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Phyllosomata associated with large gelatinous zooplankton:
hitching rides and stealing bites
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During a zooplankton survey 350 km off the coast of Western Australia, we captured a large and robust zooid of a salp (Thetys vagina), to which six
late stage larvae (phyllosomata) of the western rock lobster (Panulirus cygnus) were attached. High-throughput sequencing analyses of DNA
extracts from midgut glands of the larvae confirmed that each phyllosoma had consumed mainly salp tissue (�x ¼ 64.5%+ 15.9 of DNA reads).
These results resolve long-standing conjecture whether spiny lobster phyllosomata attach to large gelatinous hosts to feed on them.
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Introduction
For many years, there has been conjecture that spiny lobster (Family
Palinuridae) phyllosoma larvae might attach themselves to large gel-
atinous zooplankton for assistance with locomotion and possibly to
feed upon them (Jeffs, 2007). This hypothesis was partly extrapo-
lated from in situ observations of phyllosomata of slipper lobsters
(Family Scyllaridae; a family related to spiny lobsters) attached to,
and most probably consuming, large cnidarian medusae (Shojima,
1963; Thomas, 1963; Hernkind et al., 1976; Ates et al., 2007) as well
as captive feeding trials where the phyllosomata were capable of
clinging to, and consuming the entirety of a wide variety of jellyfish
medusae (Wakabayashi et al., 2012). Spiny lobster phyllosomata
have never been directly observed in the wild due to their small
size, transparent morphology, and far offshore habitat (extending
to over 1500 km offshore, Phillips et al., 1979), which makes direct
observations of the nature of any association with large gelatinous
zooplankton unlikely. Phyllosomata can grip and manipulate other
animals by the use of dactyls at the end of their limbs (Wakabayashi

et al., 2012), and on Panulirus cygnus the dactyl of the second pereio-
pod is particularly large and suited to this purpose (Braine et al.,

1979: refer video in supplementary files). However, their grip on

their hosts is unlikely to survive sampling, because large gelatinous
pelagic organisms, such as colonial radiolaria and siphonophores,

often disintegrate when sampled in zooplankton net tows. This

means that even if phyllosomata do adhere to them, it will be unlike-

ly to observe them doing so in net hauls.
In this study, we report the capture by net tow of a large and robust

zooid of a salp (Thetys vagina), to which six late stage phyllosomata
were attached (Supplementary Figure 1). To our knowledge, this is

the first record of spiny lobster phyllosomata being captured while

remaining attached to another animal. To determine if the phylloso-

mata were feeding on the salp, high-throughput sequencing analyses

were performed on DNA extracts from the midgut glands of phyllo-
somatacarefully removed from the salp zooid. DNA methods provide

a highly reliable technique for identifying the diet of pelagic predators

when in situ observations are not possible (O’Rorke et al., 2012a, b).
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Methods, results, and discussion
A zooplankton net tow of surface water taken on 29 August 2011
between 02:00 and 02:05 AWST at 31.098S, 111.438E �350 km off
the Western Australian coast following the methods of Wang et al.
(2014) recovered a salp zoid to which six late stage Panulirus
cygnus phyllosomata were attached (Table 1). The phyllosoma
were all in a typical clinging posture adopted by phyllosoma while
feeding with the ventral surface on the cephalic shield, which con-
tains the mouthparts, pressed against the outer surface of the salp
zooid. The salp was 115 × 55 mm at its longest and widest dimen-
sions and was identified by Dr Lisa-ann Gershwin (CSIRO-Marine &
Atmospheric Research, Australia) to be Thetys vagina, based on its
unique morphology. DNA was ChelexTM (Bio-Rad) extracted
from tissue of the salp, and a short 18S rDNA region was PCR-
amplified and sequenced using the Uni1304F and Uni1670R
primers and protocol from Larsen et al. (2005). The sequenced
Thetys vagina (Genbank accession KM360161) locally aligns to
other salp sequences on the NCBI database. However, it does not
have a perfect match on the database and was only a 91.2% match
to that of the only other 18S sequence of this species previously
reported on Genbank (from the NW Atlantic; Govindarajan et al.,
2011). From examination of the outer surface of the salp upon
landing on the research vessel, it was not possible to determine
whether loss of salp tissue was associated directly with predation
from individual phyllosoma due to the irregularity in the surface
of the salp. Therefore, a DNA approach was adopted to determine
if the phyllosomata had consumed salp material. DNAwas extracted
from the midguts of the phyllosomata using 31 gauge syringes
(O’Rorke et al., 2013a) and also extracted from the codend of the
net from which the salp was recovered, as well as from PCR-grade
water-only negative control taken from water drained from the
codend. PCR amplifications of the v7 and v9 regions of the 18S
rDNA were performed according to O’Rorke et al., (2012a,b) and
sequenced at Macrogen (Korea) on the 454 GS platform using
Titanium chemistry.

Sequenced DNA reads were processed in MOTHUR (Schloss
et al., 2009) using methods outlined in O’Rorke et al. (2013b) and
it was found that DNA was successfully amplified from four of
these six phyllosomata and each of these phyllosomata contained
a majority of DNA fragment sequence reads that were identified as
belonging to salp (Thaliacea) (�x+SE¼ 64.5%+15.9) (Figure 1).
DNA failing to amplify in approximately one-third of phyllosomata
is not unusual and could be due to these two phyllosomata only re-
cently attaching to their host, perhaps after capture in the net
(O’Rorke et al., 2012). However, it is very unusual to have the
same OTU detected in such abundance in every phyllosoma
sampled from a single site (Suzuki et al., 2008; Chow et al., 2010;
O’Rorke et al., 2012a, b; 2013b). The difference between this study

and previous studies is that the phyllosomata were not randomly
distributed throughout the plankton, but were all adhering to a
single animal.

Two loci of the 18S rRNA gene were amplified and sequenced,
which both showed the same distribution of DNA sequence reads
(Figure 1), which indicates that the dominance of thaliacean reads
was not an artefact of primer bias. In addition to the gut contents
of the phyllosomata being sequenced, a sample of cod-end water
was also collected to control for the remote possibility that we
were detecting DNA that had been passively ingested by the phyllo-
soma. For this, 5 mL of mixed codend water was passed through a
0.5-mm syringe filter (Millipore) into 10 mL of pre-chilled EtOH
and stored at 2208C. A 0.5-mm filter was used because this is the
exclusion size of the filter press of late stage phyllosomata (Smith
et al., 2009; Simon et al., 2012). Perhaps surprisingly, this control
contained no salp DNA, but was dominated by DNA from colonial
radiolaria. Colonial radiolaria are a significant component of the
zooplankton assemblage in the East Indian Ocean, although they
do disintegrate when sampled by nets (Stemmann et al., 2008),
and it is therefore not surprising that their DNA was detected in
the codend sample.

After salp DNA, the second most abundant organisms in each
phyllosoma were not identical between samples, with phyllosomata
2 and 4 containing �25% of DNA from an anthozoan (Cerianthia)
and a bony fish, respectively. This suggests that each phyllosoma was
either feeding on a different prey item before encountering the salp
or that they were also feeding on other food sources while attached to
the salp. Captive phyllosomata have been observed to feed on a range
of gelatinous zooplankton such as fish larvae, chaetognaths, cteno-
phores, and cnidarians (Mitchell, 1971; Kittaka, 1997), which are all
a significant part of the plankton assemblage of the East Indian
Ocean (Säwström et al., 2014). In a previous experiment, it has
been determined that P. cygnus phyllosomata are preferential
feeders that consume arrow worms over either salps or krill in a prey-
choice experimental design (Saunders et al., 2012). This, along with
the present study, indicates that P. cygnus phyllosomata are oppor-
tunistic predators, attaching themselves and feeding on large prey
items, such as salps when they are available. This is consistent
with the fact that salps are relatively poor in lipids, protein, and avail-
able energy (Wang and Jeffs, 2013; Wang et al., 2013), but they are
large and represent a high level of readily digestible biomass that is
a guaranteed meal in the absence of better prey options. P. cygnus
larvae may not consume the entirety of their hosts, unlike some
slipper lobster larvae (Wakabayashi et al., 2012), because it is not
clear that this is a good strategy for larvae in oceanic waters with
low productivity. However, T. vagina have considerable regenerative
properties (Hirose et al., 2005) and it would be valuable to learn if
salp tissue can regenerate at a rate that matches consumption by
phyllosomata. It has been observed that even after T. vagina
zooids are emptied into “barrels” to become the homes of
Phronimids (a Hyperiid amphipod), that the salp tissue continues
to regenerate (Hirose et al., 2005). Salps have very rapid growth
rates, with several species increasing their body length by over 5%
per hour, and some at a staggering 20% per hour (Madin and
Deibel, 1998). Unfortunately, there are no data on the growth
rates of Thetys, but they are the largest known salp (.300 mm
length, Nakamura and Yount, 1958) and they can rapidly increase
in numbers in response to bursts in productivity (Iguchi, 2006).
Furthermore, phyllosomata that attach themselves to large animals
that undergo vertical migration would be able to track the diurnal
changes in prey density and therefore save considerable energy.

Table 1. Phyllosomata recovered from Thetys salp.

Phyllosoma Size (mm) Stage

1 27.25 9
2 18 7
3 18 7
4 16.75 7
5a 19.5 7
6a 17.5 6

Length refers to the distance from the anterior margin of the cephalic shield
(cephalothorax) from between the eyestalks to the posterior tip of the pleon.
aDNA from these phyllosomata did not amplify.
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This is important because saving energy has considerable impli-
cations for the abilities of the spiny lobster post-larvae (pueruli)
to subsequently migrate back onshore (Wilkin and Jeffs, 2011;
Fitzgibbon et al., 2013).

Conclusion
The unique discovery of spiny lobster phyllosomata attached and
feeding on a large gelatinous zooplankter resolves conjecture that
these animals share this behaviour of the larvae of their close rela-
tives, the slipper lobsters. Sequencing of the gut contents of these
spiny lobster phyllosomata confirms that they not only adhere to
but also ingest the tissues of their gelatinous hosts. Locating and
attaching themselves to large prey items could be an effective

opportunistic feeding strategy that enables phyllosomata to
survive in sparsely populated and oligotrophic oceanic waters.
Importantly, by attaching to a large vertically migrating animal,
the phyllosomata are able to conserve energy by not swimming, as
well as having access to a meal of relatively magnificent size.
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