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The interplay between sediment deposition patterns, organ matter type and the
guantity and quality of reactive mineral phases determinethe accumulation, speciation,
and isotope composition of pore water and solid phase sulfuiconstituents in marine
sediments. Here, we present the sulfur geochemistry of diliclastic sediments from
two sites along the Argentine continental slope—a system chacterized by dynamic
deposition and reworking, which result in non-steady stateconditions. The two

investigated sites have different depositional historielsut have in common that reactive
iron phases are abundant and that organic matter is refracty—conditions that result
in low organoclastic sulfate reduction rates (SRR). Depdgin of reworked, isotopically
light pyrite and sulfurized organic matter appear to be impant contributors to the sulfur
inventory, with only minor addition of pyrite from organoelstic sulfate reduction above
the sulfate-methane transition (SMT). Pore-water sul desilimited to a narrow zone at the
SMT. The core of that zone is dominated by pyrite accumulatio. Iron monosul de and

elemental sulfur accumulate above and below this zone. Iromonosul de precipitation

is driven by the reaction of low amounts of hydrogen sul de wh ferrous iron and is in
competition with the oxidation of sul de by iron (oxyhydr)gides to form elemental sulfur.
The intervals marked by precipitation of intermediate suif phases at the margin of the
zone with free sul de are bordered by two distinct peaks in téal organic sulfur (TOS).
Organic matter sulfurization appears to precede pyrite fonation in the iron-dominated
margins of the sul de zone, potentially linked to the presece of polysul des formed

by reaction between dissolved sulde and elemental sulfur.Thus, SMTs can be
hotspots for organic matter sulfurization in sul de-limid, reactive iron-rich marine
sedimentary systems. Furthermore, existence of elementalulfur and iron monosul de

phases meters below the SMT demonstrates that in sul de-lirfited systems metastable
sulfur constituents are not readily converted to pyrite butan be buried to deeper
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sediment depths. Our data show that in non-steady state sysgms, redox zones do not
occur in sequence but can reappear or proceed in inverse segence throughout the
sediment column, causing similar mineral alteration prosses to occur at the same time
at different sediment depths.

Keywords: subsurface sulfur cycle, biogeochemistry, non-ste ady state, sulfur isotopes, sulfate-methane transition

INTRODUCTION (Riedinger et al., 20)4Although these studies demonstrated
that sedimentary sulfur cycling in an iron oxide-dominated
Dynamic depositional systems strongly impact sedimentardynamic marine system strongly aects sulfur sequestration
geochemical processes; sediments formed under sueimd subsea oor microbial processes, some questions remain
geochemical regimes do not always show the typical sequénceumresolved; in particular, it is unclear why a wide variety of
terminal electron acceptor processes predicted for steadg stali erent reduced sulfur compounds is formed and if there is a
environments (e.g.Claypool and Kaplan, 1974; Froelich et al.,“classical” zonation—analogous to the standard redox tewe
1979; Berner, 19§1Depending on the availability and reactivity for diagenetic sulfur transformations. To study the fate afigus
of the solid-phase electron acceptors, the redox sequence csuifur species, their contents and isotopic signatures, disage
even be reversed in some cases. For example, iron and maegarng iron inventory, in more detail in these dynamic depositad
reduction can reappear or persist at depth below the zoneystems, we collected samples via gravity cores from the lowe
dominated by sulfate reduction (e.§9stma and Jakobsen, 1996;slope in the western Argentine Basin during the RV Meteor
Kasten et al., 1998; Hensen et al., 2003; Riedinger et aft; 20Expedition M78/3 in May-July 2009.
Treude et al., 20)41In particular, non-steady state depositional
conditions can have a strong impact on the inventory of sul deSulfur Cycling in Marine Sediments
minerals in anoxic marine environments (e.¢asten et al., The main driver of the marine sedimentary sulfur cycle is the
1998, 2003; Aller et al., 2010; Borowski et al., 2013; Alld4;2 microbial reduction of sulfate (e.g5oldhaber and Kaplan, 1974;
Peketi et al., 20)51ron sul de-containing sediments that are Froelich et al., 1979; Jgrgensen, 1982; Bowles et al). At
eroded and/or transported down-slope in oxygenated seawat@vo major catabolic microbial sulfate reduction pathwaye ar
can be subject to reoxidation, leading to the conversiorrafii  organoclastic sulfate reduction and sulfate reduction ceditb
monosul des and ne-grained pyrite to (amorphous) ferric anaerobic oxidation of methane (AOM); both processes release
hydroxides (uther et al., 1982; Morse, 1991Shielded from hydrogen sul de to the pore water (e.gspldhaber and Kaplan,
sul dic conditions in the upper sediment column due to rapid 1974; Jgrgensen, 1982; Hoehler et al., 1994; Boetius €0f)., 2
burial—and in the presence of mostly reworked, unreactivéMicrobial sulfate reduction discriminates against the heav
organic matter—those oxidized reactive iron phases are thesulfur isotopes, leading to a relative depletion 38 in the
preserved in deeper subsurface sedimehiisngen et al., 2003; produced hydrogen sulde and a corresponding relatfAs
Marz et al., 2008; Riedinger et al., 2)TPhe continental margin  enrichment in the remaining sulfate pool¢nes and Starkey,
o Uruguay and Argentina is characterized by such highly1957; Harrison and Thode, 1958; Thode et al., 1961; Kaplan
dynamic depositional conditions (e.gRiedinger et al., 2005; and Rittenberg, 1964; Rees, 1970; Goldhaber and Kaplan, 1974,
Henkel et al., 2011, 2012; Krastel et al., 2011, 2@’ these 1980; Froelich et al., 1979; Bottrell and Raiswell, 2000y r&r
locations are likely to be representative of environmentg ire  and Bernasconi, 2005; Sim et al., 2011; Wing and Halevy)2014
common throughout the world along continental margins. Typically, with increasing sediment depth, as the sulfate pool
Sediments along the continental margin o Uruguay andbecomes smaller, the remaining sulfate becomes isotopicall
Argentina, at the western rim of the Argentine Basin, areheavier (e.g.Goldhaber and Kaplan, 1974; Torres et al., )996
not only characterized by redistribution/reworking, imcling  This trend is re ected in the production of hydrogen sul de
recycling of organic matter, but also by an input of iron (asthat also becomes isotopically heavier. As a consequende, wit
iron (oxyhydr)oxides). Those inputs of reactive iron grgatl increasing sediment depth, any sulfur phase resulting from
outpace sedimentary sul de production, which results in ansul de oxidation or directly precipitated iron sul de will ab
iron-dominated systemHaese et al., 2000; Hensen et al., 200become enriched irP*S (e.g.,Goldhaber and Kaplan, 19R0
Riedinger et al., 2005This situation arises because residual, lesBurthermore, at the sulfate-methane transition (SMT) where
reactive organic matter, which has already been degrad#dtbat sulfate is almost entirely consumed, iron sul des are preaigit
shallower sites of initial deposition, is reworked and tiamged  with the heaviest isotope composition compared to the upper
and further remineralized along with sul de minerals, whiare  sediments{grgensen et al., 2004; Borowski et al., 2013; Lin et al.,
oxidized to yield high amounts of Fe(lll}densen et al. (2003) 2019.
concluded that the non-steady state processes and assbciate In most continental margin sediments, pyrite is the most
iron oxidation in this dynamic system favors the retentionabundant iron sul de species (e.gpldhaber and Kaplan, 1975;
of any reduced sulfur generated following redeposition,clhi Cornwell and Morse, 1987; Morse and Cornwell, 1P&nd
was corroborated by the quanti cation of sulfur burial bdse a long-term sink for sulfur Berner, 1982, 1989; Berner and
on a transport and reaction modelR(edinger et al., 2005 Raiswell, 1993Pyrite abundance is controlled mainly by the rate
and subsequent direct measurements of sulfur constituentsf microbial sulfate reduction, which depends on the amount a
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quality of buried organic matter or the upward ux of methane, gravity-controlled sediment transport and strong current
and the availability of reactive iron to (re)oxidize and/or circulation Ewing and Leonardi, 1971; Klaus and Ledbetter,
precipitate the produced hydrogen sul de (e.@.oldhaber and 1988; Hernandez-Molina et al., 2009; Preu et al., p0h3the
Kaplan, 1974; Jgrgensen, 1977, 1982, 1990; Berner, 198¢|Raisipper waters, the southward owing Brazil Current and the
et al.,, 1988; Lyons, 1997In iron-dominated sedimentary northward owing Malvinas (Falkland) Current meet in front
systems, hydrogen sul de is e ectively scavenged by disdolv of the Rio de la PlataHeterson and Stramma, 199The Brazil
FEC and other, solid reactive iron phases, resulting in theMalvinas Con uence (BMC) leads to an increase in primary
accumulation of intermediate/metastable sulfur and irehde  production over a distinct area related to the mixing of these
phases, such as elemental sulfur, mackinawite, and greigiteh  tropical and Antarctic water masses, which results in strong
can be further transformed into pyrite (e.gGoldhaber and gradients in nutrient, salinity, and temperaturéi{toine et al.,
Kaplan, 1975; Can eld, 1989; Kasten et al., 1998; Rickard ari®96; Behrenfeld and Falkowski, 1997; Chiessi et al.,) 2017
Luther, 2007; Fu et al., 2008; Peier et al., 201f systems elevated organic carbon input into the sediment along thdfshe
limited by hydrogen sul de availability, intermediate ful  and upper slope. Southward- owing North Atlantic Deep Water
phases such as thiosulfate and elemental sulfur can be nmdisob  (NADW, 2,000 and 4,000 m) and northward- owing Antarctic
disproportionated into®*S-enriched sulfate and*S-depleted Bottom Water (AABW> 4,000 m) are parallel to the continental
hydrogen sul de (e.g.,Thamdrup et al., 1993; Jgrgensen andmargin; below 4,000m water depth, the AABW transports
Nelson, 2004; Bottcher et al., 200Bhis process further increases mostly ne-grained sediment.
the o set between isotopically heavy sulfate and light seld  Predominantly terrigenous material, delivered from the
(Caneld and Thamdrup, 1994 Thus, the concentration and numerous uvial tributaries along the coast of Argentinadan
sulfur isotope composition of sulfur and iron sul de phasesUruguay (riondo, 1984; Piccolo and Perillo, 199 transported
can be used to trace ongoing and past biogeochemical sulfdownslope from the continental shelf via gravity-contrdli@ass
cycling in marine sediments (e.gspldhaber and Kaplan, 1974; ows, including turbidity currents and density owsHiscaye and
Goldhaber et al., 1977; Howarth, 1979; Jgrgensen, 1979;rilowaDasch, 1971; Ewing et al., 1971; Klaus and Ledbetter, 188& S
and Jgrgensen, 1984; Jgrgensen et al.)2004 and Ellwood, 1988; Romero and Hensen, 2002; Hensen et al.,
In addition to the interaction of sulfur with iron, a further 2003; Henkel et al., 2011, 2012; Krastel et al., 2011; Gearetz
major sink of sulfur in marine systems is the incorporationet al., 2012; Voigt et al., 2013hese mass ows also transport
into organic compounds (e.gSinninghe Damsté et al., 1988; reworked organic matter further downslope, resulting in talri
Anderson and Pratt, 1995; Brichert and Pratt, 1996; Can el®f refractory organic carbonHedges and Keil, 1995n the
et al.,, 1998; Werne et al.,, 200dDuring early diagenesis, deeper parts of the basin. Thus, high mean sedimentation,rates
organic matter can be sulfurized via reaction with hydrogernincluding mass transport deposits (MTD), combined with low
sul de and/or intermediate sul de oxidation products, su@s levels of reactive organic carbon, leads to rapid burial @tly)
polysul des (e.g.,Aizenshtat et al., 1983; Vairavamurthy andreactive iron minerals present as both primary terrigenoussgisa
Mopper, 1987; Kohnen et al., 1989; Sinninghe Damsté arand reworked and oxidized authigenic componentse(isen
deLeeuw, 1990; Vairavamurthy et al., 1992; Anderson ant, Praet al., 2003; Riedinger et al., 2005, 2014
1995; Adam et al.,, 1998; Werne et al., 2000; Filley et al.,
200). In the uppermost surface sediments of organic-richSampling and Sample Processing
sul de-dominated marine sedimentary systems, sulfui@aiof  Gravity cores were collected east of the Rio de la Plata mouth
labile organic compounds, such as humic acigsa(icois, 1987; from water depths of 3821m and 3687m (GeoB 13824-1
Ferdelman et al., 1991can precede the formation of pyrite 38 13.14S, 5321.29 W; GeoB 13863-1 338.70 S, 5357.16
(Mossmann et al., 1991; Vairavamurthy et al., 1992, 1995y Fill&V; Figure 1) during R/V Meteor expedition M78/3Krastel and
et al., 2002; Werne et al., 2008 he isotopic composition of Wefer, 201). The cores were taken at two sites from di erent
the precursor inorganic sulfur species, such as hydrogerdsul depositional settingsHigure 2). GeoB 13824 was collected at the
polysul des, or elemental sulfur, should thus be recorded irfoot of the Mar del Plata CanyonK¢astel and Wefer, 20),1
the resulting organic sulfur compoundsMerne et al., 2008; which is characterized by high accumulation of sedimentt th
Amrani, 2014. Unfortunately, the bulk organic sulfur fraction, bypassed the shelf through the canyon, as well as potential
with an isotopic signature representing a mixture of the disti  erosion events. Core GeoB 13863 was recovered from a site on
organic sulfur compounds, does not allow us to distinguistthe lower slope south of the Rio de la Plata where recent sediment
between di erent sulfurization pathwaysi\(erne et al., 2003 input is mainly in uenced by currents and minor amounts of
only compound-speci ¢ approaches may provide some furthemass gravity ow. The site experienced profound variations

insights @mrani and Aizenshtat, 2004; Raven et al., 2016 in depositional conditions over glacial/interglacial timeesa—
most likely related to changes in sea leveledinger et al.,
METHODS 2009. N
_ ) After retrieval, the cores were cut immediately into 1-m
Sedimentary Setting segments on deck. For methane analysis, 3 cc syringe samples

The sedimentary environment of the Argentine Basin, inchgd  were taken from every core segment and transferred into 20 mL
the continental margin o Argentina and UruguayF{gure 1),  headspace vials pre- lled with 10 mL of a 5 M NaCl solution
is controlled by dynamic depositional processes, such amnd stored at 4C. Additionally, samples for determinations of
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FIGURE 1 | Site location of studied cores (yellow lled circl es) in the Argentine Basin.

sulfate reduction rates (SRR) were taken from every core sggmeiquid chromatography (HPLC) Sykam solvent delivery
(for Hole GeoB 13824 only). Pore water samples were extractegistem coupled to a Waters 430 conductivity detector. Sulfat
on segment-halves in a cold room ¢ C) via the Rhizon concentrations for Site GeoB 13863 were measured at the Max
method Seeberg-Elverfeldt et al., 2005; Dickens et al.,)200Planck Institute for Marine Microbiology (MPI-MM) in Bremen,
For sulfate and hydrogen sul de concentrations and isotopé&sermany, via suppressed ion chromatography at a 1:100 dilution
analyses, 5 mL subsamples of pore water were added to a 2.84th double de-ionized water on a Metrohm 761 compact IC.
zinc acetate (ZnAc) solution in order to x all sul de present Standard calibrations were performed using seawater provided
as zinc sulde (ZnS). The pH and Eh were measured usingpy the International Association for the Physical Scierufethe
punch-in electrodes. Solid phase samples were taken at 20-G@eans (IAPSO) and in-house standards. The error of replicate
cm intervals and placed and sealed under a nitrogen atmospheamalyses of sul de and sulfate wa2 and 3%, respectively.

in aluminum bags and stored frozen 0 C) until processed Methane (CH) was measured with a Hewlett Packard 5890A
onshore. The geochemical data reported here can be accéasedgas chromatograph using a splitless injector, a stainless ste
the information system PANGAEA operated by the World DataPorapak-Q column and a ame ionization detector at the
Centers for Marine Environmental Sciences (https://doigeea. MPI-MM. Chromatographic response on the GC instrument

de/10.1594/PANGAEA.856812). was calibrated against three di erent standards with vddab
concentrations of Cld. The measured concentrations were

Pore Water Analyses corrected for sediment porosity.

Total dissolved sul de concentration$ H,SD H,SC HS C Potential polysul de concentrations 6( -Calc., n D

& ) were analyzed onboard the ship spectrophotometricallg,...,8) were calculated using the thermodynamic constahts
using the methylene blue methodne, 196). GeoB 13824-1 Kamyshny et al. (2007Ayith the program MinteQ, assuming
samples for sulfate (ﬁo) concentrations were also analyzedan activity of 1 for solid elemental sulfur and using the measdu
onboard at 1:50 and 1:100 dilutions using a high performancsul de concentration. Values were calculated for seawater
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ship in a refrigerated container (€). Sediment slurries injected
with 35SG,  were incubated undein situ pressure (38 MPa;
for further details regarding pressure incubations,'§eesmeyer

et al., 201p After the pressure was released, the incubation
experiments were terminated by transferring the samples into
15 mL tubes containing a 20% ZnAc solution. These samples
were kept frozen at 20 C during transport and storage. TSRR
were determined via the single-step cold chromium reductio
(Kallmeyer et al., 2004 and measurements were carried out
by scintillation counting at the Center for Geobiology, Aagh
University, Denmark. The detection limit for the SRR was
between 0.2 and 1.3 pmol crid 1.

Solid Phase Analyses

Multi-acid total digestions (hydro uoric, HF; hydrochloci HCI;

and nitric, HNOg) were performed on 50 mg of dry sediment
sample using a microwave system (CEM Mars Xpress) at the
Alfred Wegener Institute Helmholtz Centre for Polar and Nta
Research, Bremerhaven, Germany (AWI). The accuracy of the
measurements was veried using NIST SRM 2702 and in-
house (MAX) standards. Major elements were analyzed via
inductively coupled plasma-atomic emission spectrometryP(IC
AES, Thermo Scienti c IRIS Intrepid instrument). The refecen
standard contents were within the accepted analytical efiwor

all elements measured. Contents of total carbon (TC) andltot
inorganic carbon (TIC) were determined by measuring dried a
homogenized samples using an ELTRA CS 500 carbon sulfur
analyzer equipped with acidi cation and furnace modules. The
accuracy was 3% and 4%, respectively. The amount of total
organic carbon (TOC) was calculated by subtracting the TIC
fraction from TC.

Sequential iron extractions were carried out under anoxic
conditions using frozen subsamples. Ascorbate, dithionite
and oxalate steps were applied on ca. 150-200mg samples
to determine, respectively, the fractions present as adsorbed
ferrous iron and highly reactive/bioavailable ferric ir@Re;,),

FIGURE 2 | Multibeam bathymetric map of the study site area and crystalline iron oxides such as goethite and hematite,,(f,
seismic pro les across the investigated locations. Seismic pro les are and magnetite (Fgagn, Ferdelman, 1988; Poulton and Can eld,
displayed for Site GeoB 13824 from S to N, and for Site GeoB 1383 from NE 2005; Raiswell et al., 2010; Wehrmann et al., 2014; Henkél et
to SW. ' ' ' - ’

2016. The solutions were ushed with Nprior to extraction. All
solutions were freshly prepared prior to extraction, and resge
2 C andin situ pH of 8. Compared to seawater at pH 8.2 atblanks were taken. The iron concentration was analyzed by
25 C, where 1.15 mol of%:an be solubilized per mol of sul de inductively coupled plasma-mass spectrometry (ICP-MS; Agilen
(Kamyshny, 2009 only 0.21 mol of & can be solubilized per 7500ce) after dilution in trace-metal grade 2% HN®eplicate
mol of sul de at 2 C because of the lower dissolution df & sample extractions yielded reproducibility within 8%, and alhir
polysul des at lower temperature<gmyshny et al., 200.7For a  concentrations of reagent blanks were below detectiortlimi
chosen sul de concentration, the value 61, -Calc. is lower All solid sulfur phases were analyzed sequentially (foritbeta
than the value of solubilized®ecause the latter calculatesmethod descriptions seRiedinger et al., 20)4Elemental sulfur
total concentration of zero-valent sulfur from polysul dpecies (S°) was extracted from approximately 2-3g of wet (freshly
with di erent sulfur chain length, while the former sums the thawed) sediment by shaking forl2 h in 10 mL pure methanol
concentration of polysul des. For example, 0.21 mol 8fc&n  with a sample-to-extractant ratio of 1/10 Zop et al., 2003.
be solubilized in presence of 0.6 mM sulde at@ which The headspace was ushed withy No avoid oxidation of the
corresponds to a total polysul de concentration of 0.037 mM. reduced species. The concentration 8f\v@as analyzed at the
MPI-MM using a Sykam pump (S1100), a UV-Vis Detector
Sulfate Reduction Rates (Sykam S3200), a Zorbax ODS-column (125 mm, 5nmm;
Using the 35S radiotracer method J@rgensen, 19y8sulfate  Knauer, Germany) and 100% methanol (HPLC grade) at a ow
reduction rate (SRR) experiments were carried out onboard theate of 1 mL per minute. Elemental sulfur was eluted after 3rb m
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and detected at 265 nm, with a detection limit of aboutid and  The sulfur isotope composition is reported with respect to Viann
an analytical precision of 0.5%SD. Based on replicate sample Canyon Diablo Troilite (V-CDT). In the case of the sulfur ispie
extractions and in-house standards, the precision and amyur measurements of total dissolved sul de, the sample sizes wer
of the elemental sulfur measurements is better than 0.00%wt very small ( 1/10th typical analysis weight, 0.04 mg), which
Therefore, our samples with reported contents below 0.00%wt. increases the uncertainty for the reported isotope compasitio
may represent elemental sulfur-free samples. This condidara Based on repeated measurements of very small amounts of our
is important in the discussion of potential presence or absendaboratory standard, we estimate the standard erra) €@r very
of polysul de. For determination of acid volatile sul de (A8 small samples to be 2% for d*4S.
mainly iron monosul des—“FeS”) and chromium reducible
sulfur (CRS; which, due to the preceding removal of AVS afhd SRESULTS
corresponds mainly to pyrite), the samples were treated wigh th
sequential, two-step acid/Cr(ll) methoé¢ssing and Jgrgensen, The sul dic zone is de ned as the interval where dissolved
1989. The sul de produced in each step was trapped as ZnS ifydrogen sul de accumulates in the pore water. The intervals
a 5% Zn-acetate solution and analyzed following dilutiomgsi above and below the sul dic zone are de ned as the postoxic
the methylene blue methodZ(ine, 1969. Reproducibility was and methanic zones, respectively (afferner, 198). Due to the
better than 7% based on an in-house standard. The fI‘aCtiOt’ypical loss of the top few centimeters of the core during vecy,
of total organic sulfur (TOS) was determined on the solidthe uppermost oxic zone was not sampled.
residue following the Cr(ll) step\Werne et al., 2003 The
samples were Itered and rinsed with double distilled waterPore Water
dried and analyzed using a carbon-sulfur elemental analyz8the pore water concentration pro les at both sites show a gmil
(ELTRA CS 500). All solid-phase data are reported in dry weighttend, with a linear decrease in sulfate concentrationsifedout
units. 27.5 mM at the top of the cores to complete depletion at the SMT
The degree of pyritization (DOPRaiswell and Caneld, located at 5.5 mbsf at Site GeoB 13824 an& mbsf at Site
1999 was calculated from the analyzed iron phases by dividingeoB 13863Kigure 3). Below this transition, methane increases
pyrite Fe (Fers calculated from pyrite S) by the total highly with depth at the two sites to concentrations of 6.1 mM and
reactive Fe present as iron oxides, iron monosul de and.9 mM, respectively. Pore water accumulations of free sul de
pyrite Fe (Ferd[FepioCFexideCFanagCFenvsCFecrd). Highly  are restricted to a narrow interval close to the SMT—the su di
reactive iron (Fgr) was de ned according toRaiswell and zone. At Site GeoB 13824, this sul dic zone lies betweenr8I8 a
Caneld (1998) as the sum of FRg, Fexde Fevs, and 6.9 mbsf with maximunt H,S of 668mM; at Site GeoB 13863,
Fecrs the sul dic zone is con ned to 3.8-5.7 mbsf, adH,S reaches
Sediment porosity was determined according to standaré97mM. The dissolved iron (F&) concentrations at Site GeoB
IODP proceduresilum, 1997 at the MARUM—the Center for 13824 show a decrease from the top of the core (@3 down
Marine Environmental Sciences at the University of Bremento about 3.5 mbsf (1.21M). Below this depth and throughout
Germany—using helium-displacement penta-pycnometers. Thine sul dic zone, dissolved iron was close to or below the
data were corrected for evaporated seawater, speci caliptdss  detection limit (0.5mM). Below the sul dic zone, dissolved iron

of precipitated salts, as describedaystel et al. (2011) concentrations strongly increase with depth, with the exicept
of one small excursion at 8.5-9 mbsf (marked by a drop to 15
Sulfur Isotopes mM), with concentrations reaching 7218M (Figure 3A). The

For isotope analyses of sulfate, ltered pore water aliquotslissolved iron pro le at Site GeoB 13863 shows a similar trend
were acidi ed, and sulfate was precipitated as barium sulfate that observed at Site 13824, with slightly elevated gaine
(BaSQ) by addition of barium chloride solution (Bagl1M). the upper sediment layers and a maximum concentration of 17.3
For determination of the sulfur isotope compositions®H,S, mM at 0.8 mbsf and F& below detection in the sul dic zone.
&, AVS, and CRS, ZnS precipitates were converted teSAg Below this zone, dissolved iron concentrations increasénagp

by addition of AQNG and subsequent washing with N®H  a maximum of 50mM before they decrease slightly with depth
to remove colloidal silver. Zinc sulde was obtained from but remain above 26M (Figure 3B Riedinger et al., 20)4
elemental sulfur by using the hot acid/Cr(ll) distillationethod. At Site GeoB 13824, the redox potential (Eh) decreaseslynear
Sulfur isotope ratios of TOS were measured on bulk sedimentsith depth, from 142 mV at the sediment surface t@88 mV at
(Werne et al., 2003Isotope compositions of pore water sulfate-4.45 mbsf. Below this depth, the redox potential increasgistsfi
sulfur were determined at the MPI-MM, all other isotope again with depth but stays below120 mV. In contrast to the Eh
measurements were carried out at the University of Califarni pro le at Site GeoB 13824, the redox potential at Site GeoB3.386
Riverside (UCR). The measurements were performed by samp@ows a strong correlation with dissolved sul de concetitns,
combustion with elemental analyzers that were connectethcluding an Eh decrease to244 mV in the sul dic zone. Above
via continuous helium ow to Thermo-Finnigan Delta gas and below this zone, Eh-values increase to 204 and 74 mV,
source isotope ratio mass spectrometers. All sulfur isotopeespectively. The pH at this site does not show strong variation
measurements were calibrated with reference materialsNBS and stays in the range of 7.66—8.14, with slightly elevattueg
(d**SD C21.1%0) and IAEA-SO-6*SD 34.1%0), and the in the sul dic zone. No pH measurements are available for Site
standard error (&) of the measurements was0.2%o for £4S.  GeoB 13824.
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FIGURE 3 | Sulfate (SOAZ1 ;red lled circles), methane (CH 4; green open circles), hydrogen sul de (6 H,'S; open stars), and ferrous iron (Fe  2C) pore
water concentration pro les as well as Eh (lled circle) and pH (open circle) pro les from (A)  Site GeoB 13824 and(B) GeoB 13863. No pH measurements
available for Site 13824. Pro les of sci , 6 HyS, CHy, and Fe?C for Site GeoB 13863 afterRiedinger et al. (2014)Sulfate reduction rates (SRR) are low throughout
the sediment column at Site GeoB 13824 (no data available fdite GeoB 13863). Insuf cient sample resolution precluded deerminations of SRR for surface
sediments and actual zone of sulfate reduction coupled anaebic methane oxidation at the sulfate-methane transitioSMT). At both sites 'S accumulation in the
pore water is limited to a narrow interval located near the S The dashed lines indicate the upper and lower boundary ohts sul dic zone. Redox zones are de ned
after Berner (1981)

Sulfate Reduction Rates the highest contents>(1 wt.%). At Site GeoB 13863, the TOC
Sulfate reduction rates (SRR) are only available for sedsnentontents range from 1.15 wt.% (in the uppermost 20 cm) to 0.44
from Site GeoB 13824. The rates are lewl2 pmolcm 3d 1)  wt.% and average 0.78 wt.%i¢dinger et al., 20)4

throughout the core with values close to or below the detecti Total sulfur contents at Site GeoB 13824 are between 0.14 and
limit. As a likely consequence of the low sampling resoluttbe, 0.53 wt.% above and below the sul dic zone. Within the sut di
expected higher SRR at the sediment surface, as well as at #ume, values increase to up to 0.89 wt.%. Similarly, thedathir

SMT as related to sulfate reduction coupled to anaerobic nmetha contents at Site GeoB 13863 show an increase within theisul d

oxidation, were not captured. zone (up to 1.26 wt.%), while above and below this zone the
) values are low (0.09-0.42 wt.%). The iron oxide phasesi{Ee
Solid Phase at Site GeoB 13824, including labile iron (oxyhydr)oxides a

The investigated sediments are dominated by detrital nialter crystalline phases (hematite and goethite), are in the ranQe24

with low contents of calcium carbonate (Cag)restricted to  to 0.05 wt.% in the upper 6 m and strongly increase (up to 0.51
the upper 1.8 m at Site GeoB 13824 and the upper 0.5m at Sitd.%) in the deeper sediments—starting at the lower boundary
GeoB 13863, along with high amounts of total iron rangingiro of the sul dic zone, with a drop at 8.15 mbsf to a value of 0.13
2.6 to 4.7 wt.% and aluminum from 6 to 9 wt.%igure4). wt.%. The concentration pro le for iron in magnetite (Fggn)

The Fe/Al ratios at both sites stay constant throughout theesembles that for Bgge, With a less pronounced decrease in
sediment column, with an average value of 0.5, similar to athe sul dic layer (0.13 wt.%) and a smaller increase below the
average crustal valuelgylor and MclLennan, 1995At Site  sul dic zone (up to 3.7 wt.%). The Bgge and Fenagn cOntents
GeoB 13824, the CaG@ontents show a peak between 5 andat Site GeoB 13863 scatter between 0.07 and 0.41 wt.%, with
6 mbsf, corresponding to the depth of the SMT. The sedimentscreased values above and below the sul dic zone at 1.2-sf mb
at Site GeoB 13863 do not display such a peak likely becauseanid 5.6—6.5 mbsf, respectively. While the ratio of highlyctiea

our sampling protocol. Speci cally, prior to sampling, discreteiron (Feqr) to total iron (Fer) is similar at both study sites, with
carbonate crystals were removed from about 5 mbsf, withivalues between 0.1 and 0.25, the DOP shows a strong di erence:
the SMT, for separate analysis and are thus not included iDOP at Site GeoB 13824 is elevated between 1 and 6.2 mbsf, with
the bulk element contents. Thus, for both sites, carbonate ivalues reaching 0.73 (with one outlier of 0.18 at 1.5 mbs§PD
present at the depth of the SMT, as depicted in the sediment logt Site GeoB 13863 displays increased ratios up to only 0.63 in
(Figure 4). TOC contents at Site GeoB 13824 show only slighthe sul dic zone. Outside these intervals of increased DOP a
variation throughout the core, with a range from 1.43 to 0.76both sites, the ratio stays low 0.4) throughout the remaining
wt.%; sediments in the uppermost meter and &.5 mbsf show sediment column.
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FIGURE 4 | Solid phase concentration pro les of total organi ¢ carbon (TOC), calcium carbonate, Al, S, total Fe (FeT), Fe/ Al ratio, Fe oxide phases
(Feoxide » incl. labile and crystallized Fe-oxide), magnetite (Fe  magn ), degree of pyritization (DOP), and highly recative Fe toto  tal Fe ratio (Fe yr/FeT)
determined on samples from sites (A) GeoB 13824 and (B) GeoB 13863. TOC and Fer/Al ratios for Site GeoB 13863 afterRiedinger et al. (2014)Lithology after
Krastel and Wefer (2011)

Stable Sulfur Isotope Composition of Pore Rees, 1970; Bottcher et al., 2D0he d**S-SQ values increase

Water and Solid Phase Sulfur Compounds with depth to C64.7%. at 5.2 mbsf an€€54.0%. at 4.5 mbsf
The stable sulfur isotope composition of pore water sulfetég- —at Sites GeoB 13824 and 13863, respectiviéityufe 5. The
SQy) displays a typical enrichment i#*S with depth—with a few data points for the sulfur isotope composition of total free
starting value ofd®4S-SQ (C21.1%o0) at the sediment surface sul de (**S-H;S) show no clear trend and scatter betwi6.4

at both sites equal to the global seawater val@&1(1%. e.g., and C43.0%. at both sitesKigure 5. Some of the scatter in
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FIGURE 5 | Concentration pro les of chromium reducible sulfur (CRS), acid volatile sul de (AVS), elemental sulfur (S O), and total organic sulfur (TOS)
as well as their sulfur stable isotope pro les in addition to s ulfate (d34S—SO§ ), and hydrogen sul de ( #4s-6 H»S), (sulfur isotope compositions are
reported in delta notation relative to Vienna-Cafion Diablo Troilite, VCDT) determined on samples from sites (A)  GeoB 13824 and (B) GeoB 13863. SOAZ1 ,
AVS, CRS, and & concentrations for Site GeoB 13863 afteRiedinger et al. (2014)Lithology afterKrastel and Wefer (2011)for lithology legend seeFigure 4.

the #4S-H,S data may be the result of very low concentrationsat 6.5 mbsf—just below the SMT. Below the sul dic zone,
(because of limited sample volume) and associated instrtmhen the d**S-CRS data show a slight progressive depletiod*
uncertainty at these levels. Consequently, interpretatiofia®*S-  with depth, from 9.8 to 39.3%o in the lowermost sediment
H>S data should be viewed with caution. layer. In contrast to pyrite, the contents of iron monosul de
Pyrite contents (CRS) at Site GeoB 13824 are elevated ab@lases (AVS) are low<(0.016 wt.%) in the upper 7.5 meters
and within the sul dic zone, reaching values of up to 0.5 wt.%at Site GeoB 13824 and increase below the sul dic zone to a
In contrast, in the uppermost meter of the core and belowmaximum of 0.042 wt.% at 8.45 mbgfigure 5A). The stable
the sul dic zone, pyrite contents remain below 0.2 wt.% withsulfur isotope composition of AVSH*S-AVS) at the same site
one exception (0.27 wt.%) at 9.45 mbBigure 5A). The stable varies between 33.0 andC32.4%o, with the highest values found
sulfur isotope composition of pyrited®*S-CRS) shows a trend below the sul dic zone. The contents of Show similar trends
similar to the d®*S-SQ pro le, starting with 49.1%. at the to AVS, with highest contents below the sul dic zone reachin
surface and showing the highest enrichment®fts (C29.0%0) 0.164 wt.%. Although the stable sulfur isotope composition of
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elemental sulfur@®*s-9) scatters throughout the sediment core, formation exceed those of iron-phase alteration, leadinghe®
the heaviest values are observed below the sul dic zoné, wiestablishment of a sul dic zong~{gure 3). Because of the low
values of up toC46.5%.. TOS contents are low 0.03 wt.%) reactivity of the organic matteriedinger et al., 20)4SRR are
in the upper 2.45 meters at this site and below the sul dic zonextremely low even in the presence of abundant sulfate in the
(Figure 5A). Distinct peaks in TOS are observed slightly aboveipper meters Figure 3A), with average rates of 5.8 pmol cfh
of the sul dic zone, between 2.5 and 3.5 mbsf, at the top (3.8 '—about one order of magnitude lower than rates usually
to 4.5 mbsf) and within the sul dic zone (5-6.5 mbsf). Thefound in sediments from similar water depths (efgpssing et al.,
stable sulfur isotope composition of TO&4S-TOS) is more 2000; Sawicka et al., 201Thus, sul de production is mainly
negative above the SMT (betweeB4.2 and 16.4%0) compared restricted to the SMT. The presence of free hydrogen sul dg onl
to values below of the SMT (13.6 toC 19.8%o). in the center of the SMT and the sul de-limited conditions alm
The pyrite content at Site GeoB 13863 in the sul dic zoneand below resultin a distinct sequence of metastable spliases
ranges up to 0.72 wt.%, while below and above this zone, ttend pyrite across the sul dic zone. Ultimately, this geocheahi
pyrite contents stay below 0.34 wt.%idure 5B). Similar to  regime leads to the accumulation of metastable sulfur phases
the pyrite concentration pro le, thed®*S-CRS data display a such as authigenic monosul de§igures 5 6) and elemental
positive excursion in the sul dic zone, reachi@p0.9%.. Above sulfur, as well as sulfurization of organic matter severaters
and below the sul dic zoneg*S-CRS data stay belowl1%o, below the sea oor.
with heavier values below and lighter values above. In estr
to pyrite contents, increased amounts of AVS are limited tPYyrite Formation at the Center of the
the intervals above and below the sul dic zone, with valués oSul dic Zone
up to 0.012 wt.%Rigure 5B). Outside of these intervals, AVS Elemental sulfur and iron monosul des form at the upper
stays below 0.008 wt.%. Due to the low contentsd#$-AVS  and lower boundary of the sul dic zone. In contrast, elewhte
measurements could be carried out on samples from the sul digyrite concentrations are found at the center of this zoneisTh
zone. Below the sul dic zone, howevef*S-AVS values are relationship suggests that the pyrite is mainly formed in the
measurable and high (up t639.5%), while values are between presence of excess hydrogen sul de. The relatively highgfor
32.2to 18.8%o0 above the sul dic zone. Pro les very similar to jron-dominated system) DOP 0.6 for the sediments within the
AVS are observed for elemental sulfur, with low contert®.015  sul dic zone at both sites indicates almost complete alierat
wt.%) except for narrow intervals directly above and below thef the iron oxide phases, including magnetic mineralsin eld
sul dic zone where contents increase to up to 0.071 Wt¥S-  and Berner (1987postulated that magnetic minerals (such as
S values are negative above the sul dic zore 20%.), whereas magnetite) can be replaced by pyrite if sul de concentrations
elemental sulfur is enriched if*S below this zone with values remain high for relatively long periods of time (several huedis
reaching C44.8%.. Two TOS peaks are observed within theof years), leading to an alteration (or loss) of the magnetic
sul dic zone, one at the upper and one at the lower boundarysignal. The distribution of iron sul de phases at Site GeoB&3
with contents of up to 0.194 wt.%-{gure 5B). Values above and agrees well with the results from numerical reactive-tpTs
below the sul dic zone are constant at0.02 wt.%. Above the modeling for the depositional scenario speci c to this locatio
SMT, **S-TOS is essentially constant around0%. with two  (seeRiedinger et al., 2005Speci cally, the modeling predicts
exceptions, one at the surfac€3.0%.) and one at 3.85 mbsf elevated pyrite contents that are limited to the sul dic zone
( 27.3%). Below the SMTP*S-TOS values are around 0% coinciding with a strong decrease in magnetic susceptbilit
(from 3.7 to C2.8%0), except for the lower TOS peak (at the(Riedinger et al., 20)5Similar observations are also reported for
lower boundary of the sul dic zone) where thiéS is enriched other iron-dominated areas such as the Amazon Fargensen
(up to C45.3%o). and Kasten, 2006Zambesi FanNlarz et al., 200Bor cold-seep
systems o southwestern Taiwahi¢u et al., 2014

DISCUSSION _ . :
Pyrite Outside of the Sul dic Zone

The investigated sediments are dominated by terrigenopstsy  Relatively high DOP values are also observed in the postoxic
of silt and clay with high amounts of total iron, including zone at Site GeoB 13824. This relationship could be attribute
abundant reactive ferric iron mineral&igure 4). The observed to sulde accumulation from organoclastic sulfate redocti
concentration pro les of the various iron sul de phases retec related to slightly higher TOC amounts and a longer duratain

the ongoing alteration of iron oxides via diverse reactionpore water steady-state conditions at this site comparedte Si
pathways several meters below the sea oor. The high amounGeoB 13863. Alternatively, it is possible that at Site Ge@24,3

of reactive iron are the cause for the lack or low concertragi the SMT was previously located at a shallower location in the
of dissolved hydrogen sul de over most of the sediment calum sediment. This, however, is not supported by tiéS-CRS data,
(for a detailed discussion on iron cycling in these sedirsentwhich remain low in the postoxic zone. A di erent possibility is
seeRiedinger et al.,, 20)4 Produced sul de is immediately that lower availability of reactive iron phases at Site Gea®4
scavenged, either via oxidation coupled to the reduction ofelative to Site GeoB 13863 would also result in higher sul de
the iron oxides or by precipitation with dissolved ferrousriro accumulation rates and thus more complete pyritization of the
produced by the reduction of ferric ironBerner and Westrich, reactive phases.

1985; Hartgers et al., 1997; Riedinger et al., 2034l de can In light of the extremely low measured SRR and the presence
only build up in the pore water when the rates of sul de of high amounts of reactive iron phases, we are forced to gurest
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Formation of Iron Monosul de and

Elemental Sulfur

Intermediate sulfur phases are mainly observed below théisul
zone at Site GeoB 13824. At Site GeoB 13863, these intetmedia
sulfur phases also occur at the upper and the lower boundary
of the sul dic zone Figure 5. Formation of intermediate sulfur
phases at the upper and lower boundaries of the sul dic zone—
that is, simultaneous formation in sediments of di erent age

re ects the presence of high amounts of available iron (oxiyhy
oxide phases that react with sul de to form zero-valent suénd
ferrous iron (e.g.Aplin et al., 199% while the precipitation of
iron monosul des is driven by the reaction of hydrogen sul de
with ferrous iron. The ferrous iron can result from iron (olydr)
oxide reduction coupled tan situ sul de oxidation, but it can
also diuse to the sul dic zone—originating from the upper
sediment layers and associated organoclastic iron resluetnd

the lowermost sediments via iron-reduction coupled to AOM
as discussed bRiedinger et al. (2014fpr Site GeoB 13863. In
absence of free sul de, or at low pH<&myshny et al., 2004,
2007, 2008; Kamyshny and Ferdelman, 2pélemental sulfur is
the stable zero-valent sulfur phase. At the investigatexs sthe

pH is high (7.66-8.14 in the sul dic zone at Site GeoB 13863).
This pH range makes it likely that elemental sulfur is replaced
by polysul des at the fringes of the sul dic zoneRickard
and Luther, 2007; Kamyshny, 200%hich is corroborated by
the near absence of elemental sulfur within the sul dic zone
(Figures 5 6).

The co-occurrence of elevated elemental sulfur and AVS
below the sul dic zone indicates that in a sul de-limitedstgm,
metastable minerals can persist and be buried into deeper
sediment depths Kigure 5. This relationship indicates that
intermediate sulfur phases can be more stainlesitu than
expected based on laboratory and/or modeling results. The
availability of reactive iron oxide minerals in these deeper
sediments can inhibit the transformation of iron monosul de
and elemental sulfur to pyrite, a reaction that likely only peeds
via an aqueous phase (e.g., polysul des) (eRgckard and
Luther, 200). The buried elemental sulfur might provide a
deep-subsurface sulfur source for microbial communitieghs
as sulfur disproportionating organisms (e.ghamdrup et al.,
1993, or for the reduction to sul de in the methanic zone by

FIGURE 6 | Elemental sulfur (S 0), total organic sulfur (TOS), hydrogen archaea $Fetter and Gaag, 19}%3'3-”(1 may even lead to the
sul de ( 6 H,S), and calculated polysul de (6 S2 -Calc.) concentration accumulation of a deep sulfate podRiédinger et al., 2010;
from (A) Site GeoB 13824 and(B) GeoB 13863. The green lled circles Treude et al., 201)4

indicate the potential availability 06 Sﬁ -Calc., while open symbols suggest
maximal possible6 Sﬁ -Calc. if elemental sulfur was available. The yellow

bars display the intervals of potential polysul de occurrece. Sulfurization Of Organic Matter

The low d®*S-TOS values in the uppermost sediments at both

sites Figure 5 are comparable to those in other continental
whether all of the pyrite in the surface sediments formiad margin settings (e.gBottrell et al., 2000 In the presence of
situ. The highly34S-depleted pyrite isotope signature ( 30to  excess hydrogen sul de, sulfurization of selected lahitgoic

50%. in the upper 4 mFigure 5) is very similar to other sulfur compounds appears to precede the formation of pyrite in

isotope signatures in shallow marine environments (&gtirell  marine surface sediments-iancois, 1987; Ferdelman et al.,
et al., 200p We suggest that a major portion of the pyrite found 1991; Mossmann et al., 1991; Vairavamurthy et al., 1992,
in the surface sediments is derived from sediment reworlahg 1995; Amrani and Aizenshtat, 2004The limited availability of
shallow-water sediments, where organoclastic sulfataatemh  such labile organic compounds in the investigated uppermost
and associated pyrite formation is more prevalent. sediments concurrent with high amounts of reactive irongesf,
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however, that a the marginal sulfurized organic compoundssulfurization, there is potential for enhanced preservatmin
depleted in®*S, were mainly transported to this site, most likelyorganic molecules in this zone, which implies that biomasker
from reworked shallow slope and/or shelf sediments (see al§mm organisms that thrive in such zones have an elevated
Riedinger et al., 20}4 preservation potential{ebting et al., 2006
Polysul des are known catalysts for the sulfurization of The formation of 8 at the SMT margins due to di usion of
organic compounds (e.gkrancois, 1987; Werne et al., 2000,sul de into ferric-rich sediments, which then reacts withl sie
2009. Thus, enhanced sulfurization of organic matter canto form polysul de, coincides with the occurrence of AVS that
be expected to occur in geochemical zones where polysul ds the product of sul de reacting with counter-di using ferreu
formation is prevalent. Elevated TOS contents are not foundron. This raises the interesting question about the contjmeti
within the entire sul dic zone but rather occur in two distot ~ for polysul de for AVS to pyrite transformation vs. organic
peaks. At site GeoB 13863, these two peaks align almost pgrfecllfurization and how that plays out in the core of the SMT vs.
with the transition between the sul de-free and sul deshic the margins.
portions of the sediment, exactly at the position where oneldiou . L
expect to observe the accumulation of polysul de—because &OMpetition between Sulfurization of
the peak elemental sulfur formation and subsequent reactio@rganic Matter and Pyrite Formation
with sul de—as shown by the calculated potential polysul deThere are two major pyrite formation mechanisms: the
concentrationsFigure 6B). Thed®*S-TOS data indicate di erent polysul de and the hydrogen sul de pathways (for a review,
sources of sulfur for the upper and lower TOS peaks, likelgeeButler et al., 2004 The polysul de pathwayHerner, 1970;
re ecting the d®S-H,;S at those depths. There appears to be&Rickard, 1975; Sgrensen and Jgrgensen, 1984; Schoonen and
a third TOS peak in the sul de-free postoxic zone at siteBarnes, 1991; Can eld and Thamdrup, 1994; Rickard and Luther,
GeoB 13824; however, the same overall picture emerges—an07) consists of the transformation of solid iron monosul de
absence of elemental sulfur (and to a lesser degree abseme&n aqueous species, which can react with polysul de to form
of AVS) coincides with a peak in TOFifure 5A). The TOS pyrite, and a shorter-chained polysul de species, according to
content of sediments located in the sul dic zone between the
two TOS enrichment peaks fall to almost background levels, Fe%)CSz ! Fe$q)C Sz DFegsCS§ 2 1
likely indicating that sulfurization of particulate organmatter @ @ @0
occurs at the suldic fringes of the sulde zone but not in The hydrogen sul de pathway follows as similar pattern, with a
the center of the SMT where hydrogen sulde displays thenitial transformation of solid iron monosul de to an aquesu
highest concentrations. Polysul des have been shown to bigon monosul de, which then reacts with hydrogen sul de,
stronger nucleophiles for the sulfurization of organic nesitt \whereby the hydrogen ions are reduced to dihydrogen gas (e.g
and nucleophilic substitution has also been recognized to brickard and Luther, 1997; Butler and Rickard, 2000; Rickard and
the dominant sulfurization mechanismA(rani, 2014 and | yther, 200, according to
references therein). If sulfurization of organic matterinisleed
tied to polysul des, our ndings imply thatthe center ofthe SMT  FeQ) C H2Saq)!  FeSag) C H2Saq) D FeSs)C Haog) (2)
has lower polysul de concentrations than the border regidn o
the SMT. This could be explained by the absence of polysul deEhe latter reaction only proceeds with,8, and not bisul de
due to a lack of oxidants. (HS ). This means that for the reaction to occur, neutral or
slightly acidic conditions are preferred; however, the tieac
IMPLICATIONS EOR THE GEOCHEMISTRY Ei?hilrs,olézl;a place under slightly basic conditioRskard and
OF DYNAMIC, IRON-DOMINATED At our sites, sulfurization of reworked organic matter aeth
SEDIMENTARY SYSTEMS edges of the SMT appears to out-compete pyrite formation, as is
evidenced by the peaks in TOS at the fringes of the sul dic zene
The lack of dissolved hydrogen sul de in the pore water of thespeci cally, organic matter is sulfurized, while AVS is preset.
surface sediments at our sitdddure 3) indicates that the sul de In the center of the sul dic zone pyrite predominates and no
produced by organoclastic sulfate reduction reacts imntetlia further generation of sulfurized organic matter occursréleve
with dissolved ferrous iron and thus little or no polysul de consider two speculative explanations for this observatidre
is produced. In the absence of polysul des, organic substncecenario presumes that polysul de is also present in the sul dic
appear to be protected from sulfurization in a major portion of zone, but instead of being used for sulfurization of organatter
the sediment column. This observation is in good agreemerit is consumed in the formation of pyrite (Equation 1). In this
with similar ndings, for example, from the Cariaco Basin scenario, one would have to speculate that under high sul de
(Werne et al., 2003, 2008Since sul de accumulation in the concentrations, the competition between sulfurization afanic
pore water is often restricted to a distinct zone, as producgd bmatter and pyrite formation is tilted in advantage of the &tt
sulfate reduction coupled to anaerobic methane oxidatibve, t  Alternatively, one could consider the predominance of pyrite
fringes of the SMT become hotspots for polysul de formationwithin the center of the sul dic zone an indicator for absenc
and consequent organic matter sulfurizatio@(jjada et al., of polysul de, this would explain why no further generation of
2016. With the SMT being a zone of enhanced organic mattesulfurized organic matter occurs. One would then concluda th
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pyrite formation proceeds via the hydrogen sul de pathwayslti Rapid overall sedimentation is sometimes interrupted by phase
important to note thatin our sediments the pHisup to 8.14 intheof sediment winnowing caused by ocean currents. Episodic
center of the sul dic zone—conditions that are not favomlibr ~ mass wasting processes can lead to instantaneous sediment
the hydrogen sul de reaction (Equation 2) to occur, becamsst  accumulation (e.gensen et al., 2003; Riedinger et al., 2005;
of the sul de prevails as bisul de. To solve this contradictj Henkel et al., 2011, 20).ZThese changes cause non-steady state
one could speculate that the precipitation of authigenic talci conditions in the subsurface sediment/pore-water system.,(e

or dolomite from bicarbonate driven by the AOM coupled to Kasten et al., 2003 A key question is if the analysis of the
sulfate reduction at the SMT (e.dglts and McKenzie, 1982; inventory of iron and sulfur species and the stable sulfutape
Malone et al., 2002; Moore et al., 2004; Meister et al., 200Gomposition of the sulfur constituents can ngerprint similar
Nothen and Kasten, 2011; Wehrmann etal., 2011; Riedingér et gprocesses in other settings. To illustrate the potential o th
2019 liberates hydrogen ions, which pushes sul de speciatiompproach, we present a three-stage geochemical scenaricefor th
slightly toward HS. This sul de then becomes available for pyritetwo investigated sitesF{gure 7). The rst stage is dominated
formation (Equation 2). Thus, the precipitation of authigeni by high sedimentation, as has been discussed previously by
carbonate minerals, as observed at the SMT at both sitésensen et al. (2003nd Riedinger et al. (2005h the context
(Figure 4), could facilitate the formation of pyrite at the SMT via of numerical modeling approaches. The high sedimentatiorsrate
the hydrogen sul de reaction (Equation 2). The combinatioh could be due to one or multiple depositional events. During
carbonate precipitation with pyrite formation balances hygiea  this time, reworked sediment from upslope settings accumulate,
ion production and consumption, with no net change in pH, carrying TOS and pyrite with sulfur isotope signatures that

which remains high at a value around 8. correspond to these shallower settingglure 7A). These phases
are intermingled with refractory organic matter and ample
Interpretation of the Geochemical amounts of iron (oxyhydr)oxides. A large portion of the rapidl

. . . buried organic matter reaches the methanic zone, resuliing
Evolution of Dynamic Sediments Based on an increase in the methane ux from below. During this phase,

Inventory and Isotope Composition of the sulfate concentration pro le displays a “concave up” shape
Sulfur Species (Figure 7A; Hensen et al., 2003; Kasten et al., 2003

Sulfur and iron transformations in the sediments of the As the SMT migrates upward, the production of sul de
Argentine Basin occur in a dynamic sedimentary systemby sulfate reduction coupled to AOM sweeps across sediment

FIGURE 7 | Schematic model displaying iron oxide alteration an d sulfur phase distribution with its isotopic signature rela ted to changes in

depositional conditions (modi ed after Riedinger, 2005 ). (A) During high sedimentation (one or multiple depositional ents) the SMT moves rapidly upward, a
non-steady state condition that manifests itself as concag-up sulfate pro le (Hensen et al., 2003. Under these conditions, sul de (hS) produced by sulfate (sci )
reduction coupled to anaerobic oxidation of methane (Cll) at the SMT is consumed faster than it can build up in the sediemt by reacting with highly reactive iron
oxide phases 6 Fepyiges; area shaded in light gray) and dissolved ferrous iron (F€). This results in the formation of intermediate sulfur phas (elemental sulfur, 8,
and monosul de phases, FeS) with distinct stable sulfur isatpe signatures 6345). Only minor amounts of pyrite (Fed are formed, the observed pyrite and TOS were|
mainly derived by sedimentation(B) Once sedimentation rates decrease, HS builds up at the SMT, which leads to the formation of pyritenithe sul dic zone, as well
as to the sulfurization of organic compounds (TOS) at the upgr and lower rim of the sul dic zone. Adjacent to the sul dic zore, iron monosul des and elemental sulfur
are formed. All of these phases show stable sulfur isotope ghatures that re ect the isotope composition of sul de at the respective position in the sediment. These
signatures are distinctively different from the isotope ghatures of the same sulfur constituents that formed elsewére in the sediment column, or were derived by
sedimentation. (C) At low sedimentation rates, hydrogen sul de can accumulate aithe SMT and spread outwards. The result is a broadening of # sul dic zone and
consequently broader CRS and TOS peaks.
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that contains abundant reactive iron phases. The sul de teacformation also took place at a shallower depth in the past. This
immediately with these iron phases Feyiges area shaded in relationship could be explained by an excursion of the SMT into
light gray inFigure 7)—producing zero-valent sulfur phases (i.e.,shallower sediments, followed by a deepening of the SMT due
elemental sulfur) and ferrous iron, which in turn reacts it to higher downward ux of sulfate into the SMT or a lower
sul de to form iron monosul de. These newly formed sulfur upward ux of methane. Such uctuations can take place, for
phases carry the sulfur isotope signature of sul de formed aéxample, when sediment is removed by winnowing or if less
the upward migrating SMT. Due to the refractory nature ofsulfate is consumed by organocastic sulfate reductionnduri
the organic matter, organoclastic sulfate reduction is @fion  low sedimentation due to an increase in the refractory natur
importance, and only minor amounts of pyrite are formed, of organic matter. If the system experienced a constant low
which may marginally alter (slight enrichment iA*S) the sedimentation rate over a long period of time, some of the
sulfur isotope signature of the reworked pyrite delivered byobserved isotope excursions could be overprinted. For example,
sedimentation. the isotope signatures associated with the upper fringe of the

The second stage in our geochemical scenario is reach&WT signal would be overprinted by the upward movement of
when sedimentation rates (strongly) decrease and the teulfathe redox zones with a lower SMT fringe signature, which may
ux is primarily controlled by diusion again, which causes add CRS and TOS with distinctly di erent isotope signatures to
a slowing down of the upward migration of the SMT. Under the bulk signal. In a di erent scenario, where high sedimeiata
these conditions, the production of sul de at the SMT is norates follow a short period of low sedimentation, the CRS and
longer out-competed by sul de consumption through reaction TOS associated with the SMT would be buried, and the observed
with reactive iron phases. As a consequence, sul de starts teotope excursions would be altered slowly over time if aff&le
build up in the pore water, and a sul dic zone is establisheddi erent isotope signatures, and the potential stacking oftsuc
which broadens over time. At the center of the sul dic zone,signatures during shifts in methane or sulfate uxes, opéms t
pyrite is formed via the reaction of iron monosul de with possibility of using high-resolution sulfur isotope signigsifrom
H2S, probably in conjunction with calcite precipitation. At the organic matter to reconstruct past changes in the locatiothef
fringes of the sul dic zone, iron monosul des, and elemental SMT (Wehrmann et al., 2013
sulfur are formed through the interaction between dissdlve
FEC and reactive iron oxide species and sul de di using awaySUMMARY AND CONCLUSIONS
from the center of the sul dic zone. At these reaction fronts
found at the upper and lower boundaries of the sul dic zone,Our study provides a rened view of the zonation of
additional hydrogen sul de reacts with the produced elenant biogeochemical processes that occur within and in the vigini
sulfur—resulting in the formation of dissolved polysul des of the sul dic zone around the SMT in sedimentary systems
which in turn sulfurize the organic matter. The sulfurizani dominated by reactive iron. Pyrite is formed in the center of
results in two TOS enrichment fronts, one near the upper andhe sul dic zone. At the upper and lower fringe of the sul dic
one at the lower boundary of the sul dic zone, with less andzone, the interval where pyrite formation prevails is boundgd
more 34S-enriched signatures, respectivefjgrres 7B,3. This  a zone in which sulfurization of organic matter dominatefieT
process also explains why TOS and elemental sulfur phases do patysul des are supplied by the reaction of free sul de with zero
overlap. valent sulfur, which in turn is supplied by the oxidation of sig

The third stage in the scenario is reached when thevith iron (oxyhydr) oxides. Considering the refractory na¢ of
sedimentation rates become very low (returning to mainlythe organic matter, itis interesting that sulfurizationtocompetes
hemipelagic sedimentation). The system then adjusts to aiqua pyrite formation. Above and below the sul dic zone, eleménta
steady state in terms of the pore water, and the upward movingulfur, and iron monosul de phases build up, a process that is
SMT is now “ xed” at a certain/relative depth (moving upward fueled by sul de oxidation, which yield€@nd ferrous iron and
slowly at the same rate as sedimentation). Hydrogen sul dénduces the precipitation of iron monosul des through reactio
accumulating at the SMT then spreads further out, resulting in with ferrous iron. Because of the distinct locations of these
broadening of the sul dic zone and broader CRS and TOS peal@ocesses with respect to the center of the SMT, the produced
(Figure 7Q). This is the stage that is captured in the investigatedgulfur phases record sulfur isotope signatures for sul det tha
sediments, with steady state pore water pro les as displayed laye representative for the isotope trends observed in the SMT—
sulfate, while the solid phases are integrated and mostluecapt that is, a strong enrichment ig*S from the top to the bottom
the preceding non-steady state conditions. Numerical modeli of the SMT (e.g.Rudnicki et al., 2001; Brunner et al., 2016;
results for sediments from nearby locations suggest a fianes Turchyn et al., 2016 These distinct isotope signatures allow the
of several hundred to a few thousand years for the pore wateeconstruction of the complex history of biogeochemicafwul
sulfate concentration pro le to regain the observed steddyes cycling in dynamic sediments. The power of this approach has
conditions Hensen et al., 2003 previously been demonstrated for pyrite enrichment-frontatth

This three-stage scenario explains most of the observeddicate the location of past (paleo or fossil) SMEo(owski
patterns at Sites GeoB 13824 and 13863. Some re nements ateal., 2013; Lin et al., 20.®ut can now be expanded and
required, however, to address phenomena speci ¢ to individuare ned by the inclusion of the inventory and stable sulfuoispe
sites. For example, there is a third TOS peak in the postoxicomposition of other sulfur constituents, such as the sulfur
zone of Site GeoB 13824, indicating that substantial polysul isotope composition of the organic phasE{s-TOS). We believe
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these analyses can be greatly augmented by employing high-A further conclusion of our study is that the sulfur isotope
resolution SIMS techniques to identify the former presence o$ignature of iron sul de and organic sulfur phases in marine
upper and lower fringes of SMTs, particularly in cases where sugfedimentary systems is in uenced by depositional as well as
signatures were stacked on top of each other during uctrai  in situ geochemical processes—that is, there is a link between
in the depth of the SMT. Such zones may have two isotopicallfeposition in the shallow subsurface sediments and long-
distinct populations of pyrite and TOS, corresponding to theterm signals being buried and preserved in the sedimentary
upper and lower SMT fringe. Techniques such as sulfur isotopeecord. Thus, dynamic depositional systems are charaetby
analyses using SIMS have the potential to reveal such vargationon-traditional redox zonation, where inverse redox zdooat
and clustering of isotope signatures that remain undetedtel sequences or overlap of specic zones can occur, resulting
bulk sample Xiao et al., 2010; Bontognali et al., 2012; Farquhaih multiple intervals of specic redox processes in dierent
etal., 2013; Fischer et al., 2D14 sediment strata. In other words, comparable geochemical
Our ndings not only facilitate the reconstruction of the reactions proceed in sediments of di erent sediment depth and
geochemical history of dynamic sediments, they also shed neages.
light on several interlinked themes in the study of iron{fsul
cycling in marine sediments in iron dominated systems: gt AUTHOR CONTRIBUTIONS
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