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Key Points:
e Expansion of Glacial North Pacific Intermediate Water (GNPIW) to the tropical Pacific
e (Glacial switch to additional influence of GNPIW at the Eastern Equatorial Pacific

e Enhanced GNPIW convection coincides with low-latitude nutrient- and marine
productivity changes
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Abstract

We provide high-resolution foraminiferal stable carbon isotope (5'°C) records from the subarctic
Pacific and Eastern Equatorial Pacific (EEP) to investigate circulation dynamics between the
extra-tropical and tropical North Pacific during the past 60 kyr. We measured the §'"°C
composition of the epibenthic foraminiferal species Cibicides lobatulus from a shallow sediment
core recovered from the western Bering Sea (SO201-2-101KL; 58°52.52°N, 170°41.45’E; 630 m
water depth) to reconstruct past ventilation changes close to the source region of Glacial North
Pacific Intermediate Water (GNPIW). Information regarding glacial changes in the 8"°C of sub-
thermocline water masses in the EEP is derived from the deep-dwelling planktonic foraminifera
Globorotaloides hexagonus at ODP Site 1240 (00°01.31°N, 82°27.76’W; 2921 m water depth).
Apparent similarities in the long-term evolution of 5"°C between GNPIW, intermediate waters in
the eastern tropical North Pacific and sub-thermocline water masses in the EEP suggest the
expansion of relatively °C-depleted, nutrient-enriched, and northern-sourced intermediate waters
to the equatorial Pacific under glacial conditions. Further, it appears that additional influence of
GNPIW to the tropical Pacific is consistent with changes in nutrient distribution and biological
productivity in surface-waters of the glacial EEP. Our findings highlight potential links between
North Pacific mid-depth circulation changes, nutrient cycling, and biological productivity in the

equatorial Pacific under glacial boundary conditions.
Keywords

North Pacific; Equatorial Pacific; stable isotopes; intermediate water; sub-thermocline; last

glacial period
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1 Introduction

The high latitudes of the North Pacific and the Southern Ocean play an essential role in
regulating the exchange of CO, between the ocean and the atmosphere [Takahashi et al., 2002].
In both regions, vertical mixing brings nutrient- and CO»-rich deep waters into the euphotic zone
and facilitates the biological pump, which sequesters atmospheric CO, back into the deeper
ocean interior [e.g. Honda et al., 2002]. In the modern North Pacific, however, the further
exposure of nutrient- and CO,-rich sub-surface waters to the surface ocean is largely hampered
by a permanent halocline [Haug et al., 1999]. In both regions, intermediate water masses are
formed that re-circulate excess nutrients from the high-latitude oceans towards the low latitude-
regions of the Pacific Ocean (Fig. 1). North Pacific Intermediate Water (NPIW) is formed in the
sub-surface of the Northwest Pacific via mixing of high-nutrient sub-surface waters and
intermediate water masses produced in coastal polynyas through brine rejection during
wintertime sea-ice production in the Okhotsk Sea [Talley, 1993; Shcherbina et al., 2003]. Today,
NPIW circulates within the upper ~ 300 — 800 m and is mainly restricted to the subtropical North
Pacific regions between ~ 20°N — 40°N, however a tongue of NPIW also spreads into the
Celebes Sea in the western tropical Pacific [Talley, 1993; Bostock et al., 2010]. In the Southern
Ocean Antarctic Intermediate Water (AAIW) is produced at the surface ocean from upwelled
nutrient- and CO,-enriched Circumpolar Deep Water (CDW). AAIW further ventilates into the
Subtropical Gyre and thereby transports heat, salt, and other chemical species, including
dissolved CO,, from the high latitudes of the Southern Ocean towards the equatorial Pacific.
This, so-called “ocean tunnelling”, is one major process that provides nutrients to tropical Pacific

thermocline waters today [e.g. Bostock et al., 2010] (Fig. 1).
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An important difference between northern- and southern-sourced intermediate waters is that
sub-surface formation of NPIW largely prevents the biologically driven re-setting of deep ocean
nutrient ratios that happens at the surface ocean during formation of AAIW. It is for this reason
that NPIW is characterized by higher silicic acid to nitrate supply ratios compared to southern-
sourced intermediate waters [Sarmiento et al., 2004] (Fig. 1). On the other hand, as carbon
fixation is dominated by siliceous phytoplankton at the surface-ocean near the formation region
of modern AAIW, southern-sourced intermediate waters are characterized by high nitrate, but
low silicic acid concentrations [Sarmiento et al., 2004] (Fig. 1). Under modern conditions,
mainly southern-sourced water masses (AAIW) are injected into the eastward-directed
Equatorial Undercurrent (EUC) and the Equatorial Pacific Intermediate Water (EqPIW) via the
South Equatorial Current and the New Guinea Coastal Undercurrent [Dugdale et al., 2002]. The
dominant role of AAIW on equatorial intermediate waters was also verified by a geochemical
tracer analyses that suggests that EQPIW are primarily a combination of AAIW and Pacific Deep
Water (PDW) with only a very minor contribution of NPIW today [Bostock et al., 2010] (Fig. 1).
As the intermediate water masses flow towards the east, they supply nutrients via diapycnal
mixing to the overlying waters masses [Rafter and Sigman, 2016]. As a consequence of the high
southern-sourced contribution today, carbon fixation by siliceous phytoplankton is limited by
low silicic acid and iron availability in the Eastern Equatorial Pacific (EEP), making this region a

significant net source of CO; to the atmosphere [Dugdale et al., 2002].

Information regarding past deep ocean circulation changes can be reconstructed from the stable

carbon isotopic composition (8'°C) measured on benthic foraminiferal tests. During the past
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thirty years, this proxy has been successfully used to investigate glacial to interglacial changes in
water mass geometry and ocean circulation [e.g. Duplessy et al., 1984; Curry et al., 1988; Mix et
al., 1991; Curry et al., 2005; Bostock et al., 2010; Knudson and Ravelo, 2015a]. In the modern
ocean, high(low) values of 8"C of the Dissolved Inorganic Carbon (DIC) are indicative of
low(high) nutrient concentrations and large-scale oceanic water mass circulation patterns
[Kroopnick, 1985]. For 8"°C reconstructions of intermediate- and deep-water mass circulation
changes the initial 8°C, which is set in surface waters before subduction into the ocean interior,
has to be taken into account. The initial 8'°C value of a water mass is affected by air-sea gas
exchange at the surface-ocean, which in turn is temperature-dependent. After isolation from the
surface-ocean, the 8°C of a given water mass is mainly altered by in-situ addition of CO,
through respiration of sinking organic material and mixing with other water masses. Today, a
613CDIC of about 1 %o characterize surface waters of the North Atlantic where North Atlantic
Deep Water (NADW) is formed. As it flows to the circum-Antarctic Ocean interior the
continuous degradation of sinking organic particles reduces the original 8"*Cpic of NADW to
about 0.5 %o. In the Southern Ocean deep-water further re-circulates to the Indian and Pacific
Ocean and lowest values of ~ -0.6 %o 613CDIC are observed today in the deep subarctic Pacific.
Since 8"°C of epibenthic foraminifera is closely related to the 8"*Cpc of ambient seawater, past
differences in nutrient content and water mass circulation patterns can be reconstructed from

benthic foraminiferal tests preserved in marine sediments [e.g. Duplessy et al., 1984].

Combined evidence of A'*C deep-water ventilation ages and benthic foraminiferal 3"°C records
suggest changes in mid-depth circulation (the upper 1000 to ~ 2000 m water depth) of the North

Pacific Ocean under glacial conditions [Duplessy et al., 1988; Herguera et al., 1992; Keigwin,
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1998; Matsumoto et al., 2002a; Okazaki et al., 2012]. Accordingly, the mid-depth circulation of
the North Pacific was strengthened by formation of Glacial North Pacific Intermediate Water
(GNPIW). In contrast to today, it has been proposed that the Bering Sea formed intermediate
waters during glacial times and played an important role in formation of GNPIW [e.g. Tanaka
and Takahashi, 2005; Horikawa et al., 2010]. Evidence for additional cold and well-oxygenated
intermediate water in the glacial Bering Sea has been provided from a study based on changes in
radiolarian assemblages [Tanaka and Takahashi, 2005]. Based on a neodymium isotope record
(eNd) it has been argued that Bering Sea intermediate water was a principal component of
GNPIW during the glacial period [Horikawa et al., 2010]. The formation of glacial Bering Sea
intermediate waters was explained by changes in high-latitude hydrological processes such as
enhanced brine rejection with the resulting salinity increase favouring the subduction of cold
surface waters to the mid-depth in the Bering Sea as important precursor of GNPIW [Rella et al.,
2012]. A recent study based on endobenthic foraminiferal stable oxygen (5'*0) and 8'°C records
from the Bering Sea indicates that enhanced GNPIW formation was not only restricted to the
LGM, but also recurred during other extreme glacial intervals of the last 1.2 Myr [Knudson and

Ravelo, 2015a].

There is so far no consensus about the amount of AAIW production during glacial boundary
conditions. Based on 8"°C and 8'*0 analyses on benthic foraminifera from the Australian margin
it has been suggested that a colder and fresher water mass ventilated at intermediate depths,
which was linked to a shift in the frontal zonation within the Southern Ocean [Lynch-Stieglitz et
al., 1994]. Furthermore, a study based on authigenic minerals from the Chilean margin found

higher oxygen concentrations during glacial times, which were linked to an enhanced production
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of AAIW [Muratli et al., 2010]. In contrast, it has been proposed that stronger water column
stratification in the Southern Ocean led to a reduced production of AAIW under glacial
conditions [Pahnke and Zahn, 2005]. Accordingly, periods of increased intermediate water
formation were linked to Southern Hemisphere warm episodes through a tight coupling between
climate warming and intermediate water production at the high southern latitudes. A recent study
combined benthic 5"°C and §'%0 records off New Zealand with modelling results to reconstruct
the vertical extent of AAIW over the last 350 kyr [Ronge et al., 2015]. These results showed that
the vertical extent of AAIW changed on glacial-interglacial timescales with a significantly
shallower AAIW subduction under glacial conditions. The shallower subduction of glacial
AAIW has been related to an advanced winter sea-ice edge as well as enhanced freshwater flux
from sea-ice melting, which reduced the salinity and resulted in formation of less dense

intermediate waters in the Southern Ocean.

Studies based on eNd records as well as A'*C shallow- and deep-water ventilation ages from the
equatorial Pacific suggest a dominant role of the Southern Ocean in transferring climatic signals
from the high latitudes towards the tropical regions during late Marine Isotope Stage (MIS) 2
[Pena et al., 2013; de la Fuente et al., 2015]. Accordingly, available reconstructions of changes
in water mass signatures of the equatorial Pacific suggest a principal southern-source for tropical
Pacific intermediate water masses during glacial times similar to today. In a recent study,
Carriquiry et al. [2015] analysed 8'"°C records at the western Baja California Margin and relates
changes in mid-depth nutrient distribution to a larger influence of glacial AAIW to the tropical
North Pacific. In contrast, Leduc et al. [2010] explained anomalies in glacial 8°C of

intermediate waters in the Eastern Tropical North Pacific (ETNP) by a switch from southern



154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Confidential manuscript submitted to Paleoceanography

nutrient-poor to northern nutrient-enriched intermediate water masses due to a sustained
formation of GNPIW. This notion is supported by a recent eNd data compilation from 55 core
sites around the Pacific [Hu et al., 2016] that revealed a significant offset in EEP €Nd signature
values between LGM and Holocene values (by 1-2 epsilon units lower than during the
Holocene), which can only be explained by a higher contribution from northern-sourced waters
[Hu et al., 2016]. The enhanced penetration of northern-sourced water masses is in agreement
with evidence for enhanced glacial mid-depth circulation reconstructed from §"°C records of
California margin sediment cores, however these records also point to spatial and temporal
complexity in the ventilation history of the Northeast Pacific [Stott et al., 2000]. Together, these
results imply a more prominent role of GNPIW in shaping the mid-depth water mass
characteristics of the glacial North Pacific. On the other hand, it still remains illusive how
strengthened GNPIW circulation shaped the mid-depth water mass characteristics of the glacial
North Pacific and whether GNPIW might have influenced the nutrient distribution, biological

productivity and export patterns far beyond the northern high latitudes.

In this study, we report on stable isotope measurements derived from sedimentary records of the
western subarctic Pacific (Bering Sea) and EEP to investigate spatiotemporal changes in GNPIW
circulation and its influence on low-latitude Pacific water mass characteristics during the past 60
kyr. We chose a sediment core from the western Bering Sea located on Shirshov Ridge (SO201-
2-101KL, 58°52.52°N, 170°41.45’E, 630 m water depth, Fig. 1) and measured the s1C
composition of the epibenthic foraminifera Cibicides lobatulus (C. lobatulus) as an indicator for
past ventilation changes close to the source-region of GNPIW [Max et al., 2014]. Today the

western Bering Sea is poorly ventilated due to the absence of local intermediate water formation
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and water masses bathing core site SO201-2-101KL are dominated by upwelling of nutrient-rich
PDW (Fig. 1b). Additional 8"°C data of deep-dwelling planktonic foraminifera Globorotaloides
hexagonus (G. hexagonus) from Ocean Drilling Program (ODP) Site 1240 (00°01.31°N,
82°27.76°’W, 2921 m water depth, Fig. 1) provide information about glacial changes of sub-
thermocline water mass characteristics in the EEP. Modern water mass signatures of sub-
thermocline waters at ODP Site 1240 are linked to the lower branch of the EUC, which brings
nutrients to the surface ocean of the EEP (Fig. 1b). By comparing water mass signatures of
intermediate- to deep-water masses of the Pacific Ocean and Southern Ocean with sub-
thermocline to mid-depth water masses in the tropical Pacific we examine whether (1) the
influence of northern-sourced versus southern-sourced water masses on tropical Pacific
intermediate- and sub-thermocline water masses of the EEP changed during the last glacial
period and (2) discuss potential implications for sub-thermocline nutrient availability and

biological productivity in the equatorial Pacific in the past.

2 Materials and Methods

2.1. Stable carbon (3"°C) and oxygen (5'*0) isotope measurements from benthic and deep-
dwelling planktonic foraminifera
We measured the 5"°C and 8'*0 isotope composition of epibenthic foraminifera C. lobatulus
selected from sediment samples of western Bering Sea sediment core SO201-2-101KL and deep-
dwelling planktonic foraminifera G. hexagonus from samples of ODP Site 1240 in the Panama
Basin (Fig 1; see supplementary Table S1 and S2). Sedimentation rates of 11 — 16 cm kyr have

been reported for core SO201-2-101KL from Shirshov Ridge [Riethdorf et al., 2013] and 6.4 —
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25.2 c¢m kyr' for ODP Site 1240 [Pena et al., 2008]. According to our sampling scheme we
achieved a millennial to centennial-scale resolution of proxy-data in this study with an average
temporal resolution of ~ 0.25 kyr for core SO201-2-101KL and ~ 0.23 kyr for the last 60 kyr of
ODP Site 1240, respectively. Stable isotope analyses in core SO201-2-101KL were made on
samples of two to three specimens of C. lobatulus picked from the 250 — 400 pum size fractions.
The stable isotopic composition of G. hexagonus of ODP Site 1240 were determined using five

specimens per sample picked from the 250 — 315 um size fraction.

It has been proposed that C. lobatulus preferentially lives attached to hard substrate on or slightly
above the sediment surface and studies on living specimen indicated that this species faithfully
records the 8'°Cpjc of ambient seawater [Schweizer et al., 2009]. Some investigators have
observed a positive offset in the 3"°C of C. lobatulus with regard to ambient bottom water
8"Cpic in some high-latitude settings of the North Atlantic Ocean [Mackensen et al., 2000].
However, this effect was caused by high seasonal variability of the original ambient &'"°Cpjc-
signal, confirmed by time-series measurements of water column 613CDIC and related to the
calcification of C. lobatulus during time intervals of maximum ventilation [Mackensen et al.,

2000]. We thus regard the 8> C-signal C. lobatulus to reliably reflect 8"°C of ambient seawater.

Isotopic compositions of C. lobatulus and G. hexagonus were measured at the Alfred Wegener
Institute, Helmholtz Centre for Polar and Marine Research, Germany, using a Thermo Fisher
MAT 253 mass spectrometer coupled to a Kiel IV automatic carbonate preparation device. All
stable isotope measurements were calibrated via the NBS-19 international standard and results

are reported in o-notation versus VPDB scale. Overall long-term analytical reproducibility of
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measurements based on internal laboratory standard (Solnhofen limestone) together with

samples over a one-year period is better than £0.06 %o for 8"°C and +0.08 %o for 5'°O.

2.2. Stable oxygen isotope composition (5'°0) and apparent calcification depth of deep-

dwelling planktonic foraminifera G. hexagonus
Information regarding apparent calcification depth (ACD) of the planktonic foraminifera
G. hexagonus is still sparse. We make a first attempt to determine the ACD at ODP Site 1240 to
validate the depth habitat of G. hexagonus in the EEP. The ACD-estimation was done by
comparing measured foraminiferal 8" Ocalcite from a near core-top sample (at 10 cm) to a
theoretically expected equilibrium 5'%0 values of calcite (Slgoequi]ibrium) that foraminifera would
incorporate in dependence of modern water temperature, salinity and 3'°O values of seawater
(SlgOseawater). In order to calculate SlgOseawater, the SISOseawater-salinity relationships given by Leduc

et al. [2007] for 0—40 m water depth:

818Oseawater (%0) = 0253*8—852,

and for >40 m water depth:

8" Oseawater (%0) = 0.471%S-16.15

were used in conjunction with annual salinity data derived from World Ocean Atlas 2009

[Antonov et al., 2010].
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Several established §'*0O-paleotemperature equations [Epstein et al., 1953; Shackleton, 1974
Kim and O’Neil, 1997; Bemis et al., 1998] were considered for SlgOcalcite as absolute ACD
estimation strongly depends on the applied temperature equation [Wejnert et al., 2013] (Fig. 2).
Modern temperatures are derived from the World Ocean Atlas 2009 [Locarnini et al., 2010], and
8" 0geawater Were included after correcting SlgOseawater to the VPDB scale by subtracting the
SISOseawater-conversion factor given in Bemis et al. [1998]. The water depth showing the best

match between SlgOcalcite and SlgOequilibrium is taken as the ACD of G. hexagonus (Fig. 2).

The calculated ACD suggests that G. hexagonus dwells below the thermocline in 340 — 430 m
water depth similar to estimated depth habitats defined by Ortiz et al. [1996] in the North
Pacific. Further support comes from a very recent ACD assessment from the western equatorial
Pacific, which concludes that deep-dwelling G. hexagonus is a suitable proxy for tracing
properties of equatorial sub-thermocline water masses [Rippert et al., 2016]. Hence, the stable
isotopic composition of G. hexagonus is considered to reflect the water mass properties of sub-

thermocline waters of the EEP.

2.3. Stratigraphic approach and age models
The stratigraphic framework of western Bering Sea core SO201-2-101KL was constructed using
a multi-proxy approach described in detail in Riethdorf et al. [2013]. Briefly, information
derived from high-resolution X-ray fluorescence (XRF) and spectrophotometric logging data
(color b*) of core SO201-2-101KL were used for correlation to millennial-scale variability
preserved in the NGRIP ice core [Andersen et al., 2004] according to the GICCOS timescale

[Svensson et al., 2008] (Fig. 3a). The tuning of core SO201-2-101KL to NGRIP was further
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validated by five planktonic radiocarbon ages spanning the time interval from the onset of MIS 2

to the time interval of the last glacial termination (Fig. 3a) [see Max et al., 2012].

We adopted the established age scale of ODP Site 1240 described in the work of Pena et al.
[2008]. The stratigraphic framework of ODP Site 1240 was constructed from 17 AMS "C ages
based on monospecific samples of the planktonic foraminifera Neogloboquadrina dutertrei
(N. duterteri) and tuning of the initiation of N. duterteri 8"°C minima at ODP Site 1240 to the
CO; increase in the Vostok CO,, as shown by Spero and Lea, [2002]. Graphical correlation of
planktonic foraminiferal Mg/Ca derived sea surface temperatures (SST) from ODP Site 1240 to
Antarctic Vostok deuterium records was used to get additional age controls for deeper parts of

the core [see supplement of Pena et al., 2008 for more details] (Fig. 3b).

3 Results

The reconstructed glacial (60 — 20 ka) 3'"°C values based on C. lobatulus from Bering Sea core
SO201-2-101KL show a pronounced variability on millennial timescales, in particular during
MIS 3, where they vary between -0.8 — 0.2 %o (Fig. 4). Upon millennial-scale variability a long-
term trend towards increased 8'°C of Bering Sea intermediate water since the beginning of MIS
3 is clearly visible in core SO201-2-101KL, which culminated during early MIS 2 (~ 29 ka) with
8'°C signatures of up to ~ 0.3 %o (Fig. 4). During MIS 2 §"°C values show a long-term decrease

with 8"°C signatures reaching ~ -0.2 %o at the beginning of the last deglaciation (~ 17 ka).

During MIS 3 (~ 60 — 30 ka) the G. hexagonus &'°C proxy record from ODP Site 1240 indicates

the presence of relatively '*C-enriched (nutrient-depleted) water masses with 8"°C signatures of
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0.1 — 0.2 %0 and relatively low variability in 8'°C of sub-thermocline waters (Fig. 4). A first
switch to relatively *C-depleted sub-thermocline water masses in the EEP is apparent during
early MIS 2 (~ 25 ka), the most 13C-depleted values of ~ -0.4 %o are found at the beginning of

the last deglaciation (~ 17 ka).

4 Discussion

Based on our results, we found evidence that the Bering Sea experienced a long-term increase in
intermediate water ventilation from the beginning of MIS 3. We also identified most enhanced
ventilation of the Bering Sea during MIS 2, which is in accordance with recent results from
Knudson and Ravelo [2015a]. In general, it confirms previous studies on marine productivity and
benthic foraminiferal stable isotope records that imply a long-term increase in 8'°C Bering Sea
intermediate water due to local formation of waters masses with lower salinity and higher
oxygen content under glacial conditions [Schlung et al., 2013]. Rella et al. [2012] argued that an
eastward displacement of the Aleutian Low and a shift to predominantly northerly winds over the
Bering Sea created favourable conditions for active polynya formation and brine rejection
coupled to sea-ice formation, which led to intermediate water production as one potential source-
region of GNPIW during the glacial period. A recent study showed that during stadial periods of
the deglaciation most of the western Bering Sea was covered by seasonal sea ice [Méheust et al.,
2016], thus providing favourable conditions for intermediate water formation. Moreover, benthic
8'°C data from proximal core SO201-2-85KL point to a decline in 8"°C and reduced ventilation
during deglacial warm stages and the early Holocene when sea-ice cover was substantially

reduced [Max et al., 2012; Max et al., 2014]. However, changes in thermodynamic (temperature-
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dependent) equilibration between the surface ocean 8"“Cpic and the atmospheric CO, also
influence isotopic fractionation, whereby surface ocean 8'°Cpjc increases by 0.1 %o with each
1°C decrease in surface ocean temperature [Mook et al., 1974]. Given that glacial production of
intermediate waters in the western Bering Sea was supposedly linked to sea-ice formation during
winter, when surface ocean temperature were always close to the freezing point, temperature-
dependent changes in air-sea gas exchange of western Bering Sea surface waters should have had

a minor effect on the 8> Cp;c signal.

4.1. Glacial contribution of northern- versus southern-sourced water masses in the Eastern

Tropical North Pacific (~ 8°N)
To assess the influence of northern- versus southern-sourced water masses on EqPIW
characteristics during the past 60 kyr we compare benthic 8'°C mid-depth records from the
subarctic Pacific (SO201-2-101KL; this study) and the Southern Ocean (SO213-84-1; Ronge et
al., 2015) as well as a deep-water benthic 8"°C record from the Northeast Pacific (W8709A-
13PC; Lund and Mix, 1998) with mid-depth 8"°C signatures derived from sediment core MD02-
2529 [Leduc et al., 2010] located in the ETNP (Fig. 1 and 5a). The core site of MD02-2529 in
the ETNP is situated at the modern confluence of northern oxygen-poor and southern oxygen-
rich waters, and thus is ideally located to investigate past changes in the respective latitudinal

extents of northern versus southern-sourced water masses in the past [Leduc et al., 2010].

First, we consider our new benthic 8"°C record from the mid-depth subarctic Pacific (SO201-2-
101KL) and the benthic §"°C record of PDW from the Northeast Pacific (W8709A-13PC) [Lund

and Mix, 1998], which are compared with EqQPIW 8'°C water mass characteristics (MD02-2529)
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[Leduc et al., 2010] during the past 60 kyr (Fig. 1 and 5a). Millennial-scale variability
superimposed on the long-term 8"°C trend of EqPIW is more pronounced compared to the 8'*C-
signal recorded in SO201-2-101KL (GNPIW) or W8709A-13PC (PDW) during early MIS 3 (55
— 45 ka). In addition EqPIW 8'°C values oscillate between 8"°C signatures of GNPIW and PDW
during MIS 3 (60 — 30 ka). During this time, there is no clear relationship to northern- or
southern-sourced intermediate waters, and rather admixing of different source water masses to
EqPIW is likely. On the other hand, clear similarities in the long-term evolution in 8"°C between
the intermediate water records derived from subarctic Pacific core SO201-2-101KL and
sediment core MD02-2529 from the ETNP are observed since at least ~ 29 ka (Fig. 5a).
Moreover, glacial gradients in 8'"°C between GNPIW and EqPIW are relatively small and vary
between 0.2 — 0.5 %o. In contrast, absolute 8'°C signatures as well as the temporal evolution of
EqPIW and PDW differs substantially such as 8'°C of EQPIW increases steadily, whereas 8"°C
of PDW shows a long-term trend to more depleted >C signatures during MIS 2 (Fig. 5a).
Accordingly, available deep-water ventilation ages as well as the long-term trend in deep-water
8'°C of the North Pacific indicate that glacial PDW was similar or even less well ventilated than
today [Lund and Mix, 1998; Galbraith et al., 2007; Lund et al., 2011] and the ventilation history
different to the mid-depth circulation dynamics of the North Pacific [Kennett and Ingram, 1995;
Stott et al., 2009]. Altogether, our results indicate that intermediate waters in the subarctic
Pacific and ETNP (GNPIW and EqPIW) share similar glacial 8"°C signatures, which are
indicative for the presence of nutrient-enriched intermediate water masses, but are apparently
different to 5"°C signatures of PDW (Fig. 5a). Given that GNPIW features slightly higher 8"°C
signatures compared to EqQPIW masses our results point to the advection of northern-sourced

intermediate water masses towards the tropical Pacific. Thus, from similarities in long-term
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evolution of 8"°C between the North Pacific and ETNP intermediate water records we argue that
relatively nutrient-enriched GNPIW generally extended further south to the tropical Pacific
under glacial conditions. During the last deglaciation (~ 17 — 15 ka), however, intermediate
water 813C-signals at the ETNP and North Pacific starts to diverge substantially. The 8"C
signatures in the ETNP increase, while the 8'°C values decrease at site SO201-2-85KL in the

subarctic Pacific (Fig. 5a).

The glacial 3'"°C end-member variability of AAIW is reflected by sediment core SO213-84-1 off
New Zealand, where glacial 8"C signatures of AAIW vary between ~ 0.5 — 1.4 %0 [Ronge et al.,
2015] (Fig. 5a). The long-term evolution of 3'"°C-signatures between AAIW and intermediate
waters in the North Pacific and ETNP reveals remarkable differences in temporal variability
under glacial conditions (Fig. 5a). Moreover, huge gradients in 8°C (up to 2 %o) between
Southern Ocean core SO213-84-1 and MD02-2529 from the ETNP [Leduc et al., 2010] clearly
separate “C-enriched (more nutrient-depleted) signatures of AAIW from *C-depleted (more
nutrient-enriched) signatures of EqPIW under glacial conditions (Fig. 5a). Evidence for a
weakened production or shoaling of glacial AAIW has been inferred from 3'°C-records off New
Zealand [Pahnke and Zahn, 2005; Ronge et al., 2015], which generally points to a glacial change
in relative contribution of intermediate waters from the Southern Ocean to the tropical Pacific.
Thus, large gradients and the discrepancy in temporal evolution of 3'"°C signatures of EqPIW and
AAIW are indicative for additional water masses influencing the glacial mid-depth tropical

Pacific.
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Independent evidence for enhanced glacial influence of northern-sourced intermediate waters to
the low-latitude Pacific comes from the comparison of available éNd records of the Bering Sea
and off Baja California [Basak et al., 2010; Horikawa et al., 2010] (Fig. 5b). In particular, eNd
data at the intermediate depth in the Bering Sea show radiogenic values explicitly indicating that
Bering Sea surface water masses (marked by more radiogenic éNd signatures) were subducted to
intermediate depths under glacial conditions [Horikawa et al., 2010]. At the same time, glacial
eNd values derived from a sediment record off Baja California point to the presence of more
radiogenic intermediate water masses, which has been linked to admixture of dominantly
northern-sourced intermediate waters [Basak et al., 2010]. Furthermore, available information of
glacial €Nd signatures from a sediment core in the Southwest Pacific [Noble et al., 2013] clearly
distinguish less radiogenic eNd signatures of AAIW from signals of more radiogenic
intermediate water masses found in the Bering Sea or off Baja California (Fig. 5b). Altogether,
results from eNd records are in line with enhanced glacial advection of northern-sourced
intermediate water masses towards the tropical Pacific (Fig. 1 and 5b). However, rapid changes
in Bering Sea and Baja California eNd signatures are visible during the last deglaciation that
point to a switchback to reduced influence of northern-sourced intermediate water masses to the

low-latitude Pacific since ~ 17 ka (Fig. 5b).

The combined evidences from 8°C and eNd proxy data of the subarctic Pacific, the eastern
North Pacific (Baja California), the ETNP and Southern Ocean suggest that northern-sourced
intermediate waters extended further south to the ETNP under glacial conditions (Fig. 5a and b).
This is in agreement with a scenario proposed by Herguera et al. [2010], in which a deepening

of the main thermocline and cooling of the high-latitude North Pacific would lead to a south-
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eastward expansion of GNPIW circulation and greater glacial influence of northern-sourced
intermediate water on the tropical Pacific. Therefore, we propose that glacial changes in the
relative contribution of intermediate waters from both the Southern Ocean and North Pacific are
important in re-circulating excess nutrients from the high-latitude oceans towards the low
latitude-regions of the Pacific Ocean. We suggest that the observed glacial changes in §'"°C-
signatures of tropical intermediate waters in the ETNP are linked to additional contribution of
northern-sourced intermediate waters that further confirm considerations of a southward
expansion of GNPIW to explain the 8'"°C signatures found in the mid-depth tropical Pacific

during MIS 2 [Herguera et al., 2010].

4.2. Evidence for increased GNPIW influence on the Eastern Equatorial Pacific since MIS 2?
To assess whether GNPIW expanded further south to the equatorial upwelling system, we
compare the variability in 8'°C of GNPIW and AAIW with our new sub-thermocline 8'°C proxy
record of the deep-dwelling planktonic foraminifera G. hexagonus from ODP Site 1240. Glacial
variations in 8"°C of sub-thermocline water masses are interpreted as both changes in incoming
nutrients and export productivity in the surface ocean of the EEP. During MIS 3 (~ 60 — 30 ka)
the G. hexagonus 3'°C proxy record indicates the presence of relatively '*C-enriched (nutrient-
depleted) water masses with low variability in "°C of sub-thermocline waters of the EEP (Fig.
6a). At the same time, GNPIW shows distinctly lower (more-nutrient-rich) 8'"°C values with
higher temporal variability than EEP sub-surface waters. However, apparent similarities are
observed since ~ 29 ka at the beginning of MIS 2, where absolute 5"°C values as well as the

long-term trend indicate more nutrient-enriched sub-thermocline water masses recorded in §'"°C
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of G. hexagonus at ODP Site 1240, which closely follows the temporal evolution of the R

signature advected towards the tropical Pacific via GNPIW (Fig. 6a).

Interestingly, another rapid switch to monotonically increasing 8'°C of G. hexagonus is visible
during the last deglaciation, which suggests a decoupling from northern-sourced intermediate
waters between ~ 17 — 15 ka. The transition from *C-depleted (more nutrient-enriched) to rather
PC-enriched (more nutrient-depleted) sub-surface water implies another significant change in
characteristics of source water masses along with changes in biological productivity in the EEP
during the last deglaciation (Fig. 6a and b). Simultaneously, intermediate waters in the North
Pacific became further °C-depleted and seems to be decoupled from sub-thermocline waters in
the EEP. This is in line with a study on surface ocean productivity at ODP Site 1240, which
showed that southern-sourced intermediate waters played a more dominant role for the nutrient
redistribution in the EEP since the early deglaciation [e.g. Calvo et al., 2011]. Dissimilar trends
are also evident between northern-sourced intermediate water and mid-depth water masses in the
ETNP, probably due to a reduced lateral extent of GNPIW during the last deglaciation (Fig. 5a).
Since then, mid-depth waters in the ETNP seems to follow the temporal variability of southern-
sourced intermediate water that imply a larger influence of *C-enriched (more nutrient-depleted)
AAIW in the tropical Pacific. However, we note that large gradients between 3'°C of sub-
thermocline waters in the EEP and AAIW are also present during the last deglaciation and
Holocene. Still, available benthic 8"°C records from the mid-depth to deep North Pacific do not
cover the whole Holocene and impede further interpretation of 8'"°C variability in the ETNP

during this time.
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Past changes in sub-thermocline water mass signatures in the EEP have been usually linked to
differences in advection and/or source-water mass characteristics of Southern Ocean water
masses to the tropical Pacific. Rapid changes in meridional transport of southern-sourced
intermediate water towards the tropical regions have been proposed from e¢Nd records over the
last 30 kyr [Pena et al., 2013]. A recent study investigating Southern Ocean and EEP shallow-
and deep-water ventilation ages suggest that relatively old water masses (PDW/UCDW)
upwelled to EEP thermocline waters and proposed a dominant deep southern-source during late
MIS 2 [de la Fuente et al., 2015]. A study reconstructing radiocarbon activity of mid-depth
waters from sediment cores off Baja California also pointed to the presence of slightly older
intermediate waters in the eastern North Pacific during the latter part of the glacial period
[Marchitto et al., 2007], which might also explain glacial age anomalies in the surface ocean of
the EEP. Thus, we explain changes in 8"°C of sub-thermocline water masses of the EEP between
MIS 3 and MIS 2 by changes in source water masses characteristics probably due to variable
ocean interior transport pathways reaching the equatorial Pacific under glacial conditions. Based
on the apparent similarities between &'’ C-signatures of northern-sourced intermediate waters,
mid-depth waters in the Panama basin of the ETNP and sub-thermocline waters in the EEP (Fig.
5a and 6a), we argue for additional intrusion of GNPIW into sub-thermocline water masses of

the EEP during MIS 2.

4.3. “North Pacific Nutrient Leakage”
We provide the first evidence that relatively *C-depleted (nutrient-enriched) GNPIW influenced
glacial EEP sub-thermocline waters during MIS 2 and discuss further potential implications on

marine productivity of the equatorial Pacific regions at that time (Fig. 6a - c¢). Nitrogen and
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silicon isotopes are often used as diagnostic tools for reconstructing past nutrient cycling. With
higher nutrient consumption, both substrate (dissolved nutrients) and products generated from it
become progressively enriched in heavier isotopes [Robinson et al., 2014]. Indeed, several
studies of sediment cores in the EEP found evidence for changes in marine productivity and
nutrient utilization during MIS 2 [Kienast et al., 2007; Pichevin et al., 2009; Robinson et al.,
2009; Dubois et al., 2011] (Fig. 6b). Overall similarities between these records demonstrate that
they are not primarily influenced by local processes at the deposition site, but rather reflect a
robust signal of regional changes in nutrient delivery and biological productivity in the EEP
[Dubois et al., 2011]. Pichevin et al. [2009] suggested that the glacial biological carbon pump in
the EEP was more efficient due to a relaxation of nutrient limitation and speculated about its

contribution to lower atmospheric CO, conditions during MIS 2.

Glacial relaxation of nutrient limitation and concurrent maxima in biological productivity in the
EEP have been usually related to the redistribution of excess nutrients (mainly silicic acid) from
the Southern Ocean via “ocean tunnelling” as proposed by the Silicic Acid Leakage Hypothesis
[Matsumoto et al., 2002b]. At the same time, changes in the contribution of northern-sourced
intermediate waters are often neglected e.g. by assuming that the relative contribution from
northern- and southern-sourced water did not change significantly in the past [e.g. Dubois et al.,
2011; Pena et al., 2013]. However, studies using diatom-bound silicon and nitrogen isotopes as
proxies for nutrient utilization suggested enhanced glacial drawdown of silicic acid and nitrate
along with higher glacial opal fluxes in the Pacific Subantarctic Zone of the Southern Ocean
during MIS 2 [Bradtmiller et al., 2009; Robinson et al., 2005, 2014]. These results show that, in

contrast to the EEP, silicic acid and nitrate have been utilized more efficiently and became rather
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“trapped” north of the Antarctic Polar Front in the glacial deep Southern Ocean (Fig. 6b and c).
However, it has been also shown that average glacial opal fluxes were less than during the
Holocene south of the Antarctic Polar Front [Bradtmiller et al., 2009]. Whether the glacial
Southern Ocean provides sufficient nutrients via “ocean tunnelling” to enhance marine
productivity at the EEP as predicted by the Silicic Acid Leakage Hypothesis is still controversial

[Hendry and Brzezinski, 2014; Robinson et al., 2014].

Interestingly, times of enhanced organic carbon flux rates and low nutrient utilization (silicic
acid and nitrate) in the EEP are visible since the beginning of MIS 2 and generally coincided
with the proposed changes in additional contributions of relatively nutrient-rich GNPIW to
equatorial Pacific sub-thermocline water masses (Fig. 6b and c). Invoking an additional export of
unutilized (preformed) nutrients from the high-latitude North Pacific via nutrient-enriched
GNPIW (here named as “North Pacific Nutrient Leakage”) thus might be another, yet
unconsidered, process to explain relieved nutrient limitation and a stimulated biological pump in
the EEP during MIS 2. Unfortunately, less is known about glacial changes in utilization of major
nutrients, such as silicon or iron in the source region of GNPIW. Some studies propose low
biological productivity and nutrient utilization (nitrate) in the Bering Sea due to a decrease in
productivity, or an increase in nitrate availability through changes in vertical mixing under
glacial conditions [Riethdorf et al., 2013; Schlung et al., 2013]. Other studies point to near-
complete nutrient utilization (nitrate) in the Bering Sea and western subarctic Pacific during
glacial times [Brunelle et al., 2007, 2010]. A recent study emphasizes the role of strong physical
stratification of the glacial subarctic Pacific surface waters, which prevented additional flux of

nitrate from underlying water, such that available surface nitrate was used to near completion
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[Knudson and Ravelo, 2015b]. Our results propose that additional influence of nutrient-rich
North Pacific mid-depth waters to the tropical Pacific via GNPIW might hold new clues about
glacial productivity changes in the EEP, but need to be further evaluated in order to understand

the role of enhanced influence of GNPIW to the low-latitude Pacific under glacial conditions.

During the deglaciation, the resumption of intense overturning within the Southern Ocean led to
a higher injection of relatively nutrient-depleted southern-sourced water masses into the EqPIW.
As a consequence, decreasing nutrient concentrations and increasing nutrient consumption are
recorded in the EqQPIW (Fig. 6). However, we can only speculate about the offset in timing
between the onset of EqQPIW §'°C changes (shown by G. hexagonus) and the increase in 3'°N in
ODP Site 1240. The switch in relative end-member contribution during the deglaciation possibly
causes variations in intermediate water suboxia and hence water column denitrification
[Robinson et al., 2009]. This would affect the nitrogen isotopes only as G. hexagonus seems to
be more insensitive to varying oxygen concentrations [Rippert et al., 2016]. Nonetheless, the
discrepancy in timing needs to be further investigated in combination with 8'°N studies from the

subarctic Pacific.

5 Conclusions

Here we report on new foraminiferal "°C records from the western subarctic Pacific (Bering
Sea) and EEP spanning the past 60 kyr. Combined evidence of 8'°C from core SO201-2-101KL
and eNd records of the Bering Sea points to a long-term increase in GNPIW formation since the
onset of MIS 3, which culminated early in MIS 2 (~ 29 ka). The comparison between benthic

foraminiferal "°C records of SO201-2-101KL and marine sediment core MD02-2529 from the
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Panama Basin as well as ¢Nd records of the Bering Sea and eastern North Pacific reveals
remarkable similarities in the long-term evolution between GNPIW and EqPIW signatures in the
tropical North Pacific during the glacial period. These results support the notion that northern-
sourced intermediate water extended further south to the tropical Pacific region than today under
glacial boundary conditions. Glacial changes in 8"°C of sub-thermocline water masses in the
EEP were derived from deep-dwelling planktonic foraminiferal species G. hexagonus at ODP
Site 1240 and indicate significant changes in sub-thermocline water mass characteristics during
MIS 2. Notably, the proposed times of additional influence of GNPIW to the tropical Pacific
coincides with changes in nutrient availability and biological productivity in the glacial EEP.
Overall, our new findings indicate that past changes in North Pacific mid-depth circulation might
have played a crucial role in glacial nutrient availability and biological productivity in the EEP,
but needs to be further constrained by future studies investigating glacial changes in utilization

of major nutrients, such as silicon or iron in the subarctic Pacific.
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Figure 1 a: Bathymetric chart of the Pacific Ocean with locations of proxy records in the North
Pacific (SO201-2-101KL, this study; SO201-2-85KL, Max et al., 2012; BOW-8A, Horikawa et
al., 2010; W8709A-13PC, Lund and Mix, 1998; MV99-MC19/GC31/PC08, Basak et al., 2010),
the Equatorial Pacific (MDO02-2529, Leduc et al., 2010; ODP Site 1240, Pichevin et al., 2009;
this study; ME0005-24, Kienast et al., 2007), and the Southern Ocean (CHAT 16K, Noble et al.,
2013; SO213-84-1, Ronge et al., 2015; E11-2, Robinson et al., 2014) considered in this study.
White arrows denote major circulation pattern of intermediate water masses in the North Pacific
and Southern Ocean: Magenta and green spots indicate formation regions of AAIW and NPIW,
shaded magenta and green areas mark modern lateral extent of intermediate waters in the Pacific
Ocean. b: Meridional section of present-day silicic acid concentrations from the North Pacific to
the Southern Ocean [Garcia et al., 2010] and major modern mid-depth to deep-water masses
(white arrows): AAIW = Antarctic Intermediate Water; CDW = Circumpolar Deep Water; EUC
= Equatorial Undercurrent; EQPIW = Equatorial Pacific Intermediate Water; NPIW = North
Pacific Intermediate water; PDW = Pacific Deep Water [modified after Bostock et al., 2010].
This figure was generated with Ocean Data View [Schlitzer, 2015].
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Figure 2 Apparent calcification depth (ACD) of planktonic foraminifera G. hexagonus in the
Eastern Equatorial Pacific. ACD of G. hexagonus at ODP Site 1240 was inferred from best
match between measured foraminiferal SISOcalcite values and corresponding calculated
theoretically present 618Oequmbﬁum value, which were determined using various paleotemperature
equations (black partly dashed lines), modern water temperatures [Locarnini et al., 2010] and
8" Oxeawater (gray line). The blue bar indicates the ACD range of G. hexagonus considering all
used equations.
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Figure 4 Detailed comparison of mid-depth benthic 8"°C record from sediment core SO201-2-
101KL from the subarctic Pacific (Bering Sea) with 8°C record of deep-dwelling (sub-
thermocline) planktonic foraminifera G .hexagonus derived from ODP Site 1240 in the Eastern
Equatorial Pacific during the past 60 kyr. Gray shaded area marks times of convergence between
the given 8"°C records during MIS 2. Coloured circles indicate 8*Cpic composition of water
masses bathing the respective core sites under modern conditions [Key et al., 2004].
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Figure 5 Benthic §"°C records and £Nd signatures from intermediate waters of the North Pacific
(GNPIW), off Baja California, the Eastern Tropical North Pacific (EqQPIW) and the Southern
Ocean (AAIW) compared to benthic 5"°C deep-water (PDW) variability for the last 60 kyr. a:
Benthic 8"C record from Southern Ocean core SO213-84-1 (AAIW, in green) [Ronge et al.,
2015], benthic 8" C record from MD02-2529 located in the Eastern Tropical North Pacific (in
light blue) [Leduc et al., 2010], benthic intermediate-water 8"C record from Bering Sea core
S0O201-2-101KL (in magenta; this study) and SO201-2-85KL (in black) [Max et al., 2014],
deep-water benthic 8" °C record from core W8709A-13PC (in brown) [Lund and Mix, 1998) b:
End-member intermediate-water mass e€Nd records from southern Bering Sea core BOW-8A
(GNPIW, in magenta) [Horikawa et al., 2010] and Southwest Pacific core CHAT 16K (AAIW,
in light green) [Noble et al., 2013] together with eNd signatures derived from sediment cores off
Baja California (in blue) [Basak et al., 2010]. Coloured vertical bars indicate total variability in
measured §"°C at respective core sites. Coloured circles indicate 8" Cpic composition of water
masses bathing respective core sites under modern conditions [Key et al., 2004].
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Figure 6 Reconstructed 8'°C variability of GNPIW versus AAIW compared to glacial changes
in 8"°C of sub-thermocline waters, biological productivity and nutrient utilization in the Eastern
Equatorial Pacific (EEP) and Southern Ocean. a: 8°C record of GNPIW (S0201-2-85KL, Max
et al., 2014; SO201-2-101KL; this study) compared to 8'°C composition of AAIW (SO213-84-1,
Ronge et al., 2015) and deep-dwelling planktonic foraminifera 8"°C record of G. hexagonus
(ODP Site 1240, this study) during the past 60 kyr. b: 8"°N record at ODP Site 1240 in the EEP
[Pichevin et al., 2009] together with »**Th-normalized Corg flux of neighbouring core ME0005-
24 [Kienast et al., 2007]. c: 530 Sleom isotope composition of ODP Site 1240 in the EEP
[Pichevin et al., 2009] compared to 53 SlDlatom composition derived from core E11-2 [Robinson
et al., 2014] located in the Pacific Zone of the Southern Ocean. Yellow shaded bar marks times
of increased GNPIW contribution to sub-thermocline waters of the EEP during MIS 2.



