glacial-

like conditions, the temperature and sea-ice trend over the Amundsen Abyssal Plain in the 

eastern sector seems to be more influenced by atmospheric changes. The shift to a more 

positive SAM index during the deglacial, that is associated with enhanced CO2 outgassing 

(Lovenduski and Gruber, 2005; Cai et al., 2005), resulted in extremely low sea-level pressure 

over the Amundsen-Bellingshausen Sea (e.g. Lefebvre et a., 2004). Such conditions led to 

reduced sea-ice advance in this region and stronger advance of sea ice in the Ross Sea area 

(Fig. 4.8b). This pattern closely resembles the modern distribution of sea ice that is related to 

positive SAM years and probably more La Niña-like conditions (Koutavas et al., 2002) or at 

least weaker El Niño-like activity (Stainer-Urias et al., 2015). 

Furthermore, the changes of atmospheric conditions may include a renewed 

equatorward shift of the westerly wind belt during the ACR similar to the shift during the last 

glacial, but not as significant to cause a temperature reversal at core sites from the lower 

latitudes (Fig. 4.6h, 4.7f; e.g. Lamy et al., 2007). Wind driven upwelling may be shifted 

slightly north in the northern Ross Sea area, leading to an associated shift of the maximum 

opal burial zone and decreasing opal flux south of the present APF after ca. 15 cal. kyr BP 

(Anderson et al., 2009). This is in line with distinct drops in sedimentation rates in the 

southernmost western cores (Fig. 4.2i-j). In contrast, cores from the eastern modern SAZ 

show higher sedimentation rates during the ACR (Fig. 4.2 l-n), yet not due to enhanced opal 

deposition (Bradtmiller et al., 2009; Lamy et al., 2014) but probably higher export of 
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carbonate. After reduced diatom productivity off the Peruvian coast during the early 

deglacial, the availability of silicic acid via upwelling increased as indicated by higher diatom 

productivity (Ehlert et al., 2013). Nutrient supply via upwelling is also visible in cores off the 

Chilean coast until 35°S, where the relative abundance of species associated with upwelling 

increases significantly after 15.5 cal. kyr BP (Romero, et al. 2006). Further south, recurring 

higher absolute abundances of coccoliths between 14 and 10 cal. kyr BP after a deglacial 

decrease are linked to a renewed ACC nutrient supply (Saavedra-Pellitero et al., 2011).  The 

divergence between upwelling and ACC surface water induced higher productivity was 

already suggested by Romero et al. (2006) with an approximate boundary around 35°S. Such 

a change is concomitant with cold subantarctic water of ca. 4°C that is deflected into the 

Humboldt Current (Fig. 4.8a) similarly as during the LGM (Benz et al., a; under rev.) yet 

with less northward extent of the cold water tongue. 

There is ongoing debate about the contribution of the Antarctic ice sheets to meltwater 

pulse 1A (MWP-1A) around 14.5 cal. kyr BP that may have been caused by the rapid 

warming in the SH and probably triggered the reactivation of the AMOC and thus the Bølling 

warming and ACR cooling (Weaver et al., 2003; Deschamps et al., 2012). Coupled climate 

models suggest an important role of especially the WAIS inducing significant cooling of the 

adjacent ocean by meltwater injection (e.g. Weaver et al., 2003). Despite a growing body of 

evidence, that the Antarctic ice sheet probably contributed half of the  ~14 m sea level rise 

during the MWP-1A (Deschamps et al., 2012), an exclusive of the WAIS responsible for the 

meltwater event can not be verified (Hillenbrand et al., 2010). Recent studies imply that the 

WAIS, retreating to the mid- and inner shelf not before ca. 14.5 cal. kyr BP (Anderson et al., 

2002; Smith et al., 2011), only contributed ~9 m until present to the global sea level thus 

representing an unlikely source for this meltwater event. It is probable that the meltwater 

pulse and the concomitant sea level rise triggered the reduction of the WAIS due to increased 

basal melt (Mackintosh et al., 2011). Additionally, our SSST records especially from the 

eastern Pacific sector do not confirm the proposed cooling by up to 7°C resulting from 

meltwater injection from the WAIS (Weaver et al., 2003) as they show a steady rise of 

temperatures instead of a distinct cooling. A similar behavior is recorded from the ice sheet in 

the Ross Embayment, that also contributed not significantly to the MWP-1A associated sea 

level rise (Anderson et al., 2014). And although the western Pacific records show cooling 

associated with the ACR after ~14.5 cal. kyr BP, the magnitude of around 1°C is not as 

significant as model data suggested for the MWP-1A (Weaver et al., 2003; Fig. 4.5).  
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4.4.3  Antarctic Holocene Optimum  

The second rise of temperature after the ACR reaches a maximum around 12-9 cal. 

kyr BP. Compared to modern conditions, reconstructed SSSTs at the studied core sites 

display still colder or similar values (Figs. 4.5b-g, j, m-q, 4.9b). Only at a few sites in vicinity 

of the modern winter sea-ice edge the temperatures exceed modern SSSTs by up to ~1°C 

(Figs. 4.5h-i, 4.9b Table 4.3). The warming is further accompanied by minimum winter sea-

ice expansion not reaching the modern WSI edge (Fig. 4.9c) as well as in general low 

abundances or total absence of sea-ice diatoms in the majority of cores  (Fig. 4.4a-e, g-i, k-q). 

The core sites in the western PFZ and POOZ generally exhibit a shorter warm period 

compared to the sites from the eastern PFZ zone, yet its occurrence is more concise (Fig. 

4.5d, g-i). Thus close to 9-10 kyr years the southernmost cores exhibit a newly advance of 

winter sea ice to ~62°S (Fig. 4.5i-j). The differences between the warmer SSSTs south and 

still colder SSSTs north of the present WSI edge may result from the position of the Antarctic 

divergence during this warm optimum. Subsequently, the upwelling of comparatively cold 

intermediate and deep water that was deflected northward by the Ekman drift at ca. 60°S may 

have led to colder SSSTs than observed south of 60°S (Lovenduski and Gruber, 2005). It 

may also be possible, that the distinct warming in the SH that was induced by the shutdown 

of the AMOC during the Younger Dryas significantly influenced the southern core sites, 

whereas the more northernmost sites reacted more slowly and with a further temperature rise 

during the Holocene. The shorter duration of the warm optimum at the southern cores sites 

may additionally be influenced by the significant retreat of sea ice and the WAIS around 12 

cal. kyr BP (e.g. Das and Alley, 2008). The possible intrusion of meltwater may have led to 

abrupt surface-water cooling. 

The northward shift of the 4°C isotherm during the warming is only slightly less 

compared to present in the western sector than during the ACR, resulting from the still colder 

than modern SSSTs at the northern core sites (Fig. 4.9a). However, in the eastern sector, 

although cores from the SAZ show negative anomalies, the SSSTs in the PFZ reaveal only 

minor deviations from modern SSSTs (~0.5°K, Fig. 4.9a). While this difference leads to the 

location of the 4° isotherm at its present position only in the eastern sector the 2° isotherm 

resembles its modern position in the entire study area (Fig. 4.10a). 

Although the exact timing varies slightly from one site to another, the temperature 

optimum between roughly 12-9 cal. kyr BP is evident in the majority of cores in the Pacific 

sector of the Southern Ocean (Fig. 4.6, Table 4.3). Simultaneously with higher temperatures,  
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Figure 4.9: (a) Estimated AHO SSST compared to modern HASO SSST (Olbers et al., 1992) and modern SSI 
(Reynolds et al., 2002, 2007) with averaged SSST isotherms (in °C). Numbers indicate maximum temperatures 
within the AHO time slice for cores in this study (bold) and from literature (italic, see Table 4.1, 4.3); Color 
scale of core symbols represent color code of the HASO SSST. (b) Averaged SSST anomaly (AHO/modern) 
isotherms (in K) with single values for cores in this study (bold) and from literature (italic, see Table 4.1, 4.3).  
(c) Estimated AHO WSI distribution compared to modern WSI distribution and WOA09 winter SSTs. Numbers 
indicate minimum estimated sea-ice concentration during the AHO time slice from this study (bold) and the 
literature (italic, see Table 4.3). AHO WSI estimates include the maximum winter sea-ice extent (>15% 
September concentration). Modern winter sea-ice edges after Reynolds et al. (2002, 2007). 
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records from NZ and Chile indicate a progressive retreat of the glaciers (Schaefer et al., 2009, 

Kaplan et al. 2010) as well as increasing humid conditions resulting from higher precipitation 

and intensified westerlies (Barrell et al., 2012; Kilian and Lamy, 2012). The temperature 

optimum is further documented at core sites from the Atlantic sector (Fig. 4.7j; Gersonde et 

al., 2003; Bianchi and Gersonde, 2004). Although the optimum at all studied and compared 

core sites do not always exceed modern SSST values, it displays a marine circum-Antarctic 

warm optimum that is in agreement with the commonly called Antarctic Early Holocene 

Optimum (AHO; Masson et al., 2000) documented in antarctic ice cores (WAIS Divide 

Project Members, 2013). Based on the revised age models of the EDC ice core and associated 

temperature shifts (AICC12, Bazin et al., 2013; Veres et al., 2013) as well as on the marine 

records, we define the AHO from 12-9 cal. kyr BP. Although the AHO is visible in all 

antarctic ice cores, proxy records of the ice cores located in West Antarctica show further 

rising temperatures throughout the Holocene (Figs. 4.6g, 4.7n; WAIS Divide Project 

Members, 2013). This is similar to the SSST trend visible at marine core sites from the SAZ 

in the eastern Pacific sector (Fig. 4.5m-o). Similar to the development of the early deglacial, 

the steady rising SH insolation (Fig. 4.7c) towards the Late Holocene may have had a 

stronger impact on the eastern Pacific area with a direct implementation of the signal. The 

records from the western area as well as the other Southern Ocean sectors follow more 

closely the NH insolation (Fig. 4.7c) trend with a cooling during the Late Holocene.  

Generally, the distinct temperature rise after the ACR and the following AHO are 

related to the ongoing interhemispheric changes associated with the bipolar seesaw. As such, 

the AHO is probably induced by the cold Younger Dryas, starting at ca. 12 kyr BP in the NH 

and a reduced AMOC storing heat in the SH (McManus et al., 2004). Additionally, 

strengthened westerlies during this time period (Lamy et al., 2010) favored intensified 

upwelling contributing to rising atmospheric CO2 (Mayr et al., 2013) (Fig. 4.7m). Mirroring 

the development of the early deglacial the retreat of sea ice concomitant with a rise in 

atmospheric CO2 after the ACR may have amplified each other (Cai et al., 2003), leading to 

significantly warmer temperatures and reduced sea-ice cover. Moreover, during the 

temperature rise towards the AHO strengthened El Niño-like conditions (Rein et al., 2005; 

Stainer-Urias et al., 2015) resulted in atmospheric heat flux into the Subantarctic Pacific, 

therebyenhancing the retreat of sea ice and warmer SSSTs (Yuan et al., 2004) (Fig. 4.9b, 

4.10b). 

The restored upwelling of older water masses and eventually the enhanced supply of 

nutrients during the AHO is accompanied by higher opal fluxes (Anderson et al., 2009), 
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coincident with increasing sedimentation at core locations from the eastern PFZ that are in line 

with maximum F. kerguelensis abundances (Figs. 4.2p, 4.3o-q). However, as the eastern 

Pacific sector experienced distinct warming after the ACR and the 4°C isotherm approximates 

its present position, low amounts of cold, nutrient rich water were transported northward along 

the Humboldt Current system, leading to a decrease in primary productivity and accompanied 

accumulation of diatoms, dinoflagellates and coccoliths (Romero et al., 2006; Verleye and 

Louwye, 2010; Saavedra-Pellitero et al., 2011). 

Figure 4.10: (a) Averaged 2° and 4°C isotherms for the time slices LGM, ACR and AHO compared to the 
modern 2° and 4° isotherm derived from HASO SSSTs (Olbers et al., 1992). (b) Estimated 15% WSI extent for 
the time slices LGM, ACR and AHO compared to modern 15% and 40% WSI extent (Reynolds et al., 2002; 
2007). 



Chapter 4 – Manuscript 2 

 
 

133 

4.4  Synthesis  

The deglacial history in the Pacific sector of the Southern Ocean mainly displays the 

“Antarctic timing” pattern (after Lamy et al., 2004) known from continental margins (e.g. 

Kilian and Lamy, 2012), the Atlantic sector (e.g. Bianchi and Gersonde, 2004) and from 

antarctic ice cores (e.g. WAIS Divide Project Members, 2013). However, differences occur 

between the different Southern Ocean sectors regarding the onset of the deglaciation and its 

direct influence on CO2 release after the glacial. 

During the glacial significant WSI expansion (Fig. 4.11a) led to reduced air-sea-gas 

exchange, that favored the storage of CO2 in the deep ocean (Fig. 4.11b). Additionally, the 

large seasonal change of sea-ice cover maintained the production of AABW via brine release 

during sea-ice formation, as the shelf areas, the primary modern AABW formation regions 

(Fig. 4.11a), were entirely covered by ice sheets. The northward shift of the SWW and 

increased dust supply during the glacial resulted in an equal northward shift of the main opal 

burial areas with opal flux comparable to modern conditions (Fig. 4.11b).  

 The “Antarctic timing” over the glacial/interglacial transition includes the deglacial 

warming in the Southern Hemisphere triggered by changing insolation in both hemispheres 

and orbital parameter variations (Schulz and Zeebe, 2006) and eventually the shutdown of the 

AMOC via freshwater input in the North Atlantic during Heinrich 1 (McManus et al., 2004). 

Though the eastern and western Pacific sectors exhibit a different timing concerning the 

initial start of warming between 23 and 18 cal. kyr BP, the rise of temperature reaches in both 

sectors a first warm optimum correspondent to the AIM 1. The increasing SSST during the 

early deglacial (18-15 cal. kyr BP) favors sea-ice reduction together with a poleward shift of 

the SWW that led to CO2 outgassing via enhanced wind-driven upwelling. The input of 

nutrient repleted deep water governs increased bioproductivity and subsequent opal burial (Fig. 

4.11c).  

The strong warming in the SH ultimately resulted in enhanced antarctic ice sheet 

melting and enhanced water mass transport via the cold and warm water routes that fed back 

to the NH by resuming the AMOC and leading to a subsequent warming during the B/A 

(Knorr and Lehmann, 2003). Rather simultaneously the SH warming slowed down or even 

reversed documented in the marine and ice core records as the ACR (Fig. 4.11d, e.g. Stenni et 

al., 2011). In the eastern Pacific sector a less pronounced cooling led to almost modern 

conditions regarding the 2°C isotherm, whereas in the western Pacific sector, which is 

stronger influenced by the cold-water gyre in the Ross Sea similar conditions as during the 
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glacial occur (Fig. 4.10a). Biogenic opal burial shifted slightly north concomitant with the 

cold-water realm and the sea-ice edge and decreased compared to the deglacial (Anderson et 

al., 2009). 

Figure 4.11: Schematic illustration of climate development in the LGM-Holocene Pacific sector of the Southern 
Ocean. (a) Modern conditions; (b) 23-19 kyr, LGM: Last Glacial Maximum; (c) 18 – 15 kyr;  (d) 14.5 – 12.5, 
ACR: Antarctic Cold Reversal; (e) 12 – 9 kyr, AHO: Antarctic Holocene Optimum. AABW: Antarctic Bottom 
Water; PAR: Pacific Antarctic Ridge; SSI: Summer Sea Ice; SWW: Southern Westerly Winds; WAIS: West 
Antarctic Ice Sheet; WSI: Winter Sea Ice. 
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During the AHO (Fig. 4.11e) at the majority of core locations a significant thermal 

optimum occurred after a distinct rise of temperature, that mirrors the climate records of 

antarctic ice cores and the atmospheric CO2 concentration (WAIS Divide Project Members, 

2013, Marcott et al., 2014). In the SAZ of the eastern Pacific sector modern conditions were 

reached concerning the position of the 4 and 2°C isotherms (Figs. 4.10a, 4.11e). Yet, the 

maximum WSI extent probably did not extend as far north as seen at present (Fig. 4.10b).  

The rise of CO2 is closely aligned to vigorous upwelling of deep-water masses that resulted 

from intensified westerlies and a positive SAM index (Cai et al., 2005; Lovenduski et al. 

2007).  Such upwelling of nutrient-rich waters promoted higher and subsequently resulted in 

higher opal export. 

 

4.5 Conclusions   

The temperature and sea-ice reconstructions from the Pacific sector of the Southern 

Ocean corroborate the common view of a relatively congruent circum-Antarctic pattern of 

Termination I. The temperature development generally appears to be characterized by in-

phase changes, at least regarding the overall trends. However, there is strong evidence that 

the Southern Hemisphere insolation influenced an early sea surface temperature rise and sea-

ice retreat especially in the Pacific sector of the Southern Ocean adjacent to the marine-based 

WAIS during the LGM time slice. Although this phenomenon appears to have a more 

regional impact, this result is essential for the interpretation of the signal propagation 

between the Southern Ocean sectors and the sensitivity of single areas. As atmospheric CO2 

concentrations are unaffected by the early warming as well as the sea-ice retreat, the huge 

outgassing via upwelling of deep water masses is primarily governed by deglacial changes in 

the Atlantic sector. The start of the AMOC may have been the eventual trigger for massive 

CO2 release. To achieve significant evidence for the probably incomplete outgassing of CO2 

occurring at the early deglaciation more research has to be done concerning stratification of 

the water column based on diatom- and radiolarian-derived oxygen isotopic studies. Such 

proxies may decipher a possible buffering of radiocarbon depleted deep water in intermediate 

depths during the late LGM.  

Our reconstructions further indicate that the WAIS triggered MWP-1A is unlikely 

concerning the minor temperature drops that would be associated with such massive cold 

meltwater intrusion into the surface ocean.  Generally, the Antarctic timing of the 

deglaciation events is closely related to the bipolar seesaw, yet the trends in temperature and 



 Chapter 4 – Manuscript 2 

 
 

136 

sea-ice extent are further linked to the atmospheric changes induced by the glacial to 

interglacial shifts of the SAM and the strength of the ENSO 
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Abstract  

We used diatom-based transfer functions to estimate summer sea surface temperatures 

and winter sea-ice concentrations in the Antarctic Zone of the western Pacific sector south of 

56°S to assess paleoceanographic changes during the Holocene. The most prominent finding 

is the cooling between ~10,000 – 8,000 years before present that occurs circum-Antarctic 

wide after the Antarctic Holocene Optimum. This cooling is most likely induced by 

meltwater shedding from the West Antarctic Ice Sheet and is associated with an equatorward 

expansion of the Southern Westerly Winds. However, the strong cooling in the Pacific’s 

Antarctic Zone is contrasted by persistent warming in the Subantarctic Zone. Until 

approximately 5,000 years before present, the western Pacific temperatures remained 

relatively cold, mirroring conditions from other Southern Ocean areas. This cold period is 

further followed by a warming that lasts for approximately 3,000 years. This subsequent Late 

Holocene warming was presumably triggered by increasing insolation and higher solar 

activity, causing more frequent El Niño events and eventually warming the western Pacific 

sector of the Southern Ocean. The Holocene signal variability in the Pacific was propagated 

via the Drake Passage into the western Atlantic sector. However, local changes of 

temperature and sea-ice trends were highly dependent on the proximity and latitudinal 

position of paleoclimate archives to the atmospheric and oceanographic mechanisms, and 

might have overprinted a common Holocene temperature trend in the Southern Hemisphere. 
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5.1 Introduction 

Mechanisms that are responsible for climate change during the Holocene in the 

Southern Hemisphere are of special interest regarding the recent warming and its associated 

feedbacks like ice-sheet loss, sea-level rise and ocean-atmosphere interaction (IPCC, 2014). 

The Holocene period started at about 11,000 years before present (yr BP) in the Southern 

Hemisphere with relatively warm conditions almost mirroring the present climate state. 

However, until the recent rapid warming, the Holocene climate in the Southern Ocean (SO) 

has shown high variability with distinct cool and warm periods (e.g. Mayewski et al., 2004; 

Bentley et al., 2009; Kilian and Lamy, 2012). Most prominent is a SO wide cooling after the 

Antarctic Holocene Optimum at ~8 kyr BP (1 kyr = 1000 yr) that is accompanied by new sea-

ice advance (e.g. Bianchi and Gersonde, 2004; Divine et al., 2010) and an atmospheric CO2 

decrease recorded in antarctic ice cores (Lüthi et al., 2008). Preceding to that cooling a 

significant retreat of the West Antarctic Ice Sheet (WAIS; Larter et al., 2014) resulted in 

meltwater shedding into the adjacent ocean basins (Das and Alley, 2008; Mathiot et al., 2013) 

and contributed to a sea-level rise between ~11.4 and 8.2 kyr BP (Lambeck et al., 2014). 

Coupled climate model simulations of significant freshwater input from the WAIS (+100 

milli-Sverdrup) into the Pacific sector suggested distinct cooling in the Antarctic Zone south 

of 60°S of up to 1.5°C that is propagated into the Atlantic and to a lesser extent into the 

Indian sector (Mathiot et al., 2013). During the Mid-Holocene several records show partially 

opposite results with either relatively stable cool conditions (e.g. Bianchi and Gersonde, 

2004; Pahnke and Sachs, 2006; Divine et al., 2010) or a renewed warming during the so-

called Hypsithermal (e.g. Hodell et al., 2001; Crosta et al., 2004; Crosta et al., 2008). Over 

the course of the Late Holocene similar heterogeneous trends are detected at different sites in 

the SO (e.g. Hodell et al., 2001; Bentley et al., 2009; Strother et al., 2015) that are, as well as 

during the Mid-Holocene, probably related to different time constraints or the influence of 

strong regional variability of the following atmospheric mechanisms. In general, the majority 

of studies assign the variability of their records to changes within the strength and latitudinal 

position of the Southern Westerly Winds (SWW) (e.g. Bentley et al., 2009; Divine et al., 

2010; Kilian and Lamy, 2012), intensity and frequency changes of the El Niño Southern 

Oscillation (ENSO) (Moy et al., 2002) as well as the Southern Annular Mode (SAM) and 

feedbacks within those atmospheric mechanisms (e.g. Varma et al., 2011; Gomez et al., 2013; 

Rees et al., 2015). Local climate variability caused by non-uniform response to the mentioned 

mechanism inhibits the assignment of a common Holocene climate trend in the SO. 
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From the Pacific sector of the SO high resolved Holocene records are relatively rare 

despite from continental margin (Pahnke and Sachs, 2006; Kilian and Lamy, 2012). Most 

exceptional records with annual to seasonal resolution are available from the western Ross 

Sea sector and off Adélie Land (East Antarctica) (Cunningham et al., 1999; Denis et al., 

2006; Crosta et al., 2008). However, sediment cores retrieved from the open marine 

environment have by the majority moderate to low sedimentation rates (2-9 cm/kyr in 

average) and large parts of the Holocene are missing often (e.g. Mashiotta et al, 1999; Tapia 

et al., 2015; Benz et al., b; in prep.).  

Here, we present five well-dated, highly resolved sediment records documenting the 

Holocene, putting an emphasis on the Mid- to Late Holocene on the basis of diatom-based 

transfer function estimates of summer sea surface temperature (SSST) and sea-ice 

concentration from the western Pacific sector of the SO. Highly resolved estimates from this 

area are yet missing in the marine record and play a significant role in deciphering the 

Holocene mechanisms and environmental development in the understudied high-latitude 

South Pacific. As the Pacific sector of the SO is mainly characterized by the eastward 

flowing Antarctic Circumpolar Current (ACC) that connects the different sectors of the SO, 

the investigated region is of special importance to study the propagation of temperature and 

water mass signals to the Atlantic and Indian sectors of the SO. The exchange of heat from 

the Pacific to the Atlantic sector is maintained via the so-called “cold-water route” through 

the Drake Passage. Thus, significant sea surface cooling or warming, stimulated by variation 

in intensity and/or frequency of the SWW and the ENSO or by freshwater intrusion, is 

transferred into the Atlantic and Indian sectors. Furthermore, the bifurcation of the ACC in 

the eastern Pacific sector into the Humboldt-Chile Current favors the export of cold-water 

masses far north into the Eastern Equatorial Current. Via the combination of our new, 

relatively high resolved records and several selected other marine records from the western 

Pacific and Atlantic sectors we can address questions concerning the Holocene climate 

development on a circum-Antarctic view. 

The objectives of our study are primarily (1) to document the Holocene temperature 

trend in the western Pacific in relation to previously documented climate change in this basin 

and the adjacent sectors, (2) to test the simulated sea surface cooling between 8 and 10 kyr 

BP, its possible origin from the WAIS and the related heat transport to the Atlantic sector, 

and (3) to identify possible drivers of the cooling and warming sequence in the Southern 

Hemisphere and its feedbacks between the ocean and the atmosphere. 
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5.2 Material and Methods  

 Holocene sea surface temperature and sea-ice reconstructions were accomplished at 

five sediment cores covering the western Pacific sector of the SO between the Antarctic Polar 

Front (APF) and the average winter sea-ice (WSI) edge between 135° and 170°W (Fig. 5.1, 

Table 5.1). During R/V Polarstern cruise ANTXXVI/2 all cores have been recovered using 

piston, gravity or kasten coring devices (Table 5.1, Gersonde, 2011). All cores are situated in 

the Permanent Open Ocean Zone (POOZ) that is bounded to the north by the Antarctic Polar 

Front (APF) and to the south by the WSI edge that is roughly coincident with the Southern 

ACC Front (SACCF) (Fig. 5.1). The study area is predominantly influenced by the northward 

transport of cold surface waters via the Ross Gyre and the vicinity to the WSI edge. The 

sediment facies of the studied time slice consists mainly of diatom ooze with minor 

contributions of foraminifers, terrigenous mud and nannofossils. 

Figure 5.1: (a) Location of studied cores (red circles) and discussed cores (yellow circles) from the Holocene 
time slice (see Table 5.1). (b) Location of studied cores (red circles) and discussed cores (yellow circles) for sea 
surface temperature anomaly between 8-10 cal. kyr BP (Fig. 5.4; Table 5.1). WSI/SSI: modern winter/summer 
sea-ice edge each for 15% (dashed: 40%) sea-ice concentration (Reynolds et al., 2002, 2007); Oceanographic 
fronts according to Orsi et al. (1995); STF: Subtropical Front, SAF: Subantarctic Front, APF: Antarctic Polar 
Front, SAZ: Subantarctic Zone, PFZ: Polar Front Zone, POOZ: Permanent Open Ocean Zone, SACCF: 
Southern Antarctic Circumpolar Current Front, sSIZ: seasonal Sea Ice Zone, SIZ: Sea Ice Zone. 

 

All cores were sampled on a spacing of 5 cm, except for core PS75/85-1 that was 

sampled every 10 cm. Preparation of the retrieved material for quantitative diatom slides for 

light microscopy was done according to the standard methods developed by Gersonde and 
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Zielinski (2000). Diatoms slides were analyzed using a Zeiss Axioplan 2 at x1000 

magnification and respective counting of an average of 400-600 diatom valves per sample 

was carried out according to the counting standards proposed by Schrader and Gersonde 

(1987). The counted diatoms were identified to species or species group level following the 

taxonomy of Hasle and Syvertsen (1996), Zielinski and Gersonde (1997), and Armand and 

Zielinski (2001). The 29 (28) diatom species and species groups considered for the 

reconstruction of SSST (WSI) were chosen in accordance to their relationship to both 

environmental variables and oceanographic zones (Esper and Gersonde, 2014 a, b). 
 

Table 5.1 Locations of sediment cores presented and discussed in this study 

Core Latitude Longitude 
Water 

depth (m) 
Coring 
devicea Zoneb Data source 

ELT27-23 59°73.1'S 155°14.3'E 3182 PC POOZ Ferry et al., 2015b 

MD97-2120 45°32.06'S 174°55.85'E 1210 GPC SAZ Pahnke et al., 2003;  
Pahnke and Sachs, 2006 

PS58/270-5c 62°01.68'S 116°07.38'W 4981 PC POOZ Benz et al., b; in prep. 
PS58/271-1c 61°14.58'S 116°02.82'W 5214 PC PFZ Benz et al., b; in prep. 
PS58/274-1c 59°12.42'S 114°53.28'W 5136 PC PFZ Benz et al., b; in prep. 
PS75/051-1c 52°48.73'S 107°48.33'W 3949 PC SAZ Benz et al., b; in prep. 
PS75/056-1c 55°09.74'S 114°47.31'W 3581 GC SAZ Benz et al., b; in prep. 
PS75/059-2c 54°12.90'S 125°25.53'W 3613 PC SAZ Benz et al., b; in prep. 
PS75/064-1 61°00.74'S 139°27.85'W 4600 PC sSIZ this study; Benz et al., b; in prep. 
PS75/072-4 57°33.51'S 151°13.17'W 3099 GC POOZ this study; Benz et al., b; in prep. 
PS75/073-2 57°12.26'S 151°36.65'W 3234 KC POOZ this study; Benz et al., b; in prep. 
PS75/082-1c 59°02.48'S 158°51.82'W 4000 PC POOZ Benz et al., b; in prep. 
PS75/085-1 61°56.38'S 160°07.10'W 3734 PC sSIZ this study; Benz et al., b; in prep. 
PS75/091-3 63°41.66'S 169°04.47'W 2940 PC sSIZ this study; Benz et al., b; in prep. 
PS75/093-1c 60°52.33'S 169°32.89'W 3762 PC POOZ Benz et al., b; in prep. 

SO136-111 56°40.20'S 160°13.80'E 3912 GC PFZ Crosta et al., 2004 
Ferry et al., 2015b 

ODP 1094 53°10.08'S 5°07.08'W 2807 CC POOZ Bianchi and Gersonde, 2004 
 
a Coring devices: PC Piston Corer; GC Gravity Corer; KC Kasten Corer; CC Composite Core;  
b Oceanographic zones: STZ Subtropical Zone; SAZ Subantarctic Zone; PFZ Polar Front Zone; POOZ    
Permanent Open Ocean Zone; sSIZ seasonal Sea Ice Zone. 
c Cores studied only for the 8-10 kyr SSST anomaly (see Fig. 5.4) 

 

The reconstruction of summer sea surface temperatures (SSST) and winter sea-ice 

(WSI) concentration were accomplished using transfer-function (TF) derived estimates. For 

SSST the Imbrie and Kipp Method (IKM; Imbrie and Kipp, 1971) was used and the Modern 

Analog Technique (MAT; Hutson, 1980) for WSI concentrations. The applied TFs were 

recently developed by Esper and Gersonde (2014a, b) and obtain the best results in 

comparison to different TF approaches.  
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For SSST estimates the TF IKM-D336/29/3q was applied, comprising 336 reference 

samples from surface sediments in the Atlantic, the western Indian and the Pacific sectors of 

the SO, with 29 selected diatom taxa and taxa groups and a 3-factor model calculated with 

quadratic regression. As reference for modern SSSTs (January-March) serve the temperatures 

at 10m water depths from the Hydrographic Atlas of the SO (HASO; Olbers, et al., 1992). 

Averaged over a time period from ~1900-1991 these SSSTs represent the least influenced 

dataset by recent warming in the SO. The root mean squared error of prediction (RMSEP) of 

the applied TF is 0.83°C (Esper and Gersonde, 2014b). IKM calculations were carried out 

with the software packages PaleoToolBox and WinTransfer 

(http://www.pangaea.de/Software/PaleoToolBox; Sieger et al., 1999). 

Estimates for WSI concentration were carried out, using the TF MAT-D274/28/4an, 

with 274 reference samples from surface sediments in the Atlantic, the western Indian and the 

Pacific sectors of the SO, including 28 diatom taxa and taxa groups, and an average of 4 

analogs (Esper and Gersonde, 2014a). The WSI concentrations of the reference dataset were 

derived from the September sea-ice concentrations averaged over a time period from 1981-

2010 at each surface site (National Oceanic and Atmospheric Administration, NOAA; 

Reynolds et al, 2002; 2007). The application of this TF results in a RMSEP of 5.52% (Esper 

and Gersonde, 2014a). A concentration of 15% is defined as threshold for the maximum sea-

ice extent (Zwally et al., 2002), indicating the absence or presence of sea ice. Following the 

approach of Gloersen et al. (1992) and Gersonde et al. (2005), the average sea-ice edge is 

represented by 40% concentration. MAT calculations were carried out with the statistical 

computing program R (R core team, 2012).  Additional information about the winter sea-ice 

cover comes from the abundance fluctuations of the diatom species Fragilariopsis cylindrus 

and Fragilariopsis curta. These two species exhibit a similar relationship to sea ice and 

temperature and thus were combined to the F. curta group (Zielinski and Gersonde, 1997; 

Armand et al., 2005). 

The new SSST and WSI TFs were additionally used to recalculate the temperature 

estimates for core ODP1094 (Bianchi and Gersonde, 2004) and to estimate its WSI 

concentration. Reconstructed variables are available in the PANGAEA database 

(www.pangaea.de, doi in progress). Maps, temperature and sea-ice plots have been produced 

with ODV (Ocean Data View; Schlitzer, 2014). 
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5.3 Age constraints  

The age models of the five studied cores have been primarily established by 

radiocarbon dating of monospecific foraminifer samples (Neogloboquadrina pachyderma 

sinistral) from cores P75/072-4, PS75/073-2 and PS75/085-1 and the humic acid fraction of 

the bulk sediment from cores PS75/064-1 and PS75/085-1 (Table 5.2; Benz et al., a; under rev.). 
 

Table 5.2 AMS14C ages for studied Holocene time slice. Carbon sources for dating are: H – humic acid fraction; 
F –foraminifera N. pachyderma sin. OS: National Ocean Science AMS Woods Hole; ETH: Eidgenössische 
Technische Hochschule Zürich. 

a 14C ages obtained by averaging values from several measurements (see Benz et al., a; under rev.) 

 

The Accelerator Mass Spectrometry (AMS) 14C datings were measured at the National Ocean 

Science Accelerator Mass Spectrometry Facility (NOSAMS) at Woods Hole Oceanographic 

Institution (WHOI) and the Eidgenössische Technische Hochschule (ETH, Zürich). All 

radiocarbon ages were converted to calendar years before present (cal. yr. BP, further 

referred to as kyr BP; 1000yr = 1kyr) using the calibration software CALIB 7.0.2 (Stuiver 

Core Depth (cm) Lab ID C 
source 

14C age 
(yrs BP) 

Error 
(yrs) 

Reservoir 
age 

2σ   
min 

2σ   
max 

Calib. Age      
(cal yr BP) 

PS75/064-1 6-9 OS-106097 H 2950 15 750 2198 2337 2295 

 20-2 OS-106098 H 3880 25 750 3341 3491 3413 

 55.5-59 OS-106099 H 7270 40 750 7333 7512 7432 

 80.5-84 OS-106100 H 10650 40 750 11166 11486 11285 

PS75072-4 1-2 ETH 48932.1.1 F 1369 60 590 635 873 729 

 21-22 ETH 48933.1.1 F 2311 63 590 1548 1856 1705 

 36-37 ETH 48934.1.1 F 3332 65 590 2761 3108 2929 

 51-52 ETH 48935.1.1 F 4392 68 590 4088 4476 4291 

 76-77 ETH 48936.1.1 F 7188 96 590 7315 7658 7494 

 91-92 ETH 48937.1.1 F 9119 78 590 9441 9838 9600 

 101-102 ETH 48938.1.1 F 10194 79 590 10748 11170 10984 

PS75/073-2 17.5-18.5 OS-96102 F 4060 25 590 3722 3924 3838 

 25.5-26.5 OS-96101 F 4770 25 590 4705 4853 4807 

 37.5-38.5 OS-96100 F 5870 30 590 5985 6180 6089 

 52.5-53.5 OS-96109 F 7730 35 590 7922 8102 7993 

 62.5-63.5 OS-96099 F 9260 50 590 9571 9963 9779 

 73.5-74.5 OS-96098 F 10300 50 590 10965 11227 11118 

PS75/085-1 5.5-9 OS-106101 H 2420 40 750 1534 1759 1642 

 45-49 OS-106102 H 3830 25 750 3291 3441 3364 

 131.5-135.5 OS-106103 H 5350 30 750 5282 5439 5358 

 185-189 OS-106281 H 6520 35 750 6496 6707 6607 

 245.5-249.5 OS-106282 H 7700 40 750 7709 7917 7815 

 301-305 OS-106283 H 8920 40 750 9077 9362 9214 

 357.5-359.5a OS-98721/OS-98720 F 10375 35 750 10865 11153 11032 
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and Reimer, 1993; Stuiver et al., 2005) with the MARINE13 calibration curve (Reimer et al., 

2013). Applied reservoir ages for the Holocene time period vary between 590 and 750 years 

dependent on the latitudinal position of the core sites (Bard, 1988) (Table 5.2).  For further 

coherence and refinement of the radiocarbon ages we used oxygen isotopic results from cores 

PS75/072-4, PS75/073-2 and PS75/085-1 (Benz et al., a; under rev.). The age model of core 

PS75/091-3 is based on the correlation of diatom abundance fluctuation to core PS75/085-1.  

The inter-core correlation and the calculation of corresponding sedimentation rates 

was achieved using the AnalySeries 2.0 software (Paillard et al., 1996) with linear 

interpolation between pointers. 

 

5.4 Results 

The SSSTs in the western Pacific sector throughout the Holocene show a relatively 

homogenous trend (Fig. 5.2a). After significantly warm SSSTs during the Antarctic Holocene 

Optimum (AHO; ~12-9 kyr BP), almost reaching to or even exceeding modern values at 

some core locations the temperatures drop at all core sites between 0.5 and 1°C, reaching 

lowest values between 9-7 kyr BP (Fig. 5.2a). Thereafter, relatively stable cold conditions 

occur in the majority of the cores with small-scale variations within the TF error. One 

exception is core PS75/091-3, showing distinct millennial variations from 8 kyr BP on, not 

consistent to the overall cold time period. An new temperature rise, especially visible in cores 

PS75/072-4 and PS75/085-1, occurred around 5 kyr BP. This warm period lasted for 

approximately 2-3 kyr representing a second warm Holocene optimum. After 2 kyr BP 

SSSTs decrease again by  ~0.5 to 1°C. 

 Concomitant with the changes in SSSTs, the WSI concentrations change as well in 

different magnitude (Fig. 5.2a). A distinct increase of sea-ice concentration occurs in cores 

PS75/072-4 and PS75/085-1 from 10 to 7 kyr BP. Only a slight and gradual increase is 

visible in core PS75/064-1 and PS74/073-2, whereas the southernmost core PS75/091-3 

shows several reoccurring peaks, yet with values up to 80%. The maximum sea-ice edge may 

thus have reached up to 57°S in the first cooling phase after 10 kyr BP. During the following 

warm phase, starting after 5 kyr BP, sea ice remained relatively stable at ~20% in core 

PS75/064-1, whereas the northernmost cores (PS75/072-4 and PS75/073-2) as well as PS 

75/085-1 show decreasing values. Overall, the three cores covered today by the maximum 

WSI expansion (Fig. 5.1) display continuously >15% WSI concentration throughout the last 

10 kyr BP. 
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Significant changes of the diatom assemblage in the studied time slice occur mainly in 

the sea-ice related F. curta group abundance (Fig. 5.2b). In the majority of cores the F. curta 

group shows relatively low abundances during the AHO. An exception is core PS75/091-3 

that lies south of the present WSI edge and probably is the most affected by the cold Ross 

Gyre. Towards 8-7 cal. kyr BP a twofold increase of the F. curta group abundance is visible, 

that remains relatively stable especially in the southernmost cores for approximately 2 to 3 

kyr. The temperature rise starting around 5-4 cal. kyr BP (Fig. 5.2a) leads to a decrease in the 

abundance of sea-ice diatom species. However, similar to the pattern displayed during the 

AHO, the relative abundance of the F. curta group varies between cores influenced by cold 

surface water masses in the vicinity of the Ross Gyre. After 2 cal. kyr BP a second rise of the F. 

curta group indicates renewed cold water and WSI influence. 
 

 
Figure 5.2: (a) Sea surface temperature (SSST) and winter sea-ice (WSI) concentration of studied cores for the 
Holocene time slice against age. (b) Diatom abundances of sea-ice indicating species and species groups of 
studied cores for the Holocene time slice against age. Black triangles: radiocarbon datings (see Table 5.2), red 
squares: modern SSST at core locations (see Table 5.1). 
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5.5  Discussion  

5.5.1  Early Holocene (11.5 – 9 kyr BP) 

The warm temperatures in the Early Holocene were accompanied by low WSI 

concentration a distinctly low abundances of sea-ice related diatoms at the majority of core 

sites (Fig. 5.2; Benz et al., b; in prep.). The SSST pattern in the western Pacific, showing 

similar or only slightly colder temperatures than modern, resulted in the establishment of 

almost modern frontal positions similar to the eastern Pacific sector (Benz et al., b; in prep.). 

Generally the AHO is a circum-Antarctic wide occurring temperature optimum that is also 

represented in antarctic ice cores (e.g. Bianchi and Gersonde, 2004; Pahnke and Sachs, 2006; 

WAIS Divide Project Members, 2013).  

  As all investigated core sites are influenced by WSI presence during the Antarctic 

Cold Reversal (Benz et al., b; in prep.), the shorter duration of the warm optimum compared 

to results from the northern SAZ (Fig. 5.3; Pahnke and Sachs) might be caused by an earlier 

reinforcement of the Ross Gyre. The strengthening of the gyre itself might have been 

influenced by the rapid retreat of the WAIS in the Ross Sea as well as the Amundsen and 

Bellingshausen Seas between 15 and 10 kyr BP (e.g. Anderson et al., 2014; Larter et al., 2014 

and references therein). This retreat was most likely accompanied by widespread meltwater 

intrusion and might have contributed to a global sea-level rise between ~11.4 – 8.2 kyr BP 

(Fig. 5.3; Lambeck et al., 2014).  

In general, the Early Holocene climate is suggests to be dominated by the position and 

intensity of the SWW and a positive SAM (Rees et al., 2015).  The SWW are characterized 

by more modern summer-like conditions with stronger core and weaker marginal intensities 

(Lamy et al., 2010; Kilian and Lamy, 2012). The significant retreat and meltwater intrusion 

of the WAIS during the Early Holocene is most likely the result of amplification between 

rising temperatures, strengthened and more poleward oriented SWWs (Lamy et al., 2010) and 

associated intensified upwelling contributing to higher atmospheric CO2 concentrations 

recorded in antarctic ice cores (Fig. 5.3; Mayr et al., 2013). 

Figure 5.3: Western Pacific sea surface temperature (SSST) and winter sea-ice (WSI) concentration of studied 
cores in comparison with additional temperature records from the Subantarctic an Antarctic Pacific and Atlantic 
sector (see Table 5.1) together with ice core and orbital parameters: obliquity and precession after Laskar et al. 
(2004); ice-volume equivalent sea level (esl, Lambeck et al., 2014); daily northern and southern midsummer 
insolation  (Laskar et al., 2004); ENSO warm events (Moy et al., 2002); MD97-2120 (Pahnke and Sachs, 2006); 
SO136-111 (Crosta et al., 2004; Ferry et al., 2015b); E27-23 (Ferry et al., 2015b); ODP1094 (Bianchi and 
Gersonde, 2004); EDC non-sea salt Na (Fischer et al., 2007); EDC and WDC CO2 (Lüthi et al., 2008, AICC12;  
Marcott et al., 2014); EDC δ18O and WDC δ18O (Stenni et al., 2006, AICC12 time scale: Veres et al., 2013; 
Bazin et al., 2013; WAIS Divide Project Members, 2013). Arrows indicate cooling after the Antarctic Holocene 
optimum and warming around 5 kyr BP; black triangles: radiocarbon datings (see Table 5.2). 
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5.5.2  Mid-Holocene (9–5 kyr BP) 

The SSST and WSI estimates from the western Pacific sector of the SO reveal a 

significant cooling period following the AHO roughly between 9 and 7 kyr BP and lasting 

until ~5 kyr BP. This cooling was further accompanied by a WSI advance up to 57°S 

resulting in a latitudinal expansion compared to the AHO by approximately 3-5°. The 

concentration estimates are consolidated by distinct increases of the sea-ice related diatom F. 

curta group (Fig. 5.2). The different timing of the initial cooling may result from the location 

of the core sites. Therefore, the southernmost cores display a relatively short early warm 

period due to their vicinity to the Ross Gyre and the proximity to the WSI edge (Figs. 5.1, 

5.3). In contrast to our new records, the previous temperature reconstruction from the western 

SAZ do not show a persistent cooling after 8 kyr BP, but a temperature increase lasting until 

5 kyr BP (Fig. 5.3; SO136-111; Crosta et al., 2004). Similar differences are also visible in 

diatom-based reconstruction of the Ross Sea sector and off Adélie Land. Diatom abundances 

point to a shorter cooling of ~2 kyr after 9 kyr BP with following warmer conditions until 4 

kyr BP (Cunningham et al., 1999; Crosta et al., 2008). However, a cooling pattern in the 

Early to Mid-Holocene similar to our estimates is known from records off New Zealand (Fig. 

5.3; Pahnke and Sachs, 2006) as well as from the Antarctic Peninsula area (Bentley, et al. 

2009; Shevenell, et al., 2011; Etourneau, et al., 2013) and the Atlantic sector of the SO (Fig. 

3; Bianchi and Gersonde, 2004; Divine et al., 2010). Additionally, the re-advance of WSI to a 

more northern location of the maximum sea-ice edge in the Pacific sector is corroborated by 

recently published WSI estimates from the southwest Pacific indicating relatively higher WSI 

concentrations in the vicinity of the APF after 8 cal. kyr BP (Fig. 5.3; Ferry et al., 2015b).  

Yet, the renewed sea-ice expansion did probably not reach into the PFZ, as WSI 

concentrations at core site SO136-111 did not exceed 10%, taking into account the 

comparable large error of the reconstruction technique (~20%; Ferry et al., 2015a). Cooling 

of up to 2 K was further reconstructed from cores located in the Humboldt-Chile Current area 

and the Eastern Equatorial Pacific, suggested to have been induced by advected cold water 

from the SO (Kilian and Lamy, 2010; Kalansky et al., 2015). Furthermore, pronounced 

cooling is also reported from all antarctic ice cores (Masson et al., 2000; WAIS Divide 

Project Members, 2013), which is accompanied by higher sea salt transport and thus farther 

sea-ice expansion (Fig. 5.3; Fischer et al., 2007). Contrasting results occur north of 35°S off 

the Chilean coast where the temperature development in the Holocene period is contrary to 

the records studied by Kilian and Lamy (2010) showing colder SSTs during the AHO and a 
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significant warming at ca. 8 kyr BP (Kim et al., 2002) similar to the increasing diatom-

derived SSSTs at core site SO136-111 (Fig. 5.3; Crosta et al., 2004). 

Possible reasons for the widespread cooling trend in the Mid-Holocene were recently 

simulated from various proxy results together with a coupled climate model (ATMosphere 

and Fresh Water Flux, ATMFWF), resulting in the most plausible cause of increased fresh 

water release due to melting of the WAIS (Mathiot et al., 2013). Such widespread meltwater 

intrusion is in line with the retreating WAIS during the Early Holocene (Anderson et al., 

2014; Larter et al., 2014). The simulation of freshwater shedding into the Pacific sector 

between 10 and 8 kyr BP resulted in a cooling of approximately 0.5-1.5 K south of 59°S  

Figure 5.4: Anomaly between 8 and 10 kyr BP (8-10) at studied and discussed cores (Fig. 5.1; Table 5.1), 
Temperature anomaly in K (Table 5.3). Map modified after Mathiot et al. (2013). 

 

whereas north of 59°S also warming up to 0.3 K is estimated (Mathiot et al., 2013). Stronger 

cooling in the Antarctic Zone (AZ) is also evident in SSST anomalies (8-10 kyr BP) 

estimated at core sites from the eastern and western Pacific sector (Fig. 5.4, Table 5.3; Benz 
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et al., b; in prep.). However, the absolute values between proxy records and modeling 

approach differ considerably between each other especially in the present SAZ. Where the 

coupled climate model suggest cooling of up to 0.5°C, the TF estimates show a warming of 

up to 1.7°C (Fig. 5.4). Such a discrepancy between proxy and model data may result only few 

proxy data used in the simulation. However, the WAIS retreat and associated meltwater input 

is still a possible driver of the cooling occurring in all SO sectors. Although the cooling is 

less transferred into the SAZ, directly influenced areas, like the eastern Pacific sector and the 

Ross Sea, show stronger cooling. It is further transferred through the Drake Passage into the 

Atlantic and by less extent to the Indian sector (Fig. 5.4). A reason causing less cooling north 

of ~59°S in the eastern sector may be the relationship between the core sites and the 

establishment of the modern frontal system during the Early Holocene (Benz et al., b; in 

prep.). This circumstance may have led to less northern cold-water transport, whereas the 

eastern transport via the Drake Passage propagated the cooling into the Atlantic and with 

lesser extent to the Indian sectors of the SO. However, the equatorial cooling that is 

suggested to be triggered by the upwelling of cold Subantarctic Mode Water (SAMW) as 

well as cooling off the Chilean coast (Kilian and Lamy, 2010; Kalansky et al., 2015) may 

further be possible. Formation of SAMW via downwelling of water masses at the SAF would 

thus include the cold surface water from south of ca. 59°S. In the present SAZ however, the 

surface water may be still influenced by increased heat transport occurring during the 

preceding AHO due to a strengthened South Pacific Gyre (Marr et al., 2013). Off the Chilean 

coast, the deflection of the ACC into the Humboldt-Chile Current favored the transport of 

cold surface water to core sites situated at the continental margin, similar to the cold water 

tongue established during the glacial period (Benz et al., a; under rev.). Northern advection 

of cold water from the SO however may have not reached as far north to influence SSTs at 

core sites north of 35°C where no cooling between 8 and 10 kyr BP can be observed (Kim et 

al., 2002).  

During the Mid-Holocene the position and intensity of the SWW changes to more-

winter like conditions between 12.5 – 8.5 kyr BP, represented by reduced zonal winds in the 

core zone and further northward expansion (Lamy et al., 2010). The authors propose a main 

control of sea surface temperature on the position and strength of the SWW. Thus, the 

cooling in the SO caused by freshwater shedding from the WAIS presumably might have 

governed the shift to a more latitudinal expanded and transitional weaker SWW (Kilian and 

Lamy, 2012). The persistence of these conditions over the next ~3 kyr mirrored the cooler 

Mid-Holocene period recorded in the western Pacific sector. A northward migration or 
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weakening of the SWW is further suggested to cause less upwelling of Circumpolar Deep 

Water onto the West Antarctic Peninsula shelf favoring cooler conditions necessary for new 

sea-ice formation (Peck et al., 2015). However, as circum-Antarctic records partly show 

contrasting results regarding the intensity and length of the cooler Mid-Holocene, the change 

of the SWW is presently not consistent with all proxy results (e.g. Kim et al., 2002; Crosta et 

al., 2004; Divine et al., 2010). 

Additionally to changes in the SWW the climate system in the SO especially in the 

Pacific sector is strongly controlled by increasing ENSO frequency since the Mid-Holocene 

(Etourneau et al., 2013; Rees et al., 2015). Generally, the feedback to ENSO events is 

strongly influenced by the Antarctic Dipole, whose characteristic is the formation of a high 

(low) sea level pressure anomaly over the Amundsen Bellingshausen Seas simultaneous with 

a low (high) sea level pressure over the Weddell Sea. During warm ENSO events this sea 

level pressure anomaly is characterized by high pressure over the eastern Pacific sector, 

resulting in higher temperatures and less sea ice in the Pacific center. In contrast, more 

frequent El Niño events might have led to a cooler climate state with more sea ice in the 

Weddell Sea (Yuan, 2004). The Mid-Holocene is generally characterized as a transitional 

period between SWW and ENSO controlled climates (Rees et al., 2015). Generally, more 

frequent ENSO events starting in the Mid-Holocene (Fig. 5.3), suggested to be forced by 

insolation changes (Moy et al., 2002), are in broad consistency with a orbitally induced rise 

of Southern Hemisphere summer insolation (Fig. 5.3; Laskar et al., 2004). However, as a 

complete shift to an ENSO controlled regime is not yet completed, less warm El Niño events 

in the Mid-Holocene are consistent with the cooler temperature regime in the SO documented 

in the majority of marine records (Fig. 5.3; e.g. Pahnke and Sachs, 2006; Divine et al., 2010; 

Kilian and Lamy, 2012) and less retreat of the WAIS between 8.8 and 6.6 kyr BP (Das and 

Alley, 2008).  

With respect to the bipolar seesaw mechanism, the “8.2 kyr BP event”, a prominent 

cooling in the Northern Hemisphere caused by freshwater outbursts (Alley et al., 1997), 

should have resulted in a warming in the Southern Hemisphere (Rohling and Pälike, 2005). 

But although this event has been observed in paleoclimate records from almost worldwide 

(Mayewski et al., 2004), a distinct response in the Southern Hemisphere cannot be identified. 

Simulations of the 8.2 kyr BP event with a coupled atmosphere-ocean general circulation 

model show a general cooling in the Northern Hemisphere with a southward shift of the 

Intertropical Convergence Zone (ITCZ) (Alley and Ágústsdóttir, 2005). Such a shift during 

the deglacial was previously associated with also southward shifted westerlies, resulting in 
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warming of the SO (De Decker et al., 2012). As the comparison of Southern Hemisphere 

records show neither a prominent cooling nor a warming it seems rather likely that such 

small-scale event lasting for roughly two centuries (Kobashi et al., 2007) did either not 

influence the SO or that only very high resolved records are capable to picture such event. 

 

5.5.3  Late Holocene (5–0 kyr BP) 

The temperature and sea-ice concentration estimates from the southwestern Pacific in 

the Late Holocene show a short term warming interval starting between 5 and 4 kyr BP that 

lasts approximately until 2-3 kyr BP. The total temperature change ranges between 0.5 and 

1°C (Figs. 5.2a). Concomitant with the rise of SSSTs sea-ice related diatom abundances in all 

studied cores decrease but still depict abundances high enough for the presence of WSI at the 

modern average WSI edge (Fig. 5.2a, b). As the estimated WSI concentration did not 

decrease in the same magnitude as temperatures rise, the summer season was probably more 

sensitive to climate changes during this time period than the winter season. Increasing 

temperatures as depicted in the AZ of the western Pacific sector (Fig. 5.2a) are also 

documented from the SAZ off New Zealand (Fig. 5.3; MD97-2120; Pahnke and Sachs, 

2006), from terrestrial records of the Antarctic Peninsula region (Bentley et al., 2009) and 

from ice cores located in the West Antarctic (Fig. 5.3; Masson et al., 2000; WAIS Divide 

Project Members, 2013). However, diatom-derived SSSTs from core site SO136-111 (Fig. 

5.3; Crosta et al., 2004) and diatom assemblages from the Antarctic continental margin 

(Denis et al., 2006; Crosta et al., 2008) show the opposite trend with a temperature drop at 

4.5 kyr BP similar to the contrasting results during the Mid-Holocene. This cooling is 

roughly in line with the onset of the so-called “Neoglacial“ that is recorded also in the 

Atlantic sector (Divine et al., 2010), marine and terrestrial records South America (Kilian and 

Lamy, 2012) and Dronning Maud Land (EPICA Community Members, 2006). Although not 

referring to a “Neoglacial”, additional Atlantic marine records from the Antarctic Zone show 

relatively stable cold conditions throughout the late Holocene (Fig. 5.3; Bianchi and 

Gersonde, 2004). Despite the similar signals of the eastern Atlantic records to East Antarctic 

ice core results, pollen records from South Georgia closely resemble the Pacific temperature 

records implying warmer conditions between 4.5 – 2.8 kyr BP (Strother et al., 2015). Situated 

in the western Atlantic and directly in the pathway of the cold-water route, the islands’ 

climate may picture the pattern recorded from the Pacific sector rather than from the eastern 

Atlantic.  
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 As described above, changes of the SSSTs and the sea-ice expansion in the Pacific 

sector are strongly connected to the variability of atmospheric conditions like the SAM and 

ENSO. As suggested by Rees et al. (2015), the Holocene climate after 5 kyr BP is controlled 

by ENSO activity that is characterized by a higher frequency of warm El Niño-events (Fig. 5. 

3). More frequent El Niño events are associated with increasing insolation, higher solar 

activity and poleward-shifted SWW (Moy et al., 20o2; Varma et al., 2011). The feedback 

mechanism to El Niño events in the Pacific sector (Yuan et al., 2004) resulted in less WSI 

concentration and higher SSSTs between 2-5 kyr BP. Largest congruence between 

atmospheric forcing and environmental results occurred around 2.5 kyr BP when highest 

SSSTs in the Pacific sector coincide with highest WAIS δ18O values (WAIS Divide Project 

Members, 2013), distinct ENSO activity intensity (Fig. 5.3; Moy et al., 2002) and the 

maximum Southern Hemisphere insolation (Fig. 5.3; Laskar et al., 2004). However, as 

recorded from lake sediments in Tasmania, the predominant dry El Niño events were 

regularly interrupted by wet La Niña phases, which in turn favor cooler conditions and more 

sea ice in the Pacific sector of the Southern Ocean (Yuan, 2004). Therefore, higher sea-ice 

related diatom abundances and WSI concentration peaks during the warm interval at the 

beginning of the Late Holocene (Fig. 5.2) might have been responses to La Niña events. 

Further the distance of the studied cores to the influence of the cold water from the Ross Gyre 

and the average WSI edge influences the length of the warming and early WSI advance 

especially in the southernmost and westernmost Pacific cores (Figs. 5.2a, 5.3; Ferry et al., 

2015b).  

 The warm period in the studied cores ended latest at 2 kyr BP when the temperature 

dropped again (Figs. 5.2a, 5.3) similar to temperature decreases off the southern island of 

New Zealand (Fig. 5.3; Pahnke and Sachs, 2006), South Georgia (Strother et al., 2015) and 

West Antarctic ice cores (WAIS Divide Project Members, 2013). An exact range of cooling 

in the western Pacific sector cannot be predicted as the last 1-2 kyr of the Holocene are 

missing in the majority studied as well as published cores. The available estimates call for a 

cooling of up to 1°C with new advances of the maximum WSI extent up to ca. 60°S thus 

mirroring approximately modern conditions. However, SSSTs only reached modern values in 

the vicinity of the maximum WSI edge, whereas at the APF, cooler conditions of <1°C were 

still present (Fig. 5.2). Cooler Late Holocene conditions and a gradual increase of sea ice are 

also reported from the coast off Adélie Land and the Ross Sea sector (Cunningham et al., 

1999; Crosta et al., 2008; Denis et al., 2006). Although a return to cold conditions started 
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already around 4 kyr BP, indicated by increasing abundances of sea-ice related diatom 

species and less open ocean species the cooling trend seemed persistent throughout the Late 

Holocene in the Pacific Sector.  

 

5.6 Conclusions 

Our SSST and WSI reconstructions of the Holocene from the western Pacific sector of 

the Southern Ocean reveal a climate development similar to other Pacific basin records as 

well as records from the Atlantic sector. The most influencing mechanism responsible for 

cooling between Early and Mid-Holocene is the freshwater input from the retreating WAIS, 

further accompanied my shifting westerlies. However, coupled climate model simulations 

miss the total variance of cooling and warming between 8 and 10 kyr BP most likely due to 

less proxy data. Although a general climate trend in the Southern Ocean is difficult to 

distinguish, the western Pacific records show high similarity to climate records from the 

Pacific basin as well as from the Atlantic sector and antarctic ice cores.  

The change from an SWW to ENSO driven climate in the Pacific Ocean is reflected in 

the western Pacific Sector as consequent warming in response to more frequent El Niño 

events. Contrasting results between different latitudes and ocean basins are presumably 

influenced by the variable distance to the forcing mechanisms as well as to signal 

propagation via long distances. 

Our open ocean Holocene records emphasize the role of the WAIS as freshwater 

source and associated cooling in the Pacific sector as well as the strong regional feedback on 

changing atmospheric forcing mechanisms. Furthermore future model simulations will be 

enhanced by the new proxy data from open marine environments to better fit the 

paleoceanographic reconstructions. 
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Chapter 6 – Conclusions and Outlook 

6.1 Conclusions 

 The overall aim of this thesis was the analysis of Late Quaternary climate variability in 

the Pacific sector of the Southern Ocean to fill an important gap in paleoceanographic research. 

To achieve this objective, diatom assemblages of 17 cores from the (sub)antarctic Pacific 

realm, covering the last 30 kyr, were investigated. Combining the new TF-derived SSST and 

WSI estimates with previously published records, the environmental conditions during the 

LGM have been studied and a continuous circum-Antarctic reconstruction of this cold climate 

as well as its influence on interbasin relation and ocean/atmosphere feedbacks have been 

established (Chapter 3). The subsequent transition into the present interglacial and the 

Holocene period were investigated to reveal potential Southern Ocean interbasin offsets 

indicated by antarctic ice cores and to decipher the response of SSST and WSI distribution to 

atmospheric mechanisms and their feedbacks (Chapters 4, 5). Based on the presented 

temperature and sea-ice estimates from the southern SAZ and AZ and the comparison to the 

relevant published records from the Pacific, Atlantic and Indian sectors (see Chapter 1.2.3) this 

thesis achieves decisive results concerning the raised research questions (Chapter 1.5): 

The compilation of Pacific temperature and sea-ice records enlarged by the diatom-

derived results presented in this thesis shows an average northward expansion of the Southern 

Ocean cold-water realm and the WSI extent by ~5° during the LGM. Though exhibiting a 

strong east-west gradient expressed in farther WSI expansion and steeper temperature gradients 

in the western sector and higher sea-ice and SST variability in the eastern sector, the Pacific 

sector shows a coherent latitudinal zonation mirroring results from the Atlantic and Indian 

sectors of the Southern Ocean. An evenly distributed zone of strongest cooling (>4 K) in the 

present SAZ contradicts the suggestion of a non-uniform circum-Antarctic cooling (Gersonde 

et al., 2005). Strong topographic forcing, predominantly causing the east-west gradient, further 

inhibits the definite assignment of glacial frontal positions solely based on SSTs. Considering a 

similar glacial as modern frontal system, imprinting of fronts with colder temperatures is 

strongly suggested in areas without significant SST gradients and prominent topography. The 

overall northward shift of cold surface water and the sea-ice edge eventually led to an 

associated displacement of the opal belt, an expanded area for CO2 sequestration and the 

thermally intensification of the cold water route via the Drake Passage. Considerably cold 

surface water that deviates northward into the Humboldt Current System pinpoints 
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Subantarctic Surface Water as source for eastern equatorial LGM cooling. However, glacial 

advection of silicic acid via the Humboldt Current System might have had a less northward 

extent not reaching latitudes above 20°S. Coupled climate model results estimating glacial 

sea-ice extent might be able to match with proxy results, but the majority of models tend to 

overestimate especially the WSI extent around Antarctica. Atmospheric forcing mechanisms 

such as the Southern Westerly Winds (SWW), the Southern Annular Mode (SAM) and the El 

Niño Southern Oscillation (ENSO) are further significantly influencing the temperature and 

sea-ice pattern in the Pacific sector. Feedback mechanisms between low and high sea level 

pressure systems over the high and low latitudes result in intensity and frequency changes of 

the mentioned mechanisms. During the LGM comparatively weakened/equatorward 

expanded westerlies favored a wide sea-ice expansion, that might have been intensified by 

cold ENSO events and a positive SAM index.  

The Pacific intrabasin E-W gradient did not only impact the environmental conditions 

during the LGM but also the subsequent deglaciation (Chapter 4). Although SST and sea-ice 

reconstructions over Termination I do show in-phase changes relative to a common antarctic 

sequence, the onset of deglacial warming and sea-ice retreat preceded in the eastern Pacific 

sector by roughly 3 kyr. Such early warming, recently detected in WAIS ice cores, was most 

probably triggered by simultaneous interhemispheric insolation increase, subsequently 

warming the surface ocean and eventually leading to ice sheet disintegration. However, 

deglacial warming in the western Pacific sector started simultaneously with the Atlantic 

sector around 19-18 kyr BP marked by the slowdown of the AMOC and additional storage of 

heat in the SH. Once the deglaciation in all Southern Ocean sectors started, the bipolar 

seesaw mechanism resulted in distinct two-step circum-Antarctic warming interrupted by the 

ACR between 14 and 12 kyr BP and culminating from 12-9 kyr BP in the AHO. Sea ice 

gradually retreated during the early deglacial SST increase, recurred during the ACR and 

showed its minimum extent during the AHO. During the deglacial evolution, strengthened 

and poleward shifted SWW enhanced upwelling of old nutrient-rich water masses that raised 

bioproductivity and increased CO2 outgassing. Despite the early deglacial onset in the eastern 

Pacific sector, atmospheric CO2 ultimately rose after the slowdown of the AMOC, and thus 

may have been primarily governed by the climate changes in the Atlantic sector. Our minor 

ACR cooling further suggests the WAIS as unlikely source of meltwater pulse 1A.  

In comparison to the ACR, a significantly larger SST decrease occurred after the AHO 

between 8 and 10 kyr BP, recorded in all Southern Ocean sectors (Chapter 5). This distinct 

drop of temperatures is generated in atmosphere-ocean models by freshwater intrusion 
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originating from the West Antarctic. Such meltwater shedding is plausible from rapid retreat 

of the WAIS during the preceding thermal optimum. Strongest cooling is suggested to have 

taken place in the Pacific Antarctic Zone, propagating the signal into the adjacent sectors. 

However, the latitudinal extent of the cooling and the absolute values of model and proxy 

results show discrepancies that might result from insufficient reference data for the model 

setup. During the Mid- to Late Holocene a general trend in Southern Ocean records is hardly 

to determine. It seems evident that western Pacific SSSTs react very sensitive to the shift of 

SWW- to ENSO-governed climate whereas records in the vicinity of the Antarctic continent 

show high regionally influenced variability. 

Although climate variability of the last 30 kyr BP in the Pacific sector of the Southern 

Ocean seems to closely mirror those from Atlantic marine and antarctic ice core records, our 

last glacial to present interglacial reconstructions point to a highly sensitive ocean sector that 

is most important for initiating prominent climate changes and the propagation of signals via 

the ACC. Besides the well-studied control of Northern Hemisphere changes on the AMOC 

and subsequently the Atlantic sector of the Southern Ocean, feedback mechanisms between 

ice, ocean and atmosphere in the Pacific, reflected in sea surface parameters, might forecast 

circum-Antarctic conditions.  

 

6.2  Outlook 

The results of glacial and deglacial climate evolution in the Pacific sector presented in 

this thesis close a prominent gap in Southern Ocean research. However, although the generated 

data provide a good basis for paleoceanographic implications in the discussed time slices, 

further studies are needed, to refine certain hypotheses. Despite the good correlation of diatom 

abundances and physical parameters, the establishment of age models with higher precision in 

the Southern Ocean is hampered by insufficient carbonate concentrations and uncertainties 

concerning surface reservoir ages. Despite occurrent problems within the measurements of 

distinctly small foraminifer contents regarding extremely low resolved time periods, the fairly 

new established MICADAS dating achieves good results compared to conventional techniques. 

Thus, for Southern Ocean sediments this method is of great advantage to achieve highest 

accuracy for the establishment of age models in the future especially with respect to a precise 

definition of a possible preceding of deglacial warming. Low amounts of material (< 1mg 

carbonate) would allow for denser sampling strategies, enabling high resolved 14C 

measurements and precise predictions. Although the warming is visible at several of the 
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investigated core sites and at previously published ones, additional 14C measurements from 

cores in the southern SAZ would clarify the exact onset of the deglaciation. In the light of 

improved dating strategies, future radiocarbon research in the Pacific sector of the Southern 

Ocean has to focus on the establishment of reliable surface reservoir ages especially for the 

glacial and deglacial. Recent studies by Ronge (2014) indicate an early deglacial upwelling of 

deep and carbon-rich water in the southern Subantarctic Zone, probably resulting in distinctly 

higher reservoir ages. If such upwelling might have happened as well south of the Subantarctic 

and Antarctic Polar Front, we definitely need further investigation to resolve these issues.  

The upwelling of carbon-rich deep water as observed by Ronge (2014) did not result in 

complete outgassing of CO2. Thus, possible stratification in the eastern Pacific sector might 

have occurred during the glacial and early deglacial until CO2 outgassing started 

simultaneously in all Southern Ocean sectors. Recent studies from the subarctic North Pacific, 

using diatom-derived δ18O and δ30Si, showed the potential to decipher surface water 

stratification on millennial time scales (Maier et al., 2013, 2015). As the North Pacific 

represents a similar High Nutrient-Low Chlorophyll regime as the Southern Ocean, the 

application of this proxy on the same set of cores investigated in this thesis to detect possible 

surface water stratification, would be promising. 

 Further research in the Southern Ocean has to be done concerning the investigation of 

the ACC flow speed. Such velocity data would help to derive ACC feedbacks with the SWW, 

hence would provide additional data for model simulations of past wind speeds. As available 

climate models show ambiguous results concerning the intensity of the SWW, the majority of 

associated temperature gradients do not fit the proxy results. Although just recently efforts 

have been made to shed light on the intensity of the “cold-water route” (Lamy et al., 2015), 

additional velocity data of the ACC in the Pacific sector might help to unravel if the thermal 

intensification via the Drake Passage was accompanied by more or less water mass transport. 

 Most important for future research in the Southern Ocean and with respect to SST and 

sea-ice reconstructions on important time slices like the LGM, is the establishment of a 

continuous circum-Antarctic data collection. Although, large parts of the Indian Ocean areas 

have been studied yet (e.g. Barrows and Juggins, 2005), the Antarctic Zone south of 60°S is a 

blank page in Southern Ocean research. Providing similar sediment conditions as in the 

Atlantic and Pacific sector, the Antarctic Indian Ocean is predestinated for diatom 

assemblage studies and should be on the agenda of future scientific expeditions and research 

activities. 
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Data handling 

All data presented in this thesis are stored electonically and will be available online in 

the PANGAEA database after publication or on personal request (http://www.pangaea.de). 
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Abstract  

In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern 

Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and 

two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling 

between the degree of nitrate consumption and Antarctic climate across the last two glacial 

cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major 

Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for 

reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in 

the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and 

species abundance data indicate that the δ15Ndb changes are not the result of changing species 

composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but 

with a significant decline in their difference during peak ice ages. A tentative seasonality-

based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer 

surface waters became nitrate free during the peak glacials. 

 

 

Authors contribution: I provided a first age model established with diatom abundance 

stratigraphy and participated in the selection of the depth for radiocarbon analysis. 

Furthermore I helped with the interpretation of the age model as well as the calibration of 

the AMS14C ages. 
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A2 – List of Abbreviations 
 
 

Water masses, climatic intervals, and (pale-) oceanographic/ climatic terms 

AAIW   Antarctic Intermediate Water 

AABW   Antarctic Bottom Water 

ACC    Antarctic Circumpolar Current 

ACR    Antarctic Cold Reversal 

AHO   Antarctic Holocene Maximum 

AICC12  Antarctic Ice Core Chronology 2012 

AMOC  Atlantic Meridional Overturning Circulation 

APF    Polar Front 

AZ   Antarctic Zone 

B/A   Bølling/Allerød 

BP   Before Present (<1950) 

CDW   Circumpolar Deep Water 

EAC   East Australian Current 

ENSO   El Niño Southern Oscillation 

EDC   EPICA Dome C ice core 

(E-) LGM   (EPILOG-) Last Glacial Maximum 

E-T-F  Eltanin-Tharp Fracture Zone  

GICC05  Greenland Ice Core Chronology 2005 

GAPF  Glacial APF 

GSACCF  Glacial SACCF 

GSSTF  Glacial Southern Subtropical Front 

HASO  Hydrographic Atlas of the Southern Ocean 

HCS  Humboldt Current System 

HNLC  High Nutrient-Low Chlorophyll 

HS1   Heinrich Stadial 1 

MIS   Marine Isotope Stage 

MWP   Meltwater Pulse 

NADW   North Atlantic Deep Water 

NH   Northern Hemisphere 

PAR   Pacific Antarctic Ridge 
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PIB   Pine Island Bay 

PFZ   Polar Front Zone 

POOZ   Permanent Open Ocean Zone 

SAF    Subantarctic Front 

SACCF  Southern Antarctic Circumpolar Current Fronts 

SAM   Southern Annular Mode 

SAZ   Subantarctic Zone 

SAMW   Subantarctic Mode Water 

SH   Southern Hemisphere 

SO    Southern Ocean 

(s) SIZ   (seasonal) Sea Ice Zone 

SPC    South Pacific Current 

(S/W) SST   (Summer/Winter) Sea surface temperature 

SI   Sea Ice 

SSI   Summer Sea Ice 

STF    Subtropical Front 

STZ    Subtropical Zone 

SWW    Southern Westerly Winds 

THC    Thermohaline Circulation 

U-F   Udintsev Fracture Zone 

WAIS    West Antarctic Ice Sheet 

WDC   WAIS Divide ice core 

WOA   World Ocean Atlas 

YD    Younger Dryas 

 

 

Proxy and analytical definitions 

AMS    Accelerator Mass Spectrometry 

AQL   Average Quality level 

CQL   Chronostratigraphic Quality Level 

EQL   Estimate Quality Level 

GAM   Generalized Additive Model 

GC   Gravity corer 

IKM   Imbrie and Kipp Method 
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KC   Kasten Corer 

MAT   Modern Analogue Technique 

MICADAS   Mini radioCarbon Dating System 

MSCL   Multi-Sensor Core Logger 

NIST-19  carbonate standard from the National Institute of Standards and 

Technology 

PC   Piston Corer 

RMSEP  Root Mean Square Error of Prediction 

TC   Trigger Corer 

TF   Transfer Function 

VPDB   Vienna Pee Dee Belemnite 

WA   Weighted Average 

WAPSL  Weighted Averaging Partial Least Squares 

XRF   X-Ray Fluorescence 

 

 

Project names, facilities, and institutes 

AWI    Alfred Wegener Institute 

BMBF   Bundesministerium für Bildung und Forschung 

BIPOMAC  Bipolar Climate Machinery 

CLIMAP  Climate, Long-Rage Investigations, Mapping and Prediction 

DFG   Deutsche Forschungsgemeinschaft 

ETH    Eidgenössische Technische Hochschule 

EPICA   European Project for Ice Coring in Antarctica 

EPILOG  Environmental processes of the ice age: land, oceans, glaciers 

EU-FP7  European Union – Seventh Framework Programme for Research and 

Technological Development 

IPCC    Intergovernmental Panel on Climate Change 

MARGO  Multiproxy approach for the reconstruction of the glacial ocean surface 

MARUM  Zentrum für Marine Umweltwissenschaften 

NGRIP  North Greenland Ice Core Project 

NOSAMS   National Ocean Science AMS 

NOAA   National Oceanic and Atmospheric Administration 

ODP    Ocean Drilling Program 
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PACES  Polar Regions and Coasts in a Changing Earth System 

POLMAR  AWI graduate School 

WHOI   Woods Hole Oceanographic Institut 

 

 

Other 

SW   South-West 

N-S   North-South 

S-N   South-North 

E-W   East-West 

W-E   West-East 
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