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Summary 

The crabeater seal (Lobodon carcinophaga) is the most abundant seal worldwide and inhabits the 

circumpolar pack ice zone of the Southern Ocean. Around half of its population is found in the 

Weddell Sea. By now, information on important environmental factors which affect their 

distribution as well as on geographic and seasonal differences in diving and foraging behaviour is 

limited due to the inaccessibility of their habitat.  

In austral summer 1998, a heterogeneous group of 12 crabeater seals belonging to both sexes and 

different age classes was equipped with satellite-linked time-depth recorders (SDRs) at Drescher 

Inlet (72.85°S, 19.26°E) in the eastern Weddell Sea. The transmitters provided data for a duration 

between 7 and 117 days (x� = 54.9 d). During this time the tagged seals dispersed radially in the 

Weddell Sea and covered large distances (x� = 1,763 km). To identify environmental variables which 

influence the distribution of crabeater seals and to predict suitable habitats, a maximum entropy 

(Maxent) modelling approach was implemented. It revealed that sea ice concentration mattered most 

in modelling species distribution with increasing probabilities of presence towards the ice edge. 

However, seals spent an unusually high amount of 64.4% in open waters and were only occasionally 

found in ice-covered zones during the study period. This is likely to be related to the comparatively 

low sea ice cover of the Weddell Sea in summer 1998. Although crabeater seals are generally 

closely associated with pack ice, it seemed to be that they can deal better with open water conditions 

than previously thought. Further important factors identified by Maxent were surface temperature, 

water depth and distance to the shelf break. All these four environmental variables are known to 

influence and determine the distribution of Antarctic krill (Euphausia superba), the preferred prey 

of crabeater seals. In general, predicted suitable habitats were congruent with probable habitats of 

krill. 

Beside geographic locations, satellite-linked data logger record dive data. Diving behaviour in this 

thesis was characterized by short (>90% = 0 – 5 min) and shallow (>80% = 0 – 72 m) dives. This 

pattern reflects the typical summer and autumn diving and foraging behaviour of crabeater seals 

since krill is abundant in the upper 150 m of the water column during summer. Differences between 

age classes were not evident. In contrast, diving behaviour showed seasonal differences with dives 

becoming shorter and shallower in autumn. This behaviour corresponds to the biology and ecology 

of krill which inhabits the under ice habitat during autumn and winter. This shows that both the 

vertical and horizontal distribution of crabeater seals is closely related to its primary prey. 
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Zusammenfassung 

Die Krabbenfresserrobbe (Lobodon carcinophaga) ist die häufigste Robbenart der Welt und 

bewohnt die zirkumpolare Packeiszone des Südlichen Ozeans. Über die Hälfte der Population ist im 

Weddellmeer zu finden. Aufgrund der Unzugänglichkeit ihres Lebensraums sind bis dato nur 

wenige Informationen über wichtige Umweltfaktoren, welche die Verbeitung der Tiere beeinflussen, 

sowie über geographische und saisonale Unterschiede des Tauch- und Jagdverhaltens verfügbar. 

Im Südsommer 1998 wurde eine heterogene Gruppe aus 12 Krabbenfresserrobben, bestehend aus 

beiden Geschlechtern und unterschiedlichen Altersklassen, mit satellitengestützen Tauchrekordern 

im Drescher Inlet (72.85°S, 19.26°E)  im östlichen Weddellmeer besendert. Während der Sendezeit 

zerstreuten sich die Tiere sternförmig im Weddellmeer und legten dabei weite Strecken zurück (x� = 

1,763 km). Um Umweltvariabeln zu identifizieren, welche die Verteilung von Krabbenfresserrobben 

beeinflussen, und geeignete Habitate vorherzusagen, wurde ein modellierender Maximum-Entropie-

Ansatz (Maxent) implementiert. Das Modell zeigte, dass die Meereiskonzentration den wichtigsten 

Beitrag zur Modellierung der Robbenverteilung leistete. Besonders hohe Wahrscheinlichkeiten des 

Vorkommens waren zum Eisrand hin zu entdecken. Allerdings verbrachten die Robben im 

Untersuchungszeitraum einen ungewöhnlich hohen Anteil von 64.4% im offenen Wasser und 

suchten nur gelegentlich eisbedeckte Gebiete auf. Dieses Verhalten ist wahrscheinlich mit der 

vergleichsweise geringen Meereisbedeckung des Weddellmeeres im Sommer 1998 verbunden. 

Obwohl Krabbenfresserrobben generell eng mit dem Packeis assoziiert sind, scheinen sie doch 

besser im offenen Wasser zurecht zu kommen als bisher vermutet. Weitere wichtige Faktoren, 

welche von Maxent identifiziert wurden, sind Meeresoberflächentemperatur, Wassertiefe und 

Distanz zum Kontinentalrand. Diese vier Umweltvariabeln sind bekannt dafür, dass sie die 

Verbreitung des Antarktischen Krills (Euphausia superba), der bevorzugten Beute von 

Krabbenfresserrobben, beeinflussen und bestimmen. Im Allgemeinen waren die modellierten, 

geeigneten Habitate deckungsgleich mit dem wahrscheinlichen Verbreitungsgebiet des Krills. 

Neben geographischen Positionen nehmen satellitengestützte Datenlogger auch Tauchdaten auf. Das 

Tauchverhalten in dieser Arbeit war charakterisiert durch kurze (>90% = 0 – 5 min) und flache 

(>80% = 0 – 72 m) Tauchgänge. Dieses Muster spiegelt das typische Sommer- und Herbsttauch-

verhalten von Krabbenfresserrobben wider, da der Krill im Sommer vor allem in den oberen 150 m 

der Wassersäule zu finden ist. Unterschiede zwischen den Altersklassen waren nicht belegbar. Im 

Gegensatz dazu gab es jedoch saisonale Unterschiede im Tauchverhalten mit immer kürzer und 

flacher werdenden Tauchgängen. Dieses Verhalten entspricht der Biologie und Ökologie des Krills, 
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der im Herbst und Winter die Unterseite des Meereises als Habitat nutzt. Dies zeigt, dass sowohl die 

horizontale als auch vertikale Verteilung von Krabbenfresserrobben maßgeblich mit seiner 

Hauptnahrung zusammenhängt.  
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1. Introduction 

The crabeater seal (Lobodon carcinophaga) is the most abundant pinniped species worldwide (Laws 

1984) comprising an estimated population size between 7.3 and 12.3 million individuals of which 

approximately 50% are found in the Weddell Sea (Erickson & Hanson 1990, Bester & Odendaal 

2000, Forcada & Trathan 2008, Southwell et al. 2012). The range of 5 million within the estimates 

shows that reliable abundance estimates are difficult to obtain since crabeater seals inhabit the 

hardly accessible Antarctic pack ice zone (Joiris 1991, Bester et al. 2002, Ackley et al. 2003, 

Southwell et al. 2012). Their life cycle is tightly coupled to the availability of sea ice that they 

occupy for breeding, mating and resting (Siniff et al. 1979, Bengtson & Cameron 2004, Southwell 

2004). By now, only a few studies are available for giving an insight into distribution and habitat use 

of crabeater seals. They tend to be associated with medium to high sea ice concentrations throughout 

the year (Nordøy et al. 1995, Burns et al. 2004, Wall et al. 2007). Moreover, crabeater seals favor 

certain bathymetric features. They seem to be attracted by the continental shelf break and areas with 

ocean depths ranging between 2,500 and 5,000 m off the shelf (Nordøy et al. 1995, Ackley et al. 

2003, Southwell et al. 2005, Wall et al. 2007). Nevertheless, there is still limited information about 

seasonal and geographic variation of distribution and habitat use of crabeater seals. 

A common way to obtain such data is satellite telemetry. Animals are tagged with transmitting data 

loggers which are connected to polar orbiting satellite systems as the Argos System (Argos 1996, 

Read 2009). During an overpass the satellite receives uplinked messages and can determine the 

position of the transmitter using the Doppler shift algorithm (Costa 1993). As a result, the animal’s 

movements can be tracked. Additionally, these loggers are able to record a variety of data. For 

example, the application of satellite-linked time-depth recorders (SDRs) in marine mammal studies 

led to an improved understanding of migrations and movement patterns (Costa 1993). Since this 

type of transmitters was available and affordable, they were used increasingly in multiple studies, 

especially in inaccessible areas like the Antarctic, but to only a limited extent in crabeater seals 

(Nordøy et al. 1995, Burns et al. 2004, Wall et al. 2007).  

The aim of this thesis is to enhance knowledge about which environmental factors influence the 

distribution and movements of crabeater seals in the Weddell Sea. The dependence on sea ice will 

be highlighted. Several studies found a close relationship between seal occurrence and sea ice 

concentration (Joiris 1991, Nordøy et al. 1995, Burns et al. 2004, Wall et al. 2007). However, during 

the study period in 1998 the sea ice cover of the Weddell Sea was comparatively low with pack ice 

virtually absent in the eastern Weddell Sea (Bester & Odendaal 2000, Cavalieri & Parkinson 2008, 
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Schwegmann 2012). Thus, it will be investigated how crabeater seals deal with such open water 

conditions by connecting each seal location with corresponding satellite observation data of sea ice 

concentration. Furthermore, a presence-only habitat modelling approach will be conducted called 

maximum entropy (Maxent). Maxent predicts the probability of presence of a certain species in the 

study area on the basis of known environmental variables by identifying the probability distribution 

of maximum entropy (Phillips et al. 2006). Environmental factors which are essential for their 

distribution will be detected and suitable habitats in the Weddell Sea will be revealed. Identifying 

favored habitat conditions is especially important in the context of a recent initiative led by 

Germany for creating a large marine protected area in the Weddell Sea (Teschke et al. 2013). By the 

help of Maxent modelling the following hypotheses will be investigated: 

 

Suitable habitats for crabeater seals are associated with: 

1) medium to high sea ice concentration. 

2) ocean depths ranging between 2,500 and 5,000 m. 

3) proximity to the continental shelf break. 

 

Satellite-linked data logger can also provide information on activities at sea, e.g. diving and foraging 

behaviour (Costa 1993). Several studies documented the diving behaviour of crabeater seals in 

different areas around Antarctica and during different seasons. They perform short and shallow 

dives lasting less than 5 min and penetrating the upper 50 m of the water column which constitute 

up to 90% of the diving activity (Bengtson & Stewart 1992, Nordøy et al. 1995, Wall et al. 2007). 

This pattern is congruent with the vertical distribution of their primary prey (Siegel 2005). Despite 

their name crabeater seals feed almost exclusively on Antarctic krill (Euphausia superba) which 

represents about 90% of their diet (King 1961, Øritsland 1977, Lowry et al. 1988, Hückstädt et al. 

2012). In summer a diel pattern in diving behaviour is evident when crabeater seals are diving and 

foraging during darkness and haul out during daylight due to diel vertical migrations of krill 

(Bengtson & Stewart 1992, Nordøy et al. 1995, Siegel 2005). In this context, Bengtson and 

Cameron (2004) reported that juveniles hauled out twice as long as adults (Bengtson & Cameron 

2004). However, diving and haul out behaviour shift with seasons (Nordøy et al. 1995, Bengtson & 

Cameron 2004, Burns et al. 2004).  

This thesis will investigate possible differences in diving behaviour of crabeater seals in terms of 

age which has not been examined by now. Furthermore, it will mainly review known results with a 
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focus on seasonal changes in diving behaviour as well as variations between geographic areas. In 

this context, the following hypotheses will be tested:  

 

Diving behaviour of crabeater seals  

4) differs between age classes. 

5) shows seasonal differences. 
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2. Material and Methods 

2.1 Seal tagging site and animal handling 

During the ANT XV/3 (PS 48), EASIZ (Ecology of the Antarctic Sea Ice Zone) II, research 

expedition of RV Polarstern into the Weddell Sea in austral summer 1998, a seal satellite-tagging 

project was carried out from a field camp at Drescher Inlet (72.85°S, 19.26°E), a 25-km long funnel-

shaped crack in the Riiser-Larsen ice shelf, Antarctica (Fig. 1). The Inlet is characterized by a stable 

sea ice cover with an underlying platelet ice layer up to 30 m thick. Tidal cracks along the foot of 

the ice cliff and across the entire inlet provided breathing holes for Weddell seals (Leptonychotes 

weddellii) during the austral summer 1998. The inlet’s fast-ice is flanked by floating ice cliffs of up 

to 30 m above and 80 m below the sea surface. The topography of the inlet’s seabed is irregular with 

water depths ranging from 360 m to 430 m, and the seabed extends for ca. 100 km under the ice 

shelf. The Drescher Inlet is usually covered with fast-ice during summer and therefore not a typical 

habitat for crabeater seals (Fig. 2). However, end January 1998 a major part of the outer sea ice had 

disintegrated into pack-ice due to strong wind and gales. During this time a number of crabeater 

seals belonging to both sexes and different age classes entered the inlet, and fifteen were equipped 

with satellite-linked dive recorders (SDR) between 28 January and 6 February 1998 (Table 1). Prior 

to tagging seals were immobilized with a combination of 500 mg xylazine, 400 mg ketamine and 50 

I.U. hyaluronidase known as “Hellabrunner Mischung” (HM). Doses of 2 – 3 ml HM were 

supplemented by 2 – 3 ml ketamine (100 mg/ml) and injected by using Telinject®-blowpipe darts. 

Maintenance of narcosis was guaranteed by manual follow-up doses of ketamine, and/or xylazine 

and/or diazepam on demand. Immobilization procedure is described explicitly in Bornemann et al. 

(1998; see Bornemann & Plötz 2006 for data). While seals were immobilized, body length 

measurements were taken and SDRs were attached to the fur on the animal’s back by using quick-

setting epoxy glue (Fig. 3b). After completion of the tagging procedure the seals could recover from 

narcosis and were released.  
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Fig. 1: Drescher Inlet (star) in the eastern Weddell Sea.                   

a) Antarctica (dark grey) with grounding line (solid grey) and ice 

shelves (light grey). b) Excerpt of (a) Weddell Sea and Antarctic 

Peninsula. 

 

 
Fig. 2: Drescher Inlet from above with typical fast ice situation inside, and ice free entrance. Photo: 

Joachim Plötz. 

 

 b) a) 
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2.2 SDR settings 

The animals were tagged with 0.5-W, microprocessor controlled satellite-linked time-depth 

recorders (SDR-T6; Wildlife Computers, Redmond, WA, USA; Fig. 3a) which deliver at-sea 

locations through communication with the Argos System via polar-orbiting satellites (CLS / Service 

Argos, Toulouse, France). Thus, it is possible to record the seals’ geographical dispersal. The SDRs 

included a seawater conductivity sensor to record whether the seal was in the water or hauled out on 

the ice at a certain location. The at-sea transmission interval was set to 44 - 51.5 s, whereas on-land 

transmissions repeated only every 84 - 91.5 s. The recorder changed into on-land mode after 3 

consecutive “dry” transmissions. If the seal hauled out for longer than 6 hours the SDR stopped 

transmitting. After 4 successive “wet” transmissions the recorder changed back into at-sea mode. 

The number of transmissions per day was limited to 300 to achieve a long lifespan of the battery 

package. Hereafter, this separate dataset of at-sea and on-land transmissions is called DSB (Dive, at 

Surface Behaviour; hdl:10013/epic.26929.d001) dataset. In addition to a geographical position, all 

transmissions carried temporal information as well. Date and time were given in Greenwich Mean 

Time + 1 h (GMT+1:00).  

Furthermore, SDRs collected information about the diving behaviour of each seal. Several 

parameters were recorded in this context. Dive depth and dive duration were measured in 10 s 

intervals, processed and encoded in 14 user-defined intervals onboard the SDR in for 6 hourly 

cumulative histograms which were finally transmitted to the Argos satellites. Dive depth 

measurements were restricted by the upper limit of the pressure transducer of the transmitter. Thus, 

the unit covered a depth range of 0 – 741 / 747 / 750 / 753 / 756 m respectively depending on the 

individual SDR. The minimum depth to be considered as a dive was set to 6 m and the transducer 

measured dive depths with a resolution of ± 3 m. The upper limits of the histogram bins for dive 

depth were: 9 m, 21 m, 30 m, 42 m, 51 m, 60 m, 72 m, 81 m, 90 m, 102 m, 150 m, 201 m, 252 m, > 

252 m, and needed to be set as even multiples of the transducer resolution (3 m). Since the 

histogram’s bin steps were not equidistant, data were processed before to avoid misinterpretations. 

Therefore, the final histogram values were corrected by dividing them through the corresponding 

interval length. Finally, data were converted to relative values in order to achieve an improved 

comparability. 

Upper limits for dive duration histogram bins were: 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 

8 min, 9 min, 10 min, 11 min, 12 min, 13 min, > 13 min. These intervals were chosen since previous 

studies at that time revealed that crabeater seals are generally shallow divers with only short dive 
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durations (Bengtson & Stewart 1992, Nordøy et al. 1995). Since the histogram’s bin steps of dive 

duration were equidistant, they did not need special processing. Again, relative values were given 

for better comparison.  

Additionally, the absolute maximum dive depth of a day was post-hoc processed for the preceding 

24 h and transmitted together with technical information in a status message. Beside all dive 

parameters, the SDR recorded also information on diving and haul out behaviour, e.g. time spent at 

certain depths and absolute and relative time spent outside the water. However, due to time gaps in 

the satellite uplinks these data were too incomplete for systematic analyses and therefore 

disregarded. Dive data analyses and handling of all spreadsheets were conducted with R version 

2.15.2 (R Core Team 2012) as well as Microsoft Office Excel 2010 (© Microsoft Corporation, 

USA). 

 

   
Fig. 3: a) Satellite-linked dive recorder (SDR-T6 manufactured by Wildlife Computers, Redmond, USA; 14.2 cm x 9.8 cm x 3.3 cm, 

without antenna) which were used for crabeater seal (Lobodon carcinophaga) satellite tagging in summer 1998. Photo: Dominik 

Nachtsheim. b) Immobilized adult crabeater seal equipped with SDR on its back. Photo: Horst Bornemann.  

 

2.3 Argos location classes and SDA-filter 

Location data supplied by CLS/ Argos Service are generally divided into different location classes 

(LC = 3, 2, 1, 0, A, B and Z) depending on the estimated accuracy of the position (Argos 1996). LC 

Z stands for invalid locations, whereas LC A and B are valid but no accuracy estimation was 

possible due to an insufficient number of uplinks to the satellite. A minimum of 4 successive uplinks 

is needed to estimate a position with known precision which applies to LC 0, 1, 2 and 3. Their 

estimated location accuracy ranges from > 1500 m (LC 0) to ≤ 150 m (LC 3) (Argos 1996). As 

marine mammals spend only limited time at the surface or outside the water, a high amount of 

a) b) 
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locations have a low or unknown accuracy due to a restricted number of uplinks during a satellite 

overpass (Nordøy et al. 1995, Folkow et al. 1996, Freitas et al. 2008). This results in numerous 

biologically and physiologically unrealistic positions. A way to remove these positions is to filter the 

data under certain aspects. For example, McConnell et al. (1992) developed a velocity filter which 

removes all locations exceeding a defined maximum mean swimming speed of the seal. Locations of 

dive depth, dive duration and maximum dive depth transmissions were processed with this filter 

within the workflow of data acquisition and archival storage, using a conservatively estimated 

maximum mean velocity of 3.5 m∙s-1 (12.6 km∙h-1) (McConnell et al. 1992). Thus, only the filtered 

dive data were available for this thesis. By contrast, the DSB dataset was present as raw data and 

therefore a modified filter could be applied. Freitas et al. (2008) designed a track-filtering algorithm 

called SDA-filter (Speed-Distance-Angle-filter) on the basis of the velocity filter by McConnell et 

al. (1992). In addition, they included distance between consecutive positions and turning angle as 

further parameters. The SDA-filter removes similar proportions of locations with low accuracy (LC 

A and B) but keeps significantly more good-quality locations (LC 1, 2 and 3) than the simple 

velocity filter (Freitas et al. 2008) Interpolated locations (LC Z) are completely rejected (Freitas et 

al. 2008). This results in a more realistic track of the animal without unlikely spikes or incorrect on-

land positions. The SDA-filter algorithm is freely available within the R package ‘argosfilter’ in the 

R environment (R Core Team 2012). Filtered seal tracks were plotted in ArcGIS for Desktop 10.2 

(© ESRI, Inc., USA) for visualization (Fig. 5).  

 

2.4 Environmental data 

A set of 16 environmental variables was used to investigate how these parameters potentially 

influence the dispersal of crabeater seals in the Weddell Sea. As certain physical and biological 

factors may affect occurrence and habitat use of this pinniped species (Nordøy et al. 1995, Burns et 

al. 2004, Wall et al. 2007, Friedlander et al. 2011) the following parameters were chosen for 

analysis: sea ice concentration [%], sea ice thickness [m], sea ice freezing rate [cm d-1], water 

surface and bottom temperature [°C], surface and bottom salinity (provided as psu), surface and 

bottom zonal current velocity [m s-1], surface and bottom meridional current velocity [m s-1], 

bathymetry [m], slope [°], distance to coastline [m], distance to shelf break (defined as 1000 m 

isobath) [m] and geomorphology (provided in 17 geomorphological categories including sediment 

types). SeaWiFS chlorophyll a data from NASA and NOAA has been disregarded due to very large 
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data gaps in the study area. Sea ice, temperature, salinity and velocity data were derived from the 

Finite Element Sea ice-Ocean Model FESOM (Timmermann et al. 2009, Haid 2013, Haid & 

Timmermann 2013) as monthly mean values from January to May 1998 with a resolution of 5 km x 

5 km. However, for sea ice concentration additionally satellite observation data recorded by the 

Special Sensor Microwave/Imager (SSM/I) of the Defense Meteorological Satellite Program 

(DMSP) at the National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA with a 

resolution of 25 km x 25 km were acquired. They were available as daily mean ice concentrations 

ranging from 0% (open water) to 100% (closed ice cover) after being processed with the NASA-

Team-Algorithm (Cavalieri et al. 1984). The locations of the DSB dataset were matched with these 

data to achieve on spot information about the current ice concentration on a seal’s position. 

Additionally, ice conditions within the first six pixels away in each direction from a seal’s central 

position (in total 169 pixels, each having a size of 25 km x 25 km) were analyzed. This distance was 

chosen as a heuristic maximum daily distance a seal theoretically could move, in order to provide a 

measure for potential scattering of the surrounding ice concentrations. Analyses of these data can be 

seen in the chapter 3.5. Bathymetric data were derived from The International Bathymetric Chart of 

the Southern Ocean (IBCSO) with a resolution of 0.5 km x 0.5 km (Arndt et al. 2013). On the basis 

of the IBCSO bathymetric raster Jerosch et al. (in prep.) derived maps on geomorphology and slope 

for the Atlantic sector of the Southern Ocean with the same grid size. All environmental variables 

were available as raster layers and were imported into ArcGIS. 

 

2.5 Processing of data for Maxent 

Since the DSB dataset was filtered with an improved filter algorithm, only these data were used for 

dispersal analyses. Then, filtered seal locations were separated into respective months and also 

plotted in ArcGIS. Positions were assigned to the environmental raster files from respective 

sampling months. Values at each seal location were extracted from the rasters using the “Extract 

Values to Points” tool in ArcGIS and added to the species location table. Final table handling and 

transformation to CSV files required for the Maxent analysis was done with Microsoft Office Excel 

2010. Eventually, only respective data from February, March and April were used for Maxent 

modelling as January and May contained insufficient numbers of location records for a solid 

statistical analysis. 
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Values from all environmental raster files were resampled with a resolution of 5 km x 5 km because 

this size corresponded with FESOM rasters which contributed 11 of 16 variables. The remaining 

parameters had a higher spatial resolution. Additionally, 5 km x 5 km is a more conservative 

determination for a seal’s position since Argos locations with low accuracy are abundant in marine 

mammal studies (Vincent et al. 2002, Freitas et al. 2008), and hence allow for a better reconciliation 

between seal locations and environmental parameters. Furthermore, the extent of all new raster 

layers matched the study area for Maxent analyses which was defined as part of the Atlantic sector 

of the Southern Ocean since the available FESOM data were only processed for this region. 

Unfortunately, this led to a removal of seal locations east of 30°E. The extent of the study region 

ranged from 65°W to 30°E and from 62°S to the edge of the shelf ice and the continent, 

respectively, and covered an area of 4,760,426 km2 (Fig. 5). The whole study area, even the eastern 

part, is influenced by the Weddell Gyre (Schröder & Fahrbach 1999), and determines 

oceanographically the Weddell Sea. Finally, the new environmental raster files were converted from 

ArcGIS rasters to ASCII raster format for further usage in Maxent.  

 

2.6 Subsampling locations 

For model calculations the processed DSB dataset was subsampled in two steps to diminish 

potential biases. All locations within a radius of 30 km around Drescher Inlet were removed to avoid 

a possible influence of clustered positions near the tagging site as recommended by Edrén et al. 

(2010). Referring to Edrén et al. (2010) and Friedlander et al. (2011), only one transmission per day 

of each animal was used for a consistent representation of each individual within the Maxent 

analysis since the Argos system delivered different numbers of transmissions per day and animal. If 

more than one transmission has been received on the same day then the first location was selected.  

 

2.7 Maxent modelling 

Commonly, maximum entropy (Maxent) is used to model species geographic distribution on the 

basis of environmental conditions at known occurrence sites (Phillips et al. 2006). Thus, it needs 

presence-only data which is extremely helpful when absence records are not available (Phillips et al. 

2006). For example, natural history museums and herbarium collections possess data about locations 

where species exist or were found but usually not where they are absent (Phillips et al. 2006, Phillips 
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& Dudík 2008). Therefore, Maxent is often used for modelling the distribution of terrestrial 

organisms e.g. plants, birds and insects concerning biogeographic, conservation biological and 

ecological issues (Elith et al. 2011). Only recently, it was applied to marine top predators using 

satellite telemetry datasets, too (e.g. Edrén et al. 2010, Friedlander et al. 2011, Ballard et al. 2012). 

Since these data also contain opportunistic presence-only records and Maxent works perfectly with 

small sample sizes (Phillips et al. 2006, Wisz et al. 2008) as well as imprecise locations (Graham et 

al. 2008), it is a good tool for reasonably modelling distribution and suitable habitats for marine 

mammals (Edrén et al. 2010). Additionally, it provided better results than many established 

modelling methods such as Generalized Linear Models (GLM), Generalized Additive Models 

(GAM) and Genetic Algorithm for Rule-set Prediction (GARP) regarding predictive power (Elith et 

al. 2006, Phillips et al. 2006). 

The program Maxent version 3.3.3k (Phillips et al. 2006, Phillips & Dudík 2008) was run in SWD 

(samples-with-data) format, i.e. the imported CSV file contained both species locations and values 

of all environmental variables at the specific location. As environmental layers 1,000 random 

background sample points of all environmental data raster were used instead of the original ASCII 

raster. This reduces the runtime of Maxent significantly without losing much predictive power 

(Phillips et al. 2006). For each month 20 model replicates were conducted using the auto-features 

setting of Maxent which supplies a quite good model performance in comparison to elaborated 

manual tuning (Phillips & Dudík 2008). By default Maxent randomly divides the species occurrence 

dataset in training and test data. While most data points are used for training, which means creating 

a species distribution model, some remaining data evaluate the performance of the training model 

(Phillips et al. 2006). In this thesis a random test percentage was set to 20% to achieve an improved 

evaluation result. Thus, the remaining 80% of species occurrence data were selected to create 

Maxent models in accordance to Edrén et al. (2010). Model performance was evaluated by creating 

receiver operating characteristic (ROC) curves using both test and training data. The area under the 

curve (AUC) gives information about the quality of model prediction (Phillips et al. 2006). The 

AUC can range between 0 and 1 where an area of 0.5 means a random prediction (Phillips et al. 

2006). Thus, the closer AUC approaches 1 the higher is the predictive power of the model (Fielding 

& Bell 1997).  

Moreover, Maxent indicates to which proportion an environmental variable contributes to the model 

and identifies the variable which matters most concerning species distribution. Furthermore, a 

jackknife test was implemented on training data to check the importance of each variable by another 
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approach. On that account, Maxent builds and compares individual models by using only one 

environmental variable in isolation on the one hand and all variables except one on the other hand. 

Thus the jackknife analysis reveals in which extent a variable can solely explain the model and how 

much gain is lost when it is absent. 

For February, March and April Maxent was run with 20 replications providing the logistic output 

which supplies species probability of presence in a range between 0 and 1 (Phillips & Dudík 2008, 

Elith et al. 2011). All model results are given as average of 20 replicates. 
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3. Results 

3.1 Tag performance 

Fifteen crabeater seals were tagged with SDRs but 12 provided sufficient data for further analyses 

(Table 1). Since tags of seal 3, 4 and 13 transmitted for a maximum of two days only, these animals 

were completely neglected in the course of the analyses. Seals were divided into three age classes on 

the basis of standard body length after Laws et al. (2003). Adults were defined as individuals that 

have already reached age of maturity. Usually, female crabeater seals become reproductively active 

between 3 and 4 years (Bengtson & Siniff 1981). Thus, the group consisted of 7 yearlings (≤ 1 year), 

1 subadult (2 - 3 years) and 4 adults (> 3 years). However, yearlings and subadults were pooled 

together to a new ‘subadult’ group to simplify statistical comparisons between age classes. 

Additionally, seals can be divided by sex resulting in 10 males and 2 females.  

The 12 remaining transmitters provided data for a duration between 7 and 117 days (x� = 54.9 d) 

which ideally means until end of May. In total, 3,425 transmissions were received within the DSB 

dataset and 4,200 transmissions of dive data were available which had already passed the velocity 

filter by McConnell et al. (1992) shortly after data acquisition. This resulted in an overall average of 

5.6 positions per animal and day. The mean temporal distance between two DSB transmissions was 

4 h 16 min.  

 

3.2 Argos location classes and SDA-filter 

Nearly half of unfiltered DSB data consisted of LC A and B with unknown accuracy (48.1%) (Table 

2). Invalid values (LC Z) had already been manually removed before. LC 0 represented 16.7% and 

LC 1 contributed 18.4% while only 16.8% had an estimated location accuracy of 350 m and better 

(LC ≥ 2). Then, the SDA-filter algorithm developed by Freitas et al. (2008) was applied resulting in 

more likely and realistic seal tracks (Fig. 4). In total, the filter removed 47.7% of all locations 

leaving 1,791 positions. The amount of LC A and B was reduced to 40.2% while the relative 

frequency of accurate positions (LC ≥ 2) increased to 23%. LC 0 and 1 contributed 13.2% and 

23.6%, respectively. After application of the SDA-filter an average of 2.8 locations per day and 

animal were available and the mean distance between transmissions dropped to 8 h 32 min.  
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Table 1: Overview about 15 crabeater seals (Lobodon carcinophaga) tagged with satellite-linked dive recorders (SDRs) at Drescher Inlet in 1998. Age class was determined on the basis of 

standard body length (Laws et al. 2003). Track length was calculated with ArcGIS based on filtered DSB locations. 

Seal No. Sex Age class Body length [cm] SDR deployment date SDR longevity [d] Last location Track length [km] 

1 male adult 225 28/01/1998 35 71.963°S, 33.167°W 932 

2 male adult 223 29/01/1998 7 73.611°S, 38.257°W 211 

3* female adult 236 29/01/1998 0 72.877°S, 19.131°W N/A 

4* male yearling 182 01/02/1998 0 no data N/A 

5 male yearling 178 01/02/1998 17 71.926°S, 27.855°W 921 

6 male yearling 188 01/02/1998 117 66.874°S, 45.762°E 4438 

7 male yearling 189 01/02/1998 59 70.794°S, 32.414°W 1751 

8 male yearling 186 01/02/1998 103 65.449°S, 24.551°W 3406 

9 female subadult 204 02/02/1998 73 65.698°S, 55.483°E 3648 

10 male adult 227 03/02/1998 60 71.705°S, 24.601°W 1379 

11 male yearling 193 03/02/1998 39 70.416°S, 37.236°W 973 

12 male yearling 184 03/02/1998 38 72.334°S, 44.679°W 1193 

13* male subadult 208 04/02/1998 2 72.830°S, 19.844°W N/A 

14 female adult N/A 04/02/1998 96 69.205°S, 15.771°W 1531 

15 male yearling 188 06/02/1998 15 67.108°S, 14.889°W 777 

 

* Since SDRs of seal 3, 4 and 13 transmitted for maximally 2 days, these animals were completely neglected for further analyses.

 
 



 

 
Fig. 4: Example of unfiltered (red line) and filtered (green line) track data for seal 14.  

 

Table 2: Distribution of Argos locations classes on unfiltered and filtered DSB data. Values are given in absolute and relative 

numbers. Additionally, the estimated location accuracy of each location class is listed (Argos 1996). 

 
 Unfiltered  Filtered 

Argos 
location 

class 

Estimated 
location  

accuracy 

Frequency of 
locations 

Frequency of 
locations [%]  Frequency of 

locations 
Frequency of 
locations [%] 

Z invalid 0 0  0 0 
B no estimate 932 27.2  333 18.6 
A no estimate 714 20.9  387 21.6 
0 > 1000 m 572 16.7  236 13.2 
1 350 m – 1000 m 631 18.4  423 23.6 
2 150 m – 350 m 366 10.7  256 14.3 
3 ≤ 150 m 210 6.1  156 8.7 

 sum: 3425 100  1791 100 
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3.3 Distribution 

3.3.1 Description of individual seal movements 

All geographic terms used in the following description are based on The International Bathymetric 

Chart of the Southern Ocean (Arndt et al. 2013, doi.pangaea.de/10.1594/PANGAEA.805735, see 

Appendix Fig. A.1). Tracks of each of the seals are available (see Appendix Fig. A.2) 

 

Generally, the seals dispersed radially from Drescher Inlet shortly after tagging (Fig. 5). Most of the 

time they moved and only area restricted movements in a circumscribed area. Ten seals explored the 

eastern and central Weddell Sea while 2 animals migrated far eastwards along the coast. These 

animals covered a distance of 4,438 km and 3,648 km in 117 and 73 days, respectively. Generally, 

the track length ranged from 211 km to 4,438 km (x� = 1,763 km) (Table 1). Averaged mean speed of 

all animals was 1.42 km∙h-1 after filtering (range: 0.66 – 2.26 km∙h-1). Thus, a defined maximum 

mean speed of 12.6 km∙h-1 for the SDA-filter was appropriate and well conservative.  

 

Seal 1 (Fig. 5, coral line) 

The seal left Drescher Inlet in southern direction after staying there for two days. It swam along the 

edge of the Riiser-Larsen Ice Shelf until it reached a large promontory of the ice shelf. The seal 

stayed there from 2nd to 9th February until it headed out northwest into the Weddell Sea. On its way 

seal 1 passed the Polarstern Canyon and the Deutschland Canyon. At 71.483°S, 29.146°W on 22nd 

February it reached the northernmost point of its movement. Shortly after it turned and travelled 

steadily in southwesterly direction. Between 1st and 4th March the seal stayed in a quite restricted 

area until transmission ended. 

 

Seal 2 (Fig. 5, yellow line) 

Seal 2 directly left Drescher Inlet and headed west where it passed Polarstern Canyon. After 7 days 

the recording ceased.  

 

Seal 5 (Fig. 5, dark red line) 

The seal also left Drescher Inlet after the tagging procedure and moved northwestwards. On 4th 

February at 71.960°S, 23.129°W seal 5 sharply turned to northeast and continued this direction for 6 

days. At 69.775°S, 18.526°W it turned again and swam west and to southwest, respectively. This 

direction was maintained until transmissions ended on 18th February at 71.926°S, 27.855°W.  
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Fig. 5: Tracks of 12 crabeater seals (Lobodon carcinophaga) in the Weddell Sea and further to the east dispersing from Drescher Inlet (star). Each different colored line 

represents an individual. Bathymetry is indicated by various shades of grey (light = shallow, dark = deep). The white line shows the 1000 m isobath of the continental shelf 

defined as shelf break. The transparent yellow polygon illustrates the study area used for Maxent analyses, corresponding with the FESOM data. 
 
 



 

Seal 6 (Fig. 5, red line) 

Seal 6 left Drescher Inlet to remain for a few days on the eastern side of the inlet’s mouth. On 5th 

February it moved away in westerly direction and approached the ice shelf edge. It followed the ice 

shelf contour and the coastline to the northeast for 3 days until it reached 71.089°S, 11.342°W 

where it stayed outside the water for several hours. Hereafter, it continued travelling eastwards in a 

distance to the coastline and ice shelf, respectively. During this movement it passed the 

Bungenstock Plateau and Sanae Canyon and entered the Lazarev Sea. The next time it approached 

the ice shelf was near Astrid Ridge on 14th March at 69.529°S, 15.436°E. Then, seal 6 moved 

straight away from the continent into the Riiser-Larsen Sea and turned eastwards again to swim 

along the coast in a certain distance. Between 31st March and 7th April seal 6 in a small area over the 

margin of the continental shelf before, it swam away from the ice shelf again and continued its 

movement eastwards. The next stop at the ice shelf occurred after crossing Gunnerus Ridge close to 

the Japanese Showa Station on 20th April at 68.579°S, 40.833°E. Hereafter, it returned offshore into 

the Cosmonaut Sea and travelled east again. Seal 6 migrated to 65.795°S, 48.147°E (19th May) but 

then turned 180° and swam back in the opposite direction. On 29th May at 66.874°S, 45.762°E 

transmission stopped. 

 

Seal 7 (Fig. 5, orange line) 

After staying in the Drescher Inlet for one day, seal 7 moved first northwest and then westwards 

within the Weddell Sea. It crossed Polarstern Canyon and spent nearly four days south of the 

Polarstern Plateau. It passed the Deutschland Canyon and Akademik Fedorov Canyon to reach the 

central Weddell Sea. At 71.615°S, 37.367°W on 26th February it entered the Uruguay Canyon where 

it stayed until 18th March. Seal 7 migrated south towards the continental slope to 72.425°S, 

40.152°W but then turned to the opposite direction. It swam down the canyon again and passed the 

adjacent Antarctic Canyon. As it reached 70.229°S, 39.024°W it turned south again and travelled 

upwards the canyon. When the seal left the Uruguay Canyon on 18th March it followed nearly the 

same way back to the Akademik Fedorov Canyon but then changed to a more northerly direction. 

On 1st April the transmitter stopped.    

 

Seal 8 (Fig. 5, light green line) 

Seal 8 was tagged on 1st February and left Drescher Inlet directly afterwards in western direction. 

After nearly one week a gap of 3.5 day occurred without satellite contact. The next location was 
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situated at 73.895°S, 32.674°W right at the outflow of the Filchner Trough outflow. During 4.5 days 

seal 8 swam up to the continental shelf slope but then turned west again over the Berkner Bank. 

From this area it continued moving northwestwards until it reached the margin of the General 

Belgrano Bank (74.071°S, 44.490°W) on 20th February. Seal 8 stayed within this region for more 

than one month until 24th March. During this time it remained in an area not deeper than 1,000 m 

water depth. Seal 8 moved eastwards into deeper waters, where it stayed until 3rd April. Then, seal 8 

headed north-northeast continuously till the end of transmissions on 15th May at 65.449°S, 

24.551°W above the central Weddell Abyssal Plain and north of the Antarctic Circle.  

 

Seal 9 (Fig. 5, turquoise line) 

After being tagged on 2nd February seal 9 remained in the Drescher Inlet until it left the area on 4th 

February in northeasterly direction in a certain distance to the ice shelf. The seal made a short rest 

close to the Neumayer III Station at the Ekström Ice Shelf from 14th to 16th February. Seal 9 

continued travelling eastwards and stayed near the Fimbul Ice Shelf for four days. Seal 9 then 

resumed its eastward movement, passed Astrid Ridge and entered the Riiser-Larsen Sea. Finally, it 

also crossed Gunnerus Ridge and reached its terminal easternmost position at 65.698°S, 55.483°E 

on 16th April ahead of Enderby Land.  

 

Seal 10 (Fig. 5, blue line) 

Seal 10 left Drescher Inlet in northeastern direction. It crossed the Polarstern Canyon and migrated 

in an area south of the Polarstern Plateau where it stayed for 10 days. Then it travelled westwards 

into the Deutschland Canyon and remained there from 4th to 23rd March. Seal 10 headed back to the 

Polarstern Plateau where last transmissions took place were received on 4th April. 

 

Seal 11 (Fig. 5, purple line) 

Seal 11 was tagged on 3rd February but the first locations could be calculated only on 8th February. 

During this 5-day period the animal has moved westwards to the Polarstern Canyon and further west 

until it had reached the Akademik Fedorov Canyon, where it stayed from 15th to 24th February. 

Afterwards, it continued its westward movement but turned in northern direction along the Uruguay 

Canyon after one week. Finally, it changed direction to east with last transmissions on 14th March.  
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Seal 12 (Fig. 5, light blue line) 

Seal 12 stayed in the vicinity of the Drescher Inlet for one day until it left in western direction. After 

nearly two weeks it turned to southwest and headed towards the Filchner Trough outflow. It 

changed direction at 73.624°S, 32.450°W to the west again and crossed the Akademik Fedorov 

Canyon. Between 25th February and 5th March seal 12 swam a loop and moved up the continental 

slope. On 8th March it reached the northwestern edge of the Berkner Bank with water depths around 

1,000 m. The seal remained in this quite restricted area for several days when transmissions stopped 

on 13th March.  

 

Seal 14 (Fig. 5, dark green line) 

Seal 14 left the Drescher Inlet one day after tagging in southwestern direction close to the ice shelf. 

It apparently entered another ice shelf crack between Lyddan Island and the Stancomb-Wills Ice 

Tongue on 7th February and stayed herein until 27th March. After seven weeks seal 14 finally left the 

inlet in western direction and remained in an area with water depths between 2,500 and 3,000 m for 

one week. Hereafter, it headed straight northeast through Polarstern Canyon into the eastern part of 

the Weddell Abyssal Plain with last transmission at 69.205°S, 15.771°W on 11th May.  

 

Seal 15 (Fig. 5, dark blue line) 

Three days after tagging seal 15 left the area around the Drescher Inlet northeastwards along the 

continental shelf margin. At 71.926°S, 16.116°W it turned to north and swam down the continental 

slope into deeper regions of the eastern Weddell Sea. It followed this direction for 11 days and 

finally nearly reached the Antarctic Circle. Last transmissions were recorded at 67.108°S, 14.889°W 

on 21st February.  
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3.3.2 Categorization of similar distributional patterns between age classes and sexes 

Subadult seals (n = 8) were more mobile than adults (n = 4) (Fig. 6). They travelled on longer 

distances (x� = 2,138 km vs. 1,013 km) although mean transmitter longevity did not differ strongly (x� 

= 57.6 d vs. 49.5 d). While adults mainly stayed in the eastern part of the Weddell Sea, subadults 

also moved into the central and northern Weddell Sea near the Antarctic Circle. Only one adult seal 

moved far northwards after it remained in a circumscribed area for seven weeks. Two subadult seals 

migrated far eastwards to 45° E off Enderby Land. However, these differences between age classes 

were not tested statistically due to too small sample sizes. 

Since females were clearly underrepresented in this study (n = 2) a comparison between sexes was 

not performed (Fig. 7).  

 
Fig. 6: Tracks of all subadult (green) and adult (red) crabeater seals 

dispersing from Drescher Inlet (star). 

 
Fig. 7: Tracks of all female (pink) and male (blue) crabeater seals 

dispersing from Drescher Inlet (star). 
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3.4 Maxent modelling 

Sixteen different environmental factors were used in a maximum entropy modelling approach to 

create geographic distribution maps of crabeater seals in the Weddell Sea for three different months 

during 1998. It was investigated which factors primarily influence their movements. It was tested to 

which proportion each parameter contributes to the model. All following results are given as mean 

values of 20 model replications. 

 

3.4.1 Model evaluation 

First, AUC values were used to examine the predictive power of each model. Values close to 1 

indicate a high model quality. Generally, Maxent performed very well in generating models from 

occurrence data. AUC values of test data were quite high ranging between 0.927 and 0.963 whereas 

standard deviations were low between 0.013 and 0.006 (Table 3). Thus, the created Maxent models 

distinctly differ from a random prediction (Fig. 8). 

 

 
Table 3: Total number of seal locations for each month as well as Maxent model sample size used for either training or test purpose. 

Average AUC (Area Under the Curve) values obtained by using the test data and their standard deviation (SD) are listed. 

 Total locations Training (test) locations Average test AUC Test AUC SD 

February  223 147 (36) 0.927 0.013 
March 173 117 (29) 0.930 0.009 
April 64 52 (12) 0.963 0.006 
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Fig. 8: Receiver Operator Characteristic (ROC) curves for 20 

replicated Maxent models of February (a), March (b) and 

April (c). The Area Under the Curve (red) is called AUC. 

Standard deviation is shown in blue. The black line illustrates 

a random prediction. 

 

a) 

b) 

c) 
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3.4.2 February 

Generally, the Maxent model for February showed large areas with zero probability of presence 

(Fig. 9). However, there were well defined regions especially in the central and western Weddell 

Sea where the model predicted high occurrence rates. Additionally, three spots in the eastern part as 

well as in the Lazarev Sea between 0° and 10° E including Maud Rise seemed to be important due 

to intermediate presence probability values. Highest values around 0.8 occurred on the continental 

shelf margin between the General Belgrano Bank and Berkner Bank. This area was extensively used 

by one seal from end of February until begin of April.  

The environmental variable which contributed most to the February model was sea ice concentration 

with an input of 44.9% (Table 4). Furthermore, surface water temperature (29.7%) and distance to 

shelf break (14.6%) were also detected as important parameters. All remaining factors seemed to be 

less crucial for the Maxent model. This order was confirmed by the jackknife analysis (Fig. 12a). 

Additionally, it showed that an omission of ice concentration for model building leads to a strong 

decrease in model gain which underlines the importance of this single factor. Isolation of surface 

temperature results in a less pronounced decline. The jackknife test revealed that distance to shelf 

and water depth may also be important contributors but without these variables the full model gain 

can still be achieved (Fig. 12a).  

 
Fig. 9: Probability of presence of crabeater seals modeled by Maxent for February. Black lines illustrate seal tracks 

during that month. Drescher Inlet is represented by a star. Dark grey = Antarctic continent; light grey = ice shelves. 
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3.4.3 March 

The Maxent model for March revealed high occurrence probabilities in the western Weddell Sea 

with values greater than 0.9, especially between depths of 1,000 and 4,000 m and above the 

continental shelf east of the Antarctic Peninsula (Fig. 10). Only one patch with medium probabilities 

around 0.4 extended into the eastern Weddell Sea. Then, the model predicted similar presence rates 

along the coast in the Lazarev and Riiser-Larsen Sea comprising Maud Rise again. As indicated in 

Fig. 10 two seals migrated through these seas in March. Large areas of the study region did not seem 

to be important for crabeater seals as predicted by the model.  

Sea ice concentration was reconfirmed as the most important environmental variable (34.1%) but 

closely followed by depth (28.4%) (Table 4). Furthermore, surface temperature and salinity as well 

as distance to shelf break contributed small proportions to the model. The jackknife analysis 

reflected these results in large parts (Fig. 12b). The best explanatory factor was sea ice concentration 

again but surface salinity seemed to be nearly equally important. However, there had been no loss in 

model gain if this variable was rejected in contrast to ice concentration. All other above mentioned 

factors contributed strongly to the model and reduced model quality apparently when omitted.  

 

 
Fig. 10: Probability of presence of crabeater seals modeled by Maxent for March. Black lines illustrate seal tracks 

during that month. Drescher Inlet is represented by a star. Dark grey = Antarctic continent; light grey = ice shelves. 
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3.4.4 April 

For April, the predicted species distribution looked diffuse and patchy (Fig. 11). Again, the model 

showed spots with high probability of presence in the western Weddell Sea, especially on the 

continental shelf break of the General Belgrano Bank. Even higher values (> 0.9) were visible near 

the coast between 15°W and 30°E. In contrast to February and March, this time large areas 

displayed low to medium probabilities of occurrence. Scattered spots also appeared in the open 

ocean far off land. Generally, the model predicted that seals frequently occurred above the 

continental slope between 500 and 4,000 m water depth throughout the whole study area. 

By far, sea ice concentration was once more the most important variable and contributed nearly 

three quarters to the model (72.9%) (Table 4). Second greatest contributor was again surface 

temperature with 20.3%. However, the jackknife analysis showed another result (Fig. 12c). Here 

surface temperature had the strongest input. Other very important parameters were sea ice thickness, 

sea ice freezing rate, sea ice concentration and distance to shelf in descending order. The absence of 

none environmental variable but surface temperature led to a loss in training model gain. 

 

 
Fig. 11: Probability of presence of crabeater seals modeled by Maxent for April. Black lines illustrate seal tracks 

during that month. Drescher Inlet is represented by a star. Dark grey = Antarctic continent; light grey = ice shelves. 
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Table 4: Percent contribution of each environmental variable to the Maxent model in February, March and April. 

  February March April 

Water depth 0.9 28.4 0.6 
Distance to coast 1.1 1.4 0.2 
Distance to shelf 14.6 7.1 1.3 

Sea ice freezing rate 0.1 0.0 2.3 
Geomorphology 0.5 1.1 0.5 

Sea ice thickness 0.2 0.2 0.1 
Sea ice concentration 44.9 34.1 72.9 

Salinity, bottom 0.2 0.7 0.8 
Salinity, surface 1.2 10.7 0.2 

Slope 0.1 0.5 0.0 
Water temperature, bottom 5.5 0.6 0.2 
Water temperature, surface 29.7 13.5 20.3 

Velocity, meridional, bottom 0.1 0.2 0.0 
Velocity, meridional, surface 0.8 0.1 0.4 

Velocity, zonal, bottom 0.0 0.2 0.0 
Velocity, zonal, surface 0.2 1.2 0.2 

 

 

3.4.5 General results of Maxent modelling analysis 

Across all three months the model predicted high probabilities for the occurrence of crabeater seals 

in the western and partially central Weddell Sea. To some extent also the coast of the Lazarev and 

Riiser-Larsen Seas seem to be an important habitat whereas the eastern Weddell Sea was of less 

importance. Generally, areas near the continental shelf break and above the continental slope were 

predicted as suitable habitats, e.g. the edge of the General Belgrano and Berkner Banks during all 

three months. This is consistent with the result that the variables water depth and/ or distance to 

shelf break influenced all Maxent models. Furthermore, surface temperature always contributed a 

large proportion to the model. However, the greatest contributor in all cases was sea ice 

concentration. By contrast, many other variables such as salinity, current velocities, geomorphology, 

distance to coast and slope gradient did not play an important role for model building. 
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Fig. 12: Results of jackknife analyses on Maxent training models for February 

(a), March (b) and April (c). Blue bars show gain when only this variable was 

used for a separate model creation. In contrast, green bars illustrate the resulted 

gain if all variables but this one were used to build a model. The red bar shows 

the gain achieved with all parameters.  

a) 

c) 

b) 
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3.5 Sea ice concentration 

Sea ice concentration played an important role in modelling crabeater seal distribution. An analysis 

of the ice conditions at the seals’ locations was conducted over the whole tagging period. To this 

end, satellite observation data was matched with each seal’s position to get on spot information 

about preferences for certain sea ice concentrations.  

Seals extensively used the open water or marginal ice fringes which correspond to sea ice 

concentration between 0% and 15% (Fig. 13). The amount of positions in totally ice-free waters 

(0%) was mainly responsible for the height of the first bar and represented more than 50% of all seal 

locations (Appendix Fig. A.3). The frequency spent between 0% and 15% ranged from 44.6% to 

91.6% (x� = 64.4%) between seals excluding two extreme cases of seal 14 and 15, respectively1. Ice 

concentrations higher than 30% represented only an average of 21.8%. However, some seals were 

present in areas with quite high ice concentrations e.g. seal 6, 8 and 14 but these regions were 

frequented only from mid of April onwards, and thus represent only these animals. 

Additionally, ice conditions in the vicinity of each seal position were analyzed to review these 

findings. An area of 325 km x 325 km around each location was examined according to half of the 

maximally possible travel distance for seals per day. It revealed the same pattern that seals spent 

most of their time in areas with open water (Appendix Fig. A.4). 
 

 
Fig. 13: Relative frequency of sea ice concentration present on individual seal locations. 

Ice concentration is given in 5 classes.  

1 Seal 14 remained in an ice shelf crack for seven weeks which was recorded as ‘on land’ by the satellite and is not displayed in     
Fig. 13. As the seal left the area, it faced heavy pack ice conditions which explain the high ice concentrations. The SDR of seal 15 
transmitted for only 17 days. During this time the seal did not encounter aggregations of sea ice. 
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3.6 Diving behaviour 

The analyses of diving behaviour in this thesis are restricted to a descriptive approach. A reasonable 

statistical deductive attempt was not feasible as it requires statistical models of time dependent 

diving behaviour on the basis of individuals, in accordance with the frequency data. For this kind of 

inverse modelling, data sets on the same individuals appear to be clearly too sparse (e.g. across 4 

months). 

 

3.6.1 Dive depth frequency 

In total, 130,628 dives were recorded within the dive depth datasets. The dive depth distribution of 

each seal is provided (Fig. 14). For all animals except seal 15 the highest amount of dives took place 

in depths between 0 and 9 m, ranging between 18% (seal 15) and 74% (seal 1) with an average 

frequency of 43.3%. Greater depths were less visited with a general pattern of decreasing frequency 

towards the maximum depth. There is limited individual variability, e.g. some seals (2, 5, 6, 9, 15) 

show a bimodal pattern. Nevertheless, more than 80% of all dives of each animal occurred from 0 to 

72 m. Great depths under 102 m were rarely visited.  

A comparison between age classes revealed a similar pattern (Fig. 15). There are slight differences 

between subadults and adults. While adults spent an average of 55% in the upper water layer until 9 

m, subadults used this interval only to an extent of 37%. They frequented water depths between 22 

and 60 m more often than adults. Consistently, the relative amount of dives declined to less than 1% 

under 102 m.  

A comparison between sexes was disregarded due to a too low sample size (females n = 2).  

Dive depth frequency differed between months (Fig. 16). A strong unimodal pattern was observed 

where the first bin was prominent during all months. The average amount of dives between 0 and 9 

m increased strongly and continuously from 37% to 78% as the season progressed while visits to 

deeper water layers nearly disappeared.  
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Fig. 14: Dive depth distribution of each individual crabeater seal. Each bar represents the relative amount of dives 

spent in a certain depth interval e.g. 0-9 m, 10-21 m etc.; n = total number of dives. 
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Fig. 15: Dive depth distribution of subadult and adult crabeater seals; n = number of seals belonging to the corresponding age 

class. Bars represent the mean frequency distribution, error bars (whisker caps) show standard error of the mean (SEM). 

 

 

 
Fig. 16: Dive depth distribution of crabeater seals between months; n = number of seals still transmitting during the 

corresponding month. Bars represent mean frequency distribution, error bars (whisker caps) show standard error of the mean 

(SEM). 
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3.6.2 Maximum dive depth 

In total, 403 dives were recorded within the maximum dive depth datasets. The average maximum 

dive depth of all seals was 247.5 ± 140.8 (SD) m (median = 232 m; SEM = 7.0 m). Maximum dive 

depth between age classes was 265 m (x�) for subadults vs. 240 m for adults. The deepest dive 

performed by seal 9 (subadult, female) reached down to 776 m.  

 

3.6.3 Dive duration frequency 

Dive recorders collected a total of 134,850 dives within dive duration datasets. Dive duration 

distribution of each animal is illustrated in Fig. 17. In 8 of 12 seals the first bin representing dives 

less than 1 min showed the highest frequency. All other remaining animals dived between less than 

1 and 3 min with no clear preference for a specific duration. Though a certain degree of individual 

variability was observed, more than 90% of all dives lasted maximally 5 min. Longer dives were 

rare.  

When comparing age classes a clear unimodal pattern was obvious (Fig. 18). In both subadults and 

adults dives less than 1 min dominated the diving behaviour but subadults also performed more 

dives between 1 and 3 min than adults. Dives usually did not last longer than 5 min in both age 

classes.  

A comparison between sexes was disregarded due to a too low sample size (females n = 2). 

Similar to dive depth dive duration was also influenced by seasons (Fig. 19). The amount of dives 

less than 1 min was dominant during all months and increased steadily from 40% to 75%. 

Simultaneously, dives between 1 and 5 min were reduced.  
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Fig. 17: Dive duration distribution of each individual crabeater seal. Each bar represents the 

relative amount of dives classified in certain time intervals e.g. 0-1 min, 1-2 min etc.;           

n = total number of dives. 
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Fig. 18: Dive duration distribution of subadult and adult crabeater seals; n = number of seals belonging to the corresponding 

age class. Bars represent the mean frequency distribution, error bars (whisker caps) show standard error of mean (SEM). 

 

 
Fig. 19: Dive duration distribution of crabeater seals between months; n = number of seals still recording 

during the corresponding month. Bars represent the mean frequency distribution, error bars (whisker caps) 

show standard error of mean (SEM). 
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4. Discussion 

4.1 Tag performance 

Average longevity of SDRs and number of transmissions per day were well comparable with other 

crabeater seal studies (Nordøy et al. 1995, Wall et al. 2007). An early offset of transmissions could 

be due to tag loss during moult which normally occurs between January and February (Bengtson 

2009). Due to a limited availability of crabeater seals at Drescher Inlet in 1998 a special selection of 

already moulted animals was not possible (H. Bornemann, personal communication). Transmission 

failure of seals 3, 4 and 13 is considered more likely due to technical malfunction or damage of the 

antenna through sea ice impact as reported by Burns et al. (2004). 

 

4.2 Distribution 

All crabeater seals left Drescher Inlet soon after tag deployment and dispersed radially into the 

Weddell Sea. Generally, they were not restricted to a certain area (with two exceptions) and 

performed long migrations. Consistently, Nordøy et al. (1995) reported maximum track lengths of 

3,875 km for seals tagged off Queen Maud Land within Weddell Sea. Average travel speed 

amounted to 1.5 km∙h-1 which is in accordance with the present investigation (x� = 1.42 km∙h-1). 

Studies conducted at the Antarctic Peninsula revealed that crabeater seals tend to stay in the same 

region within a radius of 300 – 500 km around the tagging site but also occasionally travel longer 

distances (Bengtson et al. 1993, Burns et al. 2004). Thus, geographic differences in distributional 

behaviour of crabeater seals are likely as also suggested by Wall et al. (2007). Moreover, this study 

discovered that two subadult animals migrated far eastwards along the eastern Weddell Sea and 

against the Antarctic Coastal Current covering distances of 4,438 and 3,648 km in a few months. 

This finding is essential in the context of genetic exchange in a metapopulation since crabeater seals 

occur circumpolar in the Antarctic pack ice zone (Bengtson 2009, Southwell et al. 2012). It is 

important to know how widespread populations are connected and to which extent genetic 

heterozygosity and diversity is maintained (Stern 2009). Davis et al. (2008) found little population 

genetic structure in crabeater seals using microsatellite analyses and concluded that there are high 

levels of gene flow between different regions around Antarctica. This result is supported by the 

present observation of long migrations. 
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4.3 Maxent modelling 

A Maxent modelling analysis was conducted using satellite telemetry data to create geographic 

distribution maps of crabeater seals in the Weddell Sea. Suitable habitats for this species were 

indicated by high probabilities of presence. A set of 16 environmental variables was used to detect 

important factors influencing their distribution. The most important factors will be discussed below 

in connection with the formulated hypotheses. 

 

4.3.1 Sea ice concentration 

Contribution of sea ice concentration to the Maxent model was most important and continuously 

high during all months. The February model predicted some delimited areas where probability of 

occurrence was medium to high. Interestingly, these areas totally correspond to regions of ice-free 

water as obtained from the FESOM model for February 1998 (Appendix Fig. A.5). These results 

match with the observations that seals spent an average of 64.4% in open waters and were only 

occasionally found in ice-covered zones. Thus, hypothesis 1 was rejected. This is in contrast to the 

general scientific opinion that crabeater seals are regarded as typical pack-ice inhabitants which 

obviously need the ice for breeding, mating and resting (Siniff et al. 1979, Erickson & Hanson 1990, 

Nordøy et al. 1995, Bester et al. 2002, Ackley et al. 2003, Southwell 2004). Several studies have 

shown that these seals are closely related to medium and high sea ice concentrations and rarely visit 

open waters (Nordøy et al. 1995, Ackley et al. 2003, Burns et al. 2004, Wall et al. 2007). However, 

Wall et al. (2007) reported from eastern Antarctica that tagged seals spent 14.4% of their time in ice-

free areas during post-breeding season (after mid-November). Thus, it can be assumed that crabeater 

seals apparently frequent open waters more than previously thought.  

Certainly, one reason for this extensive use of open water was the comparatively low sea ice cover 

and extent within the whole Weddell Sea area during summer 1998 with a deviation of -0.25 ∙ 106 

km2 to the mean (Cavalieri & Parkinson 2008, Schwegmann 2012). Thus, the availability of sea ice 

as haul out platform was limited which was also mentioned by Bester and Odendaal (2000) who 

conducted helicopter seal censuses in the same season during research expedition (EASIZ II). They 

concluded that their very high density and abundance estimate was positively biased since seals 

concentrated on remaining ice floes for hauling out (Bester et al. 1995, Bester & Odendaal 2000). 

This may be a common problem for surveys in the eastern Weddell Sea because in general nearly all 

sea ice melts away in this region during summer (Schwegmann 2012). Minimum sea ice cover is 
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usually reached in February (Cavalieri & Parkinson 2008) when the majority of Bester and 

Odendaal’s (2000) observations took place. Tagged seals did not remain for extended time periods 

in bays or ice shelf cracks like inlets with residual fast ice but instead dispersed widely in the open 

Weddell Sea (except for seal 14). This distributional pattern is not unusual and was also reported by 

Nordøy et al. (1995) in a year with regular ice conditions and in the same area. While sea ice cover 

increased again from March onwards the still transmitting seals in the Weddell Sea swam 

northwards apparently following the extending ice edge. During that time seals occupied regions 

with higher ice concentrations (> 50%) for the first time. Both the migration to the north and 

occurrence within pack ice in autumn are consistent with Nordøy et al. (1995). It can be assumed 

that crabeater seals can deal quite well with open water conditions and do not necessarily need 

heavy pack ice in late summer. 

Next to sea ice concentration the February Maxent model predicted an increasing probability of 

presence from open water towards the ice edge (Fig. 9 & Appendix A.5). While the ice edge retreats 

during summer months, ice algae are released from melting sea ice and build up a phytoplankton 

bloom (Smith & Nelson 1985, Garrison et al. 1987). Therefore, this zone attracts large aggregations 

of zooplankton, especially Antarctic krill Euphausia superba, which feed on these algae (Stretch et 

al. 1988, Brierley et al. 2002). As a result, the ice edge may also be attractive for crabeater seals 

which primarily consume krill (King 1961, Øritsland 1977, Lowry et al. 1988, Burns et al. 2004, 

Hückstädt et al. 2012). However, results of visual surveys do not support this proposed habitat 

preference (Southwell et al. 2012).  

 

4.3.2 Bathymetry 

Both, water depth and distance to shelf break were identified as important parameters influencing 

the distribution of crabeater seals. Especially in March, depth contributed evidently to the Maxent 

model whereas the jackknife analyses confirmed its importance for each month. Predicted favored 

ocean depths ranged between 500 and 4,000 m with 4,000 m showing highest probabilities of 

presence which reflects the major range of actual seal occurrences. Therefore, hypothesis 2 was 

confirmed. These findings were confirmed by other studies. Southwell et al. (2005) found that seals 

in eastern Antarctica showed highest occurrence probabilities in water depths around 2,500 m off 

the continental shelf and were rarely present in depths deeper than 4,000 m. Consistently, crabeater 

seals off Queen Maud Land generally occupied areas characterized by depths between 3,000 and 
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5,000 m and only occasionally visited regions with depths less than 500 m in austral autumn 

(Nordøy et al. 1995).  

In addition, Nordøy et al. (1995) mentioned that seals moved near the continental shelf break. For 

the species distribution model, distance to the shelf break defined as the 1,000 m isobath also 

seemed to be an important factor. Maxent predicted suitable habitats within a range of 400 km off 

the shelf margin which covers nearly all seal tracks and is in accordance with results by Wall et al. 

(2007) so that hypothesis 3 was confirmed. Beyond that, this area includes the continental slope of 

the Weddell Sea. It is known that crabeater seals frequent the continental shelf break as well as slope 

regions and high abundances have been recorded there (Nordøy et al. 1995, Ackley et al. 2003, 

Southwell et al. 2005, Flores et al. 2008). Also in this study, several seals occurred near the 

continental shelf break and adjacent slope in late summer and autumn. This matches with the 

biology and distribution of Antarctic krill, the primary food source of crabeater seals. During 

summer large aggregations of adult krill are found along the continental shelf break where sufficient 

food supply is given due to current flows (Siegel 2005, Nicol 2006). Gravid female krill migrate to 

deeper regions offshore for spawning (Siegel 2005, Nicol 2006). Furthermore, krill is dependent on 

currents, especially counter-current systems between the Antarctic Circumpolar Current and the 

Antarctic Coastal Current to transport krill larvae onto the continental shelf (Nicol 2006). High krill 

concentrations are related to such surface circulations which may occur circumpolar (Marr 1962, 

Nicol 2006). This may also be a reason why two animals migrated eastwards strictly above the slope 

for multiple weeks. It can be speculated that it is to some extent favorable for highly mobile 

planktonic predators to swim against the westward flowing Antarctic Coastal Current which 

provides them with floating prey, but only two seals followed this concept. During autumn adult 

krill return onto the continental shelf and overwinter in deeper water layers whereas krill larvae feed 

on the sea ice community (Siegel 2005, Nicol 2006). However, postlarval krill was also found in 

locally high densities directly under the winter sea ice (Marschall 1988, Flores et al.  2011, Flores et 

al. 2012). This seems to be an important food source for crabeater seals occurring in northerly 

extending pack ice far offshore as seen in this study. 

Burns et al. (2004) reported different habitat preferences from the Western Antarctic Peninsula. In 

winter and spring tagged animals remained on the continental shelf in water depths between 50 m 

and 450 m and avoided deeper regions. This result matches with observations that adult krill is 

found above the continental shelf (Siegel 2005, Nicol 2006). These behavioural differences of seals 

during winter may be due to major geographic and bathymetric differences between study areas. The 
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continental shelf surrounding the Antarctic Peninsula is broad and apparently provides a suitable 

habitat for crabeater seals e.g. regarding food (Burns et al. 2004, Lawson et al. 2004, Friedlaender et 

al. 2012). In contrast, the eastern part of the Weddell Sea and other areas in eastern Antarctica are 

characterized by a narrow continental shelf which may provide less favorable conditions during 

winter so that seals are following the extending ice edge.  

It is noteworthy that Maxent constantly predicted high probabilities of presence for the continental 

shelf break of the General Belgrano Bank in the central southern Weddell Sea. The model 

highlighted the continental slope of the Filchner Trough outflow, Berkner Bank and General 

Belgrano Bank as a suitable habitat in April. Indeed, two crabeater seals visited this region with one 

animal staying there for more than one month. Tosh et al. (2009) reported that also two adult male 

southern elephant seals (Mirounga leonina) travelled from King George Island into this region. 

These two animals stayed between Berkner Bank and Akademik Fedorov Canyon for about 100 

days until they migrated back to King George Island and South Georgia, respectively. A study on 

Weddell seals (Leptonychotes weddellii) showed that these frequent this area as well (Nicholls et al. 

2008). In a comprehensive approach to investigate the Filchner Trough outflow system (Knust 

2013), aerial seal census surveys were conducted in the Filchner Trough outflow system to estimate 

density and abundance of Antarctic seals for this particular region. Crabeater seals were abundant 

above the continental shelf break and nearly absent above the trough (Bornemann et al., unpublished 

data). Preliminary results indicate that density in the shelf break area (1.32 km-2) was similar to 

other aerial seal census studies in the Weddell Sea and adjacent waters (Erickson & Hanson 1990: 

0.41 km-2, Bester et al. 2002: 0.72 km-2, Flores et al. 2008: 1.02 km-2, Forcada & Trathan 2008: 2.29 

km-2). Interestingly, a significant longitudinal density gradient towards the west was detected which 

fits well with the model predictions (Bornemann et al., unpublished data). By now, the southern 

Weddell Sea, especially Berkner and General Belgrano Bank, is poorly studied but generally 

regarded as biological hotspot due to intensive upwelling and mixing of water masses (Foldvik et al. 

2004, Knust 2013). The Filchner Trough outflow contributes strongly to the formation of cold and 

oxygenated Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW) which 

mix with trace-element-rich Ice Shelf Water (ISW) and are transported westwards (Foldvik et al. 

2004, Matsumura & Hasumi 2011). 

The model characterized regions around the submarine seamount Maud Rise as suitable habitats 

throughout February and March as well. This is in accordance with ship based observations of high 

abundances of crabeater seals and other endotherm top predators near Maud Rise (Plötz et al. 1991). 
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Nordøy et al. (1995) reported that one tagged animal migrated onto the southern slope of the Maud 

Rise. It is known that an upwelling of warm deep water occurs there which leads to an increased sea 

ice melting and release of ice algae (Plötz et al. 1991). Thus, also high concentrations of Antarctic 

krill are found in this region, even in winter under the ice (Plötz et al. 1991, Flores et al. 2012). 

 

4.3.3 Surface temperature 

Surface temperature was the second most important factor for modelling the distribution of crabeater 

seals. By now, no other study found a similar relationship. Solely, Friedlaender et al. (2011) found a 

connection to deep temperature maximum related to Circumpolar Deep Water (CDW) which may be 

a sign for enhanced biological productivity. However, in the present study seals seem to favor 

surface temperatures below 0°C which correspond to Antarctic Surface Water (AASW) (Orsi et al. 

1995). AASW is characterized by temperatures less than 0.5°C and salinity values below 34.4 (Orsi 

et al. 1995). Maxent predicted salinity preferences between 34 and 34.2 which matches the 

properties of AASW. It ranges quite uniformly between the Polar Front and the Antarctic continent 

and represents the coldest and freshest water mass within the Weddell Gyre (Orsi et al. 1993, Orsi et 

al. 1995). Antarctic krill E. superba is a typical cold-water species and only occurs south of the 

Polar Front (Siegel 2005, Mackey et al. 2012). Its optimum temperature range lies between -1 and 

+1°C (Mackey et al. 2012) which matches the Maxent result well. However, it remains unclear 

whether the dependence on surface temperature for crabeater seal distribution is real or a pseudo-

correlation due to the absence of sea ice and the extensive use of open water in this study.  

 

4.3.4 Regional differences 

Although the tagged seals mainly inhabited the eastern and central Weddell Sea, the western part 

generally seems to be a much more important habitat as predicted by Maxent. Consistently, seal 

census surveys from the western Weddell Sea revealed high abundance estimates over decades 

(Erickson & Hanson 1990, Forcada & Trathan 2008). For example, the most recent observation 

conducted by Forcada and Trathan (2008) under the Antarctic Pack-Ice Seal (APIS) programme 

estimated a population size of 2,332,505 individuals (95% CI: 1,208,189 – 3,544,511) for this 

region. This corresponds to around one quarter of the estimated circumpolar population (Southwell 

et al. 2012). As mentioned above, abundance estimates for the eastern Weddell Sea are difficult to 

obtain. In general, crabeater seal densities are high in that region, e.g. 3.92 km-2 (Erickson & Hanson 
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1990) and can be even up to 8.01 km-2 (Bester & Odendaal 2000), though the latter finding is biased 

due to very low sea ice concentrations as outlined above. Since surveys mostly take place during 

summer where sea ice cover is usually very low in this area (Schwegmann 2012), additional surveys 

early in the season and thus devoid of a potential low ice bias should be conducted. Bester et al. 

(1995) reported a twofold increase in density with progressing summer (December - February), i.e. 

as the pack ice rapidly diminished. Thus, observation results can be strongly biased and are also 

dependent on time of the year. As a result, abundance estimates for the eastern Weddell Sea range 

between 806,400 (Erickson & Hanson 1990) and 3,564,000 (Bester & Odendaal 2000). As the 

association between crabeater seals and pack ice was described in many studies (Nordøy et al. 1995, 

Bester et al. 2002, Ackley et al. 2003, Burns et al. 2004) and the western Weddell Sea provides more 

stable conditions throughout the year (Schwegmann 2012), it can be assumed that it is indeed a more 

suitable habitat than the eastern Weddell Sea.   

 

4.4 Diving behaviour 

Diving behaviour was generally characterized by short and shallow dives. An average of 43.3% of 

all dives went down to less than 9 m and more than 80% of all dives for each animal were not 

deeper than 72 m, and more than 90% of all dives were shorter than 5 min. This reflects the typical 

summer and autumn diving behaviour of crabeater seals as recorded in other studies conducted in 

the Weddell Sea and eastern Antarctica, respectively (Bengtson & Stewart 1992, Nordøy et al. 1995, 

Wall et al. 2007). Usually, crabeater seals use the upper 50 m of the water column and do not dive 

longer than 5 min. This is in accordance with the vertical distribution of Antarctic krill E. superba. It 

is scientific consensus that krill occurs in the ocean surface layer, generally within the upper 150 m, 

during summer (Siegel 2005). Recently, a novel fishing trawl was applied during a multiannual and 

-seasonal field experiment (LAKRIS) in the Lazarev Sea (Flores et al. 2011, Flores et al. 2012, 

Flores et al. 2014). In the aforementioned studies, only the upper 2 m of the water column were 

sampled by this device both in open water and also under the ice revealing a krill-dominated 

community throughout seasons (Flores et al. 2014). During summer and autumn krill was abundant 

in open water and showed even higher densities compared to under the ice in autumn (Flores et al. 

2012). Although densities in the surface layer were generally high in all seasons, epipelagic layer 

samples (0 – 200 m) mainly exceeded these values (Flores et al. 2012). From these findings it can be 

assumed that seals in this study found a sufficient amount of prey while they untypically spent most 
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of their time in open water. Since krill is abundant at the surface, crabeater seals do not need to dive 

deep to achieve this food resource which is energetically efficient (Costa 2009). Consistently, other 

marine endotherm krill predators show similar diving patterns (Croxall et al. 1985, Boyd & Croxall 

1992, Nordøy & Blix 2009).  

Bengtson & Stewart (1992) divided crabeater seal dives in four categories on the basis of dive depth 

and duration fulfilling different ecological functions. They suggested that short and shallow dives 

(Type I) are connected with travelling although they only used time-depth records (TDRs) which do 

not provide information about horizontal movements (Bengtson & Stewart 1992). Since diving 

behaviour in the present study was clearly dominated by this dive type and especially krill predators 

like the crabeater seal need a regular food intake due to their small-sized prey (Boyd 2002) it is 

supposed that these dives are also connected with foraging. As mentioned above, seals find food in 

the surface water layer (Flores et al. 2012).  

Diving behaviour did not differ strongly between age classes. Subadults dived slightly deeper than 

adults so that hypothesis 4 was rejected. Furthermore, the overall deepest dive was performed by a 

subadult female seal reaching down to 776 m. This beats the current dive record of 713 m reported 

by Burns et al. (2004). Thus, an association of increasing dive depths with increasing age due to 

changing physiological capabilities could not be supported in the same way as for other phocid seals 

(Bowen et al. 1999, Burns 1999, Jørgensen et al. 2001).  

Obviously, diving behaviour of crabeater seals showed seasonal differences. Thus, hypothesis 5 was 

confirmed. The average amount of dives within the upper 9 m doubled in the period from February 

to May (37% vs. 78%). The same pattern holds true for dive durations less than 1 min (40% vs. 

75%). This result is confirmed by Nordøy et al. (1995) who observed a similar rise in short, shallow 

dives between February and June. During this time the sea ice extent of the Weddell Sea is 

expanding again (Schwegmann 2012) and from mid-March onwards seals already faced heavy pack-

ice conditions. It is known that also adult krill inhabits the underside of sea ice during winter 

(Marschall 1988, Plötz et al. 1991, Siegel 2005, Flores et al. 2012). This would explain the increase 

of shallow dives since krill spends more time at the surface, and fits with results of Flores et al. 

(2012) who accounted that krill densities in the surface layer were highest in winter under the ice.  

By contrast, Burns et al. (2004) reported a different diving behaviour for crabeater seals during 

winter. Seals at the Western Antarctic Peninsula dived deeper (x� = 92 m) and longer (x� = 5.26 min) 

compared to all other studies. Additionally, they mainly stayed above the continental shelf and 

remained in areas with high sea ice concentration (Burns et al. 2004). These behavioural differences 
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can be explained by the distribution of Antarctic krill within this region. During winter adult krill 

migrates back onto the continental shelf and overwinters in deeper water layers (Siegel 2005, Nicol 

2006), which was confirmed by acoustic backscattering and trawling samples during the study 

period (Burns et al. 2004, Lawson et al. 2004). Therefore, crabeater seals simply had to dive deeper 

to reach their preferred prey. As a compensation they became locally concentrated where sea ice, 

bathymetry and prey availability were particularly suitable (Burns et al. 2004). Since no further 

study about crabeater seal’s diving and foraging behaviour in other regions during winter is 

available, geographic differences cannot be excluded. 

 

4.5 Area restricted movements 

Generally, crabeater seals were steadily moving and did not remain at one place for long. However, 

two seals showed a different behaviour and performed area restricted movements. Seal 14 stayed 

within a small crack of the Riiser-Larsen Ice Shelf between the Stancomb-Wills Ice Tongue and 

Lyddan Island for seven weeks. This crack is usually filled with sea ice and situated in a rift of the 

approximately 100 m thick ice shelf (Humbert et al. 2009, Wuite & Jezek 2009). Since this area 

restricted movement was an unusual event compared to all other seals, the diving behaviour during 

that time was analyzed separately. Both dive depth and dive duration frequency differed 

substantially to the general observed pattern (Appendix Fig. A.6 and Fig. A.7). The amount of dives 

was more or less evenly distributed from 0 to 81 m and then decreased towards 150 m. Furthermore, 

dives usually lasted between 3 and 5 min representing 64% of all dives. Thus, seal 14 dived deeper 

and longer than the average. Since it remained in this area for an extended time, it can be assumed 

that it found an abundant food source as suggested by Tosh et al. (2009). As a trade-off, seal 14 

might have invested more energy into foraging than other seals by diving deeper and longer. 

Usually, krill is very abundant in the surface layer during February and March (Flores et al. 2012) 

which questions this different diving behaviour. Nevertheless, krill could have potentially been 

present in deeper water layers. It is also possible that seals foraged on or even under the ice shelf 

which was reported for Weddell seals in the Drescher Inlet through seal-mounted cameras 

(Watanabe et al. 2006) though under shelf ice excursion might require even longer dive durations 

By now, there is only limited information about composition, distribution and abundance of under-

ice-shelf communities. Watanabe et al. (2006) found dense aggregations of invertebrates, e.g. 

cnidarians and isopods, which may also be a feeding ground for fishes (Bruchhausen et al. 1979). 
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More importantly, crabeater seals occasionally supplement their krill diet with fish as 

Pleuragramma antarcticum, squid or other zooplankton (Øritsland 1977, Green & Williams 1986). 

Thus, it is conceivable that seal 14 shifted into a more opportunistic diet and fed on a probably 

abundant food source which would explain the differences in diving behaviour.  

Seal 8 also showed an area restricted movement above the continental shelf break of General 

Belgrano Bank where it remained about four weeks. In contrast to seal 14, diving behaviour did not 

reveal any difference to the normal pattern (Appendix Fig. A.8 and Fig. A.9). Since it is known that 

krill occurs above the continental shelf break during summer (Nicol 2006) and is abundant in the 

upper 2 m of the water column (Flores et al. 2012), the behaviour of seal 8 is not expected to differ 

from the observed average. 
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     Seal 1       Seal 2 

   
 

 

     Seal 5       Seal 7 

   
Fig. A.2: Individual tracks of 12 crabeater seals (Lobodon carcinophaga) in the Weddell Sea and adjacent waters dispersing 

from Drescher Inlet (star). Bathymetry is indicated by various shades of grey (light = shallow, dark = deep). The white line 

shows the 1000 m isobath of the continental shelf defined as shelf break. 
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     Seal 8       Seal 10 

   
 

 

     Seal 11       Seal 12 

   
Fig. A.2: (continued) 
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Fig. A.2: (continued) 

Seal 6 

Seal 9 
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Fig. A.3: Frequency distribution of sea ice concentration present on all seal locations.  

 

 

 
Fig. A.4: Relative frequency of sea ice concentration in 139 pixels surrounding each seal 

location. Every pixel has a size of 25 km x 25 km resulting in an area of 325 km x 325 km. 

Ice concentration is given in 5 classes. 
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Fig. A.5: Sea ice concentration within the Maxent study area as derived from the FESOM model for February 1998. Blue 

areas indicate open water and green the ice edge. Red regions illustrate areas with high ice concentrations, i.e. nearly closed 

ice cover. Drescher Inlet is represented by a star. Dark grey = Antarctic continent; light grey = ice shelves. 
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Fig. A.6: Dive depth distribution of seal 14 during an area restricted movement. Each bar 

represents the relative amount of dives spent in a certain depth interval e.g. 0-9 m, 10-21 m etc. 

 

 

 
Fig. A.7: Dive duration distribution of seal 14 during an area restricted movement. Each bar 

represents the relative amount of dives classified in certain time intervals e.g. 0-1 min, 1-2 min 

etc. 
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Fig. A.8: Dive depth distribution of seal 8 during an area restricted movement. Each bar 

represents the relative amount of dives spent in a certain depth interval e.g. 0-9 m, 10-21 m etc. 

 

 

 
Fig. A.9: Dive duration distribution of seal 8 during an area restricted movement. Each bar 

represents the relative amount of dives classified in certain time intervals e.g. 0-1 min, 1-2 min 

etc. 
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