Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

Antje.Boetius [ at ] awi.de


Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([14C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6–73 ky in sediments deeper than 1 m, 50–96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL−1 sediment⋅y−1 at the surface to 0.2 pg⋅mL−1⋅y−1 at 1 km depth, equivalent to production of 7 × 105 to 140 archaeal cells⋅mL−1 sediment⋅y−1, respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

Item Type
Primary Division
Primary Topic
Publication Status
Eprint ID
DOI 10.1073/pnas.1218569110

Cite as
Xie, S. , Lipp, J. , Wegener, G. , Ferdelmann, T. and Hinrichs, K. U. , Uni Bremen, Uni Bremen, MPI Bremen (2013): Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations , Environmental Sciences, Earth, Atmospheric, and Planetary Sciences, 110 (15), pp. 6010-6014 . doi: 10.1073/pnas.1218569110

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Geographical region

Research Platforms


Edit Item Edit Item