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Summary	
 

The present thesis investigated the abundance and distribution of chaetognaths 

along a transect from the Barents Shelf to the Sophia Basin at approximately 81° N. 

Abundances under the sea-ice were compared with those in the water column down 

to 500 m depth. Chaetognaths from zooplankton samples taken at three stations 

were identified to species level and measured. Eukrohnia hamata specimens were 

classified into maturity stages. Furthermore the dry mass as well as C:N ratios were 

obtained for a selection of specimen to estimate the biomass and elemental 

composition of chaetognath ins the study area. 

 Abundances of up to 1.9 individuals per m3 were encountered in the water 

column, constituting a biomass greater 0.328 mg/m3. At almost all stations higher 

abundances were found under the ice than in the water column. The density of 

chaetognaths decreased when descending to deeper water layers. Abundance and 

biomass of chaetognaths was higher in the deep-sea basin than on the shelf. 

Eukrohnia hamata was the dominant species encountered. Parasagitta elegans was 

found in highest concentrations on the shelf. Pseudosagitta maxima was rarely 

encountered. Juvenile chaetognaths populated the upper 200 m of the water column. 

Mature Eukrohnia hamata were not discovered. Eukrohnia hamata specimens had a 

mean C:N ratio of 4.7, while Pseudosagitta maxima  had a mean C:N ratio of 3.8. 

 The results of the present thesis are in agreement with distributions published 

for the Arctic Ocean. High abundances under the sea-ice confirm its importance for 

chaetognaths in the Arctic. The on-going sea-ice decline could have a great impact 

on the composition of chaetognaths in the Arctic Ocean. 

 



Zusammenfassung	
 

Im Rahmen dieser Bachelorarbeit wurde die Abundanz und Verteilung von 

Chaetognathen auf einem Transsekt entlang des 81. Breitengrades vom Barents 

Schelf  zum Sophia Becken untersucht. Die Zusammensetzung unter dem Meereis 

wurde mit jener in der Wassersäule, bis zu einer Tiefe von 500 m, verglichen. Hierzu 

wurden Chaetognathen aus Zooplankton-Proben von drei Stationen auf Art-Niveau 

bestimmt, vermessen sowie die Reifegrade von Eukrohnia hamata bestimmt. Zudem 

wurde für einige Exemplare Trockengewichte ermittelt und das C/N-Verhältnis 

bestimmt um die Biomasse und biochemische Zusammensetzung im 

Untersuchungsgebiet zu schätzen. 

Zum Zeitpunkt der Untersuchung waren Chaetognathen mit bis zu 1.9 Individuen pro 

m3 vertreten in der Wassersäule mit einer Biomasse größer 0.328 mg/m3
.
 Für fast 

alle Stationen wurden höhere Abundanzen unter dem Eis als in der Wassersäule 

gefunden. Zudem nahm der Bestand in tieferen Wasserschichten ab. Die Abundanz 

und Biomasse von Chaetognathen war im Becken höher als auf dem Schelf. 

Eukrohnia hamata war die am häufigsten vorkommende Art. Parasagitta elegans war 

vor allem auf dem Schelf vertreten. Pseudosagitta maxima wurde nur vereinzelt 

gefunden. Juvenile Chaetognathen waren in den oberen 200 m der Wassersäule 

konzentriert. Es wurden keine reifen Eukrohnia hamata gefunden. Das mittlere C/N-

Verhältnis von Eukrohnia hamata betrug 4.7, das von Pseudosagitta maxima 3.8. 
Die Ergebnisse dieser Arbeit stimmen mit den von anderen Autoren 

beobachteten Verteilungsmustern für Chaetognathen im Arktischen Ozean überein. 

Hohe Abundanzen unter dem Meereis bestätigen die Wichtigkeit dieses Habitats für 

Chaetognathen. Dies ist vor allem im Hinblick auf den fortschreitenden Rückgang der 

Meereisfläche erwähnenswert. 
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1 Introduction	

1.1 The Arctic Ocean  
The Arctic marine realm is located between 66° N and 90° N, north of the Arctic 

Circle (66° 34‘ N). The Arctic Ocean, as the polar oceans in general, is a unique 

environment. It is defined as the smallest and shallowest world ocean and is 

composed of a deep central basin, which is enclosed by shallow shelves (see Figure 

1). Surrounded by land, it receives limited exchange with the adjacent oceans, the 

Atlantic and the Pacific. Due to the spherical shape and inclination axis of the Earth, 

the Arctic experiences low exposure to solar energy and is characterised by high 

seasonality in light conditions. This leads to month-long periods of polar night in 

winter and midnight sun during summer. The consequences are low temperatures 

and year-round sea-ice coverage in higher latitudes (Herman 1989). 

The Arctic shelves take in 10% of the global river runoff and are therefor highly 

productive regions (Herman 1989). On the other hand, the offshore deep central 

basins are considered less productive, as they are permanently ice-covered 

(Sakshaug 2004), though recent studies have proven, that there is high productivity 

by ice algae, supporting a vivid metazoan community (Fernández-Méndez et al. 

2015; David 2015). 

The Lomonosov Ridge subdivides the central Arctic Ocean into two basins: the 

Amerasian and Eurasian Basins (Jakobsson et al. 2003).The Eurasian Basin reaches 

bottom depths greater than 4000 m and in turn is divided into the Amundsen and 

Nansen Basin by the Gakkel Ridge. These basins are characterised by the inflow of 

warm Atlantic waters through the Fram Strait. These waters are high in salinity and 

are moreover phosphate- and nitrate-rich (Rudels et al. 2013). In the Eurasian Arctic, 

the Atlantic Waters are located in the layer between approximately 100-150 to 900-

1000 m. The temperatures of this layer are near 0 °C and the salinities between 

34,800-34,900 ppm (Timofeev 1998). 

The Nansen Basin is the area in which the main re-circulation of the Atlantic Water 

from the Fram Strait branch takes place. The Barents Sea branch meanwhile flows 

eastwards to the Laptev Sea where it flows into the Amundsen Basin (Rudels et al. 

2013). The Transpolar Drift is a large ocean surface current which transports sea ice 
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form The Laptev and East Siberian Sea towards the Fram Strait crossing the central 

Arctic (Mysak 2001). 

Whereas the Arctic Ocean is permanently sea-ice covered in the centre, the marginal 

seas are only seasonally ice-covered (Horner et al. 1992). The sea ice is formed in 

winter along the shelves. A notable portion of marginal sea ice is transported out of 

the Arctic Ocean through the Fram Strait (Kwok 2004). 

 

 
Figure 1 – Overview of the Arctic Ocean and its bathymetry with an outline of surface waters circulation. Red 

lines indicate Atlantic Waters (AW). Orange lines represent Pacific Waters (PW). Black lines represent cold, less 

saline polar water currents (TPD – Transpolar Drift, BG – Beaufort Gyre). Green lines visualise river runoff inflow 

(RR). The dashed line indicates the area where polar water is formed (Fernández-Méndez 2014). 
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1.2 Chaetognaths 

Chaetognaths constitute a small phylum of approximately 150 marine species 

worldwide (Kapp 2004). Chaetognaths are gelatinous zooplankton, ranging from 2-

120 mm in length. All species are active predators, grasping their prey with two sets 

of rigid hooks located at the sides of the head. The name of the phylum is derived 

from these hooks (“Chaeto”-“gnaths”=”bristle”-“jaws”). Some species are known to 

inject venom into their prey before indulging it (Casanova 1999). Comprising 5-15 % 

of the global zooplankton biomass (Longhurst 1985) and preying mainly on copepods 

(Kruse et al. 2010a), chaetognaths can play an important role in pelagic food webs.  

1.2.1 Morphology 

A general body plan for chaetognaths is illustrated in Figure 2. The body structure is 

simple, being formed by the head, trunk and a well distinguishable tail, which is 

delimited from the trunk by a septum. One to two pairs of lateral fins as well as a tail 

fin qualify chaetognaths for being very good and fast swimmers. The transparency of 

chaetognaths varies for different species from translucent to semi-opaque. Some 

species are partially pigmented (Bohatá 2011). Bioluminescence for two species 

been reported in recent studies (Thuesen et al. 2010). The head is equipped with a 

vestibular organ, two sets of rigid hooks and one or two rows of teeth (Casanova 

1999). Intestine and female gonads (ovaries and seminal receptacles) lie in the trunk 

whereas the male gonads (testes and seminal vesicles) are situated in the tail 

(Alvariño 1990a).  
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Figure 2 – Illustration of the general anatomy of chaetognaths. The body is subdivided in head, trunk and tail. 

Ovaries are situated in the posterior part of the trunk. Testes and seminal vesicals make up the contents of the 

tail. One or two pairs of lateral fins and a tail fin enable chaetognaths to swim. The head is equipped with one or 

two rows of teeth and its eponymous hooks. Due to the transparency of the body, the intestine is well 

distinguishable. The ventral ganglion can be found in the anterior part of the trunk. Some species display a 

collarette with thicker tissue in the neck region or over the entire body. Sensory papillae are distributed along the 

body (https://www.gwu.edu/~darwin/BiSc151/Ecdy/Ecdysozoa.html) 

 

1.2.2 Life Cycle 
Chaetognaths are protandrous hermaphrodites. Male gonads develop earlier than 

female gonads (Alvariño 1990a). Chaetognaths usually perform cross-fertilisation, 

though self-fertilisation has also been observed, but seems less successful (Alvariño 

1990b). Eggs are laid freely in the water except for Eukrohnia species, which carry 

two gelatinous egg sacs, or marsupia, in which they breed the eggs and newly 

hatched “larvae’’. The term “larva” is inappropriate, as chaetognaths do not perform 

metamorphosis, but is used by several authors since morphological changes are 

significant in early life stages. Depending on the species and environmental factors 

such as temperature, eggs generally hatch after 2-3 days. Young chaetognaths are 

subject to allometric changes while growing. The tail proportion of the body for 

instance, or size of the ventral ganglion, is larger in juveniles than in adults. Also the 

number of teeth an hooks changes during maturation (Casanova 1999). 
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Mature specimens move to deeper water layers for spawning whereas juveniles and 

younger adults remain in the surface layers where they encounter better feeding 

conditions (Hagen 1999). 

1.2.3 Abundance and Distribution 

1.2.3.1 Geographic Distribution 

Some chaetognath species are excellent indicators of water masses as their 

occurrence is closely related to environmental variables. Eukrohnia hamata for 

instance is adapted to cold waters. Chaetognaths can be found in all marine habitats 

worldwide at all depths. The main geographic distribution factor is water temperature 

(Casanova 1999). Other hydrological factors such as salinity, oxygen concentration 

and pressure which affect mortality and birth rates in chaetognaths and zooplankton 

overall are assumed to play a less important role on abundance (Cheney 1985). 

1.2.3.2 Vertical Distribution 

Vertical distribution of chaetognaths is affected by temperature and light intensity 

(Casanova 1999). Furthermore many chaetognath species are known to undergo 

ontogenetic migrations, moving to deeper layers for spawning (Hagen 1999). 

Juveniles in the contrary are found mainly in the surface layers. 

Recent studies have strengthened the hypothesis that chaetognath distribution is 

linked to the occurrence of copepods its major prey, or krill (Marazzo and Nogueira 

1996; David et al. 2016). 

There is little knowledge about chaetognath abundance at the underside of the sea-

ice due to limited gear for fishing under the ice. (David 2015) found a lower 

abundance of chaetognaths at the sea-ice underside than in the water column (0-

500m) in Antarctic winter. 

1.2.4 Feeding ecology 

Comprising 5-15% of global zooplankton biomass and 30% of that of copepods, 

chaetognaths can play an important role in marine food webs (Casanova 1999; 

Casanova et al. 2012). Major prey are copepods (Kruse et al. 2010a); (Sameoto 

1987), which create a distinct flow field in the water (Bundy and Paffenhöfer 1996; 

Jiang and Osborn 2004). This flow field can be detected by chaetognaths via sensory 

hairs (NEWBURY 1972; FEIGENBAUM and REEVE 1977). Also other organisms 

such euphausiids, amphipods, diatoms, ciliates, medusa, and even chaetognaths are 
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fed upon (Terazaki 1998). Though chaetognaths are considered to be carnivore, 

green detritus has been discovered in gut contents of Parasagitta elegans. 

Pseudosagitta maxima and Eukrohnia hamata have been observed ingesting green 

detritus in the Canadian Arctic, suggesting supplemental detritivorous and/or 

omnivorous feeding (Grigor et al. 2014a).  

 (Casanova et al. 2012) assumes, that chaetognaths feed primarily on 

dissolved and fine particulate organic matter and encourages to reinvestigate the role 

of chaetognaths in the food web. Chaetognaths in return are fed upon by a variety of 

organisms including chaetognaths, amphipods, jellyfish and fish (Feigenbaum 1991). 

Furthermore, by producing large and fast-sinking fecal pellets, chaetognaths can play 

a significant component in the biological carbon pump (Giesecke et al. 2009). 

1.3 Chaetognaths in the Arctic Ocean 
The three major chaetognaths found in the Central Arctic are Parasagitta, Eukrohnia 

hamata and Pseudosagitta maxima. They contribute substantially to the Arctic 

zooplankton biomass (Grigor et al. 2014b). The species are introduced in more detail 

in the following subsections. Heterokrohnia involucrum is found in bathypelagic 

realms of the Central Arctic (Kosobokova et al. 2010) and the presence of Eukrohnia 

bathypelagica has been reported for the Nansen Basin, though with a far lower 

abundance than the other chaetognath species (Mumm 1993).  

1.3.1 Parasagitta elegans 

P. elegans is a species found in Arctic and Subarctic regions (Kotori 1999). P, 

elegans dominates the chaetognath community in Arctic shelf seas and is considered 

a neritic expatriate when found in the waters of the deep central basins (Kosobokova 

et al. 2010),(Grigor et al. 2014b). There are three known subspecies: P. elegans 

elegans, P. elegans arctica and P. elegans baltica. P. elegans grows up to 45 mm in 

length (ARCODIV). The life cycle of P. elegans varies with its distribution range 

(Grigor et al. 2014b). Environmental factors such as temperature and food availability 

could have an impact on this variation (Terazaki 2004). Whereas specimens froms 

the Canadian Arctic have longer life spans with 0.5 generations per year, specimens 

from lower latitudes may have shorter lifespans with 5 to 6 generations per year 

(Russel 1932; Dunbar 1962). P. elegans is believed to reproduce at greater depths, 

though its eggs hatch in the surface layer (Hagen 1985). For a Fjord of Svalbard a 3-

year life span was reported, with the months May and June marking the main 
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spawning season. The youngest specimens were located near the surface in these 

months, probably due to better feeding opportunities. In winter all cohorts had 

migrated to deeper layers suggesting seasonal migrations following the distribution of 

overwintering copepods (Grigor et al. 2014b).  
P. elegans is considered to be a heterogeneous feeder, though its major prey are 

copepods. Chaetognaths, ostracods, larval stages of different crustaceans, 

dinoflagellates and even green detritus are only a fraction of contents found in its gut 

(Falkenhaug 1991; Terazaki 1998; Grigor et al. 2014b). 

1.3.2 Eukrohnia hamata 

E. hamata reaches up to 45 mm in length. It has a worldwide distribution and is found 

in all depths. It exhibits tropical submergence, inasmuch it descends to meso- to 

bathypelagic depths in equatorial and subtropical zones (Timofeev 1998; Casanova 

1999). Its specific characteristic, as for all Eukrohnia species, are the brood pouches. 

It develops at maturity in which the eggs are bred until the young specimens hatch 

and grow (see Figure 3) (Dawson 1967). 

In the Arctic E. hamata is found in epi- to bathypelagic depths, mostly offshore 

(Kosobokova et al. 2010). There exist only a small number of reports on its 

reproduction in Arctic regions. Immature specimens (3-22 mm length) were dominant 

in the surface layers near Northwest of Franz-Josef-Land. Specimens greater than 

26 mm in length with more or less advanced gonad development or even carrying 

marsupia were found in depths greater 700 m. This vertical distribution also applies 

for the Antarctic and is an indicator of spawning migration (Richter 1994; Hagen 

1999).  (Timofeev 1998) suggests that E. hamata specimens mature and reproduce 

in the Atlantic Water layer, which is located at these depths. 

E. hamata was found to feed on the same species as P. elegans, including green 

detritus, though choosing smaller prey (Terazaki 1998; Grigor et al. 2014a). In 

comparison also the Antarctic E. hamata seems to prefer copepods as a diet (Kruse 

et al. 2010b). High C:N ratios above 4 have been reported for E. hamata in polar 

regions which is explained by oil droplets found in the intestine tissue of specimens 

(Terazaki 1993; Kruse et al. 2010b).  
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Figure 3 – Picture of young specimen in marsupia in the tail region of a fully mature E. hamata (Dawson 1967).  

 

1.4 Objectives 
Subject of the present thesis is to investigate the abundance and distribution of 

chaetognaths in the Arctic Ocean north of Svalbard. The region of interest lies 

between Svalbard Shelf and Yermak Plateau over the southern tip of the Nansen 

Basin called Sophia Basin. Zooplankton samples were taken from this area on 

expedition PS92 with the research vessel Polarstern in Arctic spring 2015. The 

selected samples represent a transect from the Barents shelf to the Sophia Basin 

along approximately 81° N. The samples were taken with two different fishing gears. 

The SUIT is used for sampling at the sea-ice undersides, while the M-RMT samples 

three depth strata of the water column. Both gears have two types of meshes 

(Peeken 2016). In this study the finer nets with a maximum mesh size of 330 µm 

shall be examined. The maximum sampling depth for samples subject to distribution 

analysis was at 500 m.  

The aim of the thesis is to find out if there are differences in abundance and 

distribution of chaetognaths between the depth strata in the water column. 

Differences between shelf, slope and deep-sea basin will also be taken into account. 

Furthermore the differences between distribution of chaetognaths under the ice and 

in the water column are to be investigated. Apart from depth, environmental factors 

such as temperature, sea-ice thickness and Chlorophyll a concentration shall be 

tested for their influence on distribution. In detail the species distribution as well as 

maturity and length distribution for the found species shall be examined. C:N ratios 

and biomass of chaetognaths for the study area will be calculated, by measuring 

carbon and nitrogen content of a selection of samples.  

 



 

 9 

1.4.1 Hypotheses 

The following hypotheses are to be verified: 

1. Abundance and biomass: Overall abundance and biomass of chaetognaths 

decrease when descending from the shelf into deeper layers. 

2. Species distribution: P. elegans dominates shelf regions, whereas the 

proportion of E. hamata is higher when moving towards the deep-sea basin. 

3. Vertical distribution:  

a. E. hamata and P. elegans inhabit the upper layers, with juveniles 

generally being higher than adult specimens. 

b. Fully mature E. hamata are not expected to be encountered, since they 

are believed to migrate to depths below 500 m for spawning (Timofeev 

1998). 

c. P. maxima, Heterokrohnia involucrum and Eukrohnia bathypelagica are 

found only in deeper layers of the water column. 

4. Elemental composition: C:N ratios above 4 are expected  

 

The results of the present thesis contribute to our knowledge about the distribution of 

chaetognaths in the Arctic, particularly the Sophia Basin. Since there is to date little 

data about zooplankton distribution under the sea-ice, the outcome may contribute 

significantly to reduce this gap.  
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2 Materials	and	Methods	

2.1 Field Sampling  
Chaetognaths were sampled during the expedition PS92 in the Nansen Basin with 

the research vessel (RV) Polarstern. Sampling was conducted in Arctic spring 2015 

(15. May to 30. June 2015). Samples of the present thesis were taken with a 

Multiple-Opening Rectangular Midwater Trawl (M-RMT) and the Surface and Under-

Ice Trawl (SUIT) on a transect from Barents Shelf to Sophia Basin (81°N) at three 

stations (between 16°31 and 19°91’E) (see Figure 4). An explanation of the fishing 

gears can be found in the following sections. 

 

 
Figure 4 - Overview of region of investigated area in the Arctic as well as SUIT and M-RMT stations from which 

zooplankton samples originate. The area of investigation is located between the Svalbard Shelf and the Yermak 

Plateau. The Sophia Basin is situated in between.  

Table 1 – M-RMT stations on cruise PS92 with RV Polarstern from which samples for the thesis were taken. 

Station Date 

Start Time 

(UTC) 

Longitude 

(° E) 

Latitude 

(° N) 

Bottom 

Depth [m] Depth Strata [m] 

19-2 27.05.15 18:16 19.737 81.033 173 0-25-50-100 

27-17 01.06.15 14:47 17.1 81.292 866.2 0-50-200-300 
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38-2 09.06.15 17:58 16.123 81.33 2273.8 0-50-200-500 

 
 

 
Table 2 - SUIT stations on cruise PS92 with RV Polarstern from which samples for the thesis were taken. SUIT 

stations geographically and chronologically correspond to M-RMT stations in Table 1. 

Station Date 

Start Time 

(UTC) 

Longitude 

(° E) 

Latitude 

(° N) 

Bottom 

Depth 

[m] Depth Strata [m] 

19-1 27.05.15 15:22 19.907 81.007 188.5 0-2 

27-1 31.05.15 04:16 17.767 81.386 827.9 0-2 

38-1 09.06.15 15:46 16.311 81.317 2249.1 0-2 

 

Directly after hauling the catch on board, the obtained samples were split into at least 

two fractions with a Motoda plankton splitter (Motoda 1959). The samples were then 

quantitatively preserved. 50% of each catch was preserved in 4% Formaldehyde, 

whereas the remaining half was size fractionated and frozen at -80 °C. Chaetognaths 

were randomly picked from each original catch, identified to the lowest possible taxon 

(generally to genus level) and immediately frozen at -80 °C. 

(Peeken 2016) 

2.2 SUIT 
The SUIT (Surface and Under-Ice Trawl) consists of a steel frame with floats 

attached at its top, to keep it floating at the water surface or under the sea-ice. The 

steel frame has a 2 x 2 m opening to which to parallel nets, each 15 m long, are 

fastened. The coarser net is a 7 mm half-mesh commercial shrimp net, lined with 0.3 

mm mesh in its rear 3 m and covers 1.5 m of the opening width of the steel frame. 

The finer zooplankton net, with a mesh size of 0.3 mm, covers the remaining 0.5 m of 

the opening width. The SUIT is towed off with a cable of maximum 150 m length at 

an angle of approximately 60° to the starboard side of the ship, enabled by an 

asymmetric bridle. The SUIT can therefor be pulled under the sea-ice for sampling 

and covers the depth stratum of 0-2 m at the sea-ice underside (van Franeker and 

Flores 2009). 
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A sensor array is mounted to the SUIT frame. It contains an acoustic Doppler current 

profiler (ADCP), a conductivity-temperature-depth probe (CDT) with an integrated 

fluorometer, an altimeter, two spectral radiometers and a video camera. The ADCP is 

used to estimate the water inflow speed. Further more it is equipped with sensors for 

measuring pressure, pitch, role and heading which are used to calculate the 

orientation of the SUIT under water and therefor act as an indicator of the efficiency 

during hauling. Depth as well as temperature and salinity profiles can be obtained by 

means of the CTD. The fluorometer is used to estimate the chlorophyll concentration 

under the sea-ice and the altimeter measures the distance between the net and the 

sea ice underside. By means of the spectral radiometers light transmission and ice 

algae biomass may be measured. An observer on deck visually estimated changes in 

ship speed, percentage of ice concentration and any irregularities during each haul. 

The observer also recorded GPS waypoints when the SUIT was deployed in the 

water and hauled back on deck. GPS waypoint were also recorded when the SUIT 

entered or exited the sea ice (David et al. 2015). 

2.3 M-RMT 

The Multiple-Opening Rectangular Midwater Trawl (M-RMT) is a fishing gear for 

sampling three depth strata of the water column with a coarse and a fine mesh each. 

It consists of two sets of three nets respectively combined within the same frame. 

The finer RMT-1 nets have a mouth area of 1 m2 and a mesh size of 330 µm. The 

coarser RMT-8 nets cover a mouth area of 8 m2 with a mesh size of 4.5 mm. A CTD 

is attached to the RMT frame for measuring environmental parameters. The RMT is 

trawled behind the ship and initially all nets are closed. For sampling the opening of 

the nets is triggered electronically. One net of RMT-1 and RMT-8 respectively will be 

opened upon triggering and will collect samples from the same depth. The opening of 

the second sets of nets, for sampling the following depth strata simultaneously closes 

the previously opened nets. These steps are repeated for the third depth strata (Roe 

and Shale 1979; Peeken 2016)  

2.4 Laboratory Methods 

Samples from the finer nets of both gears M-RMT (330µm) and SUIT (300µm) were 

used for investigation of distributions and abundances. Zooplankton samples 

preserved in 4% Formaldehyde were thoroughly rinsed with tap water to minimize 

health effects caused through exposure to fumes. Samples containing a lot of 
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biomass were split into smaller fractions using a Motoda plankton splitter (Motoda 

1959). In this manner random subsamples were created containing approximately 20 

chaetognath specimens each. 

Chaetognaths were sorted from the resulting subsample under a stereo microscope 

(Leica M205 C), utilizing a Bogorov dish. Specimens without a head were ignored 

since the head is the main characteristic for identifying the right species. Heads 

without bodies were identified and counted. 

2.4.1 Species Identification 

In total 342 individuals were classified. Specimens <8 mm were classified as 

juveniles and omitted from species identification due to the time consuming process.  

Species identification was performed using keys from (Pierrot-Bults et al. 1988; Bone 

et al. 1991) 

Subject of observation were therefor eye pigmentation, number and colour of hooks, 

number of rows of teeth, approximate number teeth, presence of a collaret, presence 

of gut diverticula, number of pairs of fins and their structure. Where present the 

number of rows of ova in the ovaries, shape and size of seminal receptacles and 

seminal vesicles were noted. The position of the latter was also examined. For a 

selection of specimens these features were documented for later analysis. 

2.4.2 Measurements 

Specimens were put in water and measured under a stereo microscope (Leica M205 

C) coupled to a digital image analysis system (Leica Application Suite) to the nearest 

0.1 mm. Subject of measurement were complete length (from the head to the tip of 

the tail excluding the tail fin), tail length, body width at the broadest part, head width, 

eye distance, ovary length, ova size and testes length. Furthermore for Eukrohnia 

hamata specimens the approximate amount of sperm load in the tail segment was 

estimated as percentage of tail capacity.  

2.4.3 Determination of Maturity Stages 

For E. hamata the maturity stages were estimated following the classification 

introduced by (Alvariño 1990a). Maturity stages and corresponding features for E. 

hamata are listed in Table 3.  
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Table 3 – Definition of maturity stages for E. hamata (Alvariño 1990a). Features indicating maturity stages are 

subdivided for male and femal gonads. Body lengths for maturity stages are also listed  

Stage Male gonads Female gonads Size [mm] 

0 no signs of male or female gonads  

 I Testes as fine tubes, seminal 

vesicles not present 

Ovaries as fine tubes <18 

II Tail segment filled with sperm, 

seminal vesicles incipient to full 

Ovaries longer than in 

previous stage 

25 

III Tail segment partially 

discharged, seminal vesicles 

broken 

Ovaries increasing in length, 

ova developing 

40 

IV Tail segment discharged, region 

of seminal vesicles covered by 

a thickening of epidermis 

Ovaries reaching up to 2/3 of 

distance from ventral 

ganglion; ova fully developed 

 

 

Specimens with an estimated sperm load higher than 1% were identified as stage II. 

Specimen with ova >0.4 mm were classified as stage III.  

 
Table 4 – Comparison of number of specimens of E. hamata classified according to maturity stages with total 

number of E. hamata encountered in different depth strata. 

Depth Strata [m] Classified  

E. hamata 

Total  

E. hamata 

0-2 31 42 

0-50 49 60 

50-200 50 95 

200-500 9 23 

 

2.4.4 Dry Mass and Elemental Composition 

38 specimens (28 E. hamata, 10 P. maxima) specimens, frozen at -80 °C on board, 

were used to analyse dry mass and elemental composition of chaetognaths. The 

specimens were taken from the coarser nets of SUIT (7 mm) and M-RMT (4.5 mm) 

from various stations at different depths throughout the Sophia Basin (see Appendix). 
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Specimens were thawed for approximately 15 minutes on ice in the fridge at 8 °C. 

After thawing total length, tail length and head width of specimens were measured 

under a stereo microscope (Leica M205 C) coupled to a digital image analysis 

system (Leica Application Suite) to the nearest 0.1 mm. Measurement of body width 

was not performed since the chaetognaths were bloated as a result of the freezing 

process. Ovary length was measured where easily distinguishable, and ontogenetic 

features such as seminal receptacles and vesicles were observed. Specimens were 

transferred to combusted and pre-weighed glass vials for further processing as 

described in the following sections.  

Wet and dry masses were measured for 38 chaetognaths (28 E. hamata, 10 P. 

maxima). For the analysis combusted glass vials were prepared. The glass vials 

were weighed on Mettler AE200 balance three times each. The mean values of 

measurements were used for the vial weights in further calculations. Thawed 

specimens were put in such a separate glass vial each. By weighing the filled vials, 

again three times each, the mean value for the wet mass of specimens was obtained 

by subtracting the mean empty vial weight from the mean filled vial weight. Samples 

were then freeze dried for 24 hours. Afterwards vials were again weighed three times 

to obtain the dry mass of specimens according to the calculations performed for the 

wet mass.  

Carbon and nitrogen content was measured for 28 specimens (18 E. hamata, 10 P. 

maxima). The dry mass of each sample was separately ground thoroughly in a 

mortar and pestle. The resulting matter was then filled into tin caps with a size of 9 x 

5 mm, each tin cap holding between 0.5 and 1.0 mg of dry matter. Weighing of tin 

caps and contents was performed on a Mettler Toledo microbalance. The tin caps 

were folded into small packages with a diameter of 2 mm utilising two pincers. Folded 

tin caps were stored in an indexed microwell plate for further processing. 

Measurement of carbon content and C:N ratios itself was conducted by a technician 

using an elemental analyser (EuroVector EA, type EuroEA 3000) at the AWI.  

2.5 Calculations and Statistical Analyses 

Most of the calculation and statistical analysis as well as the visualisation of results in 

graphs was performed using the software R. Remaining calculations were executed 

in Microsoft Excel.  
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2.5.1 Length Predictions 

31 of 220 E. hamata individuals preserved in Formaldehyde were damaged, such 

that measurement of body length was not possible. For these specimens, body 

length was predicted by linear regression for head width to body length relationships 

derived from undamaged E. hamata. 

2.5.2 Abundances 

Abundances were calculated as individuals per m3. Here for the numbers of 

individuals counted in a subsample were divided by the fraction of the investigated 

subsample and divided by the volume of trawled water per station and net. 

Trawled Volumes were kindly provided by Dr. Hauke Flores. They were calculated 

from ship speed, net opening and covered distance for the M-RMT using the formula 

introduced by (Roe et al. 1980). For the SUIT, trawled areas were calculated from the 

distance sampled in water, which is estimated from ADCP data, and net width (Flores 

et al. 2012).  

2.5.3 Biomass  

Linear regressions model were calculated for the relationship of body length to dry 

weight for E. hamata and P. maxima. Biomass [µg/m3] was determined per station 

gear and net by applying the models to the measured and predicted specimen 

preserved in Formaldehyde and dividing the values by trawled volumes for the 

respective nets.  

2.5.4 Carbon Content and C:N Ratios 

Of the frozen samples one P. maxima and E. hamata each were lacking a head. 

Linear regression for tail to body length relationships separately derived for E. 

hamata and P. maxima were used to predict the body lengths of these specimens. 

Standard deviation of C and N values were checked for replicas of each specimen. A 

mean C µg/mg and N µg/mg drymass were calculated for each specimen. Carbon 

contents for E. hamata and P. maxima were calculated by multiplying the mean C µg 

/mg/m3 for all representatives of each species by the previously discussed biomass. 

C:N ratios were calculated by dividing the overall mean C µg by the overall mean N 

µg for both species. 



 

 17 

2.5.5 Vertical and Spatial Distributions 

The depth strata 0-2 m, 0-50 m, 50-200 m and 200-500 m were introduced to 

investigate vertical distribution of chaetognaths. The depth strata roughly correspond 

to the SUIT net, and M-RMT nets 1-1 to 1-3. M-RMT station 19-2 lacks the deepest 

depth stratum and nets 1-2 and 1-3 are comprised in the 0-50 m depth stratum. 

Since normal distributions for length measurements and abundances could not be 

achieved through transformation, significant differences in various length distributions 

for Eukrohnia hamata were evaluated with Kruskal-Wallis tests. 

 

2.6 Possible Sources of Error 

Theoretically very precise measurements can be performed with the stereo 

microscope (Leica M205 C) coupled to a digital image analysis system (Leica 

Application Suite). Nevertheless measurement values are provided to the nearest 0.1 

mm to account for errors arising through the orientation of the specimen. 

Chaetognaths preserved in Formaldehyde (4% final concentration, buffered with 

hexamine) for four months shrink up to 21%. For E. hamata a value of 3.67% (sd ± 

2.51) was reported by (Kruse et al. 2009). The shrinkage process slows down after 

subsequently. Samples investigated in the present study were exposed to 

Formaldehyde preservation for approximately one year. All measurements may 

therefor underestimate original sizes of specimens. Samples for SUIT station 19-1 

and 27-1 had been preserved in EtOH 70% after preservation in Formaldehyde 

(F4%). (Dawson 1967) reported deviations of ±0.5 mm for body lengths of 

chaetognaths. Samples taken for elemental and biomass analysis were bloated due 

to the freezing process, which may also affect body lengths. 

 The accuracy of the Motoda plankton splitter was investigated by (van 

Guelpen et al. 1982). They reported a 16% coefficient of variation for P. elegans. 
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3 Results	

3.1 Abundance and Vertical Distribution 

The highest abundance for both gears was encountered at SUIT station 38-1. In 

general abundances under-ice were higher than in the water column, except for 

station 19, where almost no specimens were found. Abundances per station and 

species are illustrated in Figure 5. For the M-RMT samples, abundance of 

chaetognaths was highest at stations 19-2 (1.19 ind./m3) and 38-2 (1.06 ind./m3). 

Abundance at station 27-17 was comparably low with 0.45 ind./m3. For the SUIT 

samples, the overall abundance of chaetognaths was lowest at the shelf station 19-1 

(0.006 ind./m3) and highest at station 38-1 (1.6 ind./m3).  

 
Figure 5 – Overview of species abundances summarized per station and gear. The abundances are presented as 

individuals per m3. The colours indicate the abundance of each species per station. Black portions indicate 

unidentified chaetognaths. Grey portions indicate unidentified juvenile chaetognaths. Blue, cyan and magenta 

portions indicate P. elegans, E. hamata and P. maxima respectively. 

The abundance of P. elegans was highest in the water column at station 19-2 where 

it represents ~28% of all chaetognaths found. In contrast, no specimens of P. 

elegans were encountered in the SUIT samples of station 19-1. At station 38 P. 

elegans represented 4% and 3% of chaetognaths in SUIT and M-RMT samples 
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respectively. In all other samples P. elegans was not present (see Figure 6). E. 

hamata was the dominant species at all stations, except for M-RMT station 19-2. The 

portion of E. hamata ranged from 25% at station 19-2 to 100% at station 19-1. 

Juvenile chaetognaths, not identified to species level, were encountered in high 

numbers at station 19-2 where they comprised 48% of all chaetognaths. They were 

also present at stations 27 and 38 in lower abundances, constituting less than 15% of 

the chaetognath community. P. maxima was encountered at M-RMT stations 27-17 

and 38-2 with calculated abundances of 0.003 and 0.006 ind./m3 respectively. One 

individual was encountered at station 27 between 200 and 500 m depth with a body 

length of 12.3 mm and a head width of 1.5 mm. Gonads were not visible in this 

specimen. At station 38 at 50-200 m depth a head of P. maxima was found 

measuring 3.6 mm in width. Percentages for all chaetognath groups at investigated 

stations are illustrated in Figure 6. 

 

 
Figure 6 - Overview of species composition summarized per station and gear. Portions of each group are 

displayed in percentages of all chaetognaths per station. Colours indicate the percentage of each species per 

station. Black portions indicate unidentified chaetognaths. Grey portions indicate unidentified juvenile 

chaetognaths. Blue, cyan and magenta portions indicate P. elegans, E. hamata and P. maxima respectively. 
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3.1.1 Vertical Distribution 

Highest abundances were found under the ice and in the 0-50 m depth layer of the 

water column. Lower abundances were encountered between 50 and 500 m, with the 

lowest abundance in the 200-500m depth strata. E. hamata was encountered at all 

depths, with highest abundances under the ice. High abundances were found in the 

0-50 m depth strata of the water column, though they were significantly lower than 

under the ice. The abundances were the lowest between 200 and 500 m. Except for 

station 19-2 (see Figure 9), abundances decreased from under the ice to the deepest 

depth strata. P. elegans was only present above 200 m and only at station 38-1 

under the ice. On the contrary P. maxima was encountered exclusively at depths 

below 200 m. Juvenile chaetognaths were most abundant at the surface layer of the 

water column on the shelf. Few juveniles were also found at station 38 under the ice 

and above 50 m. Vertical distributions and abundances of chaetognath species 

summarized for all stations are depicted in Figure 7 and Figure 8. Vertical distribution 

of species at each station is depicted in Figure 9.  

 
Figure 7 – Overview of species abundances for all stations and gears, grouped by depth strata. Accumulated: 

Abundances are summarized for all stations per depth strata. Mean: Mean abundances per depth strata for all 

stations are displayed. The abundances are presented as individuals per m3. The colours indicate the abundance 

of each species per depth strata. Black portions indicate unidentified chaetognaths. Grey portions indicate 

unidentified juvenile chaetognaths. Blue, cyan and magenta portions indicate P. elegans, E. hamata and P. 

maxima respectively. 
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Figure 8 - Overview of species composition summarized for all gears and stations, grouped by depth strata. 

Portions of each group are displayed in percentages of all chaetognaths per depth strata. Colours indicate the 

percentage of each species per station. Black portions indicate unidentified chaetognaths, grey portions 

unidentified juvenile chaetognaths. Blue, cyan and magenta portions indicate P. elegans, E. hamata and P. 

maxima respectively. 

 



 

 22 

 
Figure 9 - Abundances of E. hamata, P. elegans and P. maxima as well as unidentified chaetognath juveniles, 

measured in individuals per m3, for the investigated SUIT and M-RMT stations. Separate bar plots for each afore 

mentioned group are displayed. Bars are grouped per station. SUIT and M-RMT hauls for each station are 

grouped together. The colour of the bar indicates the depth strata for which abundances are displayed. The bars 

are ordered from left to right by depth of sampled layers, starting at the under-ice layer and descending into 

deeper layers. Orange bars indicate abundances in the at 0-2 m layer (SUIT plankton net). Red, yellow and blue 

bars indicate abundances in the depth layers sampled with the M-RMT.  
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3.2 Length and Maturity Distribution 

Lengths for P. elegans (n=35), E. hamata (n=220) and juveniles are visualised in 

Figure 10 and are described in the following.  

 

 
Figure 10 – Median, 1st and 3rd quartile values for body lengths of P. maxima, E. hamata and unidentified 

juvenile chaetognaths for all depth strata. 

 

3.2.1 Juveniles 

Juvenile chaetognaths not identified to species level (n=59) ranged between 1.9 mm 

and 7.6 mm length with a mean length of 4.7 mm. One juvenile was encountered at 

0-2 m with a length of 4.8 mm. Juvenile chaetognaths in the depth layer 0-50 m 

(n=39) ranged between 1.9 mm and 7.6 mm with a mean length of 4.9 mm. Juvenile 

chaetognaths in the depth layer 50-200 m (n=16) ranged between 2.2 mm and 7.1 

mm, with a mean length of 4.3 mm. Unidentified juveniles found lower than 200 m 

(n=3) had lengths between 3.7 mm and 4.4 mm.  

3.2.2 Parasagitta elegans 

Body lengths of encountered P. elegans ranged between 11.6 and 31.5 mm with a 

mean value of 22.5 mm (see Figure 10). P. elegans in the 0-50 m depth layer ranged 

between 11.6 mm and 31.5 mm. Specimens found in 50-200 m depth had body 

lengths between 21.5 mm and 31.3 mm. The single individual found under the ice 

was 27.2 mm long. Length distribution for 0-50 m and 50-200 m depth strata are 

presented in Figure 11. The proportion of ovary length to body length ranged 
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between 5.8% and 38.6% with a mean value of 20.5% for individuals investigated 

(n=18). Seminal vesicles, seminal receptacles were easily distinguishable for these 

specimens. Tail segments were filled with sperm. Relationships between body length 

and ovary length, as well as ovary length and ova size are depicted in Figure 12.  

 

 
Figure 11 – Distributions of body lengths for P. elegans for the depth strata 0-50 m and 50-200 m. 

 

 
Figure 12 – Relationships between measurements for P. elegans. a) Relationship between body length and ovary 

length. b) Relationship between ovary length and ova size of P. elegans. 
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3.2.3 Eukrohnia hamata 

Body lengths of E. hamata ranged between 5.2 and 30.5 mm. A linear relationship 

was encountered between head widths and body lengths of E. hamata (see Figure 

13). 

 
Figure 13 – Linear relationship between head width and total length of E. hamata specimens (n=70). Black circles 

indicate data points for all individuals. The red line indicates the corresponding linear model. Function and R2 of 

the linear model are plotted in the graph.  

 

Maturity stages found for E. hamata ranged from stage 0 to stage III. Lengths of 

body, ovary and testes measurements for the different stages are visualised in Figure 

14. Juvenile E. hamata (n=41) ranged between 5.2 and 18.6 mm with a mean 9.4 

mm. Lengths for Stage 1 (n=34) were between 11.7 mm and 30.5 mm with a mean 

value of 19.6 mm. Stage II individuals (n=63) had body lengths of 14.7 and 29.6 mm 

with a mean value of 23.2 mm. The only stage III individual found was 29.3 mm long. 

Lengths of body, ovaries, testes as well as sperm load between maturity stages were 

compared with Kruskal-Wallis. P-values between all groups were <0.05 and are 

presented in Table 5.  
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Figure 14 – Median, 1st and 3rd quartile values for body, ovary and testes lengths as well as sperm load for the 

maturity stages 0-III of E. hamata. 

Table 5 – Results of Kruskal-Wallis tests comparing body, ovary and testes lengths of the maturity stages 0-III 

identified for E. hamata. 

 Total Length Ovary Length Testes Length Sperm Load 

p-value < 2.2e-16 0.0003745 9.853e-09 7.971e-14 

 

Length distributions in the different depth strata for all E. hamata, including 

unclassified specimens, are visualised in Figure 15.  A Kruskal-Wallis test with a 

post-hoc Nemenyi test was performed to estimate the degree of difference between 

body lengths for all depth strata. P-values were <0.05 for the comparison between 0-

2 m and 50-200 m depth strata, as well as 0-50 m and 50-200 m depth strata. The 

results are presented in Table 6. 

 
Table 6 – Results of a Kruskal-Wallis post-hoc Nemenyi test comparing body lengths of E. hamata between 

different depth strata. P-values indicate how significantly different the length distributions in the depth strata are. 

P-value for the Kruskal-Wallis test was 1.809e-07. 

 (0,2]  (0,50]   (200,500] 

(0,50]  1.00     -   -    

(200,500]  0.58 0.64     -         

(50,200]  1.9e-05 2.6e-06 0.17      
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Figure 15 – Distributions of body lengths of E. hamata specimens subdivided by depth strata. 

 

Portions of each stage in all depth strata are presented in Figure 16. Stage II adults 

were the largest group under the sea-ice and above 50 m. Stage I adults were 

frequent under the ice, between 0-50 and 200-500 m. Juveniles were most common 

between 50-200 m. For the 200-500 m depth strata less than 40% of specimens 

were stage classified. 

 

 
Figure 16 – Vertical distribution of maturity stages found for E. hamata. Colours indicate the percentage of 

specimens belonging to each stage in all investigated E. hamata for each depth strata. Grey portions indicate the 

percentage of E. hamata that are not stage classified. 
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3.3 Biomass  

Linear relationships between tail length and body lengths were found for the frozen 

specimens of E. hamata and P. maxima. The linear regression models are depicted 

in Figure 17. A nonlinear relationship was found between body lengths and dry 

weights of E. hamata (see Figure 18), while no relationship was found for P. maxima. 

At station 19 the summed up biomass over all gears and nets for E. hamata was 

0.328 mg/m3, at station 27 0.366 mg/m3 and at station 38 0.363 mg/m3. Biomass 

data is visualised in Figure 19.  

 
Figure 17 – Relationships between tail lengths and total length of E. hamata and P. maxima. The linear 

regression models were used for analysis of elemental composition and dry weight. Black circles represent data 

points for measured specimens. The red line indicates linear regression. Functions of the linear models and 

corresponding R2 are printed in the plot. 
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3.4  
Figure 18 – Total length vs. dry mass measured for E. hamata. Black circles indicate data points for individual 

specimens. Red line: nonlinear regression model assumed for relation between body length and dry weight for E. 

hamata. Function of the model and R2 are printed in the plot. The nonlinear model for predicting the biomass of 

the quantified E. hamata preserved in Formaldehyde.  

 

 

 
Figure 19 – Overall biomass of E. hamata. a) Biomass at all stations summed up for M-RMT 1 nets and SUIT 

plankton net. b) Biomass displayed separately for every gear and net. 
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3.5 Elemental Composition 

Carbon contents for E. hamata ranged between 310.9 and 424.5 µgC/mg dry mass 

with a mean carbon content of 377.2 µgC/mg. This resulted in a total carbon content 

of 123.62 µgC/m3 for station 19, 138.22 µgC/m3 for station 27 and 136.96 µgC/m3 for 

station 38. Carbon contents for P. maxima ranged between 201.5 and 322.0 µgC/mg 

dry mass with a mean carbon content of 298.9 µgC/mg. Linear relationships between 

body length and carbon content were found for neither of the two species.  

C:N ratios for E. hamata ranged between 3.9 and 5.7 with a mean C:N ratio of 4.7. P. 

maxima had C:N ratios between 3.3 and 3.9 with a mean C:N ratio of 3.8.  

3.6 Chlorophyll a 

Concentrations of Chla measured for the upper 100m of the water column are 

visualised in Figure 20. Station 19 had the highest concentration, with over 10 µg/L at 

5 m depth. Stations 27 and 36 had lower concentrations in the vertical Chla profiles 

(<4 µg/L) as well as in integrated Chla concentrations for the 0-50 depth layer. 

Integrated Chla-values for the stations were: station 19 - 287.35 mg/m2, station 27 - 

119.44 mg/m2 and station 36 (as nearest station to station 38) - 112.22 mg/m2 

 
Figure 20 – Overview of Chla: Vertical Chla profiles for CTD stations near the SUIT and M-RMT stations. Data 

kindly provide by Dr. Ilka Peeken. 

3.7 Temperature 

Vertical temperature profiles near the investigated stations are depicted in Figure 21. 

Temperature ranged between -1.4 and -1.8 °C in the upper 30 m and reached up to 

2.3–2.8 °C at 160-190 m depth. The thermocline at ~250 m for station 36 was 

located deeper than for the other two stations. The temperatures along the vertical 

profile were lowest for station 19. 
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Figure 21 – Overview of Temperature: Vertical temperature profiles from CTD measurements near the SUIT and 

M-RMT stations investigated in the present study. Data kindly provide by Dr. Ilka Peeken. 
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4 Discussion		
 

The current study aims at closing a gap in the understanding of the importance of 

chaetognaths in the Arctic Ocean. 

4.1 Abundance and Distribution 

Three species, E. hamata, P. elegans and P. maxima, were found in the present 

study. This meets expectations since they are the most common species in the study 

area and contribute substantially to zooplankton biomass in the Arctic Ocean 

(Søreide et al. 2003; Hopcroft et al. 2004).  

E. hamata was the most abundant chaetognath at most stations under the ice and 

throughout the water column at stations towards the deep-sea basin. P. elegans was 

found in highest concentrations on the shelf whereas P. maxima was only found at 

stations on the slope. The results confirm the dominant role of P. elegans on Arctic 

shelves (Welch et al. 1996; Grigor et al. 2014b), while being a neritic expatriate in the 

Arctic basins (Kosobokova et al. 2010). The other two species are more abundant 

offshore (Kosobokova et al. 2010). 

Samples of this study were collected in Arctic spring when zooplankton abundances 

are generally lower than after the spring bloom {Grigor:2014kk, (Herman 1989). In 

general the abundances were higher under the sea-ice than in the water column. 

Overall chaetognath abundance decreased when descending into deeper water 

layers. Nevertheless chaetognath abundances accumulated over the entire water 

column were higher in the deep basin than on the shelf. In the Antarctic chaetognath 

abundances were lower under the sea-ice than in the water column. Higher 

chaetognath abundances were observed at stations with higher densities of 

copepods and krill larvae (David 2015). (David 2015) assumes that copepods were 

attracted to under-ice resources during winter and chaetognaths in turn followed the 

copepods. Since the abundances of present study were surveyed in Arctic spring, 

this might also be the reason for the high abundances under the sea-ice. The sample 

from SUIT station 19-1 had very low overall biomass.   

Overall chaetognath abundances found in the present study are in agreement with 

results for the central Nansen Basin in late summer with overall mesozooplankton 

abundance decreasing in deeper water layers (Auel and Hagen 2002). In the 0-50 m 
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layer 0.635 ind./m3 were found in the Nansen Basin, compared to a mean of 0.695 

ind./m3 in the present study. In the 200-500 m 0.244 ind./m3 were found in the 

Nansen Basin, compared to a mean of 0.081 ind./m3 in the present study. It differed 

though for the 50-200 m depth layer, where (Auel and Hagen 2002) reported 1.591 

ind./m3 compared to 0.149 ind./m3. Differences could arise through the different 

seasons in which studies were conducted. 

4.1.1 P. elegans 

P. elegans was most abundant on the Barents shelf, where it had higher abundances 

than E. hamata. P. elegans contributed to less than 7% of the chaetognath 

population under-ice and in the water column on the slope. P. elegans was only 

found above 200 m, with highest abundances between 0-50 m. This is in agreement 

with findings for Baffin Bay, Resolute and Svalbard of (Sameoto 1987), (Welch et al. 

1996; Grigor et al. 2014b) and strengthens the hypothesis, that P. elegans is 

restricted to Arctic Ocean water (0-200 m). The abundances found in the present 

study resemble the proximity of the study area to the shelf since higher abundances 

have been reported in a near Svalbard (Grigor et al. 2014b), and lower abundances 

were estimated for the central Nansen Basin (David et al. 2015).  

The abundance of 0.3 ind./m3 in the upper 100 m on the shelf is comparable with 

abundances found in the Arctic Canada Basin where 0.14 individuals per m3 were 

reported at a sampling depth of 100 m (Hopcroft et al. 2004). In comparison to the 

abundance in the upper 100 m at station 19 of this study of 9.1 ind./m2, in the 

Barents Sea abundances for P. elegans were reported with 3.3 ind./m2 in the upper 

200 m (Søreide et al. 2003). In contrast, the encountered abundance of P. elegans is 

much lower than that in a fjord of Svalbard with 108 individuals per m2 for this season 

(Grigor et al. 2014b). Nevertheless the abundance of P. elegans under the ice (<0.13 

ind./m3) is higher than that in the central Nansen and Amundsen Basin (0.0015 ind. 

/m2) (David et al. 2015). 

4.1.2 P. maxima 

In total only two P. maxima were found resulting in very low abundances (<0.006 

ind./m3). P. maxima is generally found in meso- to bathypelagic depths in the central 

Arctic basins (Kosobokova et al. 2010), Though samples of the courser M-RMT nets 

contained very large chaetognaths (pers. observation), which may be P. maxima. 

Furthermore P. maxima specimens up to 60 mm of length, were identified in the 
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frozen samples used for biomass analysis taken from the courser M-RMT nets. Large 

chaetognaths could be avoiding the smaller net openings of the finer nets (Fleminger 

and Clutter 1965). Calculated abundances for P. maxima may therefor be 

misleading. This would also explain the discrepancy to other studies in the Arctic. 

Between the Canada Basin and Chukchi Sea (75° 21’ – 75° 42’ N) P. maxima was 

found throughout the water column (Dawson 1967). In Baffin Bay P. maxima was 

most abundant between 150 and 350 m at the transition zone between Arctic Ocean 

water and Labrador Sea water. Abundances reached up to 0.5 ind./m3 in this area 

(Sameoto 1987).  

4.1.3 Juveniles 
Juveniles were most abundant on the shelf (0.6 ind./m3). Adding up unidentified 

juveniles with stage 0 Eukrohnia hamata leads to 0.7 ind/m3 on the shelf and 0.4 

ind./m3 in the basin. The abundance of unidentified juveniles was very high between 

0 and 50 m and lower between 50 and 200 m. High densities of juveniles are typical 

for May and July. It is assumed that they are linked to the restocking of copepod 

nauplii following the phytoplankton boom in spring. Though as factors such as 

continuous light in the upper layer or the lower salinity due to fresh water runoff from 

the ice could also have an impact (Dawson 1967). The differences in mean lengths 

for unidentified juveniles in these two layers could indicate two different species. This 

hypothesis is strengthened when taking into account that E. hamata juveniles were 

numerous in the latter layer. At Weather Station P in the pacific, juveniles showed 

different but overlapping vertical distributions. Juveniles of P. elegans (stage 0) were 

found only above 25 m and juveniles and stages I E. hamata only deeper than 25 m 

(Sullivan 1977).   

Juveniles were found under the ice only at one station. Only at station 38 were 

juveniles found below 200 m. This could be due to the vertical temperature profile at 

this station. The thermocline was located at approximately 300 m depth, forming a 

wider mixed layer above. 

4.1.4 E. hamata 
The abundances (0.3-0.8 ind./m3) for E. hamata in the upper water column are a little 

lower than the abundances found in the Arctic Canada Basin (1.34 ind./m3) (Hopcroft 

et al. 2004) in summer. In contrast in Baffin Bay abundances of E. hamata reached 

over 5 ind./m3 (Sameoto 1987). In the Barents Sea (Søreide et al. 2003) encountered 
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2.9 ind./m2. Abundances under the ice (<2.5 ind./m2) were higher than those found in 

the Eurasian basin (0.11 ind/m2) (David et al. 2015). 

4.2 Distribution of Maturity Stages E. hamata 
Seminal vesicles were hard to identify for E. hamata. Incipient seminal vesicles may 

have been missed. To reduce uncertainties sperm load in the tail segment was used 

as a characteristic to distinguish stage I from stage II adults. Furthermore broken 

seminal vesicles were possibly mistaken for incipient seminal vesicles. As sperm 

may only be partially discharged in stage III E. hamata, specimens with ova >0.04 

mm were classified as stage III adults. Most chaetognaths <8 mm were not 

determined to species level. For a more precise estimate of stage distribution and life 

cycle analyses, all juveniles should be identified to at least genus level. 

Stage 0 E. hamata were most abundant between 50 and 200 m. Stage I E. hamata 

were most abundant under the ice and between 0 and 50 m. Though many 

individuals were not classified for the layers below 50 m, percentages of E. hamata 

stages per layer and length histograms suggest stage I adults being present. They 

seem to be less numerous in layers below 50 m, especially at layers deeper than 200 

m. Stage II E. hamata were most abundant under the ice and above 50 m. Length 

histograms indicate that they are also numerous between 200 and 500 m. One 

specimen for stage III was found below 200 m at station 38.  

The results correspond to previously observed vertical distribution patterns of 

maturity stage with immature individuals populating the upper layers and mature 

specimen migrating to deeper layers for spawning (Dawson 1967; Timofeev 1998). 

This vertical distribution is typical for E. hamata in Arctic and Antarctic Oceans 

(Hagen 1999). (Timofeev 1998) suggests maturation and reproduction of Arctic E. 

hamata to take place in the Atlantic waters with temperatures near 0°C and salinities 

of 34.8-34.9%) .  

The distribution of stage 0 is similar to the findings at Weather Station P where 

specimens of this species and stage were found only lower than 25 m (Sullivan 

1977). The vertical distribution of stage 0 and I is in agreement with populations in 

Baffin Bay (Sameoto 1987) and Franz-Joseph Island (Dawson 1967) where juveniles 

and stage I E. hamata were concentrated in the upper 100 m. In contrast stage II 

individuals were most abundant between 200 and 500 m in Baffin Bay, whereas their 

abundance peaks under the ice and above 50 m for the present study in the Sophia 

Basin. The difference in distribution patterns for stage II could for one be due to the 
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more southern position of Baffin Bay (75 °N). Another reason could be the use of 

different stage classifications. Whereas (Sameoto 1987) used a more general 

classification (Sameoto 1973), the E. hamata of the present study were classified 

according to the stages introduced by (Alvariño 1990a).  

In Baffin Bay stage III individuals were concentrated between 400 and 800 m depth 

(Sameoto 1973). In the Canada Basin and Chukchi Sea they were found below 500 

m (Dawson 1967). The maximum sampling depth of the present study is 500 m at 

station 38. Stage III individuals were possibly below these layers. Specimens of 

stage IV were not found. This strengthens previous observations, that mature E. 

hamata descend to deeper layers for spawning. Individuals carrying brood pouches 

have been observed deeper than 700 m (Timofeev 1998). Mature individuals and are 

only known to ascend to layers above 500 m in September (Dawson 1967). 

4.3 Biomass 

Biomass found for E. hamata increased from the shelf toward the basin. Estimated 

values (0.328-0.366 mg/m3) are lower than in other studies. Biomass for E. hamata in 

the Arctic Canada Basin reached 0.969 mg/m3 (Hopcroft et al. 2004) and up to 0.02 

g/m3 in Baffin Bay (Sameoto 1987). (Sameoto 1987) observed a decrease in biomass 

south to north. Therefor biomass in the present study is expected to be lower than 

that of more southern regions. Highest densities of adult copepods were observed 3 

weeks after the spring bloom, followed by a maximum abundance of P. elegans after 

3 more weeks in Conception Bay (Choe et al. 2003). The Chla values at the present 

stations indicate, that sampling was performed before or during spring bloom 

(Herman 1989), which could explain lower biomass. 

4.4 C:N Ratios 

The C:N ratio of E. hamata (mean 4.7) were considerably higher than those for P. 

maxima (mean 3.7). C:N ratios of E. hamata correspond to values found in previous 

studies for polar chaetognaths.  

High C:N ratios are explained by oil droplets found in the intestine tissue of 

chaetognaths. The function of these oil droplets yet remains unclear, though they are 

assumed to act as buoyancy aid or energy deposit (Kruse et al. 2010b), 

{Oresland:1990wo}, (Terazaki 1993). In the present study oil droplets for E. hamata 

were observed which leaked from most specimens. The biochemical composition of 

E. hamata is not correlated with its reproductive cycle since high lipid values have 
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also been reported for immature specimens. Food availability could be a major factor 

{Bamstedt:1977ub}. This is also assumed for the present study, since C:N 

measurements were not related to body size of specimens, which increases with 

maturity. For Antarctic E. hamata C:N ratios varied between 4.3 in summer and 5.1 in 

winter by (Kruse et al. 2010b). She assumes better feeding conditions for 

chaetognaths in winter due to overwintering of some copepod species (Hagen 1999; 

Kruse et al. 2010b). Since C:N ratios of the present study reached over 5.1, the 

biochemical composition of E. hamata is similar to the Antarctic winter population.  

There seems to be little knowledge about the C:N ratios for P. maxima, since 

published results could not be found. C:N ratios of P. maxima are in the range of 

values published for P. elegans. (Terazaki 1993) reported C:N ratios for P. elegans of 

4.7 in the Japan Sea and 3.5 in the Pacific. In Conception Bay C:N ratios of 4.4 were 

found for P. elegans (Choe et al. 2003). (Choe et al. 2003) assumes that C:N ratios 

as well as lipid and carbohydrate levels for P. elegans are positively correlated to the 

maturity stage of chaetognaths as well as food quality. 

4.5 Conclusions 

P. elegans was mainly found on the shelf, whereas E. hamata was the dominant 

chaetognath species offshore. Juvenile chaetognaths were encountered in high 

abundances in the upper 200 m of the water column. Overall abundances of 

chaetognaths decreased in deeper water layers. Abundances under the sea-ice were 

higher than in the water column. Significant differences in overall abundances and 

biomass could not be found between the shelf station and stations towards the deep 

basin. High abundances of chaetognaths found under the sea-ice confirm the 

importance of the under-ice habitat in the Arctic Ocean (David et al. 2015). Since the 

Arctic sea ice extent is decreasing rapidly {Polyakov:2005ic}, an important habitat for 

chaetognaths may be at risk. 
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