Organic carbon in ice-rich permafrost: Characteristics, quantity, and availability


Contact
Jens.Strauss [ at ] awi.de

Abstract

-----------------German version below----------------- Permafrost, defined as ground that is frozen for at least two consecutive years, is a distinct feature of the terrestrial unglaciated Arctic. It covers approximately one quarter of the land area of the Northern Hemisphere (23,000,000 km²). Arctic landscapes, especially those underlain by permafrost, are threatened by climate warming and may degrade in different ways, including active layer deepening, thermal erosion, and development of rapid thaw features. In Siberian and Alaskan late Pleistocene ice-rich Yedoma permafrost, rapid and deep thaw processes (called thermokarst) can mobilize deep organic carbon (below 3 m depth) by surface subsidence due to loss of ground ice. Increased permafrost thaw could cause a feedback loop of global significance if its stored frozen organic carbon is re-introduced into the active carbon cycle as greenhouse gases, which accelerate warming and inducing more permafrost thaw and carbon release. To assess this concern, the major objective of the thesis was to enhance the understanding of the origin of Yedoma as well as to assess the associated organic carbon pool size and carbon quality (concerning degradability). The key research questions were: - How did Yedoma deposits accumulate? - How much organic carbon is stored in the Yedoma region? - What is the susceptibility of the Yedoma region's carbon for future decomposition? To address these three research questions, an interdisciplinary approach, including detailed field studies and sampling in Siberia and Alaska as well as methods of sedimentology, organic biogeochemistry, remote sensing, statistical analyses, and computational modeling were applied. To provide a panarctic context, this thesis additionally includes results both from a newly compiled northern circumpolar carbon database and from a model assessment of carbon fluxes in a warming Arctic. The Yedoma samples show a homogeneous grain-size composition. All samples were poorly sorted with a multi-modal grain-size distribution, indicating various (re-) transport processes. This contradicts the popular pure loess deposition hypothesis for the origin of Yedoma permafrost. The absence of large-scale grinding processes via glaciers and ice sheets in northeast Siberian lowlands, processes which are necessary to create loess as material source, suggests the polygenetic origin of Yedoma deposits. Based on the largest available data set of the key parameters, including organic carbon content, bulk density, ground ice content, and deposit volume (thickness and coverage) from Siberian and Alaskan study sites, this thesis further shows that deep frozen organic carbon in the Yedoma region consists of two distinct major reservoirs, Yedoma deposits and thermokarst deposits (formed in thaw-lake basins). Yedoma deposits contain ~80 Gt and thermokarst deposits ~130 Gt organic carbon, or a total of ~210 Gt. Depending on the approach used for calculating uncertainty, the range for the total Yedoma region carbon store is ±75 % and ±20 % for conservative single and multiple bootstrapping calculations, respectively. Despite the fact that these findings reduce the Yedoma region carbon pool by nearly a factor of two compared to previous estimates, this frozen organic carbon is still capable of inducing a permafrost carbon feedback to climate warming. The complete northern circumpolar permafrost region contains between 1100 and 1500 Gt organic carbon, of which ~60 % is perennially frozen and decoupled from the short-term carbon cycle. When thawed and re-introduced into the active carbon cycle, the organic matter qualities become relevant. Furthermore, results from investigations into Yedoma and thermokarst organic matter quality studies showed that Yedoma and thermokarst organic matter exhibit no depth-dependent quality trend. This is evidence that after freezing, the ancient organic matter is preserved in a state of constant quality. The applied alkane and fatty-acid-based biomarker proxies including the carbon-preference and the higher-land-plant-fatty-acid indices show a broad range of organic matter quality and thus no significantly different qualities of the organic matter stored in thermokarst deposits compared to Yedoma deposits. This lack of quality differences shows that the organic matter biodegradability depends on different decomposition trajectories and the previous decomposition/incorporation history. Finally, the fate of the organic matter has been assessed by implementing deep carbon pools and thermokarst processes in a permafrost carbon model. Under various warming scenarios for the northern circumpolar permafrost region, model results show a carbon release from permafrost regions of up to ~140 Gt and ~310 Gt by the years 2100 and 2300, respectively. The additional warming caused by the carbon release from newly-thawed permafrost contributes 0.03 to 0.14°C by the year 2100. The model simulations predict that a further increase by the 23rd century will add 0.4°C to global mean surface air temperatures. In conclusion, Yedoma deposit formation during the late Pleistocene was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes under periglacial conditions. The circum-arctic permafrost region, including the Yedoma region, contains a substantial amount of currently frozen organic carbon. The carbon of the Yedoma region is well-preserved and therefore available for decomposition after thaw. A missing quality-depth trend shows that permafrost preserves the quality of ancient organic matter. When the organic matter is mobilized by deep degradation processes, the northern permafrost region may add up to 0.4°C to the global warming by the year 2300. -----------------German version----------------- Permafrost, definiert als mehr als zwei aufeinander folgende Jahre gefrorenes Bodenmaterial, ist eines der prägenden Merkmale der unvergletscherten arktischen Landgebiete. Verursacht durch extrem kalte Wintertemperaturen und geringe Schneebedeckung nimmt das Permafrost-Verbreitungsgebiet mit ~23.000.000 km² rund ein Viertel der Landfläche der Nordhemisphäre ein. Von Permafrost unterlagerte arktische Landschaften sind besonders anfällig hinsichtlich einer Erwärmung des Klimas. Verglichen mit der globalen Mitteltemperatur prognostizieren Klimamodelle für die Arktis einen doppelt so starken Anstieg der Temperatur. In einer sich erwärmenden Arktis bewirken Störungen des thermisch-hydrologischen Gleichgewichts eine Degradation von Permafrost und Veränderungen des Oberflächenreliefs. Diese Störungen können zum Beispiel zu einer Vertiefung der saisonalen Auftauschicht, zu thermisch bedingter Erosion sowie zu schneller Oberflächenabsenkung und Thermokarst führen. Im Verbreitungsgebiet der spätpleistozänen eisreichen Permafrost-Ablagerungen Sibiriens und Alaskas, bezeichnet als Yedoma, können Thermokarstprozesse auch mehr als 3 m tiefe organischen Kohlenstoffspeicher verfügbar machen, wenn durch schmelzendes Grundeis und Schmelzwasserdrainage die Oberfläche abgesenkt wird. So kann das Tauen von Permafrost eine globale Bedeutung entwickeln, indem vorher eingefrorener Kohlenstoff wieder dem aktiven Kohlenstoffkreislauf zugeführt wird. Dies kann durch Treibhausgasfreisetzung aus Permafrost zu einer sich selbst verstärkenden weiteren Erwärmung und somit zu fortschreitendem Tauen mit weiterer Kohlenstofffreisetzung führen. Diesen Prozess nennt man Permafrost-Kohlenstoff Rückkopplung. Um das Verständnis der Permafrostkohlenstoffdynamik grundlegend zu verbessern, wurde in dieser Doktorarbeit die Entstehung der Yedoma-Ablagerungen eingeschlossen des darin gespeicherten organischen Kohlenstoffs untersucht. Die konkreten Forschungsfragen der Arbeit sind: - Wie wurden die Yedoma-Sedimente abgelagert? - Wie viel Kohlenstoff ist in der Yedoma Region gespeichert? - Wie ist die Anfälligkeit dieses Kohlenstoffs für eine Degradation in der Zukunft? Um die oben genannten drei Forschungsfragen zu beantworten, wurde ein interdisziplinärer Forschungsansatz gewählt. In Sibirien und Alaska wurden detaillierte Felduntersuchungen durchgeführt und Methoden der Sedimentologie, der organischen Biogeochemie, der Fernerkundung sowie der statistischen Analyse und computergestützten Modellierung angewendet. Um diese Ergebnisse in den panarktische Kontext zu setzen, enthält diese Doktorarbeit ebenfalls Ergebnisse einer Studie, welche auf Grundlage einer neu zusammengestellten Datenbank den gesamten Kohlen-stoff des arktischen Permafrosts abschätzt. Eine Modellierungsstudie ergänzt die Arbeit bezüglich einer Abschätzung der Kohlenstoffflüsse der Permafrostregion und deren Einfluss auf die globale Erwärmung. Die Ergebnisse zur Yedoma-Entstehung zeigen, dass die Korngrößenverteilungen dieser Ablagerungen, tiefenabhängig betrachtet, sehr homogen sind. Alle gemessenen Korngrößenverteilungen sind schlecht sortiert. Dies deutet auf eine Vielzahl von Transportprozessen hin und widerspricht der populären Hypothese einer reinen Löß-Ablagerung. Interpretiert im Kontext mit der Abwesenheit von Gletschern sowie Eisschilden, als Ausgangsgebiete von Löß-Ablagerungen, in den sibirischen Tiefländern des Spätpleistozäns, zeigt diese Arbeit, dass Yedoma-Ablagerungen polygenetischen Ursprungs sind. Basierend auf dem größten verfügbaren Datensatz der Schlüsselparameter Kohlenstoffgehalt, Lagerungsdichte, Grundeis und Volumen der Ablagerungen von über 20 Untersuchungsgebieten in Sibirien und Alaska zeigt diese Arbeit mit Yedoma- und Thermokarstablagerungen zwei wesentliche Kohlenstoffspeicher der Yedoma Region auf. Yedoma-Ablagerungen enthalten ~80 Gt und Thermokarstablagerungen ~130 Gt organischen Kohlenstoffs, was einer Gesamtmenge von ~210 Gt organischen Kohlenstoffs entspricht. Abhängig vom gewählten Ansatz der Fehlerberechnung liegt der Unsicherheitsbereich dieser Quantitätsabschätzung bei ±75 % (einfaches Bootstrapping) oder ±20 % (wiederholtes Bootstrapping). Obwohl diese Zahlen die bisherigen Berechnungen des Yedoma-Region-Kohlenstoffspeichers vorhergehender Studien halbieren, stellen 210 Gt organischen Kohlenstoffs noch immer einen großen Kohlenstoffspeicher dar, der eine positive Rückkopplung zur globalen Klimaerwärmung bewirken könnte. Die gesamte Permafrostregion beinhaltet zwischen 1100 und 1500 Gt Kohlenstoff, wovon ~60 % dauerhaft gefroren und somit dem derzeitigen Kohlenstoffkreislauf entzogen sind. Wenn dieser Kohlenstoff freigesetzt wird, ist ein weiterer Faktor, die Kohlenstoffqualität, relevant. Die Untersuchungen zur Kohlenstoffqualität zeigen keinen tiefenabhängigen Trend in Yedoma- und Thermokarstablagerungen. Dies belegt, dass nach dem Einfrieren die fossile organische Substanz konserviert wurde. Die genutzten Biomarkerdaten, z.B. der 'carbon preference' Index und der 'higher land plant fatty acid' Index zeigen sowohl für Yedoma- als auch für Thermokarstablagerungen keine signifikanten Unterschiede der Kohlenstoffqualität. Das bedeutet, dass der Kohlenstoffabbau nach dem Auftauen von unterschiedlichen Faktoren abhängig ist. Dazu gehören verschiedene Abbauwege oder schon vor dem Einfrieren geschehener Abbau. Um die Bedeutung des aufgetauten Kohlenstoffs abzuschätzen, wurden Thermokarstprozesse in ein Permafrost-Kohlenstoff-Modell einbezogen. Unter Berücksichtigung verschiedener Erwärmungsszenarien könnte die zirkumarktische Permafrostregion bis zum Jahr 2100 ~140 Gt Kohlenstoff und bis 2300 ~310 Gt in die Atmosphäre freisetzen. Dies entspricht einer Erwärmung der mittleren globalen Oberflächentemperatur von ~0,03 bis ~0,14°C bis 2100 und bis zu ~0,4°C bis 2300. Zusammenfassend stellt diese Dissertation heraus, dass die Yedoma-Ablagerungen während des Spätpleistozäns durch eine Kombination verschiedener aquatischer (alluviale, fluviale, lakustrine) sowie äolische Prozesse entstanden sind. Die zirkumarktische Region, inklusive der Yedoma Region, beinhaltet eine erhebliche Menge an derzeit eingefrorenem organischen Kohlenstoffs. Dieser Kohlenstoff ist gut erhalten und damit nach dem Auftauen für den mikrobiellen Abbau verfügbar. Eine fehlende Tiefenabhängigkeit der Kohlenstoffqualität zeigt, dass Permafrost die Qualität zum Einfrierzeitpunkt bewahrt. Wenn auch der tiefliegende organische Kohlenstoff durch Thermokarstprozesse verfügbar gemacht wird, kann die Permafrostregion bis zum Jahr 2300 bis zu 0,4°C zur mittleren globalen Oberflächentemperatur beitragen.



Item Type
Thesis (PhD)
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
43864
Cite as
Strauss, J. (2015): Organic carbon in ice-rich permafrost: Characteristics, quantity, and availability , PhD thesis, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research; University of Potsdam.


Download
[thumbnail of Strauss_2014_Dissertation.pdf]
Preview
PDF
Strauss_2014_Dissertation.pdf

Download (9MB) | Preview
Cite this document as:

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Geographical region

Research Platforms

Campaigns
N/A

Funded by
info:eu-repo/grantAgreement/EC/FP7/338335


Actions
Edit Item Edit Item