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Study	side	and	measurements	

Physical	proper4es	of	the	ice	floe	

Light	a9enua4on	

Parameters	 Non-flooded	data	
points	only	

Flooded	data	points	
only	

Sea-ice	thickness	(m)	 1.42	±	0.51	 0.78	±	0.30	

Snow	depth	(m)	 0.30	±	0.12	 0.42	±	0.12	

Ice	freeboard	(m)	 0.05	±	0.04	 -0.12	±	0.07	

Light	transmiDance	
mean	 0.0019	±	0.0025	 0.0026	±	0.0031	

mode	 0.0008	 0.0008	

ExIncIon	
coefficients	(m-1)	

ice	 1.264	±	0.133	 2.06	±	0.97	

snow	 31.76	±	0.69	 31.22	±	0.53	

slush	 --	 6.21	±	3.23	

Figure 3: Physical properties of the ice floe with the Remotely Operated Vehicle (ROV) survey 
area. (a) Sea-ice thickness derived from the ground-based multi-frequency electromagnetic 
induction instrument (GEM-2). (b) Snow depth measured with the Magna Probe. (c) Estimated ice 
freeboard. (d) Light transmittance derived as the ratio of measured and transmitted irradiance and 
incoming solar irradiance above surface. Sea-ice thickness and snow depth measurements as 
well as ice freeboard are interpolated to the ROV transect lines. All data are gridded to a 2m-
by-2m grid. 
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Surface	flooding	as	a	key	parameter	
For the ice-covered Southern Ocean, two typical states of sea ice 
must be distinguished, one with the snow/ice interface above the sea 
level (positive freeboard, Figure 2a), and the other with the snow/ice 
interface below the sea level (negative freeboard, Figure 2b). The 
latter is referred to as flooded snow (slush) and is assumed to have 
the same density as sea ice. 

Figure 2: The two states of Antarctic sea ice: (a) Positive freeboard, and (b) negative freeboard. 
The ice freeboard, F, is controlled by the the density of sea ice, ρi, the density of seawater, ρw, 
and the sea-ice thickness, I, and the snow load, which is calculated from the density of snow, ρs, 
and the snow depth, S [Lange et al., 1990; Sturm and Massom, 2010]. In this study, constant 
densities for seawater, sea ice and snow of 1023.9, 915.1 and 300 kg m-3 are assumed, 
respectively [Yi et al., 2011]. 

Snow	on	sea	ice	alters	the	physical	properIes	of	the	sea-ice	cover	as	
well	as	associated	physical	and	biological	processes	at	the	interfaces	
between	atmosphere,	sea	ice	and	ocean.	The	AntarcIc	snow	cover	
persists	during	most	of	the	year	and	contributes	significantly	to	the	
sea-ice	 mass	 budget	 due	 to	 the	 widespread	 surface	 flooding	 and	
related	snow-ice	formaIon.	Snow	also	enhances	the	sea-ice	surface	
reflecIvity	 of	 incoming	 shortwave	 radiaIon	 and	 determines	
therefore	 the	 amount	 of	 light	 being	 reflected,	 absorbed,	 and	
transmiDed	to	the	upper	ocean.	
 

Here, we present results of a case study of spectral solar radiation 
measurements (320 to 950 nm) under Antarctic pack ice with an 
instrumented Remotely Operated Vehicle (ROV) in the Weddell Sea in 
September 2013. In order to identify the key variables controlling the 
spatial distribution of the under-ice light regime, we exploit under-ice 
optical measurements in combination with simultaneous character-
ization of surface properties, such as sea-ice thickness and snow 
depth.  
 
Total sea-ice thickness (sea-ice thickness plus snow depth) was 
measured with a ground-based multi-frequency electromagnetic 
induction instrument (GEM-2). A GPS-equipped Magna Probe was 
operated simultaneously in order to obtain snow depth along the snow 
track. Sea-ice thickness was then calculated as the difference of total 
sea-ice thickness and snow depth. 

Figure 1: Ice-station sampled during voyage ANT-29/7 (WISKEY) with R/V Polarstern in the 
Weddell Sea from 18 to 26 September 2013. The lower left picture shows the Remotely Operated 
Vehicle system to obtain under-ice information. The background image of the lower right image 
shows the sea-ice concentration on 18 September 2013 provided by www.meereisportal.de. 
Photo credit to Martin Schiller (AWI).  

Introduc4on	

Figure 4: Mean spectral (a,b) transmitted irradiance, (c,d) light transmittance and (e,f) bulk 
extinction coefficient for (a,c,e) flooded data points only (red), non-flooded data points only 
(blue) and (b,d,f) non-flooded data points only with a sea-ice thickness between 0.8 and 1 m 
subdivided into two snow classes: snow depth < 0.2 m (dotted lines) and snow depth > 0.2 m 
and < 0.4 m (dashed lines).  

Arc4c	vs.	Antarc4c	

Table 1: Summary statistics for measured and calculated physical sea-ice parameters for the 
non-flooded grid cells only (positive freeboard), and flooded grid cells only (negative 
freeboard) of the WISKEY data set. Reported values are mean values ± its standard 
deviation or mode values.  

Strong surface melt and 
summer melt ponds 

Year-round snow cover and 
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FYI 22 % 4 % 
MYI 15 % 1 % 
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(snow-covered) 

< 0.1% 

Figure 6:  Light transmittance of (bare and pond-covered) Arctic first- and multi-year sea ice, and 
Antarctic snow-covered pack ice during summer. 

§  Antarctic pack ice transmits less than 0.1% of the 
incoming solar radiation during early spring 

§  Ice freeboard and related flooding at the sea-ice 
surface and the snow depth distribution dominate the 
spatial variability of the under-ice light regime 

§  In contrast to Arctic sea ice, complex surface 
properties prevent a direct correlation between surface 
properties and the under-ice light field 

Conclusions	

Area-wide up-scaling 
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Input parameters 
§  Remote sensing data 

Sea-ice type 
Sea-ice concentration 
Melt pond coverage 

§  Surface properties 
Surface melt state 

§  Downward surface solar 
radiation 

Arctic-wide under-ice 
calculations 

Needed input parameters 
§  Remote sensing data 

Temporal evolution of snowpack 
Sea-ice concentration 
Snow depth 
Sea-ice thickness 
Floe size distribution 

§  Surface properties 
Snow coverage 
Vertical snow structures 

So far no Antarctic-wide under-
ice calculations possible 


