Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean
Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduc- tion of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the pres- ence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180–250 O2 μmol.kg-1) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequenc- ing from PCR products revealed that most denitrification genes belonged to Rhodobactera- ceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavail- able N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.